WO2019134355A1 - 多硫化钠的检测方法 - Google Patents

多硫化钠的检测方法 Download PDF

Info

Publication number
WO2019134355A1
WO2019134355A1 PCT/CN2018/093972 CN2018093972W WO2019134355A1 WO 2019134355 A1 WO2019134355 A1 WO 2019134355A1 CN 2018093972 W CN2018093972 W CN 2018093972W WO 2019134355 A1 WO2019134355 A1 WO 2019134355A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium polysulfide
ammonium
analyte
ammonium salt
reagent
Prior art date
Application number
PCT/CN2018/093972
Other languages
English (en)
French (fr)
Inventor
曹加悦
李沃源
邓杭军
连明
周贵阳
周俊瑶
Original Assignee
浙江新和成特种材料有限公司
浙江新和成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成特种材料有限公司, 浙江新和成股份有限公司 filed Critical 浙江新和成特种材料有限公司
Priority to JP2020503779A priority Critical patent/JP6876866B2/ja
Publication of WO2019134355A1 publication Critical patent/WO2019134355A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration

Definitions

  • This application relates to a method of detecting sodium polysulfide.
  • Polyphenylene sulfide is a special engineering plastic with excellent properties, which is resistant to high temperature, radiation, flame retardant and chemical corrosion.
  • sodium hydrogen hydride is usually used as a raw material.
  • sodium hydrosulfide is usually prepared by a chemical absorption method in which hydrogen sulfide in an industrial acid gas is absorbed by an alkali solution.
  • the resulting sodium hydrosulfide solution usually contains various components such as sodium hydrosulfide, sodium sulfide, sodium thiosulfate, sodium sulfite, and sodium polysulfide.
  • sodium polysulfide will participate in the polymerization process of polyphenylene sulfide, resulting in a significant decrease in the thermal stability of polyphenylene sulfide. Therefore, the detection of the content of sodium polysulfide in the sodium hydrosulfide solution is important.
  • Methyl trifluoromethanesulfonate is immiscible in water, and in order to avoid the phase transfer step and increase the dissolution concentration of the methylating agent, the reaction is selected in a methanol-water medium.
  • the method was verified by kinetic tests and isotope dilution tests, which confirmed that the uniform derivatization rate was faster than polysulfide disproportionation, and concluded that the derivatized dimethyl polysulfane distribution was actually associated with inorganic polysulfides. The initial distribution is the same.
  • the components of different n in sodium polysulfide can be detected, the extraction of various components and the problem of external standards, especially the extraction of dimethyl polysulfane components, result in complicated and time-consuming experimental steps.
  • the derivatization conditions are also very demanding, which makes the analysis more difficult.
  • the present application provides a convenient method for detecting sodium polysulfide, which can accurately measure the content of sodium polysulfide.
  • the application provides a method for detecting sodium polysulfide, which comprises the following steps:
  • step b) calculating the content of sodium polysulfide in the test substance by the molar amount of ammonium ions of the ammonium salt reagent consumed in step a) and the mass of the sulfur precipitate.
  • Potentiometric titration is used to detect sodium polysulfide.
  • precise titration can be achieved by controlling the dropping rate of the ammonium salt reagent.
  • the potential of the analyte is recorded, and when there is no significant change in the potential, it is judged as the end point of the titration, and the volume of consumption of the ammonium salt reagent corresponding to the peak of the potential differential is recorded.
  • the molar amount of the ammonium ion in the ammonium salt reagent is used to obtain the molar amount of the ammonium ion of the ammonium salt reagent, and in combination with the mass of the sulfur precipitate, the content of the sodium polysulfide in the analyte can be obtained.
  • the detection method has simple steps, is convenient to operate, and the detection result is accurate.
  • Example 1 is a potential curve recorded by potentiometric titration in the method for detecting sodium polysulfide according to Example 2 of the present application.
  • the application provides a method for detecting sodium polysulfide.
  • the detection method includes the following steps:
  • the content of sodium polysulfide in the analyte is calculated by the molar amount of the ammonium ion of the ammonium salt reagent consumed in step S1 and the mass of the sulfur precipitate.
  • step S1 the reaction formula of the sodium polysulfide and the ammonium ion in the ammonium salt reagent is as follows:
  • a pH buffer solution may be added before the reaction to control the pH of the analyte to be 11 ⁇ 0.5.
  • the pH buffer solution may be a disodium hydrogen phosphate solution.
  • the ammonium salt reagent may be selected from the ammonium salt reagent and may be selected from ammonium salts such as ammonium chloride, ammonium sulfate, ammonium hydrogen sulfate, ammonium nitrate, ammonium carbonate, ammonium phosphate, and the like.
  • the ammonium salt reagent is an ammonium chloride solution or an ammonium sulfate solution.
  • the molar concentration of the ammonium ion of the ammonium salt reagent The value ranges from 0.5 mol/L to 1.5 mol/L.
  • the volume of ammonium ions consumed by the ammonium salt reagent is set to The molar amount of ammonium ions of the ammonium salt reagent consumed
