WO2019131570A1 - サーミスタ及びその製造方法並びにサーミスタセンサ - Google Patents

サーミスタ及びその製造方法並びにサーミスタセンサ Download PDF

Info

Publication number
WO2019131570A1
WO2019131570A1 PCT/JP2018/047419 JP2018047419W WO2019131570A1 WO 2019131570 A1 WO2019131570 A1 WO 2019131570A1 JP 2018047419 W JP2018047419 W JP 2018047419W WO 2019131570 A1 WO2019131570 A1 WO 2019131570A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
layer
metal nitride
base
nitride film
Prior art date
Application number
PCT/JP2018/047419
Other languages
English (en)
French (fr)
Inventor
利晃 藤田
峻平 鈴木
渚 佐古
千歳 範壽
長友 憲昭
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018202680A external-priority patent/JP7234573B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP18897145.1A priority Critical patent/EP3734621A4/en
Priority to US16/957,438 priority patent/US11532410B2/en
Priority to CN201880076342.8A priority patent/CN111418032A/zh
Publication of WO2019131570A1 publication Critical patent/WO2019131570A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • H01C17/12Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a thermistor capable of obtaining a high B constant, a method of manufacturing the same, and a thermistor sensor.
  • a thermistor material used for a temperature sensor or the like is required to have a high B constant for high accuracy and high sensitivity.
  • a metal nitride material which is not fired and does not require a heat treatment and can obtain a high B constant has been developed.
  • the inventors of the present invention have a general formula: Ti x Al y N z (0.70 ⁇ y / (x + y) ⁇ 0.
  • Patent Documents 2 to 7 it can be formed by non-baking, is at least one nitride material of Ti, V, Cr, Mn, Fe, Co, Ni, Si, Cu and Al, and has the above crystal structure and is high We are developing materials from which the B constant can be obtained (Patent Documents 2 to 7).
  • metal nitride material for a thermistor that can be directly deposited on an insulating substrate without firing
  • M is Zr, Nb, Mo, Hf, Ta and W
  • At least one selected from the group consisting of metal nitrides represented by: 0.65 ⁇ y / (x + y) ⁇ 0.98, 0.35 ⁇ z ⁇ 0.5, x + y + z 1), and the crystal structure is hexagonal
  • a material is also developed which is a single phase of crystalline wurtzite type and high B constant can be obtained (Patent Document 8).
  • the metal nitride material for thermistors described in each of the above patent documents has a high B constant and a relatively low change in resistance value and B constant before and after the 125 ° C. heat resistance test, and good thermistor characteristics are obtained.
  • the change in resistance value before and after the high temperature heat test such as 250 ° C.
  • the present invention is made in view of the above-mentioned subject, and an object of the present invention is to provide the thermistor which can change resistance value before and behind a heat resistance test, and can obtain high B constant, its manufacturing method, and a thermistor sensor.
  • the thermistor according to the first aspect of the present invention is a thermistor formed on a substrate, and is formed of an intermediate laminated portion formed on the substrate and a thermistor material of metal nitride on the intermediate laminated portion. And a middle metal nitride film layer, and the intermediate laminated portion includes two layers of a base thermistor layer formed of a metal nitride thermistor material and an intermediate oxynitride layer formed on the base thermistor layer.
  • the main metal nitride film layer is formed by stacking one or more pairs, the main metal nitride film layer is formed on the middle oxynitride layer at the top of the middle stack portion, and the middle oxynitride layer is formed of the underlying thermistor layer immediately below. It is characterized in that the thermistor material is a metal oxynitride layer formed by oxidation.
  • the intermediate oxynitride layer is a metal oxynitride layer formed by oxidizing the thermistor material of the underlying thermistor layer immediately below, the constituent elements other than oxygen of the intermediate oxynitride layer are the same as the underlying thermistor layer.
  • a barrier layer capable of forming a high quality main metal nitride film layer composed of common elements other than oxygen and suppressing the influence of moisture, defects, impurities, etc. in the underlying thermistor layer on the intermediate oxynitride layer of the metal oxynitride layer.
  • the thermistor according to the second invention is characterized in that in the first invention, the base thermistor layer and the main metal nitride film layer have the same composition. That is, in this thermistor, since the base thermistor layer and the main metal nitride film layer have the same composition, it is possible to form a highly reliable main metal nitride film layer having high crystallinity.
  • the composition ratio A / (M + A) ratio By making the composition ratio A / (M + A) ratio the same, both lattice constants become the same, and the internal stress difference between both layers becomes extremely small, so the thermal expansion difference becomes extremely small and higher reliability is obtained. Can.
  • the intermediate laminated portion is formed by laminating the base thermistor layer and the intermediate oxynitride layer repeatedly in this order on the substrate. It is characterized in that it is configured. That is, in this thermistor, since the intermediate laminated portion is formed by repeatedly laminating the two layers of the base thermistor layer and the intermediate oxynitride layer on the substrate in this order, the effect as a barrier layer can be further enhanced. It can be improved.
  • the thermistor according to a fourth aspect of the present invention is the thermistor according to any one of the first to third aspects, wherein the base thermistor layer and the main metal nitride film layer are M-A-N (where M is Ti, V, Cr).
  • Mn, Fe, Co, Ni and Cu, and A represents Al or (Al and Si)
  • M'-Al-N where M 'is Zr, Nb, Mo, Hf, Ta and W represent at least one of them
  • G-A'-Al-N wherein G represents at least one of Ti, V, Cr, Mn, Fe and Co, and A 'represents And at least one of Sc, Zr, Mo, Nb, and W
  • the crystal structure of the main metal nitride film layer is a hexagonal wurtzite type single phase.
  • the base thermistor layer and the main metal nitride film layer are M-A-N (where M represents at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, A represents Al or (Al and Si), M'-Al-N (where M 'represents at least one of Zr, Nb, Mo, Hf, Ta and W), or G-A '-Al-N (wherein G represents at least one of Ti, V, Cr, Mn, Fe and Co, and A' represents at least one of Sc, Zr, Mo, Nb and W). Since the crystal structure of the main metal nitride film layer is a hexagonal wurtzite single phase, a high B constant can be obtained.
