WO2019140729A1 - 一种基于铁磁材料的忆阻器件 - Google Patents

一种基于铁磁材料的忆阻器件 Download PDF

Info

Publication number
WO2019140729A1
WO2019140729A1 PCT/CN2018/076216 CN2018076216W WO2019140729A1 WO 2019140729 A1 WO2019140729 A1 WO 2019140729A1 CN 2018076216 W CN2018076216 W CN 2018076216W WO 2019140729 A1 WO2019140729 A1 WO 2019140729A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
memristive device
ferromagnetic
electrode
spin
Prior art date
Application number
PCT/CN2018/076216
Other languages
English (en)
French (fr)
Inventor
游龙
张帅
李若凡
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2019140729A1 publication Critical patent/WO2019140729A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the invention belongs to the field of spintronics and spintronic devices, and more particularly to a memristive device based on ferromagnetic materials.
  • the factors affecting the selection and application of memristor materials include cost, performance, radiation resistance, etc., and whether the material selection is compatible with the integrated circuit process.
  • synaptic functions can generally be performed by software and hardware. Compared with software and hardware, software is slower and less efficient. Hardware is typically done through analog circuits, analog-to-digital hybrid circuits, and digital circuits.
  • the function of the memristor is closer to the neuron synapse than other devices, and the memristor has great advantages in constructing a simulated neuron network. Therefore, the memristor has a very broad development prospect and a high social demand.
  • the memristor Once the memristor develops mature, it will play a huge role in neural networks, artificial intelligence, storage, etc., and greatly promote the development of society. Based on the above application requirements, it is necessary to develop a memristive device with low cost, simple preparation, strong radiation resistance and high integration.
  • the present invention provides a memristive device based on a ferromagnetic material, which aims to be based on a Spin-Orbit Torque (SOT) effect or a spin transfer torque (Spin).
  • SOT Spin-Orbit Torque
  • Spin spin transfer torque
  • the -transfer torque (STT) effect provides a memristive device with memristive resistance and a simple preparation process and a simple structure.
  • a ferromagnetic material-based memristive device having a multilayer film structure including, in order from bottom to top, a spin current made of a heavy metal material or a topological insulator is provided.
  • a generation layer a ferromagnetic layer made of a ferromagnetic material, an insulating layer made of an insulating material, a cap layer; a spin flow generating layer for generating a spin current, and a ferromagnetic change by a spin torque of the spin current a magnetic domain state of a layer, wherein the magnetic domain state refers to a ratio of a magnetic domain in a magnetization direction upward to a magnetic domain in a magnetization direction; a magnetic domain state of the ferromagnetic layer is in a spin torque of the spin current and is applied to the memory
  • the planar magnetic field of the resistive device changes to change the resistance value of the device; the insulating layer is used to provide perpendicular magnetic anisotropy such that the easy magnetization direction of the ferromagnetic layer is perpendicular to the film surface thereof; the cap layer is used to protect the spin a flow generating layer, a ferromagnetic layer, and an insulating layer; the memristive device
  • the spin current generating layer generates a spin flow.
  • the spin torque of the spin current acts on the ferromagnetic layer, causing the magnetic domain state of the ferromagnetic layer to change;
  • the state refers to the ratio of the magnetic domain in the magnetization direction to the magnetic domain in the magnetization direction.
  • the transition region between the two domains is called the domain wall.
  • the spin torque will push the domain wall to move, and the movement of the domain wall will cause The change of the ratio of the two magnetic domains; the magnetic domain wall (single magnetic domain wall or multi-domain wall) is moved forward or backward according to the current direction, and the magnetic domain wall moving distance is determined by the current magnitude and the application time, and the magnetic domain wall
  • the moving distance can be read by the resistance of the device, that is, the abnormal Hall resistance.
  • the continuous motion of the magnetic domain wall corresponds to the continuous change of the resistance value of the device, so that the resistance value of the device no longer has only two states of “0” and “1”, thereby realizing the memory.
  • the function of the resistor is the function of the resistor.
  • the commonly used materials for the spin current generating layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 , and Sb 2 Te 3 .
  • a commonly used material for the ferromagnetic layer is CoFeB, Co.
  • a commonly used material as an insulating layer is MgO or AlO x .
  • a commonly used material for the cap layer is tantalum (Ta) or titanium (Ti).
  • a write operation to the memristive device is achieved by applying a write current between the first electrode pair or between the second electrode pair to change the resistance value of the resistive device; by the first electrode pair or the second electrode pair Applying a read current between them, and reading a voltage between the other pair of electrodes, and then calculating a resistance value of the memristive device according to the applied read current and the read voltage to implement a read operation on the memristive device;
  • the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
  • the spin current generating layer is a Hall Bar structure having a cross-sectional shape; the ferromagnetic layer, the insulating layer, and the cap layer have the same size Polygon or elliptical, and in turn superimposed on the intersection of the cross shape of the spin flow generating layer; the first electrode pair of the memristive device is a straight line of the cross shape of the spin flow generating layer, the memristive device The second electrode pair is the two ends of the other line of the cross shape of the spin flow generation layer.
  • the structure of the memristive device is a cross shape; the film of each layer of the memristive device is a Hall Bar structure, and the film faces of the films of the respective layers have the same cross The shape; the first electrode pair of the memristive device is a straight line of the cross shape of the memristive device, and the second electrode pair of the memristive device is the opposite end of the other line of the cross shape of the memristive device.
  • the structure of the memristive device is sequentially prepared by a film layer preparation technique on a silicon wafer to prepare a film of a spin-flow generating layer, a ferromagnetic layer, an insulating layer and a cap layer, and then performing etching and micro-nano processing. get.
  • a commonly used film layer preparation technique for preparing a film of each layer of a memristive device is a magnetron sputtering technique, an electron beam evaporation technique, or a pulsed laser deposition technique.
  • each layer of the memristive film is set depending on the characteristics of the material used.
  • a memristive device based on a ferromagnetic material having a multilayer film structure comprising, in order from bottom to top, a spin-flow generating layer made of a heavy metal material or a topological insulator, and iron a first ferromagnetic layer made of a magnetic material, a non-magnetic layer, a second ferromagnetic layer made of a ferromagnetic material, a pinning layer, and a capping layer; a first ferromagnetic layer, a non-magnetic layer, and a second ferromagnetic layer
  • the film surface of the pinning layer and the cap layer is a polygonal or elliptical shape of the same size, and the film surface of the spin current generating layer is larger than the film surface of the other layer; the film of each layer above the spin current generating layer is sequentially overlapped with the spin current Forming a middle portion of the layer such that the spin current generating layer