  • test substance may contain other sulfides in addition to sodium polysulfide, such as S 2- and HS - will be slowly oxidized under oxygen or air atmosphere, and the formation of polysulfide will affect the detection. The accuracy of the fruit. Therefore, an inert gas is used for protection during the reaction (1).
  • the inert gas may be any one of nitrogen, helium, or argon.
  • the step of removing the hydrosulfide in the analyte is specifically: sequentially adding the first reagent and the second reagent to the analyte.
  • the first reagent is at least one of formaldehyde, acetaldehyde and glyoxal
  • the second reagent is hydrochloric acid or sulfuric acid. It should be noted that the second reagent is slowly added to control the amount of addition thereof.
  • the reaction process for removing the hydrosulfide in the analyte is as follows:
  • the amounts of the first reagent and the second reagent in the reaction formulas (2) to (4) can be estimated based on the content of sodium hydrosulfide in the analyte.
  • the pH buffer solution is used to control the pH of the analyte.
  • step S2 the mass of the sulfur precipitate is obtained by a method of chemical quantitative analysis.
  • the method for chemical quantitative analysis may be that the sulfur precipitate is mixed with sodium sulfite to obtain a sodium thiosulfate precipitate; and the mass of the sulfur precipitate is obtained by an iodometric method. The following reactions occur during this process:
  • the iodometric method can obtain the molar amount of iodine consumed in the reaction formula (6) which is among them, Is the molar concentration of the iodine reagent used in the iodometric method, Is the volume of iodine reagent consumed.
  • the molar amount of iodine consumed according to the reaction formula (6) The mass m s of the sulfur precipitate can be converted. specific, Among them, 32.07 is the relative atomic mass of sulfur.
  • n is the number of atoms of sulfur in the sodium polysulfide
  • m is the mass of the analyte
  • 23 is the relative atomic mass of sodium.
  • Potentiometric titration is used to detect sodium polysulfide.
  • precise titration can be achieved by controlling the dropping rate of the ammonium salt reagent.
  • the potential of the analyte is recorded, and when there is no significant change in the potential, it is judged as the end point of the titration, and the volume of consumption of the ammonium salt reagent corresponding to the peak of the potential differential is recorded.
  • the molar amount of the ammonium ion in the ammonium salt reagent is used to obtain the molar amount of the ammonium ion of the ammonium salt reagent, and in combination with the mass of the sulfur precipitate, the content of the sodium polysulfide in the analyte can be obtained.
  • the detection method is simple in steps, convenient to operate, and can accurately detect the content of sodium polysulfide.
  • the Na 2 S 4 solution having a mass fraction of 30% was disposed, and the Na 2 S 4 solution was used as a test object, and the Na 2 S 4 content was detected for the Na 2 S 4 solution.
  • the specific steps are as follows:
  • test substance Under a nitrogen atmosphere, 40 g of the test substance was placed in a flask, and 0.1 mol/L of disodium hydrogen phosphate buffer solution was added dropwise to the solution in the flask, and the pH of the solution was adjusted to 11 ⁇ 0.5.
  • step 4) Transfer the solution obtained in step 3) to a 500mL volumetric flask, add 50mL of 100g/L zinc sulphate solution, dilute to volume, shake and filter, take 100mL filtrate and add formaldehyde, glacial acetic acid and starch, use iodine solution Titration to obtain the volume of iodine consumed
  • formaldehyde is used to shield sodium sulfite. Because of the iodometric method, sodium sulfite also consumes iodine.
  • the molar amount of the ammonium ion consumed by the ammonium salt reagent and the mass of the sulfur precipitate are calculated by the volume of the ammonium sulfate solution consumed as described above and the volume of the iodine solution actually consumed.
  • the content of sodium polysulfide in the test object is calculated according to the formula (1) and formula (2) by the molar amount of the ammonium ion of the ammonium salt reagent consumed and the mass of the sulfur precipitate. For the accuracy of the results, the detection process was repeated 11 times. The specific results are shown in Table 1:
  • RSD is the relative standard deviation
  • the analyte is a sodium hydrosulfide solution.
  • the mass fraction of sodium hydrosulfide in the test substance was about 46%.
  • the sodium hydrosulfide solution contains sodium polysulfide in addition to sodium hydrosulfide. The content of the sodium polysulfide is detected on the sample to be tested, and the specific steps are as follows:
  • the molar amount of the ammonium ion consumed by the ammonium salt reagent and the mass of the sulfur precipitate are calculated by the volume of the ammonium chloride solution consumed as described above and the volume of the iodine solution actually consumed.
  • the content of sodium polysulfide in the test object is calculated according to the formula (1) and formula (2) by the molar amount of the ammonium ion of the ammonium salt reagent consumed and the mass of the sulfur precipitate. For the accuracy of the results, the detection process was repeated 11 times. The specific results are shown in Table 2 below:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本申请提供一种多硫化钠的检测方法,其包括以下步骤:a)向待测物中滴加铵盐试剂,使所述待测物中的多硫化钠与铵盐反应,并通过电位滴定法确定滴定终点,得到硫沉淀物;b)通过步骤a)所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,计算得到所述待测物中的多硫化钠的含量。

