WO2019134601A1 - 风洞用怠速及喷口装置以及其控制方法 - Google Patents

风洞用怠速及喷口装置以及其控制方法 Download PDF

Info

Publication number
WO2019134601A1
WO2019134601A1 PCT/CN2018/125219 CN2018125219W WO2019134601A1 WO 2019134601 A1 WO2019134601 A1 WO 2019134601A1 CN 2018125219 W CN2018125219 W CN 2018125219W WO 2019134601 A1 WO2019134601 A1 WO 2019134601A1
Authority
WO
WIPO (PCT)
Prior art keywords
idle
spout
nozzle
door body
main flow
Prior art date
Application number
PCT/CN2018/125219
Other languages
English (en)
French (fr)
Inventor
严瑞
赵旭飞
胡向焱
孙铁斌
原田明
刘怀印
施后伟
李跃
徐冬
Original Assignee
高砂建筑工程(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂建筑工程(北京)有限公司 filed Critical 高砂建筑工程(北京)有限公司
Priority to JP2020517552A priority Critical patent/JP7244496B2/ja
Publication of WO2019134601A1 publication Critical patent/WO2019134601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to the field of wind tunnel technology, and in particular to a wind tunnel idle speed and spout device and a control method therefor.
  • Wind tunnel is a major testing facility for the development of rail transit vehicles. It tests and evaluates vehicle performance through various climatic conditions created by humans and simulated vehicle operating conditions. Wind tunnels usually include an idle mechanism and a spout mechanism.
  • the idle mechanism is used to simulate the natural conditions of the vehicle under idle conditions.
  • the idle mechanism needs to block the flow passage when simulating the idle condition, and at the same time guide the airflow to the idle wind wall area on both sides of the flow passage, from the idle wind wall near the nozzle mechanism.
  • the ventilation window is exhausted.
  • the idle mechanism of some environmental wind tunnels adopts the structure of the rolling door to block the flow passage, and two dampers are opened on both sides of the flow passage for guiding the airflow to the idle wind wall.
  • the structure type has many structural components, and it is necessary to simultaneously control the rolling door and the damper mechanism to achieve idle speed conditions.
  • the spouts in the wind tunnel generally have two nozzles of different sizes to suit the needs of different types of vehicle tests and wind speeds.
  • Most of the environmental wind tunnels are manually replaced with spout types.
  • the top flat DC channel is detachable. When it needs to be replaced with a small spout, replace the top flat DC channel with a fixed profile block.
  • some of the air vent mechanism adopts the combined driving mode of the hand wheel-reducer-chain-spiral push rod according to a certain law to make the flexible plate at the top of the spout generate a predetermined profile, thereby realizing the change of the spout state.
  • the utility model relates to an idle speed and spout device for a wind tunnel, comprising an idle speed mechanism and a spout mechanism, wherein the main flow passage sequentially penetrates the idle speed mechanism and the spout mechanism, and the idle speed mechanism comprises an idle speed door body and an idle speed drive component, and two idle speed door bodies are listed on the main flow road.
  • the idle speed driving component drives the idle door body to move relative to the airflow direction perpendicular to the main flow channel to the fit, the main flow channel is closed, or the idle speed drive component drives the idle door body to move back to the main flow channel completely perpendicular to the flow direction of the main flow channel,
  • the airflow flows from the main flow channel;
  • the spout mechanism includes a spout module and a spout driving assembly, and the two spout modules are arranged on both sides of the main flow channel, and the spout driving assembly drives the spout module to move relative to the airflow direction perpendicular to the main flow channel to fit, and block Part of the main channel, forming a small nozzle, or driving the nozzle module through the nozzle drive assembly to move back to the main channel along the direction perpendicular to the flow direction of the main channel to form a large nozzle.
  • the idle driving assembly comprises a linear driving unit, a swinging rod, a swing rod support and a vertical groove, the vertical groove is arranged on the idle door body, one end of the swing rod is hinged with the swing rod support, and the swing rod is further One end is equipped with a rotatable bearing wheel, the bearing wheel is rollingly installed in the vertical groove, and the linear driving unit has a telescopic rod, and the telescopic rod is hinged with the rod body of the swing rod, and the sliding door is driven by the linear driving unit to drive the idle door to open. Or close the mainstream road.
  • the bottom of the idle door body is provided with a support wheel for supporting the idle door body.
  • the door body guiding wheel is disposed on both sides of the bottom of the idle door body, and the idle door body is assisted by the corresponding door body guiding track.
  • the idle door body is provided with a limit block at both ends of the stroke of opening and closing the main flow channel, so that when the idle door body is opened, the idle door body is aligned with the side wall of the main flow channel and the inner side of the side wall of the main flow channel without a step. When closed, the two idle door bodies have no gap joint.
  • the spout module includes a first spout module and a second spout module arranged on both sides of the main flow channel through the spout support frame, and the spout driving assembly is mounted on the side of the spout support frame facing the first spout module
  • the motor and the sprocket connected to the output shaft thereof have a first perforated plate and a first two perforated plate at the upper portion of the first spout module, and a second perforated plate and a second two perforated plate at the upper portion of the second spout module, the sprocket
  • One end of the upper chain is fixed on the first perforated plate, the other end of the chain is connected to one end of the first rope, and the other end of the first rope is fixed on the second perforated plate, and the spout support frame is opposite to the mounting motor
  • a rope guiding wheel is installed, and the axis of the rope guiding wheel is parallel to the airflow direction of the
  • the spout mechanism further comprises a spout transition section, and after the spout module is relatively moved to the fit, the spout module is integrally connected through the spout transition section to ensure that the spout module fits smoothly without steps, and the spout transition section Extend to the edge of the main channel in the direction of the main flow, ensuring the integrity of the spout length.
  • a pressing plate is connected to the periphery of the at least one nozzle module.
  • the pressing plate is pressed outside the side wall of the main channel, and the pressing plate is locked by the locking unit to restrict the nozzle.
  • the module is moved, and the pressing plate is mounted with a compression seal on the side of the plate on the side of the main flow path.
  • the invention further comprises an idle wall, the two idle walls are arranged on the outer side of the main flow path of the idle door body on both sides of the main flow path, and on the side wall of the main flow path of the idle door body away from the spout mechanism side A lateral air outlet is provided, and a ventilating window is arranged on the idle wall facing the spout mechanism.
  • the main channel is closed, the airflow sequentially flows out through the lateral air outlet and the ventilation window.
  • the invention further provides a control method for an idle speed and spout device for a wind tunnel, which is used for controlling the above-mentioned wind tunnel idle speed and spout device, and the method for controlling the idle door to open and close the main flow channel is: receiving the closed idle mechanism After the mainstream command, the idle drive component drives the idle door to move relatively close. When the idle door moves to the position where the door closes the proximity switch, the driving force of the idle drive component to the idle door is cut off and the timer is triggered.
  • the idle speed drive component drives the idle door body to move closer to the position of the door closing limit block, and maintains the pressing state; after receiving the main channel command to open the idle mechanism, the idle drive component drives the idle door body phase
  • the idle door body moves closer to the position of the door closing limit block, and maintains the pressing state; after receiving the main channel command to open the idle mechanism, the idle drive component drives the idle door body phase
  • the back door moves away, when the idle door body moves to the position where the door body opens the proximity switch, the driving force of the idle speed drive component to the idle door body is cut off and the timer is triggered.
  • the idle speed drive component drives the idle door body phase again.
  • the small nozzle method is: when the nozzle gives an opening signal, the nozzle driving component drives the nozzle module to move away from each other, and when the movement is in place, the nozzle is triggered to open the limit switch, the nozzle module stops moving to form a large nozzle; when the nozzle gives When the signal is off, the nozzle drive assembly drives the nozzle module to move relatively close. When the movement is in place, the nozzle is triggered to close the limit switch, and the nozzle module stops moving to form a small nozzle.
  • the invention provides an idle speed and spout device for a wind tunnel, and the idle speed and spout device comprises an idle mechanism and a spout mechanism.
  • the idle door panel When the idle door is opened, the idle door panel is flush with the inner side of the side wall of the main channel, which is part of the air duct; when the idle door is closed, the two idle door bodies can block the flow passage and guide the airflow into the idle wind wall. And discharged from the ventilation window on the idle wind wall.
  • the invention has the advantages of compact structure, and only needs to control the extension and retraction of the telescopic rod of the linear driving unit to control the idle mechanism to close and open the main channel. The structure is simple and efficient, and the failure rate of the device can be effectively reduced.
  • the spout mechanism of the present invention uses a motor drive sprocket to pull the rope fixedly connected to each spout module through a chain on the sprocket to control the spout switching.
  • the spout When it is in the state of large spout, the spout is flush with the inner side of the side wall of the main channel, which is a part of the air duct; when switching to the small spout state, the two spout modules are butted.
  • the transition section of the nozzle is made of aluminum, and the nozzle section and the nozzle module adopt positioning clamps to ensure that the joint of the nozzle module is flush without steps.
  • the nozzle mechanism of the present invention has a compact structure and is driven by an electric motor, which reduces labor.
  • the nozzle module is a fixed type of face piece, which is more accurate than the way in which the screw is pressed against the flexible plate.
  • the spout mechanism is a double-nozzle integrated structure, which can realize free switching of large and small nozzles, and meet various types of vehicle tests and requirements for higher wind speed.
  • FIG. 1 is a plan view showing an air flow direction of an air tunnel for idling and a nozzle device when the idle mechanism is opened according to an embodiment of the present invention
  • Figure 2 is a plan view showing the airflow direction of the wind tunnel and the airflow direction of the nozzle device when the idle mechanism is closed according to the embodiment of the present invention
  • Figure 3 is a plan view showing an idle speed and spouting device according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing an idle driving assembly of an embodiment of the present invention.
  • Figure 5 is a plan view showing a nozzle driving assembly of an embodiment of the present invention.
  • Figure 6 is a schematic view showing the flow direction of the airflow in the main flow passage when the spout mechanism is opened according to the embodiment of the present invention
  • Figure 7 is a schematic view showing the flow direction of the airflow in the main flow passage when the nozzle mechanism is closed according to the embodiment of the present invention