  • a write current is applied between the first electrode and the second electrode, and a magnetic field parallel or antiparallel to the current direction is applied to the memristive device, and the current flows through the spin current generating layer due to the spin Hall effect.
  • the spin current generating layer generates a spin current.
  • the spin torque of the spin current acts on the first ferromagnetic layer in the MTJ or the spin valve structure, so that the magnetic field of the first ferromagnetic layer
  • the domain state changes, so that the resistance value of the memristive device changes; wherein the magnetic domain state refers to the ratio of the magnetic domain in the magnetization direction to the magnetic domain in the magnetization direction, and the transition region between the two domains is called The magnetic domain wall
  • the spin torque will promote the movement of the domain wall, and the movement of the magnetic domain wall will cause a change in the ratio of the two magnetic domains; the magnetic domain wall (single magnetic domain wall or multi-domain wall) will be forward or backward according to the current direction.
  • the magnetic domain wall moving distance is determined by the current magnitude and the application time.
  • the moving distance of the magnetic domain wall can be read by the resistance of the device, that is, the abnormal Hall resistance.
  • the continuous motion of the magnetic domain wall corresponds to the continuous change of the resistance of the device, so that the device Resistance no longer only has "0" Two states of "" and "1", thereby realizing the function of the memristor.
  • a commonly used material for the spin current generating layer is tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 .
  • a commonly used material as the first ferromagnetic layer is CoFeB; a commonly used material as the second ferromagnetic layer is CoFeB.
  • a commonly used material as a non-magnetic layer is MgO, Al 2 O 3 or Cu.
  • a commonly used material for the cap layer is tantalum (Ta) or titanium (Ti).
  • the structure of the memristive device is firstly prepared by a film layer preparation technique in a silicon wafer to sequentially prepare a spin current generating layer, a first ferromagnetic layer, a nonmagnetic layer, a second ferromagnetic layer, a pinning layer, and a cap layer.
  • the film is then etched and micro-nano processed.
  • a commonly used film layer preparation technique for preparing a film of each layer of a memristive device is a magnetron sputtering technique, an electron beam evaporation technique, or a pulsed laser deposition technique.
  • each layer of the memristive film is set depending on the characteristics of the material used.
  • a write operation to the memristive device is achieved; between the first electrode and the third electrode or at the A read current is applied between the second electrode and the third electrode, and a voltage between the first electrode and the third electrode or between the second electrode and the third electrode is read, and then calculated according to the applied read current and the read voltage Obtaining a resistance value of the memristive device to implement a read operation on the memristive device;
  • the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
  • a memristive resistive device based on a ferromagnetic material having a multi-layered film structure comprising, in order from bottom to top, a metal layer made of a metal material, made of a ferromagnetic material.
  • the layer constitutes an MTJ or a spin valve structure, the MTJ or the spin valve structure is used to realize the read
  • a current is applied between the first electrode and the second electrode, and electrons will be polarized when the electron flows through the second ferromagnetic layer to form spin-polarized electrons; the spin-polarized electron will change the first iron
  • the magnetic domain state of the magnetic layer (specifically, the ratio of the magnetic domain in the magnetization direction to the magnetic domain in the magnetization direction downward, the transition region between the two magnetic domains is called the magnetic domain wall, and the spin torque pushes the domain wall to move,
  • the movement of the magnetic domain wall causes a change in the ratio of the two magnetic domains, so that the resistance of the MTJ or the spin valve can continuously change with the current to realize the memristive function.
  • a commonly used material as the first ferromagnetic layer is CoFeB; a commonly used material as the second ferromagnetic layer is CoFeB.
  • a commonly used material as a non-magnetic layer is MgO, Al 2 O 3 or Cu.
  • a commonly used material for the cap layer is tantalum (Ta) or titanium (Ti).
  • the structure of the memristive device is first prepared by a film layer preparation technique in a silicon wafer, a metal layer, a first ferromagnetic layer, a non-magnetic layer, a second ferromagnetic layer, a pinning layer, and a capping layer, and then Etching and micro-nano processing are obtained.
  • each layer of the memristive film is set depending on the characteristics of the material used.
  • a write operation to the memristive device is achieved by applying a write current between the first electrode and the second electrode to change the resistance value of the memristive device; by applying a read current between the first electrode and the second electrode and reading Taking a voltage between the first electrode and the second electrode, and then calculating a resistance value of the memristive device according to the applied read current and the read voltage to implement a read operation on the memristive device;
  • the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/cm 2 .
  • the memristive device proposed by the present invention uses a ferromagnetic material, and changes the magnetic domain state of the ferromagnetic material based on the SOT effect or the STT effect, so that the magnetic domain wall moves forward or backward according to the current direction, and the magnetic domain wall
  • the moving distance can be determined by the current magnitude and the application time.
  • the moving distance of the magnetic domain wall can be read by the resistance of the device such as an abnormal Hall resistance, TMR (Tunnel Magnetoresistance) or GMR (Giant Magnetoresistance).
  • the continuous motion of the domain wall corresponds to the continuous change of the resistance value of the device, so that the resistance value of the device no longer has only two states of “0” and “1”, thereby realizing information storage, calculation, neural network construction and artificial intelligence.
  • the magnetic domain state of the ferromagnetic material has a fast flipping speed and a short time
  • the memristive device proposed by the present invention has faster read and write performance; moreover, since the storage principle of the memristive device proposed by the present invention is based on a ferromagnetic material The change of the magnetic domain state does not cause a large loss to the material, and therefore the device proposed by the present invention has good durability;
  • the structure of the memristive device proposed by the present invention is a multilayer film structure, and the device has a small size and can achieve high integration.
  • FIG. 1 is a schematic diagram of a ferromagnetic material-based memristive device according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a ferromagnetic material-based memristive device according to a second embodiment of the present invention
  • FIG. 3 is a schematic diagram of a ferromagnetic material-based memristive device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a ferromagnetic material-based memristive device according to a fourth embodiment of the present invention.