Description

多硫化钠的检测方法
相关申请
本申请要求2018年1月8日申请的,申请号为201810015635.7,名称为“多硫化钠的检测方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及多硫化钠的检测方法。
背景技术
聚苯硫醚是一种具有优良性能的特种工程塑料,具有耐高温、耐辐射、阻燃、耐化学腐蚀性等特性。在聚苯硫醚的制备过程中,通常采用硫氢化钠作原料。
现有技术中,硫氢化钠通常采用化学吸收法制备,即用碱液吸收工业酸性气体中的硫化氢。该得到的硫氢化钠溶液通常包含多种组分,比如硫氢化钠、硫化钠、硫代硫酸钠、亚硫酸钠以及多硫化钠等。其中,多硫化钠会参与合成聚苯硫醚的聚合过程,导致聚苯硫醚的热稳定性明显降低。因此,硫氢化钠溶液中的多硫化钠的含量检测比较重要。
目前,多硫化钠的含量检测不够精确且步骤复杂。比如Zopfi等[Marine Chemistry.2001,29-51]采用了类似的锌离子萃取二价态硫的方法,留下了可量化的硫沉淀物,然后用液相色谱对其检测。由于这个方法存在单质硫标样溶解的问题,硫沉淀物很难在甲醇溶液中溶解、扩散均匀,导致该方法检测不准确。Kamyshny等[Anal.Chem.2006,78,2631-2639]使用三氟甲磺酸甲酯进行快速单相化学甲基化,将不稳定的多硫化物衍生化为稳定的二甲基聚硫物质,可以通 过HPLC进行分析。
S n 2-+2CF 3SO 3CH 3→(CH 3) 2S n+2CF 3SO 3 -
三氟甲磺酸甲酯在水中不混溶,为了避免相转移步骤和提高甲基化剂的溶解浓度,选择在甲醇-水介质中进行反应。该方法通过动力学试验和同位素稀释试验验证,证实了均匀衍生化速率比多硫化物歧化更快,而得出结论:衍生化后的二甲基聚硫烷分布实际上与无机多硫化物的初始分布相同。虽然可检测多硫化钠中不同n的成分,但是,由于涉及各种组分的提取以及外标问题,特别是二甲基聚硫烷成分提取,导致实验步骤复杂,耗时较长。另外,衍生化条件也非常苛刻,导致分析难度加大。
发明内容
针对上述问题,本申请提供一种方便的多硫化钠的检测方法,该检测方法可精确测量多硫化钠的含量。
本申请提供一种多硫化钠的检测方法,其包括以下步骤:
a)向待测物中滴加铵盐试剂,使所述待测物中的多硫化钠与铵盐反应,并通过电位滴定法确定滴定终点,得到硫沉淀物;
b)通过步骤a)所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,计算得到所述待测物中的多硫化钠的含量。
所述多硫化钠的检测方法具有以下优点:
采用电位滴定法对多硫化钠进行检测,在电位滴定的过程中,通过控制铵盐试剂的滴加速度,可实现精确滴定。在滴定时,记录所述待测物的电位,当电位无明显变化时,判断为滴定终点,记录电位微分峰值对应的所述铵盐试剂的消耗的体积。通过铵盐试剂中铵离子的摩尔浓度,得到铵盐试剂的铵离子 的摩尔量,再结合硫沉淀物的质量,进行换算,而可得到所述待测物中的多硫化钠的含量。该检测方法步骤简单,方便操作,并且检测结果精确。
附图说明
图1为本申请实施例2多硫化钠的检测方法中电位滴定时记录的电位曲线。
具体实施方式
下面将对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施方式,都属于本申请保护的范围。
本申请提供一种多硫化钠的检测方法。所述检测方法包括以下步骤:
S1,向待测物中滴加铵盐试剂,使所述待测物中的多硫化钠与铵盐反应,并通过电位滴定法确定滴定终点,得到硫沉淀物;