  • Figure 8 is a control logic diagram showing an idle door body according to an embodiment of the present invention.
  • Fig. 9 is a control logic diagram showing a nozzle module according to an embodiment of the present invention.
  • FIG. 1 and 2 are plan views of the airflow direction of the wind tunnel idler and spout apparatus according to the embodiment of the present invention.
  • the wind tunnel idle speed and spouting device includes an idle speed mechanism 1 and a spout mechanism 2 which are sequentially connected, and the two can be connected by flange bolts, but other common connection methods such as bonding can also be used. , welding, riveting, etc.
  • a horizontal main flow path 11 is formed by sequentially passing through the idle mechanism 1 and the spout mechanism 2. The airflow from the main flow path 11 reaches the test area T for testing the performance of the vehicle at different wind speeds.
  • the idle speed mechanism 1 closes the main flow path to satisfy the simulated vehicle idle speed in the environmental wind tunnel. Condition test.
  • the spout mechanism is a dual-nozzle integrated structure, which can realize free switching of large and small nozzles, and meets various types of vehicle tests and requirements for higher wind speeds.
  • FIG. 3 is a plan view showing an idle speed and nozzle device according to an embodiment of the present invention
  • FIG. 4 is a plan view showing an idle speed drive assembly according to an embodiment of the present invention.
  • the idle mechanism will be described in detail below with reference to FIGS. 3 and 4.
  • the idle mechanism 1 includes a main flow path 11, an idle door body bracket 12, an idle door body 14, a linear guide 18, an idle drive assembly, and the like.
  • Two idle door bodies 14 are respectively disposed on both sides of the main flow path 11 through the corresponding idle door body brackets 12. Since the two sides are symmetrical structures, only one of them will be described below as an example.
  • the idle door bracket 12 is a frame structure including a plurality of crossbars, poles, and diagonal supports that are vertically and horizontally connected.
  • the idle door body 14 is a frame structure formed by connecting a plurality of cross bars, a pole, and an oblique support. Further, a door panel surface 144 is formed on one side of the frame structure, and the door panel surface 144 is an upright plane.
  • a linear guide 18 is mounted on the upper portion of the idle door bracket 12, and the two linear guides 18 are arranged on both sides of the upper portion of the idle door bracket 12, and correspondingly, the airflow direction of the main passage 11 is provided in the upper portion of the idle door.
  • a slider 1413 that cooperates with the linear guide 18 on the upper portion of the idle door bracket 12.
  • the sliders 1413 are slidably coupled to the linear guides 18, respectively, such that the idler door body 14 is horizontally slid along the linear guides 18 in the direction of the airflow perpendicular to the main flow passages 11 by the sliders 1413 fixedly coupled thereto.
  • the idle speed door bodies 14 on the two sides are respectively provided with an idle speed drive assembly, and the idle speed drive unit drives the idle speed door body 14 to move horizontally in the air flow direction perpendicular to the main flow path 11 oppositely or oppositely, thereby closing or opening the main flow path 11.
  • the main flow path 11 is a horizontal rectangular opening whose side walls are smooth planes to take advantage of the flow of wind.
  • the idle door body 14 abuts against the door panel surface 144 of the side wall of the main flow channel 11 , and when the idle door body 14 moves back (ie, when the idle door body is opened), the idle door panel 14 abuts against the side wall of the main flow channel 11 (ie, the door panel surface 144) is flush with the inner side of the side wall of the main flow path 11 to form a part of the main flow path; when the idle speed door body 14 is relatively moved to the fit (ie, the idle door body is closed), the two idle door bodies 14 The area can completely block the main road 11 . Since the wind cannot flow through the main channel 11, the wind speed of the vehicle to be tested is 0, which satisfies the idle test condition.
  • the main channel 11 having a rectangular cross section is preferably used, but other shapes are not excluded.
  • the vertical section of the main channel 11 may also be a circular shape, an elliptical shape, a polygonal shape, or even an arbitrary shape in which the cross section is a closed curve.
  • the door panel surface 144 of the idle door body 14 has a flat surface or a curved surface that coincides with the inner side walls of both sides of the main flow passage. That is to say, as long as the idle speed door on both sides is in the closed state, the main flow path can be tightly closed, and in the open state, the door surface 144 of the idle door body 14 can smoothly transition with the corresponding side wall of the main flow path 11. .
  • the spout mechanism 2 includes a spout support frame 21, a spout guide 22, a spout drive assembly, and a spout module.
  • the nozzle support frame 21 is also a frame structure in which a cross bar and a vertical bar are connected.
  • the main flow path 11 penetrating the idle mechanism 1 continues to penetrate the spout mechanism 2.
  • a spout module is disposed on each side of the main flow channel 11 respectively. As shown in FIGS. 3 and 5, specifically, the first nozzle module 241 is located on the right side of the main flow path 11, and the second nozzle module 242 is located on the left side of the main flow path 11.
  • the two nozzle modules are driven to move relatively close to each other and closely fit together, and after the fitting, the area of the two nozzle modules in the airflow direction of the main flow channel 11 is smaller than the cross section of the main flow channel 11, so Part of the main channel 11 can be blocked to form a small nozzle mode. Or the two nozzle modules can move horizontally away from each other, so that the main channel 11 is completely opened to form a large nozzle mode.
  • the spout modules are mounted on both sides of the upper portion of the main flow path such that when the two spout modules are closely attached together, the spout module blocks the air flow in the upper portion of the main flow path. As shown in FIG.
  • the spout mechanism is a double-nozzle integrated structure, which can realize free switching of large and small nozzles, and meet various types of vehicle tests and requirements for higher wind speed.
  • idle wind walls 31, 32 there are two spaced apart idle wind walls 31, 32 on the periphery of the idle mechanism 1, one of which is located on the opposite side of the idle mechanism 1 from the spout mechanism 2, and the other idle
  • the wind wall 32 is located on the side of the idle mechanism 1 that faces the spout mechanism 2.
  • the idle wind walls 31, 32 are arranged on both sides of the idle door body 14 along the flow direction of the main flow path.
  • the idle wind walls 31, 32 are connected to the periphery of the idle mechanism 1 without a gap, and an idle wind wall region is formed between the two idle wind walls, and a ventilation window 321 is provided on the idle wind wall 32. Further, as shown in FIG.
  • a lateral air outlet 111 is provided on the side wall of the main flow path on the side of the idler door away from the spout mechanism.
  • the air flow can only reach the idle wind wall area through the lateral air outlet 111 and is discharged from the ventilation window 321 of the idle wind wall 32.
  • the idle drive assembly includes a linear drive unit, a swing link 193, a swing mount 194, a bearing wheel 195, a vertical slot 196, and associated control valves.
  • the linear drive unit has a telescopic rod that performs linear motion, and the linear drive unit may be one of, for example, a hydraulic cylinder, a cylinder, and an electric push rod. In this embodiment, only the cylinder is taken as an example.
  • the cylinder 191 is mounted on the cylinder support seat 192, and the piston rod of the cylinder 191 is hinged with the rod body of the swing rod 193 (here, the rod body refers to the swing rod The part between the two rod ends).
  • the piston rod of the cylinder 191 is hinged to the substantially central portion of the rocker 193 (the central portion described herein is merely illustrative and not strictly central to the swing rod).
  • One end of the swing link 193 is hinged to the swing link holder 194, and the swing link support 194 is fixed to the idle door body bracket 12 by bolts.
  • a vertical vertical groove 196 is fixed to the door frame 143, and the other end of the swing lever 193 is rotatably slidably or rolledly mounted in the vertical groove 196.
  • the other end of the swing lever 193 is mounted with a rotatable bearing wheel 195, and the bearing wheel 195 is rolled and installed in the vertical groove 196.
  • the bearing wheel 193 of the swing lever 193 installed in the vertical groove 196 slides in the vertical groove 196 while also rotating at the center of the hinge point 197 of the swing rod support 194, thereby pushing the idle speed on both sides.
  • the door body 14 is relatively moved to achieve the purpose of closing the main flow path 11.
  • the bearing wheel 193 mounted in the vertical groove 196 slides in the vertical groove 196 while rotating in the opposite direction to the hinge point of the swing rod support 194, thereby pushing the sides.
  • the idle door body 14 moves relatively far away to achieve the purpose of opening the main flow path 11.
  • the swing lever 193 functions to reduce the stroke of the cylinder.
  • the actual stroke of the idle door body 14 in the idle speed mechanism 1 is 1250 mm.
  • the cylinder stroke should be at least 1250 mm, and the cylinder is passed through the cylinder. Pushing the swing lever 193 to move the idle door body 14 can significantly reduce the stroke of the cylinder. By simulating motion analysis, the stroke of the cylinder can be reduced to 650 mm.
  • the idle door body 14 is also provided with a support wheel 13 mounted at the bottom of the idle door body 14 to withstand the weight of the idle door body 14. As shown in FIG. 4, the two support wheels 13 are respectively located at the bottom ends of the idle door body 14 in the horizontal direction perpendicular to the direction of the main flow path.
  • the bottom of the idle door body 14 is provided with a door body guide wheel 16 on both sides of the main flow path airflow direction, and the corresponding door body on the idle door body bracket 12 has a door body for sliding the door body guide wheel 16.
  • the guiding track, the door guiding wheel 16 can guide the idle door body to ensure flexible movement of the door body, and at the same time bear the aerodynamic load in the air flow direction.
  • the idle mechanism 1 is provided with a limit block at both ends of the stroke of the idle door body 14, which can accurately ensure that the idle door body 14 is open to the side wall of the main flow channel and the main channel when the idle door body 14 is opened.
  • the inner side of the side wall is flush and has no steps.
  • the two idle speed door bodies have no gap joint.
  • the opening limit block and the closing limit block may be made of rubber material.
  • the spout drive assembly includes an electric motor 231 and a coupling coupled to its output shaft.
  • a sprocket 233 is attached to the end of the coupling, and the motor 231 and the sprocket 233 are both fixed to the side of the nozzle support frame 21 facing the first nozzle module 241, and a chain 2331 is attached to the sprocket 233.
  • Two perforated plates parallel to the direction of the main flow of the main flow are provided in the upper portion of each spout module.
  • first spout plate 235 and the first two perforated plates 236 are disposed on the upper portion of the first spout module 241, and the second perforated plate 237 and the second two perforated plate 238 are also disposed on the upper portion of the second spout module 242.
  • One end of the chain 2331 is fixed to the first perforated plate 235 through the chain fixing end 2351.
  • the other end of the chain 2331 is connected to one end of the first rope 232, and the other end of the first rope 232 passes through the first perforated plate 235 and the first two perforated plate 236 on the first spout module 241, through the second rope fixing end.