  • a ferromagnetic material-based memristive device has a multilayer film structure, and includes, in order from bottom to top, a spin-flow generating layer made of a heavy metal material or a topological insulator.
  • the spin-flow generating layer is a Hall Bar structure having a cross-shaped film surface; a ferromagnetic layer, an insulating layer, and a cap layer
  • the film surface is a polygonal or elliptical shape of the same size, and sequentially overlaps the intersection of the cross shape of the spin current generating layer; the two ends of a straight line of the spiral flow generating layer cross shape are the first electrode of the memristive device Yes, the other end of the other line of the spiral flow generation layer cross shape is the second electrode pair of the memristive device; the spin flow generation layer is used to generate the spin flow, and the ferromagnetic force is changed by the spin torque of the spin flow
  • the magnetic domain state of the layer; the magnetic domain state of the ferromagnetic layer changes under the action of the spin torque of the spin current and the plane magnetic field applied to the memristive device,
  • spin-flow generating layer Common materials for the spin-flow generating layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; the common material for the ferromagnetic layer is CoFeB; commonly used as an insulating layer The material is MgO or AlO x ; the usual material for the cap layer is tantalum (Ta) or titanium (Ti).
  • Writing to the memristive device is accomplished by applying a write current between the first pair of electrodes or between the second pair of electrodes to effect a write operation to the memristive device; by applying between the first pair of electrodes or the second pair of electrodes The current is read, and the voltage between the other pair of electrodes is read, and then the resistance value of the memristive device is calculated according to the applied read current and the read voltage, so that the read operation of the memristive device is realized.
  • a ferromagnetic material-based memristive device has a multilayer film structure, and includes, in order from bottom to top, a spin current generating layer made of a heavy metal material or a topological insulator.
  • a ferromagnetic layer made of a ferromagnetic material, an insulating layer made of an insulating material, a cap layer;
  • a spin flow generating layer is a Hall Bar structure, the film surface has a cross shape; and the structure of the memristive device has a cross shape;
  • the film of each layer of the memristive device is a Hall Bar structure, and the film faces of the films of the layers have the same cross shape;
  • the ends of a line of the cross-shaped device of the memristive device are the first electrode pair of the memristive device, and the memristive device cross The other end of the other line of the shape is the second electrode pair of the memristive device;
  • the spin flow generating layer is used to generate the spin current, and the magnetic domain state of the ferromagnetic layer is changed by the spin torque of the spin current;
  • ferromagnetic The magnetic domain state of the layer changes under the action of the spin torque of the spin current and the planar magnetic field applied to
  • spin-flow generating layer Common materials for the spin-flow generating layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; the common material for the ferromagnetic layer is CoFeB; commonly used as an insulating layer The material is MgO or AlO x ; the usual material for the cap layer is tantalum (Ta) or titanium (Ti).
  • Writing to the memristive device is accomplished by applying a write current between the first pair of electrodes or between the second pair of electrodes to effect a write operation to the memristive device; by applying between the first pair of electrodes or the second pair of electrodes The current is read, and the voltage between the other pair of electrodes is read, and then the resistance value of the memristive device is calculated according to the applied read current and the read voltage, so that the read operation of the memristive device is realized.
  • the ferromagnetic material-based memristive device has a multilayer film structure, including from bottom to top, a spin flow made of a heavy metal material or a topological insulator.
  • a generating layer a first ferromagnetic layer made of a ferromagnetic material, a non-magnetic layer, a second ferromagnetic layer made of a ferromagnetic material, a pinning layer, and a capping layer; a first ferromagnetic layer, a non-magnetic layer, The film faces of the second ferromagnetic layer, the pinning layer and the cap layer are polygonal or elliptical in shape, and the film surface of the spin current generating layer is larger than the film surface of the other layer; the layers of the film above the spin current generating layer are in turn Overlapping in the middle of the spin current generating layer, the spin current generating layer has at least two opposite convex ends; the two opposite convex ends of the spin current generating layer are respectively the first electrode and the second electrode of the memristive device An electrode, the cap layer is a third electrode of the memristive device; the spin current generating layer is configured to generate a spin current, and
  • spin current generating layer Common materials for the spin current generating layer are tantalum (Ta), platinum (Pt), tungsten (W), Bi 2 Se 3 or Sb 2 Te 3 ; the common material for the first ferromagnetic layer is CoFeB; A commonly used material for the ferromagnetic layer is CoFeB; a common material for the non-magnetic layer is MgO, Al 2 O 3 or Cu; and a common material for the cap layer is tantalum (Ta) or titanium (Ti).
  • the resistance value of the device enables read operation of the memristive device.
  • a ferromagnetic material-based memristive device has a multilayer film structure, and includes, in order from bottom to top, a metal layer made of a metal material, made of a ferromagnetic material.
  • the film surface of the layer and the cap layer are polygonal or elliptical in size, the film surface of the metal layer is larger than the film surface of the other layer; the layer above the metal layer is sequentially overlapped in the middle of the metal layer, so that the metal layer has at least one protruding end;
  • One protruding end of the metal layer is one electrode of the memristive device, the cap layer is the other electrode of the memristive device; the metal layer is used to conduct current as a conductor; the first ferromagnetic layer, the non-magnetic layer and the second ferromagnetic layer
  • the layer constitutes an MTJ structure or
  • a commonly used material for the first ferromagnetic layer is CoFeB; a commonly used material for the second ferromagnetic layer is CoFeB; a commonly used material for the cap layer is tantalum (Ta) or titanium (Ti).
  • a write operation to the memristive device is achieved by applying a write current between the two electrodes of the memristive device to change the resistance of the memristive device; by applying a read current between the two electrodes of the memristive device and reading two The voltage between the electrodes is then calculated according to the applied read current and the read voltage to obtain the resistance value of the memristive device, so that the read operation of the memristive device is realized.
  • the current density of the write current is greater than or equal to 10 6 A/cm 2 ; the current density of the read current is less than 10 6 A/ Cm 2 .
  • the structure of the memristive device is firstly prepared by a film layer preparation technique in a silicon wafer, and then subjected to etching and micro-nano processing; the thickness of each layer of the memristive device is determined according to The characteristics of the material used are set; the film preparation technique for preparing the film of each layer of the memristive device may be a magnetron sputtering technique, an electron beam evaporation technique or a pulsed laser deposition technique.