S2,通过步骤S1所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,计算得到所述待测物中的多硫化钠的含量。
在步骤S1中,所述多硫化钠与所述铵盐试剂中铵离子的反应式如下:
Na 2S n+2NH 4 +=H 2S↑+(n-1)S↓+2NH 3↑+2Na +   反应式(1)
在该反应过程中,为了避免反应物硫化氢及氨气影响pH值,导致干扰反应速率,可在反应之前加入pH缓冲溶液来控制待测物的pH值为11±0.5。所述pH缓冲溶液可为磷酸氢二钠溶液。
所述铵盐试剂为可选自所述铵盐试剂可选自氯化铵、硫酸铵、硫酸氢铵、硝酸铵、碳酸铵、磷酸铵等铵盐。优选的,所述铵盐试剂为氯化铵溶液或硫酸 铵溶液。所述铵盐试剂的铵离子的摩尔浓度
Figure PCTCN2018093972-appb-000001
的取值范围为0.5mol/L~1.5mol/L。
当到达滴定终点时,所消耗的所述铵盐试剂的铵离子的体积设为
Figure PCTCN2018093972-appb-000002
则所消耗的所述铵盐试剂的铵离子的摩尔量
Figure PCTCN2018093972-appb-000003
进一步的,考虑到待测物中除多硫化钠以外,可能还含有其他的硫化物,比如S 2-及HS -在氧气或空气的氛围下,会缓慢被氧化,生成多硫化物会影响检测果的准确性。因此,在所述反应(1)的过程中采用惰性气体进行保护。所述惰性气体可为氮气、氦气、或氩气中的任意一种。
考虑到某些待测物中含有复杂的硫元素的化合物,而含有硫元素的化合物中尤其以硫氢化钠的存在对所述反应(1)的过程影响较大,因此,在对所述待测物进行滴定之前,还需要除去所述待测物中的硫氢化钠。这是因为大量的HS -会进行水解而产生H 2S,而反应(1)所生成的氨气会与H 2S结合得到硫化铵,反应(1)所生成的单质硫又与硫化铵反应得到多硫化铵,而导致难以析出硫沉淀。
所述除去待测物中的硫氢化物的步骤具体为:向所述待测物中依次滴加第一试剂及第二试剂。其中,所述第一试剂为甲醛、乙醛、乙二醛中的至少一种,所述第二试剂为盐酸或硫酸。需要说明的是,所述第二试剂缓慢加入以控制其加入量。以第一试剂为甲醛,第二试剂为盐酸为例进行说明,该除去待测物中的硫氢化物的反应过程如下:
NaHS+HCHO+H 2O=H 2OCH 2SH+NaOH    反应式(2)
NaHS+NaOH=Na 2S+H 2O          反应式(3)
NaOH+HCl=NaCl+H 2O           反应式(4)
其中,根据所述待测物中的硫氢化钠的含量,可推测在反应式(2)至(4),第一试剂及第二试剂的用量。以待测物为质量分数为30%~50%的硫氢化钠为例, 甲醛与硫氢化钠的摩尔比可为:n(HCHO)∶n(NaHS)=0.9~1.0。
进一步,可在除去待测物中的硫氢化物之后,再采用所述pH缓冲溶液来控制所述待测物的pH值。
在步骤S2中,通过化学定量分析的方法获得所述硫沉淀物的质量。具体的,所述化学定量分析的方法可为将所述硫沉淀物与亚硫酸钠混合,得到硫代硫酸钠沉淀物;通过碘量法来获取所述硫沉淀物的质量。在此过程中会进行如下反应:
S+Na 2SO 3=Na 2S 2O 3     反应式(5)
I 2+2S 2O 3 2-=S 4O 6 2-+2I -    反应式(6)
所述碘量法可得到反应式(6)中所消耗的碘的摩尔量
Figure PCTCN2018093972-appb-000004
Figure PCTCN2018093972-appb-000005
其中,