  • 2371 is fixed to the second perforated plate 237 of the second spout module 242.
  • a rope guide wheel 234 is attached, and the axis of the rope guide wheel 234 is parallel to the airflow direction of the main flow path 11.
  • One end of the second rope 239 is fixed to the first two perforated plate 236 of the first spout module by the first rope fixing end 2361, after the rope guiding wheel 234 is bypassed, and the other end is fixed to the second spout by the third rope fixing end 2381.
  • the entire spout driving assembly and the rope guiding wheel form a connecting ring.
  • the chain 2331 pulls the first spout module 241 away from the main flow path 11 while relaxing the pulling force on the second spout module 242.
  • the perforated plate 236 on the first spout module 241 pulls the second rope 239 toward the main channel, and the second rope 239 pulls the second spout module 242 to move away from the main channel 11 via the rope guiding wheel 234. Therefore, the first spout module Simultaneously moving away from the main channel 11 simultaneously with the second nozzle module until the main channel is fully opened, at this time in the state of a large nozzle.
  • the first rope 232 pulls the second nozzle module 242 to move toward the main flow path 11, and the second rope 239 also pulls the first nozzle module 241 toward the main flow direction 11 through the rope guide wheel 234.
  • the two spout modules move relatively close together at the same time until they are attached together, which acts to block part of the main flow channel, and at this time is a small spout state.
  • the second and first ropes may not need to pass through the perforated plates as long as they are fixed by the respective fixed ends of the ropes.
  • the nozzle transition section 27 is installed in the front portion of the nozzle module in the airflow direction, and the nozzle transition section 27 Consistent with the width of the main channel, the nozzle module is connected with the positioning block, and the two nozzle modules are firmly connected to each other, so that the joint surface of the nozzle module is flush and has no steps. Also, the spout transition section 27 extends all the way to the flow of the main flow path to the edge of the main flow path. That is to say, the spout transition section 27 is also used for the transition of the front end region of the spout module to ensure the integrity of the spout length.
  • the spout transition section is an aluminum article.
  • a locking unit 26 is also included.
  • a pressing plate 261 is disposed on the periphery of the at least one nozzle module. When the nozzle module is attached, the pressing plate 261 is pressed against the outer side wall of the main flow channel, and is pressed and pressed by the locking unit 26 at this time. The plate 261 can restrict the nozzle module from moving to both sides.
  • the spout module and the outer side of the flow passage are sealed by a compression seal (not shown).
  • a pressing sealing strip is mounted on the surface of the pressing plate 261 facing the outside of the main channel. After the nozzle module is attached, the pressing plate 261 presses the pressing plate 261 to the outside of the main channel through the locking unit 26. On the wall, the main channel can be sealed well.
  • the limit switch and the mechanical limit stop are respectively used at the start and end positions of the nozzle modules on both sides, and the limit is triggered when the nozzle module touches the mechanical limit stop to stop moving.
  • the switch controls the motor to stop, ensuring the accuracy, reliability and safety of the nozzle switching.
  • it includes a spout opening limit switch and a spout closing limit switch.
  • the nozzle When the movement is in place, the nozzle is triggered to open the limit switch, and the motor 231 stops moving to form a large nozzle; when the nozzle is closed When the signal is received, the motor 231 is reversed, and the spout module is driven to move relatively close by the sprocket 233. When the movement is in place, the spout is closed to close the limit switch, and the motor 231 stops moving to form a small spout.
  • the windward side of the spout module is a streamlined curved surface to facilitate airflow.
  • each spout module leans toward the side wall of the main flow channel and the side of the main flow channel.
  • the inside of the wall is flush and forms part of the main channel.
  • the invention also provides a control method for an idle speed and spout device, wherein the method for controlling the idle door to open and close the main flow channel is: after receiving the main flow command for closing the idle mechanism, the idle drive component drives the idle door to move relatively close When the idle door body moves to the position where the door body closes the proximity switch, the driving force of the idle speed drive component to the idle door body is cut off and the timer is triggered.
  • the idle speed drive component drives the idle speed door body to move relatively close to The door body closes the position of the limiting block and maintains the pressing state; after receiving the main channel command to open the idle mechanism, the idle driving component drives the idle door body to move away from each other, and when the idle door moves to the door to open the proximity switch Position, cut off the driving force of the idle speed driving component to the idle door body and trigger the timer.
  • the idle speed driving component drives the idle door body to move away from the position to move the door to the limit block, and keep pressing. status
  • the method for controlling the spout module to form the large spout and the small spout is: when the spout is given the opening signal, the spout driving component drives the spout module to move away from each other, and when the movement is in place, the spout is triggered to open the limit switch, and the spout module stops moving.
  • the nozzle driving assembly drives the nozzle module to move relatively close.
  • the nozzle is closed to close the limit switch, and the nozzle module stops moving to form a small nozzle.
  • the idle door body 14 moves relatively close under the pushing of the cylinder 191, and when the idle door body 14 moves to the position where the door closes the proximity switch, the trigger timer is triggered. When the set time is reached, the idle door body 14 moves to the position where the door body closes the limit block again, and maintains the pressed state.
  • the idle door body 14 After receiving the main channel command to open the idle mechanism, the idle door body 14 moves away from each other under the pushing of the cylinder 191, and when the idle door body 14 moves to the position where the door opens the proximity switch, the timer is triggered, when the setting is reached. After the time, the idle door body 14 is again moved to the position where the door body opens the limit block, and remains pressed.
  • the three-position five-way solenoid valve can be used to control the operation of the cylinder 191, as exemplified below.
  • the three-position five-way solenoid valve controls the piston rod of the cylinder 191 of the idle speed damper to extend, and when the piston rod 191 moves to the door body to close the proximity switch position, the solenoid valve is reversed to the middle.
  • the position that is, from the air supply state to the middle seal state, cuts off the supply and exhaust of the cylinder.
  • the idle door body 14 also has a certain inertia, the piston rod is continuously pulled out and the timer is triggered.
  • the solenoid valve controls the gas supply end of the piston rod to open again, and the idle speed door The body 14 also moves to the position where the door body closes the limit block and remains pressed.
  • the three-position five-way solenoid valve controls the piston rod of the cylinder 191 of the idle door body to retract, and when the piston rod moves to the door body to open the proximity switch position, the solenoid valve is supplied by the air supply state.
  • the idle door body 14 compresses the piston rod by inertia, so that the piston rod continues to retract, and simultaneously triggers the system timer.
  • the solenoid valve controls the retracted air supply end of the cylinder to open, and at the same time
  • the idle door body 14 also moves to the position where the door body opens the limit block and remains pressed.
  • the door closing proximity switch and the door opening proximity switch may be preset positions provided on the cylinder block or disposed on the idle door bracket 12.
  • the nozzle module control unit supplies power to the motor 231 using 380V AC, and controls the forward and reverse rotation of the motor 231 through the contactor.
  • the motor 231 is rotated, and the nozzle module 233 drives the nozzle module to move away from each other.
  • the nozzle is triggered to open the limit switch to make contact.
  • the motor 231 stops moving to form a large nozzle.
  • the nozzle When the nozzle is given the closing signal, the corresponding contactor is engaged, the motor is reversed, and the nozzle module is driven to move relatively close by the sprocket 233. When the movement is in place, the nozzle is triggered to close the limit switch, the contactor is disconnected, and the motor 231 is moved. Stop and form a small spout.
  • the wind tunnel idle speed and spout apparatus of the present invention includes an idle speed mechanism and a spout mechanism which are sequentially connected at the periphery of the main flow path.
  • the side wall of the idle door panel facing the main channel is flush with the inner side of the side wall of the main channel to form a part of the main channel; when the idle door is closed, the two idle doors can completely block the main channel
  • the airflow can only enter the idle wind wall area and be discharged from the ventilation window on the idle wind wall.
  • the idle speed drive component pushes and pulls the swing lever through the linear drive unit to drive the idle door body to move horizontally.
  • the swing lever is equivalent to amplifying the displacement of the idle door body, which can effectively reduce the stroke of the linear drive unit, and save cost from equipment selection. .
  • the idle mechanism can be made more compact and the occupied space can be reduced.
  • the bottom supports the idle door through the support wheel, and the top adopts two sets of linear guides placed on the idle door bracket and a slider connected to the idle door for precise guidance.
  • the door body guide wheels are used for auxiliary guiding on both sides of the bottom of the idle door body to ensure flexible movement of the door body and also bear the aerodynamic load in the airflow direction.
  • the nozzle mechanism is a double-nozzle integrated structure, which can realize free switching of large and small nozzles, and meets various types of vehicle tests and requirements for higher wind speeds.
  • the chain connected by the sprocket pulls the rope connected to each nozzle module to drive the nozzle module to open or close the main channel. Its driving method is simple and efficient.
  • the spout module is relatively moved to the fit, the spout module is restricted from moving to the sides by the pressing plate and the locking unit.
  • the spout module and the outer side of the flow passage are sealed by pressing the sealing strip.
  • Limit switches and mechanical limit stops are used at the starting and ending positions of the nozzle modules on both sides to ensure the accuracy, reliability and safety of the nozzle switching.
  • the nozzle module is a fixed type of face piece, which is more accurate than the way in which the screw thread is pressed against the flexible plate.
  • the windward side of the spout module is a streamlined surface to facilitate airflow.
  • each spout module is flush with the side wall of the main flow channel and the inner side of the side wall of the main flow path to form a part of the main flow path.
  • the nozzle transition section and the nozzle module are connected by a positioning block, and the two nozzle modules are firmly connected to each other, so that the joint of the nozzle module is flush and has no steps.
  • the nozzle transition section extends all the way to the edge of the main flow channel to ensure the integrity of the nozzle length.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Air-Flow Control Members (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Flow Control (AREA)