Landscapes

  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

一种基于铁磁材料的忆阻器件,具有多层薄膜结构,并且包括一个铁磁层,或者包括一个由第一铁磁层、非磁性层以及第二铁磁层构成的磁性隧道结(Magnetic Tunnel Junction,简称MTJ)或自旋阀结构;基于自旋轨道力矩(Spin-Orbit Torque,简称SOT)效应或者自旋转移力矩(Spin-transfer torque,简称STT)效应,通过向忆阻器件施加电流可以使得铁磁层或者MTJ或自旋阀结构中的第一铁磁层的磁畴状态发生改变,从而实现器件的阻值在高阻态和低阻态之间的连续变化,进而实现信息的存储、运算、神经网络和人工智能。该忆阻器件使用铁磁材料,并且基于SOT效应或者STT效应,利用铁磁材料的磁畴状态的改变实现信息的存储,一方面具有较好的读写性能,另一方面具有较好的耐久性;同时,该忆阻器件的结构为多层薄膜结构,器件尺寸小,能够实现很高的集成度。

Description

一种基于铁磁材料的忆阻器件 【技术领域】
本发明属于自旋电子学以及自旋电子器件领域,更具体地,涉及一种基于铁磁材料的忆阻器件。
【背景技术】
现在社会高速发展,科技不断进步,信息量爆炸增长,为了对逐步增长的海量信息进行存储和运算,我们需要一种速度更快,密度更大,功耗更低,寿命更长的非易失性的兼具存储和运算功能的存储器。忆阻器作为纳米级别器件,集成密度极高,具有非易失性,并且其存储与运算集于一体的特点使得其有望实现神经网络和人工智能,从而改变计算机存储与处理信息的方式和速度,,所以忆阻器有望成为未来存储器发展的方向。
目前影响忆阻器材料选用及应用的因素包括成本、性能、抗辐射能力等,在材料的选用上还要考虑是否能与集成电路工艺兼容。在模拟神经网络中,突触功能一般可由软件和硬件来完成,软件和硬件相比较,软件完成的速度较慢、整体效率较低。硬件一般通过模拟电路、模数混合电路和数字电路来完成。目前,忆阻器的功能是相对于其他器件更接近神经元突触的电子器件,在构建模拟神经元网络中,忆阻器具有巨大的优势。因此,忆阻器具有非常广阔的发展前景,社会需求度高,一旦忆阻器发展成熟,将在神经网络、人工智能、存储等方面发挥巨大的作用,极大推动社会的发展。基于上述应用需求,需要研制出成本低、制备简单、抗辐射能力强、集成度高的忆阻器件。
【发明内容】
针对现有技术的缺陷和改进需求,本发明提供了一种基于铁磁材料的忆阻器件,其目的在于,基于自旋轨道力矩(Spin-Orbit Torque,SOT)效应或者自旋转移力矩(Spin-transfer torque,STT)效应,提供具备忆阻特性,并且制备工艺简单、结构简洁的忆阻器件。
为实现上述目的,按照本发明的第一方面,提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态,其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例;铁磁层的磁畴状态在自旋流的自旋力矩和施加于所述忆阻器件的平面磁场的共同作用下发生改变,从而改变器件电阻值;绝缘层用于提供垂直磁各向异性,使得铁磁层的易磁化方向垂直于其膜面;盖帽层用于保护自旋流生成层、铁磁层以及绝缘层;忆阻器件具有第一电极对和第二电极对。
基于SOT效应,在第一电极对之间或者第二电极对之间施加电流,并对忆阻器件施加平行或反平行于电流方向的磁场,电流流过自旋流生成层时,由于自旋霍尔效应,自旋流生成层会产生自旋流,在外加磁场的作用下,自旋流的自旋力矩作用于铁磁层,使得铁磁层的磁畴状态发生变化;其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化;使磁畴壁(单磁畴壁或多磁畴壁)依据电流方向向前或者向后运动,磁畴壁运动距离由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻即反常霍尔电阻读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现忆阻器的功能。
优选地,常用的作为自旋流生成层的材料为钽(Ta)、铂(Pt)、钨(W)、Bi 2Se 3、Sb 2Te 3
优选地,常用的作为铁磁层的材料为CoFeB、Co。
优选地,常用的作为绝缘层的材料为MgO或者AlO x
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。
进一步地,通过在第一电极对之间或者在第二电极对之间施加写电流改变所阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;
更进一步地,写电流的电流密度大于或等于10 6A/cm 2;读电流的电流密度小于10 6A/cm 2
结合本发明的第一方面,在本发明的第一实施例中,自旋流生成层为Hall Bar结构,其膜面呈十字形状;铁磁层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的交叉部分之上;忆阻器件的第一电极对为自旋流生成层十字形状的一条直线的两端,忆阻器件的第二电极对为自旋流生成层十字形状的另一条直线的两端。
结合本发明的第一方面,在本发明的第二实施例中,忆阻器件的结构呈十字形状;忆阻器件各层薄膜均为Hall Bar结构,并且各层薄膜的膜面呈相同的十字形状;忆阻器件的第一电极对为忆阻器件十字形状的一条直线的两端,忆阻器件的第二电极对为忆阻器件十字形状的另一条直线的两端。
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元上依次制备出备出自旋流生成层、铁磁层、绝缘层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。
更进一步地,常用的用于制备忆阻器件各层薄膜的膜层制备技术为磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。
按照本发明的第二方面,提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,自旋流生成层的膜面大于其他层膜面;自旋流生成层之上的各层薄膜依次重叠于自旋流生成层中部,使得自旋流生成层至少有两个相对的凸出端;自旋流生成层的两个相对的凸出端分别为忆阻器件的第一电极和第二电极,盖帽层为忆阻器件的第三电极;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变第一铁磁层的磁畴状态;第一铁磁层、非磁性层以及第二铁磁层构成经典“三明治”的MTJ(Magnetic Tunnel Junction,磁性隧道结)或自旋阀结构;MTJ或自旋阀结构的第一铁磁层在自旋流的自旋力矩的作用下,磁畴状态发生变化,从而使得MTJ或者自旋阀的电阻,即忆阻器件的电阻值发生改变;钉扎层用于保证第二铁磁层的磁化方向不发生变化,使得第二铁磁层成为固定层,同时第一铁磁层成为自由层,其磁畴状态可以随电流发生改变;盖帽层用于作为忆阻器件的第三电极并保护自旋流生成层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层;当非磁性层由可用于电子隧穿的绝缘材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构;当非磁性层由金属材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成自旋阀结构。