Figure PCTCN2018093972-appb-000006
为碘量法中所采用的碘试剂的摩尔浓度,
Figure PCTCN2018093972-appb-000007
为所消耗的碘试剂的体积。
根据反应式(6)所消耗的碘的摩尔量
Figure PCTCN2018093972-appb-000008
可换算得到所述硫沉淀物的质量m s。具体的,
Figure PCTCN2018093972-appb-000009
其中,32.07为硫的相对原子质量。
通过步骤S1所消耗的所述铵盐试剂的铵离子的摩尔量
Figure PCTCN2018093972-appb-000010
以及所述硫沉淀物的质量m s,进行计算,得到所述待测物中的多硫化钠的含量ω。具体公式如下:
Figure PCTCN2018093972-appb-000011
Figure PCTCN2018093972-appb-000012
其中n为多硫化钠中硫元素的原子数,m为所述待测物的质量,23为钠的相对原子质量。
可以理解,得到更加精确的多硫化钠的含量检测结果,还进行一空白试验,以得到精确的反应式(6)实际所消耗的碘的摩尔量
Figure PCTCN2018093972-appb-000013
具体的,取与所述待 测物相同质量的水,并进行步骤S1的滴定,得到空白试验中所消耗的碘试剂的体积V 0。此时,反应式(6)实际所消耗的碘的摩尔量
Figure PCTCN2018093972-appb-000014
所述多硫化钠的检测方法具有以下优点:
采用电位滴定法对多硫化钠进行检测,在电位滴定的过程中,通过控制铵盐试剂的滴加速度,可实现精确滴定。在滴定时,记录所述待测物的电位,当电位无明显变化时,判断为滴定终点,记录电位微分峰值对应的所述铵盐试剂的消耗的体积。通过铵盐试剂中铵离子的摩尔浓度,得到铵盐试剂的铵离子的摩尔量,再结合硫沉淀物的质量,进行换算,而可得到所述待测物中的多硫化钠的含量。该检测方法步骤简单,方便操作,并且可精确的检测多硫化钠的含量。
以下,将通过以下具体实施例对所述多硫化钠的检测方法做进一步的验证说明。
实施例1
配置质量分数为30%的Na 2S 4溶液,将该Na 2S 4溶液作为待测物,并对该Na 2S 4溶液进行Na 2S 4的含量的检测,具体步骤如下:
1)在氮气气氛下,取40g待测物置于烧瓶中,向烧瓶中的溶液中滴加0.1mol/L磷酸氢二钠缓冲溶液,将溶液中pH调至11±0.5。
2)将水浴温度保持40℃,向上述弱碱性的溶液中自动滴加0.5mol/L的硫酸铵溶液,滴定仪自动记录溶液的电位变化。在此过程中不断向烧瓶通入氮气,用48%氢氧化钠溶液吸收尾气。当电位无明显变化时,可以停止滴定,记录曲线微分峰值对应的体积,即为所消耗的硫酸铵溶液的体积。
3)将上述烧瓶的底部得到的沉淀悬于瓶底,用玻璃纤维滤纸进行过滤。硫磺沉淀会残留在滤纸上。用大量纯水洗涤滤纸,直至滤液中无样品残留为止。 将沉淀置于锥形瓶中,并用纯水清洗滤纸于锥形瓶内,向锥形瓶内加5mL 1mol/L的亚硫酸钠溶液,加热煮沸2h直至黄色沉淀溶解。
4)将步骤3)得到的溶液转移至500mL容量瓶中,加50mL 100g/L的硫酸锌溶液,定容至刻度,摇匀后过滤,取100mL滤液加甲醛、冰乙酸和淀粉,用碘液滴定,得到所消耗的碘液的体积
Figure PCTCN2018093972-appb-000015
其中加硫酸锌为了除去残留S 2-,甲醛为了屏蔽亚硫酸钠,因为碘量法测定,亚硫酸钠也会消耗碘量。
5)另外,进行一空白试验,取40g水,进行步骤1)至步骤5),得到空白试验中所消耗的碘溶液的体积V 0。此时,实际所消耗的碘液的体积