Abstract

一种风洞用怠速及喷口装置以及其控制方法,装置包括怠速机构(1)和喷口机构(2),主流道(11)依次穿透怠速机构(1)和喷口机构(2),怠速机构(1)包括怠速门体(14)和怠速驱动组件,两个怠速门体(14)列于主流道(11)的两侧,怠速驱动组件驱动怠速门体(14)相对移动至贴合,主流道(11)关闭,或怠速驱动组件驱动怠速门体(14)相背移动至主流道(11)完全打开,气流从主流道(11)流过;喷口机构(2)包括喷口模块(241、242)和喷口驱动组件,两个喷口模块(241、242)列于主流道(11)的两侧,通过喷口驱动组件驱动喷口模块(11)相对移动至贴合,形成小喷口,或通过喷口驱动组件驱动喷口模块(241、242)相背移动至主流道(11)完全打开,形成大喷口。实现了大小喷口自由切换,且怠速机构结构紧凑,怠速门体驱动方式简单、准确、高效。

Description

风洞用怠速及喷口装置以及其控制方法 技术领域
本发明涉及风洞技术领域,具体地说,涉及一种风洞用怠速及喷口装置以及其控制方法。
背景技术
风洞是研发轨道交通车辆的重大测试设施,它通过人为创造的各种气候条件和模拟汽车运行状态,对整车性能进行试验和考核评估。风洞通常包含怠速机构和喷口机构。
怠速机构用于模拟车辆怠速状态下的自然条件,怠速机构在模拟怠速工况时需要阻隔流道,同时引导气流到流道两侧的怠速风墙区域,从靠近喷口机构的怠速风墙上的通风窗排出。部分环境风洞的怠速机构采用卷帘门的结构来阻隔流道,同时流道两侧开设两扇风门,用于引导气流至怠速风墙。该结构类型结构部件多,需要同时控制卷帘门、风门机构来实现怠速工况。
风洞中的喷口一般有大小两个喷口,以适应不同类型车辆试验及风速的需求。大部分环境风洞采用手动方式更换喷口类型,顶部平直流道可拆,当需要更换为小喷口状态时,使用固定型面块替换顶部平直流道。或者有些变风口机构采用手轮-减速器-链条-螺旋推杆的组合驱动方式按照一定的规律使喷口顶部的柔板产生既定的型面,从而实现喷口状态的改变。
人工更换喷口型面块劳动量大、工作效率低,而且厂房内需要架设吊具。如果采用螺旋推杆推动柔板产生既定的型面,型面难免会具有一定的误差,这进一步会影响到风洞测试结果。
针对以上问题,目前暂未有较好的解决方案。
发明内容
一种风洞用怠速及喷口装置,包括怠速机构和喷口机构,主流道依次穿透怠速机构和喷口机构,怠速机构包括怠速门体和怠速驱动组件,两个怠速 门体列于主流道的两侧,怠速驱动组件驱动怠速门体沿垂直于主流道气流方向相对移动至贴合,主流道关闭,或怠速驱动组件驱动怠速门体沿垂直于主流道气流方向相背移动至主流道完全打开,气流从主流道流过;喷口机构包括喷口模块和喷口驱动组件,两个喷口模块列于主流道的两侧,通过喷口驱动组件驱动喷口模块沿垂直于主流道气流方向相对移动至贴合,阻隔部分主流道,形成小喷口,或通过喷口驱动组件驱动喷口模块沿垂直于主流道气流方向相背移动至主流道完全打开,形成大喷口。
优选地,所述怠速驱动组件包括直线驱动单元、摆杆、摆杆支座和竖槽,所述竖槽设置在怠速门体上,摆杆的一端与摆杆支座铰接,摆杆的另一端安装有可转动的轴承轮,轴承轮滚动安装在所述竖槽内,直线驱动单元具有伸缩杆,所述伸缩杆与摆杆的杆体铰接,通过直线驱动单元推拉摆杆驱动怠速门体打开或关闭主流道。
优选地,怠速门体的底部设置有用于支撑怠速门体的支撑轮。
优选地,怠速门体的底部两侧都设置有门体导向轮,并通过对应的门体导向轨道辅助怠速门体移动。
优选地,怠速门体打开和关闭主流道的行程的两端设置有限位块,使得怠速门体打开时,怠速门体靠向主流道的侧壁与主流道的侧壁内侧平齐无台阶,关闭时两怠速门体无间隙接合。
优选地,所述喷口模块包括通过喷口支撑架列于主流道两侧的第一喷口模块和第二喷口模块,喷口驱动组件包括安装在喷口支撑架靠向所述第一喷口模块一侧上的电动机以及与其输出轴连接的链轮,在第一喷口模块上部具有第一一穿孔板和第一二穿孔板,在第二喷口模块上部具有第二一穿孔板和第二二穿孔板,链轮上的链条的一端固定在第一一穿孔板上,链条的另一端与第一绳索的一端连接,第一绳索的另一端固定在第二一穿孔板上,在喷口支撑架的与安装电动机相对的另一端上,安装有绳索导向轮,且绳索导向轮的轴线与主流道的气流方向平行,第二绳索的一端固定在第二二穿孔板上,并绕过绳索导向轮后固定在第一二穿孔板上,通过电动机驱动链轮转动,链条拉动两个喷口模块相对移动至贴合,形成小喷口,或相背移动至主流道完全打开,形成大喷口。
优选地,所述喷口机构还包括喷口过渡段,在喷口模块相对移动至贴合 后,通过喷口过渡段将喷口模块连接为一体,保证喷口模块贴合处平齐无台阶,并且,喷口过渡段向主流道气流方向延伸到主流道的边缘,保证喷口长度的完整性。
优选地,在至少一个喷口模块的外围连接有压紧板,当喷口模块相对移动至贴合,压紧板挤压在主流道的侧壁外侧,并通过锁紧单元锁定压紧板,限制喷口模块移动,并且,所述压紧板靠向主流道一侧的板面上安装有压紧密封条。
优选地,还包括怠速墙体,两个怠速墙体设置在怠速门体在主流道气流方向的两侧的主流道外围,并且,在怠速门体远离喷口机构一侧的主流道的侧壁上设置有侧向出风口,在靠向喷口机构的怠速墙体上设置有通风窗,当主流道关闭时,气流依次经侧向出风口和通风窗流出。
本发明又提供一种风洞用怠速及喷口装置的控制方法,用于控制以上所述的风洞用怠速及喷口装置,控制怠速门体打开和关闭主流道的方法是:接收到关闭怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相对靠近移动,当怠速门体运动到门体关闭接近开关的位置,切断怠速驱动组件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相对靠近移动到门体关闭限位块的位置,保持压紧状态;当接收到打开怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相背远离移动,当怠速门体运动到门体打开接近开关的位置,切断怠速驱动组件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相背远离移动到门体打开限位块的位置,保持压紧状态,其中,控制喷口模块形成大喷口和小喷口的方法是:当喷口给定开启信号时,喷口驱动组件驱动喷口模块相背远离移动,当运动到位后,触发喷口打开限位开关,喷口模块停止移动,形成大喷口;当喷口给定关闭信号时,喷口驱动组件驱动喷口模块相对靠近移动,当运动到位后,触发喷口关闭限位开关,喷口模块停止移动,形成小喷口。
本发明提供一种风洞用怠速及喷口装置,怠速及喷口装置包括怠速机构和喷口机构。当怠速门体打开时,怠速门板与主流道的侧壁内侧平齐,是风道的一部分;当怠速门体关闭时,两个怠速门体能够阻隔流道,引导气流至怠速风墙内,并从怠速风墙上的通风窗排出。本发明结构紧凑,只需控制直 线驱动单元的伸缩杆伸出缩回,就可控制怠速机构关闭和打开主流道,其结构简单、高效,能有效减少设备的故障率。
本发明的喷口机构采用电动机驱动链轮,通过链轮上的链条拉动与各喷口模块固定连接的绳索,控制喷口切换。当为大喷口状态时,喷口与主流道的侧壁内侧平齐,是风道的一部分;当切换为小喷口状态时,两个喷口模块对接。在出口安装喷口过渡段,喷口过渡段为铝制加工件,喷口过渡段与喷口模块采用定位卡块,保证喷口模块接合处平齐无台阶。本发明的喷口机构结构紧凑,采用电动机驱动,减小了劳动量。喷口模块为固定型面块,比螺旋丝杠顶压柔板的方式,获得的型线更准确。喷口机构为双喷口一体化结构,能够实现大小喷口自由切换,满足多种类型车辆试验及对更高风速的要求。
附图说明
通过结合下面附图对其实施例进行描述,本发明的上述特征和技术优点将会变得更加清楚和容易理解。
图1是表示本发明实施例的怠速机构打开时风洞用怠速及喷口装置的气流方向俯视图;
图2是表示本发明实施例的怠速机构关闭时风洞用怠速及喷口装置的气流方向俯视图;
图3是表示本发明实施例的怠速及喷口装置的俯视图;
图4是表示本发明实施例的怠速驱动组件的平面示意图;
图5是表示本发明实施例的喷口驱动组件的平面示意图;