基于SOT效应,在第一电极和第二电极之间施加写电流,并对忆阻器件施加平行或反平行于电流方向的磁场,电流流过自旋流生成层时,由于自旋霍尔效应,自旋流生成层会产生自旋流,在外加磁场的作用下,自旋 流的自旋力矩作用于MTJ或自旋阀结构中的第一铁磁层,使得第一铁磁层的磁畴状态发生改变,从而忆阻器件的电阻阻值发生改变;其中,磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化;使磁畴壁(单磁畴壁或多磁畴壁)依据电流方向向前或者向后运动,磁畴壁运动距离由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻即反常霍尔电阻读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现忆阻器的功能。
优选地,常用的作为自旋流生成层的材料为钽(Ta)、铂(Pt)、钨(W)、Bi 2Se 3或者Sb 2Te 3
优选地,常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB。
优选地,常用的作为非磁性层的材料为MgO、Al 2O 3或Cu。
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出自旋流生成层、第一铁磁层、非磁性层、第二铁磁层、钉扎层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。
更进一步地,常用的用于制备忆阻器件各层薄膜的膜层制备技术为磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。
进一步地,通过在第一电极和第二电极之间施加写电流,改变忆阻器件的电阻值,实现对所述忆阻器件的写操作;在第一电极和第三电极之间或者在第二电极和第三电极之间施加读电流,并读取第一电极和第三电极之间或者第二电极和第三电极之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;
更进一步地,写电流的电流密度大于或等于10 6A/cm 2;读电流的电流密度小于10 6A/cm 2
按照本发明的第三方面,本发明提供了一种基于铁磁材料的忆阻器件,具有多层薄膜结构,从下至上依次包括:由金属材料制成的金属层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,金属层的膜面大于其他层膜面;金属层之上的层依次重叠于金属层中部,使得金属层至少有一个凸出端;金属层的一个凸出端为忆阻器件的第一电极,盖帽层为忆阻器件的第二电极;金属层用于作为导体导通电流;第一铁磁层、非磁性层以及第二铁磁层构成MTJ或自旋阀结构,MTJ或自旋阀结构用于实现忆阻器件的读写操作;钉扎层用于保证第二铁磁层的磁化方向不发生变化,使得第二铁磁层成为固定层,同时第一铁磁层成为自由层,其磁畴状态可以随电流发生改变;盖帽层用于作为忆阻器件的第二电极并保护金属层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层;当非磁性层由可用于电子隧穿的绝缘材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构;当非磁性层由金属材料制成时,第一铁磁层、非磁性层以及第二铁磁层构成自旋阀结构。
基于STT效应,在第一电极和第二电极之间施加电流,电子流过第二铁磁层时电子将会被极化,形成自旋极化电子;自旋极化电子将改变第一铁磁层的磁畴状态(具体指磁化方向向上的磁畴与磁化方向向下的磁畴的比例,两种磁畴之间的过渡区称为磁畴壁,自旋力矩会推动畴壁移动,磁畴壁的移动会造成两种磁畴比例的变化),从而导致MTJ或自旋阀的电阻可以随电流发生连续变化,实现忆阻功能。。
优选地,常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB。
优选地,常用的作为非磁性层的材料为MgO、Al 2O 3或者Cu。
优选地,常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。
进一步地,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出金属层、第一铁磁层、非磁性层、第二铁磁层、钉扎层和盖帽层的薄膜,然后进行刻蚀和微纳加工得到。
更进一步地,忆阻器件各层薄膜的厚度随根据使用材料的特性设定。
进一步地,通过在第一电极和第二电极之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极和第二电极之间施加读电流并读取第一电极和第二电极之间的电压,然后根据所施加的读电流和所读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作;
更进一步地,写电流的电流密度大于或等于10 6A/cm 2;读电流的电流密度小于10 6A/cm 2
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明提出的忆阻器件使用铁磁材料,并基于SOT效应或者STT效应使得铁磁材料的磁畴状态发生改变,使磁畴壁根据电流方向向前或者向后运动,磁畴壁运动距离可由电流大小和施加时间确定,磁畴壁的运动距离可由器件的电阻如反常霍尔电阻、TMR(Tunnel Magnetoresistance,隧穿磁电阻)或GMR(Giant Magnetoresistance,巨磁电阻)读出,磁畴壁的连续运动对应器件阻值的连续变化,使器件阻值不再只具有“0”和“1”两个态,从而实现信息的存储、运算,神经网络的搭建以及人工智能。由于铁磁材料的磁畴状态翻转速度快、时间短,因此本发明提出的忆阻器件具有较快的读写性能;此外,由于本发明提出的忆阻器件的存储原理是基于铁磁材料的磁畴状态的改变,不会对材料造成较大的损耗,因此本发明提出的器件具有很好的耐久性;
(2)本发明提出的忆阻器件的结构为多层薄膜结构,器件尺寸小,能 够实现很高的集成度。
【附图说明】
图1为本发明第一实施例提供的基于铁磁材料的忆阻器件的示意图;