Figure PCTCN2018093972-appb-000016
通过上述所消耗的硫酸铵溶液的体积以及实际所消耗的碘液的体积,计算所消耗的所述铵盐试剂的铵离子的摩尔量及所述硫沉淀物的质量。再通过所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,根据公式(1)及公式(2)计算得到所述待测物中的多硫化钠的含量。为了结果的准确,本检测过程重复11次。具体结果如下表1:
表1
Figure PCTCN2018093972-appb-000017
表中,RSD为相对标准偏差。
由表1可见,通过本申请所述多硫化钠的检测方法,所得到的检测结果的平均值30.56%,与原料的多硫化钠的含量基本一致,检测结果准确,误差小(小于2.0%)。
实施例2
取一待测物,该待测物为硫氢化钠溶液。其中该待测物中硫氢化钠的质 量分数约为46%。该硫氢化钠溶液除了硫氢化钠还含有多硫化钠。对该待测物进行多硫化钠的含量的检测,具体步骤如下:
1)在氮气气氛下,取40g待测物置于烧瓶中,向烧瓶中加入甲醛溶液30mL,1分钟后向烧瓶中缓慢滴加盐酸溶液,使得溶液中pH在12左右。其中,甲醛溶液中甲醛的质量分数为36%。盐酸溶液中盐酸的质量分数为5%。
2)继续,向烧瓶中的溶液中滴加0.1mol/L磷酸氢二钠缓冲溶液,将溶液中pH调至11±0.5。
3)将水浴温度保持40℃,向上述弱碱性的溶液中自动滴加1mol/L氯化铵溶液,滴定仪自动记录溶液的电位变化。在此过程中不断向烧瓶通入氮气,用48%氢氧化钠溶液吸收尾气。请参阅图1,当电位无明显变化时,可以停止滴定,记录曲线微分峰值对应的体积,即为所消耗的氯化铵溶液的体积。
4)将上述烧瓶的底部得到的沉淀悬于瓶底,用玻璃纤维滤纸进行过滤。硫磺沉淀会残留在滤纸上。用大量纯水洗涤滤纸,直至滤液中无样品残留为止。将沉淀置于锥形瓶中,并用纯水清洗滤纸于锥形瓶内,向锥形瓶内加5mL 1mol/L的亚硫酸钠溶液,加热煮沸2h直至黄色沉淀溶解。
5)另外,进行一空白试验,取40g水,进行步骤1)至步骤5,得到空白试验中所消耗的碘溶液的体积V 0。此时,实际所消耗的碘液的体积
Figure PCTCN2018093972-appb-000018
通过上述所消耗的氯化铵溶液的体积以及实际所消耗的碘液的体积,计算所消耗的所述铵盐试剂的铵离子的摩尔量及所述硫沉淀物的质量。再通过所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,根据公式(1)及公式(2)计算得到所述待测物中的多硫化钠的含量。为了结果的准确,本检测过程重复11次。具体结果如下表2:
表2
Figure PCTCN2018093972-appb-000019
进一步,进行“回收”实验,即取实施例2的硫氢化钠溶液加入不同量的实施例1的30%的Na 2S 4溶液得到多个加标后多硫化物溶液。根据表1所得到的多硫化物的平均含量30.56%,计算得到加标后的多硫化物溶液中Na 2S 4的质量为m 1 g。之后,按照本申请所述检测方法,检测该加标后的多硫化物溶液中Na 2S 4的质量,标为m 2g。测试结果见表3。
表3
Figure PCTCN2018093972-appb-000020
由表3可见,本申请所述检测方法得到的加标后的多硫化物溶液中多硫化物的质量m 2趋于m 1。这再次验证了本申请所述检测方法的准确性较高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权 利要求为准。