图6是表示本发明实施例的喷口机构打开时主流道内的气流流动方向示意图;
图7是表示本发明实施例的喷口机构关闭时主流道内的气流流动方向示意图;
图8是表示本发明实施例的怠速门体的控制逻辑图;
图9是表示本发明实施例的喷口模块的控制逻辑图。
具体实施方式
下面将参考附图来描述本发明所述的一种风洞用怠速及喷口装置以及其 控制方法的实施例。本领域的普通技术人员可以认识到,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式或其组合对所描述的实施例进行修正。因此,附图和描述在本质上是说明性的,而不是用于限制权利要求的保护范围。此外,在本说明书中,附图未按比例画出,并且相同的附图标记表示相同的部分。
图1和图2是本发明实施例涉及的风洞用怠速及喷口装置的气流方向俯视图。下面先结合图1、图2来说明怠速及喷口装置内气流的走向。如图1、图3所示,该风洞用怠速及喷口装置包括依次连接的怠速机构1和喷口机构2,两者可以通过法兰螺栓连接,但也可以采用其他常用连接方式,例如粘接、焊接、铆接等。依次穿透怠速机构1和喷口机构2形成有水平的主流道11。主流道11流出的气流到达测试区域T,用于测试车辆在不同风速下的性能。如图1所示,当怠速机构1打开时,风从主流道11中流过;当怠速机构1关闭时,如图2所示,怠速机构1关闭主流道能够满足环境风洞中模拟车辆怠速工况试验。并且,喷口机构为双喷口一体化结构,能够实现大小喷口自由切换,满足多种类型车辆试验及对更高风速的要求。
图3是表示本发明实施例的怠速及喷口装置的俯视图,图4是表示本发明实施例的怠速驱动组件的平面示意图。下面结合图3和图4来详细说明怠速机构。怠速机构1包括主流道11、怠速门体支架12、怠速门体14、直线导轨18、怠速驱动组件等。两个怠速门体14分别通过对应的怠速门体支架12设置在主流道11的两侧。由于两侧为对称结构,以下仅以其中一侧为例进行说明。怠速门体支架12为框架式结构,包括纵横连接的多个横杆、立杆以及斜向支撑。怠速门体14是由多个横杆、立杆以及斜向支撑连接而成的框架结构。并且,在框架结构的一个侧面形成有门板面144,门板面144为竖立的平面。在怠速门体支架12的上部安装有直线导轨18,两条直线导轨18分列在怠速门体支架12上部的两侧,相应地,在怠速门体上部沿主流道11的气流方向设置有分别与怠速门体支架12上部的直线导轨18配合的滑块1413。滑块1413分别与直线导轨18可滑动地连接,使得怠速门体14通过与其固定连接的滑块1413沿直线导轨18在垂直于主流道11的气流方向内水平滑动。对应两侧的怠速门体14分别设置有怠速驱动组件,怠速驱动组件驱动怠速门体14同时相对或相背地在垂直于主流道11的气流方向内水平移动,从而关闭或打开主流道11。虽然以 上是以怠速门体水平位于主流道两侧为例进行说明,但本实施例并不排除怠速门体位于主流道上下两侧的情况。
主流道11为水平的矩形开口,其侧壁为光滑平面,以利用风的流动。怠速门体14靠向主流道11的侧壁的门板面144为竖立的平面,当怠速门体14相背移动时(即怠速门体打开时),怠速门板14靠向主流道11的侧壁(即门板面144)与主流道11的侧壁内侧平齐,形成主流道的一部分;当怠速门体14相对靠近移动到贴合时(即怠速门体关闭时),两个怠速门体14的面积能够完全阻隔主流道11。由于风不能从主流道11流过,也就使得待测试的车辆迎面的风速为0,满足怠速测试条件。
其中,优先采用竖立截面是矩形的主流道11,但并不排除其他形状,例如,主流道11的竖立截面还可以是圆形、椭圆形、多边形,甚至是截面是封闭曲线的任意形状。相应地,怠速门体14的门板面144具有与主流道的两侧的侧壁内侧相一致的平面或曲面。也就是说,只要两侧的怠速门体在关闭状态时,能够紧密关闭主流道,而在打开状态时,怠速门体14的门板面144能够与主流道11的对应的侧壁圆滑过渡即可。
如图3所示,喷口机构2包括喷口支撑架21、喷口导轨22、喷口驱动组件、喷口模块。喷口支撑架21也是由横杆、立杆连接而成的框架结构。穿透怠速机构1的主流道11继续穿透喷口机构2。在主流道11的两侧分别设置有喷口模块。如图3和图5所示,具体说,第一喷口模块241位于主流道11的右侧,第二喷口模块242位于主流道11的左侧。通过喷口驱动组件,驱动两个喷口模块水平的相对靠近移动并紧密贴合在一起,并且在贴合后,两个喷口模块在主流道11的气流方向的面积小于主流道11的横截面,因此可以阻隔部分主流道11,形成小喷口模式。或两个喷口模块可以水平的相背远离移动,使主流道11完全打开,形成大喷口模式。并且,优选地,喷口模块安装在主流道的上部两侧,使得当两个喷口模块紧密贴合在一起时,喷口模块阻挡主流道上部的气流。如图6所示,喷口模块在大喷口模式时,气流是水平沿主流道11流动的。如图7所示,当喷口模块为小喷口模式时,由于喷口模块阻隔了主流道11的上部气流,使得气流在到达喷口模块的时候改变风向,绕过喷口模块再向外流出。
本实施例的怠速及喷口装置,当怠速门体打开时,怠速门体的靠向主流道的侧壁与主流道的侧壁内侧平齐,形成主流道的一部分;当怠速门体关闭时,两个怠速门体能够完全阻隔主流道。喷口机构为双喷口一体化结构,能够实现大小喷口自由切换,满足多种类型车辆试验及对更高风速的要求。
在一个可选实施例中,在怠速机构1的外围还具有两个间隔设置的怠速风墙31、32,其中一个怠速风墙31位于怠速机构1与喷口机构2相对的一侧,另一个怠速风墙32位于怠速机构1靠向喷口机构2的一侧。或者说,怠速风墙31、32是分列于怠速门体14沿主流道气流方向的两侧。怠速风墙31、32与怠速机构1的外围无间隙的连接,在两个怠速风墙之间形成怠速风墙区域,在怠速风墙32上设置有通风窗321。并且,如图2所示,在怠速门体远离喷口机构一侧的主流道的侧壁上设置有侧向出风口111。当主流道关闭时,气流只能经侧向出风口111到达怠速风墙区域,并从怠速风墙32的通风窗321排出。
在一个可选实施例中,怠速驱动组件包括直线驱动单元、摆杆193、摆杆支座194、轴承轮195、竖槽196以及相关控制阀。直线驱动单元具有做直线运动的伸缩杆,直线驱动单元可以是例如液压缸、气缸、电动推杆中的一种。本实施例仅以气缸为例进行说明,如图4所示,气缸191安装在气缸支撑座192上,气缸191的活塞杆与摆杆193的杆体铰接(此处所述杆体是指摆杆的两个杆端之间的部分)。优选地,气缸191的活塞杆与摆杆193的大致中部铰接(此处所述中部仅是示意性的,并不是严格的摆杆的中部)。摆杆193的一端与摆杆支座194铰接,而摆杆支座194通过螺栓固定在怠速门体支架12上。在门体框架143上固定有竖向的竖槽196,摆杆193的另一端可转动地滑动或滚动安装在竖槽196内。例如,摆杆193的另一端安装有可转动的轴承轮195,轴承轮195滚动安装在竖槽196内。当活塞杆伸出时,摆杆193安装在竖槽196内的轴承轮195在竖槽196内滑动,同时还以与摆杆支座194的铰接点197为圆心转动,从而推动两侧的怠速门体14相对靠近移动,以达到关闭主流道11的目的。当活塞杆回缩时,摆杆193安装在竖槽196内的轴承轮195在竖槽196内滑动的同时还以与摆杆支座194的铰接点为圆心反方向转动,从而推动两侧的怠速门体14相对远离移动,以达到打开主流道11的目的。该摆杆193起到了减小气缸行程的作用,例如,怠速机构1中怠速门体14的实际行程为1250mm,如果是采用气缸直接推动怠速门体14,气缸行程至少应为1250mm,而通过气缸推动摆杆 193的形式来带动怠速门体14移动,可以明显的减小气缸的行程。通过模拟运动分析,气缸的行程可以减小为650mm。
在一个可选实施例中,怠速门体14还设置有支撑轮13,支撑轮13安装在怠速门体14的底部,承受怠速门体14的重量。如图4所示,两个支撑轮13分别位于怠速门体14在垂直于主流道气流方向的水平方向上的两端底部。
在一个可选实施例中,怠速门体14的底部沿主流道气流方向的两侧都设置有门体导向轮16,怠速门体支架12上相应的具有供门体导向轮16滑动的门体导向轨道,门体导向轮16能够对怠速门体进行辅助导向,保证门体能够灵活运动,同时承担气流方向的气动载荷。