图2为本发明第二实施例提供的基于铁磁材料的忆阻器件的示意图;
图3为本发明第三实施例提供的基于铁磁材料的忆阻器件的示意图;
图4为本发明第四实施例提供的基于铁磁材料的忆阻器件的示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明的第一实施例中,如图1所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层为Hall Bar结构,其膜面呈十字形状;铁磁层、绝缘层以及盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于自旋流生成层十字形状的交叉部分之上;自旋流生成层十字形状的一条直线的两端为忆阻器件的第一电极对,自旋流生成层十字形状的另一条直线的两端为忆阻器件的第二电极对;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态;铁磁层的磁畴状态在自旋流的自旋力矩和施加于忆阻器件的平面磁场的共同作用下发生改变,即磁畴壁发生移动,从而使得忆阻器件的电阻值发生改变;绝缘层用于提供垂直磁各向异性,使得铁磁层的磁化方向垂直于膜面;盖帽层用于保护自旋流生成层、 铁磁层以及绝缘层。
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi 2Se 3或者Sb 2Te 3;作为铁磁层的常用材料为CoFeB;作为绝缘层的常用材料为MgO或者AlO x;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。
通过在第一电极对之间或者在第二电极对之间施加写电流改变所阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。
在本发明的第二实施例中,如图2所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;自旋流生成层为Hall Bar结构,其膜面呈十字形状;忆阻器件的结构呈十字形状;忆阻器件各层薄膜均为Hall Bar结构,并且各层薄膜的膜面呈相同的十字形状;忆阻器件十字形状的一条直线的两端为忆阻器件的第一电极对,忆阻器件十字形状的另一条直线的两端为忆阻器件的第二电极对;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变铁磁层的磁畴状态;铁磁层的磁畴状态在自旋流的自旋力矩和施加于所述忆阻器件的平面磁场的共同作用下发生改变,从而使得忆阻器件的电阻值发生改变;绝缘层用于提供垂直磁各向异性,使得铁磁层的磁化方向垂直于其膜面;盖帽层用于保护自旋流生成层、铁磁层以及绝缘层。
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi 2Se 3或者Sb 2Te 3;作为铁磁层的常用材料为CoFeB;作为绝缘层的常用材料为MgO或者AlO x;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。
通过在第一电极对之间或者在第二电极对之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在第一电极对或者第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读 电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。
在本发明实施例的第三实施例中,如图3所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,自旋流生成层的膜面大于其他层膜面;自旋流生成层之上的各层薄膜依次重叠于自旋流生成层中部,使得自旋流生成层至少有两个相对的凸出端;自旋流生成层的两个相对的凸出端分别为忆阻器件的第一电极和第二电极,盖帽层为忆阻器件的第三电极;自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变第一铁磁层的磁畴状态;第一铁磁层、非磁性层以及第二铁磁层构成经典“三明治”的MTJ(Magnetic Tunnel Junction,磁性隧道结)或自旋阀结构;MTJ或自旋阀结构在自旋流的自旋力矩的作用下,第一铁磁层中的磁畴状态发生变化,从而使得忆阻器件的电阻值发生改变;钉扎层用于保证第二铁磁层的磁化方向不发生变化;盖帽层用于作为忆阻器件的第三电极并保护自旋流生成层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层。
作为自旋流生成层的常用材料为钽(Ta)、铂(Pt)、钨(W)、Bi 2Se 3或者Sb 2Te 3;作为第一铁磁层的常用材料为CoFeB;作为第二铁磁层的常用材料为CoFeB;作为非磁性层的常用材料为MgO、Al 2O 3或Cu;作为盖帽层的常用材料为钽(Ta)或者钛(Ti)。
通过在第一电极和第二电极之间施加写电流,改变忆阻器件的电阻值,实现对所述忆阻器件的写操作;在第一电极和第三电极之间或者在第二电极和第三电极之间施加读电流,并读取第一电极和第三电极之间或者第二电极和第三电极之间的电压,然后根据所施加的读电流及读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。
在本发明的第四实施例中,如图4所示,基于铁磁材料的忆阻器件具有多层薄膜结构,从下至上依次包括:由金属材料制成的金属层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;第一铁磁层、非磁性层、第二铁磁层、钉扎层以及盖帽层的膜面为大小相同的多边形或椭圆形,金属层的膜面大于其他层膜面;金属层之上的层依次重叠于金属层中部,使得金属层至少有一个凸出端;金属层的一个凸出端为忆阻器件的一个电极,盖帽层为忆阻器件的另一个电极;金属层用于作为导体导通电流;第一铁磁层、非磁性层以及第二铁磁层构成MTJ结构或自旋阀结构,MTJ结构或自旋阀结构用于实现忆阻器件的读写操作;钉扎层用于保证第二铁磁层的磁畴状态不发生变化;盖帽层用于作为忆阻器件的电极并保护金属层、第一铁磁层、非磁性层、第二铁磁层以及钉扎层。
常用的作为第一铁磁层的材料为CoFeB;常用的作为第二铁磁层的材料为CoFeB;常用的作为盖帽层的材料为钽(Ta)或者钛(Ti)。
通过在忆阻器件的两个电极之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在在忆阻器件的两个电极之间施加读电流并读取两个电极之间的电压,然后根据所施加的读电流和所读取的电压计算得到忆阻器件的电阻值,实现对忆阻器件的读操作。
在本发明的第一实施例、第二实施例、第三实施例以及第四实施例中,写电流的电流密度大于或等于10 6A/cm 2;读电流的电流密度小于10 6A/cm 2