Claims (10)

  1. 一种多硫化钠的检测方法,其特征在于,包括以下步骤:
    a)向待测物中滴加铵盐试剂,使所述待测物中的多硫化钠与铵盐反应,并通过电位滴定法确定滴定终点,得到硫沉淀物;
    b)通过步骤a)所消耗的所述铵盐试剂的铵离子的摩尔量以及所述硫沉淀物的质量,计算得到所述待测物中的多硫化钠的含量。
  2. 如权利要求1所述的多硫化钠的检测方法,其特征在于,所述铵盐试剂为氯化铵、硫酸铵、硫酸氢铵、硝酸铵、碳酸铵、或磷酸铵。
  3. 如权利要求1所述的多硫化钠的检测方法,其特征在于,步骤b)中,通过化学定量分析的方法获得所述硫沉淀物的质量。
  4. 如权利要求3所述的多硫化钠的检测方法,其特征在于,将所述硫沉淀物与亚硫酸钠反应,得到硫代硫酸钠;通过碘量法来获取所述硫沉淀物的质量。
  5. 如权利要求1所述的多硫化钠的检测方法,其特征在于,所消耗的所述铵盐试剂的铵离子的摩尔量为
    Figure PCTCN2018093972-appb-100001
    所述硫沉淀物的质量为m s,所述待测物中的多硫化钠Na 2S n的含量为ω,所述待测物的质量为m,则ω通过以下公式(1)和公式(2)得到:
    Figure PCTCN2018093972-appb-100002
    Figure PCTCN2018093972-appb-100003
    其中n为多硫化钠中硫的原子数。
  6. 如权利要求5所述的多硫化钠的检测方法,其特征在于,所述铵盐试剂的铵离子的摩尔浓度的取值范围为0.5mol/L~1.5mol/L。
  7. 如权利要求1所述的多硫化钠的检测方法,其特征在于,步骤a)中在保护气 氛下,向所述待测物中滴加铵盐试剂。
  8. 如权利要求1所述的多硫化钠的检测方法,其特征在于,步骤a)中,在向所述待测物中滴加铵盐试剂之前,调节所述待测物的pH值为11±0.5。
  9. 如权利要求1所述的多硫化钠的检测方法,其特征在于,步骤a)中在向所述待测物滴加铵盐试剂之前,还进行一除去所述待测物中的硫氢化物的步骤。
  10. 如权利要求9所述的多硫化钠的检测方法,其特征在于,所述除去待测物中的硫氢化物的步骤具体为:向所述待测物中依次滴加第一试剂及第二试剂,其中所述第一试剂为甲醛、乙醛、乙二醛中的至少一种,所述第二试剂为盐酸或硫酸。
PCT/CN2018/093972 2018-01-08 2018-07-02 多硫化钠的检测方法 WO2019134355A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503779A JP6876866B2 (ja) 2018-01-08 2018-07-02 多硫化ナトリウムの検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810015635.7A CN108226377B (zh) 2018-01-08 2018-01-08 多硫化钠的检测方法
CN201810015635.7 2018-01-08

Publications (1)

Publication Number Publication Date
WO2019134355A1 true WO2019134355A1 (zh) 2019-07-11

Family

ID=62644792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093972 WO2019134355A1 (zh) 2018-01-08 2018-07-02 多硫化钠的检测方法

Country Status (3)