在一个可选实施例中,怠速机构1在怠速门体14的行程的两端位置设置有限位块,能够准确的保证怠速门体14打开时,其靠向主流道的侧壁与主流道的侧壁内侧平齐无台阶,关闭时两怠速门体无间隙接合。该打开限位块和关闭限位块可以是橡胶材质。
下面结合图5来详细说明喷口驱动组件。在一个可选实施例中,喷口驱动组件包括电动机231以及与其输出轴连接的联轴器。在联轴器的端部安装有链轮233,电动机231和链轮233都固定在喷口支撑架21靠向第一喷口模块241的一侧上,在链轮233上安装有链条2331。在每个喷口模块上部都设置有两个与主流道气流方向平行的穿孔板。具体说,在第一喷口模块241上部具有第一一穿孔板235和第一二穿孔板236,在第二喷口模块242上部同样设置有第二一穿孔板237和第二二穿孔板238。链条2331的一端通过链条固定端2351固定在第一一穿孔板235上。链条2331的另一端与第一绳索232的一端连接,第一绳索232的另一端穿过第一喷口模块241上的第一一穿孔板235和第一二穿孔板236,通过第二绳索固定端2371固定在第二喷口模块242的第二一穿孔板237上。在喷口支撑架21的与安装电动机231相对的另一端上,安装有绳索导向轮234,且绳索导向轮234的轴线与主流道11的气流方向平行。第二绳索239的一端通过第一绳索固定端2361固定在第一喷口模块的第一二穿孔板236上,绕过绳索导向轮234后,另一端通过第三绳索固定端2381固定在第二喷口模块上的第二二穿孔板238上。整个喷口驱动组件及绳索导向轮形成一个连接环,当链轮233顺时针转动,链条2331向远离主流道11的方向拉动第一喷口模块241,同时放松对第二喷口模块242的拉力。第一喷口模块241上的穿孔板236向主流道方向 拉动第二绳索239,第二绳索239经绳索导向轮234拉动第二喷口模块242向远离主流道11的方向移动,因此,第一喷口模块与第二喷口模块同时向远离主流道11的方向移动,直到主流道完全打开,此时为大喷口状态。
当链轮233逆时针转动,第一绳索232拉动第二喷口模块242向主流道11方向移动,第二绳索239也经过绳索导向轮234向主流当11方向拉动第一喷口模块241。两个喷口模块同时相对靠近移动,直到贴合在一起,起到阻隔部分主流道的作用,此时为小喷口状态。当然,如果四个穿孔板不阻碍绳索的移动,第二绳索和第一绳索也可以不需要穿过各穿孔板,只要通过各绳索固定端固定就可以。
在一个可选实施例中,如图7所示,两个喷口模块在贴合后,为保证其接合面平齐,在喷口模块沿气流方向的前部安装喷口过渡段27,喷口过渡段27与主流道的宽度一致,与喷口模块采用定位卡块连接,将两个喷口模块牢靠的连接为一体,保证喷口模块的接合面平齐无台阶。并且,喷口过渡段27向主流道气流方向一直延伸到主流道的边缘。也就是说喷口过渡段27还用于喷口模块前端区域过渡,保证喷口长度的完整性。
在一个可选实施例中,喷口过渡段为铝制品。
在一个可选实施例中,还包括锁紧单元26。具体说,在至少一个喷口模块的外围设置有压紧板261,当喷口模块贴合的时候,压紧板261挤压在主流道的外侧壁上,此时通过锁紧单元26挤压压紧板261,可以限制喷口模块向两侧移动。
在一个可选实施例中,当为小喷口时,喷口模块与流道外侧面通过压紧密封条(未示出)的形式进行密封。具体说,压紧板261面向主流道外侧的板面上安装有压紧密封条,当喷口模块贴合后,压紧板261通过锁紧单元26将压紧板261挤压在主流道的外侧壁上,能够良好的密封主流道。
在一个可选实施例中,在两侧的喷口模块行程的起点、终点位置分别采用限位开关及机械限位挡块,当喷口模块触碰机械限位挡块停止移动的同时,触发限位开关,从而控制电动机停止,保证喷口切换的准确性、可靠性及机构的安全性。具体说,包括喷口打开限位开关和喷口关闭限位开关。当喷口给定开启信号时,电动机231转动,通过链轮233带动喷口模块相背远离移动,当运动到位后,触发喷口打开限位开关,电动机231运动停止,形成大喷口; 当喷口给定关闭信号时,电动机231反转,通过链轮233带动喷口模块相对靠近移动,当运动到位后,触发喷口关闭限位开关,电动机231运动停止,形成小喷口。
在一个可选实施例中,喷口模块的迎风面为流线型曲面,以利于气流流过。
在一个可选实施例中,当第一喷口模块和第二喷口模块相背移动到主流道完全打开,即为大喷口状态时,每个喷口模块靠向主流道的侧壁与主流道的侧壁内侧平齐,形成主流道的一部分。
本发明还提供一种怠速及喷口装置的控制方法,其中,控制怠速门体打开和关闭主流道的方法是:接收到关闭怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相对靠近移动,当怠速门体运动到门体关闭接近开关的位置,切断怠速驱动组件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相对靠近移动到门体关闭限位块的位置,保持压紧状态;当接收到打开怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相背远离移动,当怠速门体运动到门体打开接近开关的位置,切断怠速驱动组件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相背远离移动到门体打开限位块的位置,保持压紧状态,
其中,控制喷口模块形成大喷口和小喷口的方法是:当喷口给定开启信号时,喷口驱动组件驱动喷口模块相背远离移动,当运动到位后,触发喷口打开限位开关,喷口模块停止移动,形成大喷口;当喷口给定关闭信号时,喷口驱动组件驱动喷口模块相对靠近移动,当运动到位后,触发喷口关闭限位开关,喷口模块停止移动,形成小喷口。
如图8所示,当接收到关闭怠速机构的主流道指令后,怠速门体14在气缸191的推动下相对靠近移动,当怠速门体14运动到门体关闭接近开关的位置,触发计时器,当达到设定时间后,怠速门体14再次移动到门体关闭限位块的位置,保持压紧状态。
当接收到打开怠速机构的主流道指令后,怠速门体14在气缸191的推动下相背远离移动,当怠速门体14运动到门体打开接近开关的位置,触发计时器, 当达到设定时间后,怠速门体14再次移动到门体打开限位块的位置,保持压紧状态。
可以使用三位五通电磁阀来控制气缸191的动作,下面举例说明。当接收到关闭怠速机构的主流道指令后,三位五通电磁阀控制怠速风门的气缸191的活塞杆伸出,当活塞杆191运动到门体关闭接近开关位置时,电磁阀换向到中间位置,即由供气状态变成中封状态,切断了对气缸的供气、排气。但由于怠速门体14还具有一定的惯性,会继续牵拉活塞杆伸出,同时触发计时器,当达到设定时间后,电磁阀控制活塞杆伸出的供气端再次开启,同时怠速门体14也运动到门体关闭限位块的位置,保持压紧状态。
当接收到打开怠速机构的主流道指令后,三位五通电磁阀控制怠速门体的气缸191的活塞杆缩回,当活塞杆运动到门体打开接近开关位置时,电磁阀由供气状态变成中封状态,怠速门体14靠惯性压缩活塞杆,使活塞杆继续缩回,同时触发系统的计时器,当达到给定时间后,电磁阀控制气缸缩回的供气端开启,同时怠速门体14也运动到门体打开限位块的位置,保持压紧状态。其中,门体关闭接近开关和门体打开接近开关可以是设置在气缸缸体上的预设位置,或者是设置在怠速门体支架12上。
由于怠速门体较重,在气缸驱动怠速门体移动的过程中惯性较大,为此在活塞杆的行程中,在靠近怠速门体关闭或打开的位置设置接近开关,使得怠速门体在快接近关闭或打开时预先减速。并在电磁阀再次供气后,迅速移动到门体关闭或门体打开限位块的位置,保持压紧状态。
喷口模块控制单元采用380V交流给电动机231供电,并通过接触器来控制电动机231的正反转。如图9所示,当喷口给定开启信号时,对应接触器吸合,电动机231转动,通过链轮233带动喷口模块相背远离移动,当运动到位后,触发喷口开启限位开关,使接触器断开,电动机231运动停止,形成大喷口。
当喷口给定关闭信号时,对应接触器吸合,电动机反转,通过链轮233带动喷口模块相对靠近移动,当运动到位后,触发喷口关闭限位开关,使接触器断开,电动机231运动停止,形成小喷口。