在以上四个实施例中,忆阻器件的结构先由膜层制备技术在硅晶元依次制备出各层薄膜,然后进行刻蚀和微纳加工得到;忆阻器件各层薄膜的厚度随根据使用材料的特性设定;用于制备忆阻器件各层薄膜的膜层制备技术可以是磁控溅射技术、电子束蒸发技术或者脉冲激光沉积技术。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等 同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于铁磁材料的忆阻器件,具有多层薄膜结构,其特征在于,从下至上依次包括:由重金属材料或拓扑绝缘体制成的自旋流生成层、由铁磁材料制成的铁磁层、由绝缘材料制成的绝缘层、盖帽层;
    所述自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变所述铁磁层的磁畴状态;所述铁磁层的磁畴状态在所述自旋流的自旋力矩和施加于所述忆阻器件的平面磁场的共同作用下发生改变,从而使得所述忆阻器件的电阻值发生改变;所述绝缘层用于提供垂直磁各向异性,使得所述铁磁层的易磁化方向垂直于其膜面;所述盖帽层用于保护所述自旋流生成层、所述铁磁层以及所述绝缘层;其中,所述磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例。
  2. 如权利要求1所述的基于铁磁材料的忆阻器件,其特征在于,所述忆阻器件具有第一电极对和第二电极对,通过在所述第一电极对之间或者在所述第二电极对之间施加写电流改变所述忆阻器件的电阻值,实现对所述忆阻器件的写操作;通过在所述第一电极对或者所述第二电极对之间施加读电流,并读取另一电极对之间的电压,然后根据所施加的读电流以及读取的电压计算得到所述忆阻器件的电阻值,实现对所述忆阻器件的读操作;
    所述写电流的电流密度大于或等于10 6A/cm 2;所述读电流的电流密度小于10 6A/cm 2
  3. 如权利要求2所述的基于铁磁材料的忆阻器件,其特征在于,所述自旋流生成层为Hall Bar结构,其膜面呈十字形状;所述铁磁层、所述绝缘层以及所述盖帽层的膜面为大小相同的多边形或椭圆形,并且依次重叠于所述自旋流生成层十字形状的交叉部分之上;
    所述第一电极对为所述自旋流生成层十字形状的一条直线的两端,所 述第二电极对为所述自旋流生成层十字形状的另一条直线的两端。
  4. 如权利要求2所述的基于铁磁材料的忆阻器件,其特征在于,所述忆阻器件的结构呈十字形状;所述忆阻器件各层薄膜均为Hall Bar结构,并且各层薄膜的膜面呈相同的十字形状;
    所述第一电极对为所述忆阻器件十字形状的一条直线的两端,所述第二电极对为所述忆阻器件十字形状的另一条直线的两端。
  5. 一种基于铁磁材料的忆阻器件,具有多层薄膜结构,其特征在于,从下至上依次包括:由重金属材料或者拓扑绝缘体材料制成的自旋流生成层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;
    所述第一铁磁层、所述非磁性层、所述第二铁磁层、所述钉扎层以及所述盖帽层的膜面为大小相同的多边形或椭圆形,所述自旋流生成层的膜面大于其他层膜面;所述自旋流生成层之上的各层薄膜依次重叠于所述自旋流生成层中部,使得所述自旋流生成层至少有两个相对的凸出端;所述自旋流生成层的两个相对的凸出端分别为所述忆阻器件的第一电极和第二电极,所述盖帽层为所述忆阻器件的第三电极;
    所述自旋流生成层用于产生自旋流,并通过自旋流的自旋力矩改变所述第一铁磁层的磁畴状态;所述第一铁磁层、所述非磁性层以及所述第二铁磁层构成MTJ或自旋阀结构;所述MTJ或自旋阀结构在所述自旋流的自旋力矩的作用下,第一铁磁层中的磁畴状态发生变化,从而使得所述忆阻器件的电阻值发生改变;所述钉扎层用于保证所述第二铁磁层的磁化方向不发生变化;所述盖帽层用于作为所述忆阻器件的第三电极并保护所述自旋流生成层、所述第一铁磁层、所述非磁性层、所述第二铁磁层以及所述钉扎层;其中,所述磁畴状态指磁化方向向上的磁畴与磁化方向向下的磁畴的比例。
  6. 如权利要求5所述的基于铁磁材料的忆阻器件,其特征在于,通过 在所述第一电极和所述第二电极之间施加写电流,改变所述忆阻器件的电阻值,实现对所述忆阻器件的写操作;在所述第一电极和所述第三电极之间或者在所述第二电极和所述第三电极之间施加读电流,并读取所述第一电极和所述第三电极之间或者所述第二电极和所述第三电极之间的电压,然后根据所施加的读电流及读取的电压计算得到所述忆阻器件的电阻值,实现对所述忆阻器件的读操作;
    所述写电流的电流密度大于或等于10 6A/cm 2;所述读电流的电流密度小于10 6A/cm 2
  7. 一种基于铁磁材料的忆阻器件,具有多层薄膜结构,其特征在于,从下至上依次包括:由金属材料制成的金属层、由铁磁材料制成的第一铁磁层、非磁性层、由铁磁材料制成的第二铁磁层、钉扎层以及盖帽层;
    所述第一铁磁层、所述非磁性层、所述第二铁磁层、所述钉扎层以及所述盖帽层的膜面为大小相同的多边形或椭圆形,所述金属层的膜面大于其他层膜面;所述金属层之上的层依次重叠于所述金属层中部,使得所述金属层至少有一个凸出端;金属层的一个凸出端为所述忆阻器件的第一电极,所述盖帽层为所述忆阻器件的第二电极;
    所述金属层用于作为导体导通电流;所述第一铁磁层、所述非磁性层以及所述第二铁磁层构成MTJ或自旋阀结构,所述MTJ或自旋阀结构用于实现忆阻器件的读写操作;所述钉扎层用于保证所述第二铁磁层的磁化方向不发生变化;所述盖帽层用于作为所述忆阻器件的第二电极并保护所述金属层、所述第一铁磁层、所述非磁性层、所述第二铁磁层以及所述钉扎层。
  8. 如权利要求7所述的基于铁磁材料的忆阻器件,其特征在于,通过在所述第一电极和所述第二电极之间施加写电流改变忆阻器件的电阻值,实现对忆阻器件的写操作;通过在所述第一电极和所述第二电极之间施加读电流并读取所述第一电极和所述第二电极之间的电压,然后根据所施加 的读电流和所读取的电压计算得到所述忆阻器件的电阻值,实现对所述忆阻器件的读操作;
    所述写电流的电流密度大于或等于10 6A/cm 2;所述读电流的电流密度小于10 6A/cm 2
PCT/CN2018/076216 2018-01-19 2018-02-11 一种基于铁磁材料的忆阻器件 WO2019140729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810051734.0A CN108336222A (zh) 2018-01-19 2018-01-19 一种基于铁磁材料的忆阻器件
CN201810051734.0 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019140729A1 true WO2019140729A1 (zh) 2019-07-25