Country Link
JP (1) JP6876866B2 (zh)
CN (1) CN108226377B (zh)
WO (1) WO2019134355A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988254A (zh) * 2019-12-16 2020-04-10 山东益丰生化环保股份有限公司 一种检测碱性溶液中微量多硫化物的方法
JP2022510518A (ja) * 2019-07-15 2022-01-27 王飛 スペクトル電位温度多次元滴定分析装置およびその使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226377B (zh) * 2018-01-08 2019-08-23 浙江新和成特种材料有限公司 多硫化钠的检测方法
CN109851677B (zh) * 2019-02-26 2022-02-25 山东大学 一种特异性检测多硫化物的蛋白荧光探针及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874991A (en) * 1968-08-23 1975-04-01 Westvaco Corp Polysulfide impregnation of lignocellulosic materials in a continuous digester
WO2007006150A1 (en) * 2005-07-13 2007-01-18 Fpinnovations Method for quantitative determination of individual polysulphide species in oxidized white liquors by means of raman spectroscopy
CN103983737A (zh) * 2014-05-26 2014-08-13 南昌航空大学 一种分析铝合金碱性化铣液中复合型多硫化钠的方法
CN107179341A (zh) * 2017-05-05 2017-09-19 曲阜师范大学 一种基于三聚氰胺纳米银复合材料修饰电极速测硫化物的方法
CN107188876A (zh) * 2017-04-10 2017-09-22 台州学院 一种用于检测多硫化氢的近红外荧光探针的合成及应用
CN108226377A (zh) * 2018-01-08 2018-06-29 浙江新和成特种材料有限公司 多硫化钠的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290323B (zh) * 2017-08-10 2020-01-14 台州学院 一种近红外荧光探针及其制备方法与应用技术
CN108218772A (zh) * 2018-03-23 2018-06-29 潍坊医学院 一种用于检测多硫化氢的荧光探针及其制备方法与专用检测试剂盒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874991A (en) * 1968-08-23 1975-04-01 Westvaco Corp Polysulfide impregnation of lignocellulosic materials in a continuous digester
WO2007006150A1 (en) * 2005-07-13 2007-01-18 Fpinnovations Method for quantitative determination of individual polysulphide species in oxidized white liquors by means of raman spectroscopy
CN103983737A (zh) * 2014-05-26 2014-08-13 南昌航空大学 一种分析铝合金碱性化铣液中复合型多硫化钠的方法
CN107188876A (zh) * 2017-04-10 2017-09-22 台州学院 一种用于检测多硫化氢的近红外荧光探针的合成及应用
CN107179341A (zh) * 2017-05-05 2017-09-19 曲阜师范大学 一种基于三聚氰胺纳米银复合材料修饰电极速测硫化物的方法
CN108226377A (zh) * 2018-01-08 2018-06-29 浙江新和成特种材料有限公司 多硫化钠的检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510518A (ja) * 2019-07-15 2022-01-27 王飛 スペクトル電位温度多次元滴定分析装置およびその使用方法
JP7272970B2 (ja) 2019-07-15 2023-05-12 王飛 スペクトル電位温度多次元滴定分析装置およびその使用方法
CN110988254A (zh) * 2019-12-16 2020-04-10 山东益丰生化环保股份有限公司 一种检测碱性溶液中微量多硫化物的方法

Also Published As

Publication number Publication date
JP6876866B2 (ja) 2021-05-26
CN108226377B (zh) 2019-08-23
JP2020528148A (ja) 2020-09-17
CN108226377A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019134355A1 (zh) 多硫化钠的检测方法
CN106093287B (zh) 一种尿素硝酸铵溶液中铵态氮含量的测定方法
CN105044088A (zh) 金泥中铜锌铁含量的一种快速联测方法
Stock et al. The second dissociation constant of magnesium hydroxide
CN105467068A (zh) 一种闪速吹炼炉渣中铜、铁和钙的检测方法
Dasgupta et al. Study of transition metal ion-S (IV) systems
Wroński Analytical applications of o-hydroxymercuribenzoic acid, dithiofluorescein and mercurated fluorescein
Smith Gravimetric Determination of Thallium with Tetraphenylarsonium Chloride
CN113237994A (zh) 一种硫化钡溶液中杂质硫化钠快速分析检测方法
Hastings et al. Determination of Small Amounts of Niobium in Pure Tantalum and Its Oxide
CN111504751A (zh) 一种测定全铁含量的样品前处理方法
JP3395804B2 (ja) 多硫化ナトリウムを組成する多硫化硫黄の分析方法
Stahl et al. Thermometric titration of polysulfides
CN115420696A (zh) 一种四元水盐体系组分含量的检测方法
Miura et al. Spectrophotometric determination of micro amounts of thiosulfate by liberation of thiocyanate from mercury (II) thiocyanate
White et al. Gravimetric determination of silver by formation of the hexaammine cobalt (III)-dithiosulfatoargentate (I) complex
Johnson et al. Titration of quadrivalent tellurium with thiosulfate
Meites Acidimetric Titrations of Salts of Weak Acids. Equilibria in the Copper (II)—Mandelate System
KumaráSingh Determination of organotrithiocarbonates with O-diacetoxyiodobenzoate and N-chlorosuccinimide in aqueous and non-aqueous media
Singh Polarographic method for estimation of chromium in ruby crystal
KR101812663B1 (ko) 과황산염의 회수 및 정량 방법
CN114509529A (zh) 一种无汞测定铁含量的方法
SU1548724A1 (ru) Способ определени сульфаминовой кислоты и ее солей в воздухе
CN116626223A (zh) 一种适用于测定焦炉煤气脱硫废液中硫氰酸盐含量的方法
Wroński Determination of sulphide, polysulphide, thiocarbonates and sulphur by extraction with tributyltin hydroxide, and of thiosulphate by hydrogenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897963

Country of ref document: EP

Kind code of ref document: A1