本发明的风洞用怠速及喷口装置包括位于主流道外围的依次连接的怠速机构和喷口机构。当怠速门体打开时,怠速门板的靠向主流道的侧壁与主流道的侧壁内侧平齐,形成主流道的一部分;当怠速门体关闭时,两个怠速门体能够完全阻隔主流道,气流只能进入怠速风墙区域,并从怠速风墙上的通 风窗排出。怠速驱动组件通过直线驱动单元推拉摆杆来带动怠速门体水平移动,通过摆杆相当于放大了怠速门体的位移量,能有效减小直线驱动单元的行程,从设备选型上来说节约成本。并且,由于直线驱动单元的行程小,可以使得怠速机构更紧凑,减小占用空间。底部通过支撑轮支撑怠速门体,顶部采用置于怠速门体支架上的两组直线导轨和与连接在怠速门体上的滑块进行精确导向。并且,怠速门体的底部两侧采用门体导向轮进行辅助导向,保证门体能够灵活运动,同时还承担气流方向的气动载荷。
并且,其喷口机构为双喷口一体化结构,能够实现大小喷口自由切换,满足多种类型车辆试验及对更高风速的要求。采用由链轮带动的链条拉动与各喷口模块连接的绳索,从而驱动喷口模块打开或关闭主流道。其驱动方式简单、高效。在喷口模块相对移动到贴合时,通过压紧板和锁紧单元限制喷口模块向两侧移动。当为小喷口时,喷口模块与流道外侧面通过压紧密封条的形式进行密封。在两侧的喷口模块行程的起点、终点位置分别采用限位开关及机械限位挡块,保证喷口切换的准确性、可靠性及机构的安全性。喷口模块为固定型面块,比螺旋丝杠顶压柔板的方式,获得的气流型线更准确。喷口模块的迎风面为流线型曲面,以利于气流流过。当为大喷口状态时,每个喷口模块靠向主流道的侧壁与主流道的侧壁内侧平齐,形成主流道的一部分。喷口过渡段与喷口模块采用定位卡块连接,将两个喷口模块牢靠的连接为一体,保证喷口模块接合处平齐无台阶。并且,喷口过渡段向主流道气流方向一直延伸到主流道的边缘,保证喷口长度的完整性。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种风洞用怠速及喷口装置,包括怠速机构和喷口机构,主流道依次穿透怠速机构和喷口机构,其特征在于,
    怠速机构包括怠速门体和怠速驱动组件,两个怠速门体列于主流道的两侧,怠速驱动组件驱动怠速门体沿垂直于主流道气流方向相对移动至贴合,主流道关闭,或怠速驱动组件驱动怠速门体沿垂直于主流道气流方向相背移动至主流道完全打开,气流从主流道流过;
    喷口机构包括喷口模块和喷口驱动组件,两个喷口模块列于主流道的两侧,通过喷口驱动组件驱动喷口模块沿垂直于主流道气流方向相对移动至贴合,阻隔部分主流道,形成小喷口,或通过喷口驱动组件驱动喷口模块沿垂直于主流道气流方向相背移动至主流道完全打开,形成大喷口。
  2. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,所述怠速驱动组件包括直线驱动单元、摆杆、摆杆支座和竖槽,所述竖槽设置在怠速门体上,摆杆的一端与摆杆支座铰接,摆杆的另一端安装有可转动的轴承轮,轴承轮滚动安装在所述竖槽内,直线驱动单元具有伸缩杆,所述伸缩杆与摆杆的杆体铰接,通过直线驱动单元推拉摆杆驱动怠速门体打开或关闭主流道。
  3. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,怠速门体的底部设置有用于支撑怠速门体的支撑轮。
  4. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,怠速门体的底部两侧都设置有门体导向轮,并通过对应的门体导向轨道辅助怠速门体移动。
  5. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,怠速门体打开和关闭主流道的行程的两端设置有限位块,使得怠速门体打开时,怠速门体靠向主流道的侧壁与主流道的侧壁内侧平齐无台阶,关闭时两怠速门体无间隙接合。
  6. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,所述喷口模块包括通过喷口支撑架列于主流道两侧的第一喷口模块和第二喷口模块,喷口驱动组件包括安装在喷口支撑架靠向所述第一喷口模块一侧上的电动机以及与其输出轴连接的链轮,在第一喷口模块上部具有第一一穿孔板和第一 二穿孔板,在第二喷口模块上部具有第二一穿孔板和第二二穿孔板,链轮上的链条的一端固定在第一一穿孔板上,链条的另一端与第一绳索的一端连接,第一绳索的另一端固定在第二一穿孔板上,在喷口支撑架的与安装电动机相对的另一端上,安装有绳索导向轮,且绳索导向轮的轴线与主流道的气流方向平行,第二绳索的一端固定在第二二穿孔板上,并绕过绳索导向轮后固定在第一二穿孔板上,通过电动机驱动链轮转动,链条拉动两个喷口模块相对移动至贴合,形成小喷口,或相背移动至主流道完全打开,形成大喷口。
  7. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,所述喷口机构还包括喷口过渡段,在喷口模块相对移动至贴合后,通过喷口过渡段将喷口模块连接为一体,保证喷口模块贴合处平齐无台阶,并且,喷口过渡段向主流道气流方向延伸到主流道的边缘,保证喷口长度的完整性。
  8. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,在至少一个喷口模块的外围连接有压紧板,当喷口模块相对移动至贴合,压紧板挤压在主流道的侧壁外侧,并通过锁紧单元锁定压紧板,限制喷口模块移动,并且,所述压紧板靠向主流道一侧的板面上安装有压紧密封条。
  9. 根据权利要求1所述的风洞用怠速及喷口装置,其特征在于,还包括怠速墙体,两个怠速墙体设置在怠速门体在主流道气流方向的两侧的主流道外围,并且,在怠速门体远离喷口机构一侧的主流道的侧壁上设置有侧向出风口,在靠向喷口机构的怠速墙体上设置有通风窗,当主流道关闭时,气流依次经侧向出风口和通风窗流出。
  10. 一种风洞用怠速及喷口装置的控制方法,用于控制权利要求1至9中任一项所述的风洞用怠速及喷口装置,其特征在于,
    控制怠速门体打开和关闭主流道的方法是:
    接收到关闭怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相对靠近移动,当怠速门体运动到门体关闭接近开关的位置,切断怠速驱动组件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相对靠近移动到门体关闭限位块的位置,保持压紧状态;
    当接收到打开怠速机构的主流道指令后,怠速驱动组件驱动怠速门体相背远离移动,当怠速门体运动到门体打开接近开关的位置,切断怠速驱动组 件对怠速门体的驱动力并触发计时器,当达到设定时间后,怠速驱动组件再次驱动怠速门体相背远离移动到门体打开限位块的位置,保持压紧状态,
    其中,控制喷口模块形成大喷口和小喷口的方法是:
    当喷口给定开启信号时,喷口驱动组件驱动喷口模块相背远离移动,当运动到位后,触发喷口打开限位开关,喷口模块停止移动,形成大喷口;
    当喷口给定关闭信号时,喷口驱动组件驱动喷口模块相对靠近移动,当运动到位后,触发喷口关闭限位开关,喷口模块停止移动,形成小喷口。
PCT/CN2018/125219 2018-01-02 2018-12-29 风洞用怠速及喷口装置以及其控制方法 WO2019134601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020517552A JP7244496B2 (ja) 2018-01-02 2018-12-29 風洞用アイドリング及びノズル装置、並びにその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810002139.8 2018-01-02
CN201810002139.8A CN108255207B (zh) 2018-01-02 2018-01-02 风洞用怠速及喷口装置以及其控制方法