Family

ID=62925175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076216 WO2019140729A1 (zh) 2018-01-19 2018-02-11 一种基于铁磁材料的忆阻器件

Country Status (2)

Country Link
CN (1) CN108336222A (zh)
WO (1) WO2019140729A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640865A (zh) * 2020-06-10 2020-09-08 中国科学技术大学 一种适用于神经形态计算的人工突触器件
US11195991B2 (en) * 2018-09-27 2021-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic random access memory assisted devices and methods of making
JP2022082452A (ja) * 2020-11-20 2022-06-01 高麗大学校産学協力団 スピン軌道トルクベースの磁気トンネル接合及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6625281B1 (ja) * 2018-09-12 2019-12-25 Tdk株式会社 リザボア素子及びニューロモルフィック素子
CN109507617B (zh) * 2018-10-29 2020-02-14 华中科技大学 一种未知磁场的探测方法
CN109521996B (zh) * 2018-11-16 2021-08-24 武汉华芯纳磁科技有限公司 基于电子自旋的多态真随机数发生器
CN110212087B (zh) * 2019-05-29 2021-01-08 中国科学院金属研究所 一种无需外场辅助的自旋轨道扭矩器件
CN110610022B (zh) * 2019-08-06 2021-11-19 华中科技大学 一种基于铁磁材料的电子模拟积分器
CN110535460B (zh) * 2019-09-23 2021-08-24 四川师范大学 一种基于反铁磁斯格明子的新型逻辑门电路
CN111725386B (zh) * 2019-09-23 2022-06-10 中国科学院上海微系统与信息技术研究所 一种磁性存储器件及其制作方法、存储器和神经网络系统
CN110752287B (zh) * 2019-09-29 2021-04-20 华中科技大学 一种基于随机性磁畴壁移动的可重构puf构造方法
CN110752288B (zh) * 2019-09-29 2022-05-20 华中科技大学 一种基于非易失器件阵列构造可重构强puf的方法
CN110851882B (zh) * 2019-10-21 2022-04-22 华中科技大学 基于sot效应的物理不可克隆函数生成方法及系统
CN111933789B (zh) * 2020-08-11 2022-07-08 兰州大学 一种多态存储器、其制备方法和存储方法及人工突触器
CN113451355B (zh) * 2020-12-10 2023-04-18 北京航空航天大学 基于自旋轨道矩的磁性存储器件
WO2022193290A1 (zh) * 2021-03-19 2022-09-22 中国科学院微电子研究所 基于磁畴壁驱动型磁隧道结的激活函数发生器及制备方法
CN113193110B (zh) * 2021-03-19 2023-01-17 中国科学院微电子研究所 基于磁畴壁驱动型磁隧道结的激活函数发生器及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161265A1 (en) * 2007-12-25 2009-06-25 Hitachi, Ltd. Magnetic sensor, magnetic head, and magnetic memory by using spin hall devices
CN105280214A (zh) * 2015-09-10 2016-01-27 中国科学院物理研究所 电流驱动型磁随机存取存储器和自旋逻辑器件
CN105304812A (zh) * 2015-06-08 2016-02-03 清华大学 相变自旋非易失存储单元
CN106784299A (zh) * 2017-02-10 2017-05-31 中国科学院物理研究所 多层膜异质结构、其制备方法及应用
CN106876582A (zh) * 2017-02-21 2017-06-20 中国科学院物理研究所 磁性隧道结及包括其的磁器件和电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105832B2 (en) * 2011-08-18 2015-08-11 Cornell University Spin hall effect magnetic apparatus, method and applications
WO2016011435A1 (en) * 2014-07-17 2016-01-21 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
WO2016069547A2 (en) * 2014-10-27 2016-05-06 Brown University Beta tungsten thin films with giant spin hall effect for use in compositions and structures with perpendicular magnetic anisotropy
US10592802B2 (en) * 2016-02-28 2020-03-17 Purdue Research Foundation Electronic synapse having spin-orbit torque induced spike-timing dependent plasticity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090161265A1 (en) * 2007-12-25 2009-06-25 Hitachi, Ltd. Magnetic sensor, magnetic head, and magnetic memory by using spin hall devices
CN105304812A (zh) * 2015-06-08 2016-02-03 清华大学 相变自旋非易失存储单元
CN105280214A (zh) * 2015-09-10 2016-01-27 中国科学院物理研究所 电流驱动型磁随机存取存储器和自旋逻辑器件
CN106784299A (zh) * 2017-02-10 2017-05-31 中国科学院物理研究所 多层膜异质结构、其制备方法及应用
CN106876582A (zh) * 2017-02-21 2017-06-20 中国科学院物理研究所 磁性隧道结及包括其的磁器件和电子设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195991B2 (en) * 2018-09-27 2021-12-07 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic random access memory assisted devices and methods of making
CN111640865A (zh) * 2020-06-10 2020-09-08 中国科学技术大学 一种适用于神经形态计算的人工突触器件
CN111640865B (zh) * 2020-06-10 2023-06-20 中国科学技术大学 一种适用于神经形态计算的人工突触器件
JP2022082452A (ja) * 2020-11-20 2022-06-01 高麗大学校産学協力団 スピン軌道トルクベースの磁気トンネル接合及びその製造方法
JP7350363B2 (ja) 2020-11-20 2023-09-26 高麗大学校産学協力団 スピン軌道トルクベースの磁気トンネル接合及びその製造方法
EP4006999B1 (en) * 2020-11-20 2024-06-12 Korea University Research and Business Foundation Method of fabricating a spin-orbit torque (sot)-based magnetic tunnel junction

Also Published As

Publication number Publication date
CN108336222A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019140729A1 (zh) 一种基于铁磁材料的忆阻器件
US9666793B2 (en) Method of manufacturing magnetoresistive element(s)
TWI602331B (zh) 使用外部鐵磁偏壓膜之壓控磁各向異性切換裝置
KR102080631B1 (ko) 자기 저항 효과 소자 및 자기 메모리 장치
JP7227614B2 (ja) 磁性体とBiSbの積層構造の製造方法、磁気抵抗メモリ、純スピン注入源
US9318179B2 (en) Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
JP5756760B2 (ja) 磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法
US9461243B2 (en) STT-MRAM and method of manufacturing the same
KR20180100065A (ko) 자기 터널 접합부 및 열 안정성 강화층을 갖는 메모리 셀
CN110061127B (zh) 磁隧道结的形成方法及磁阻式随机存储器
JP2012244031A (ja) 記憶素子、記憶装置
US8519496B2 (en) Spin-transfer torque magnetic random access memory with multi-layered storage layer
JP6434103B1 (ja) 磁気メモリ
US20200357983A1 (en) Magnetic tunnel junction reference layer, magnetic tunnel junctions and magnetic random access memory
CN107636850A (zh) 低杂散场磁性存储器
CN105633275B (zh) 一种垂直型stt-mram记忆单元及其读写方法
CN110931633B (zh) 磁隧道结存储单元及存储器
WO2021002115A1 (ja) 乱数発生ユニット及びコンピューティングシステム
JP2018014376A (ja) 双極性電圧書き込み型磁気メモリ素子
CN108511602B (zh) Mtj单元及stt-mram
JP2004087870A (ja) 磁気抵抗効果素子および磁気メモリ装置
Sverdlov et al. Emerging CMOS compatible magnetic memories and logic
CN110459254B (zh) 自旋电子器件和存内逻辑计算器件
JP5750725B2 (ja) 磁壁移動型の磁気記録素子及び磁気記録方法
WO2023017714A1 (ja) 超常磁性磁気トンネル接合素子、及びコンピューティングシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901179

Country of ref document: EP

Kind code of ref document: A1