Publications (1)

Publication Number Publication Date
WO2019134601A1 true WO2019134601A1 (zh) 2019-07-11

Family

ID=62724734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125219 WO2019134601A1 (zh) 2018-01-02 2018-12-29 风洞用怠速及喷口装置以及其控制方法

Country Status (3)

Country Link
JP (1) JP7244496B2 (zh)
CN (1) CN108255207B (zh)
WO (1) WO2019134601A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146109A (zh) * 2020-09-25 2020-12-29 江苏优尚环境工程有限公司 一种便于对燃烧器进行检修的蓄热式氧化炉
CN113029497A (zh) * 2021-03-26 2021-06-25 中国空气动力研究与发展中心超高速空气动力研究所 一种用于大口径高超声速风洞的模块化试验段
CN114838904A (zh) * 2022-07-04 2022-08-02 中国航空工业集团公司沈阳空气动力研究所 一种高温风洞喷管柔性密封自动锁紧机构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108255207B (zh) * 2018-01-02 2020-09-22 高砂建筑工程(中国)有限公司 风洞用怠速及喷口装置以及其控制方法
CN109436373B (zh) * 2018-11-29 2024-05-03 中国航天空气动力技术研究院 一种高超声速力热联合试验舱体
CN112067227B (zh) * 2020-07-30 2022-09-27 中国航天空气动力技术研究院 一种汽车环境风洞怠速模拟控制系统
CN113390600B (zh) * 2021-07-26 2022-07-12 中国空气动力研究与发展中心计算空气动力研究所 用于热解气体气动热效应的激波风洞试验模拟装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841334A (ja) * 1982-06-30 1983-03-10 Hitachi Ltd 自動車用環境試験装置における遮風装置
JPH09269281A (ja) * 1996-03-29 1997-10-14 Toyo Eng Works Ltd 自走車用の環境試験装置
US20030089167A1 (en) * 2001-11-14 2003-05-15 Freightliner Llc Vehicle wind tunnel method and apparatus
CN204439320U (zh) * 2015-01-29 2015-07-01 天津三电汽车空调有限公司 用于汽车环境风洞试验室的可移动环境试验舱
CN105277331A (zh) * 2014-06-03 2016-01-27 上海汽车集团股份有限公司 热环境风洞及其怠速模拟系统
CN105953998A (zh) * 2016-04-25 2016-09-21 辽宁工业大学 一种基于风洞试验的赛车侧风稳定性指标评价方法
CN206208489U (zh) * 2016-11-28 2017-05-31 上海佐竹冷热控制技术有限公司 汽车环境风洞试验室
CN108255207A (zh) * 2018-01-02 2018-07-06 高砂建筑工程(北京)有限公司 风洞用怠速及喷口装置以及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029713Y2 (ja) * 1979-11-15 1985-09-07 三菱重工業株式会社 風洞
JP2000065690A (ja) 1998-08-17 2000-03-03 Toyo Eng Works Ltd 自走車用の環境試験装置
JP2000275136A (ja) 1999-03-26 2000-10-06 Mitsubishi Heavy Ind Ltd 循環型実験用風洞
DE102007020878B4 (de) * 2007-05-04 2020-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prüfung von Umströmungsgeräuschen
CN102401739A (zh) * 2010-09-08 2012-04-04 无锡市锦华试验设备有限公司 一种风洞快速制动试验系统
US9279740B2 (en) * 2013-07-18 2016-03-08 Honda Motor Co., Ltd. Apparatus for location of vehicle center for aerodynamic testing
CN203892023U (zh) * 2014-04-18 2014-10-22 南京航空航天大学 矩形截面高超声速变几何进气道
CN105444275B (zh) * 2015-12-31 2018-07-03 广东美的制冷设备有限公司 空调柜机及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841334A (ja) * 1982-06-30 1983-03-10 Hitachi Ltd 自動車用環境試験装置における遮風装置
JPH09269281A (ja) * 1996-03-29 1997-10-14 Toyo Eng Works Ltd 自走車用の環境試験装置
US20030089167A1 (en) * 2001-11-14 2003-05-15 Freightliner Llc Vehicle wind tunnel method and apparatus
CN105277331A (zh) * 2014-06-03 2016-01-27 上海汽车集团股份有限公司 热环境风洞及其怠速模拟系统
CN204439320U (zh) * 2015-01-29 2015-07-01 天津三电汽车空调有限公司 用于汽车环境风洞试验室的可移动环境试验舱
CN105953998A (zh) * 2016-04-25 2016-09-21 辽宁工业大学 一种基于风洞试验的赛车侧风稳定性指标评价方法
CN206208489U (zh) * 2016-11-28 2017-05-31 上海佐竹冷热控制技术有限公司 汽车环境风洞试验室
CN108255207A (zh) * 2018-01-02 2018-07-06 高砂建筑工程(北京)有限公司 风洞用怠速及喷口装置以及其控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146109A (zh) * 2020-09-25 2020-12-29 江苏优尚环境工程有限公司 一种便于对燃烧器进行检修的蓄热式氧化炉
CN112146109B (zh) * 2020-09-25 2022-11-22 江苏优尚环境工程有限公司 一种便于对燃烧器进行检修的蓄热式氧化炉
CN113029497A (zh) * 2021-03-26 2021-06-25 中国空气动力研究与发展中心超高速空气动力研究所 一种用于大口径高超声速风洞的模块化试验段
CN113029497B (zh) * 2021-03-26 2022-11-15 中国空气动力研究与发展中心超高速空气动力研究所 一种用于大口径高超声速风洞的模块化试验段
CN114838904A (zh) * 2022-07-04 2022-08-02 中国航空工业集团公司沈阳空气动力研究所 一种高温风洞喷管柔性密封自动锁紧机构
CN114838904B (zh) * 2022-07-04 2022-09-02 中国航空工业集团公司沈阳空气动力研究所 一种高温风洞喷管柔性密封自动锁紧机构

Also Published As

Publication number Publication date
JP7244496B2 (ja) 2023-03-22
CN108255207B (zh) 2020-09-22
CN108255207A (zh) 2018-07-06
JP2021508029A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2019134601A1 (zh) 风洞用怠速及喷口装置以及其控制方法
CN107386857B (zh) 内藏式塞拉门
CN115031919B (zh) 一种连续式风洞二喉道
CN107386891B (zh) 一种推拉组合门
CN106968548A (zh) 一种自动车窗及具有该结构的铁路客车
CN108627358B (zh) 一种防火门可靠性能试验装置及试验方法
WO2018121233A1 (zh) 一种用于货运动车组的塞拉门系统
CN206540684U (zh) 一种汽车滑移门内开关耐久试验装置
CN105277331B (zh) 热环境风洞及其怠速模拟系统
CN208180903U (zh) 无杆气缸驱动接驳板式无障碍公交车门
KR20020028596A (ko) 격납고 도어장치
CN215718068U (zh) 一种单开塞拉门系统
CN110424876B (zh) 一种塞拉式站台门节能风阀机构
CN106812456A (zh) 一种可拆装式机库的垂直升降门
RU112271U1 (ru) Затвор поворотный защитно-герметичный двухстворчатый
CN106437452B (zh) 一种用于超大截面通道快速开启的装置
CN103590716B (zh) 基于安全门的升降窗装置
CN206734307U (zh) 铁路列车自动供水装置及系统
CN220081486U (zh) 一种矿井通风用风门装置
CN207793671U (zh) 工业洗衣机上下滑动开关门装置
CN216247013U (zh) 一种便于紧固门窗的门窗物理性能检测设备
CN206174803U (zh) 一种用于超大截面通道快速开启的装置
CN113310870B (zh) 一种工程监理用渗水测试装置
CN201678328U (zh) 用于电梯性能检测系统的门固定装置
CN206174751U (zh) 自动门驱动装置及微波仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020517552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898105

Country of ref document: EP

Kind code of ref document: A1