  • the base thermistor layer and the main metal nitride film layer are the M-A-N, and the M element in the M-A-N is Ti. And the element of said A is Al. That is, the base thermistor layer and the main metal nitride film layer are both Ti-Al-N.
  • the thermistor according to a sixth aspect is characterized in that, in any one of the first to fifth aspects, the base material is an insulating film. That is, in this thermistor, even if the base material is an insulating film which is an organic base material such as polyimide, a good main metal nitride film layer can be obtained. Further, since the base material is an insulating film, if the base thermistor layer, the intermediate oxynitride layer, and the main metal nitride film layer having flexibility are formed, they can have flexibility as a whole and are in a bent state Can be used as a flexible thermistor that can be installed in the
  • a thermistor according to a seventh invention comprises the thermistor according to any one of the first to the sixth inventions, and a pair of counter electrodes formed on the main metal nitride film layer so as to face each other. I assume. That is, since this thermistor sensor includes the thermistor of any of the first to sixth inventions, a thermistor sensor having good thermistor characteristics with a small change in resistance even after the heat resistance test can be obtained.
  • a method of manufacturing a thermistor according to an eighth invention is the manufacturing method of any one of the first to sixth inventions, wherein an intermediate laminated portion forming step of forming an intermediate laminated portion on a substrate, and the intermediate laminated portion Forming a main metal nitride film layer of the metal nitride thermistor material on the metal nitride thermistor material thereon, and forming the base thermistor layer of the metal nitride thermistor material in the intermediate laminated portion forming process;
  • the main metal nitride film layer is formed by repeating one or more steps of forming a base thermistor layer to be formed and an intermediate oxynitride layer forming step of forming an intermediate oxynitride layer on the base thermistor layer.
  • a method of manufacturing a thermistor according to a ninth aspect of the present invention is the method according to the eighth aspect, wherein in the intermediate laminated portion forming step, two steps of the base thermistor layer forming step and the intermediate oxynitride layer forming step are performed a plurality of times in this order. It is characterized by repeating. That is, in the manufacturing method of this thermistor, since the two steps of the base thermistor layer forming step and the intermediate oxynitride layer forming step are repeated a plurality of times in this order in the intermediate laminated portion forming step, the plurality of base thermistor layers and the intermediate oxynitriding are performed. Layers can be stacked, and a thermistor with a higher effect of the barrier layer can be manufactured.
  • the intermediate oxynitride layer is a metal oxynitride layer formed by oxidizing the thermistor material of the underlying thermistor layer immediately below, the constituent element other than oxygen of the intermediate oxynitride layer Is the same as that of the base thermistor layer, and a good main metal nitride film layer composed of a common element other than oxygen can be formed, and the intermediate oxynitride layer of the metal oxynitride layer is moisture, defects or impurities in the base thermistor layer It also functions as a barrier layer that suppresses the influence of the above, and can obtain a main metal nitride film layer with a small change in resistance value even after a heat resistance test.
  • the influence of moisture, defects or impurities in the base thermistor layer on the main metal nitride film layer is suppressed by the intermediate oxynitride layer, and the main metal nitride film layer is directly on the substrate.
  • the resistance value change before and after the heat resistance test can be further suppressed as compared with the case where the film formation is performed.
  • a sputtering target or the like is separately prepared to prepare the intermediate acid.
  • the thermistor sensor according to the present invention since the thermistor according to the present invention is provided, a thermistor sensor having good thermistor characteristics with a small change in resistance even after the heat resistance test can be obtained.
  • FIG. 7 is a cross-sectional view showing a thermistor according to the first embodiment of the thermistor, the method of manufacturing the same, and the thermistor sensor of the present invention.
  • it is a front view and a plan view showing a thermistor sensor and a film evaluation element.
  • It is a graph which shows the 25 degreeC resistance value change rate after a 250 degreeC heat resistance test in the Example and comparative example of the thermistor concerning this invention, its manufacturing method, and a thermistor sensor.
  • It is a cross-sectional TEM image which shows a thermistor in the Example which concerns on this invention.
  • FIG. 7 is a cross-sectional view showing a thermistor according to a second embodiment of the thermistor, the method of manufacturing the same, and the thermistor sensor of the present invention.
  • FIGS. 1 and 2 a first embodiment of a thermistor, a method of manufacturing the same, and a thermistor sensor according to the present invention will be described with reference to FIGS. 1 and 2.
  • the scale is appropriately changed as necessary in order to make each part a recognizable or easily recognizable size.
  • the thermistor 1 of the present embodiment is a thermistor formed on the base 2 as shown in FIG. 1, and the intermediate laminated portion 7 formed on the base 2 and metal nitrided on the intermediate laminated portion 7 And a main metal nitride film layer 4 formed of an off-the-shelf thermistor material.
  • the intermediate laminated portion 7 is configured by laminating a pair of an underlying thermistor layer 3 formed of a metal nitride thermistor material and an intermediate oxynitride layer 3 a formed on the underlying thermistor layer 3. .
  • the main metal nitride film layer 4 is formed on the intermediate oxynitride layer 3a, and the intermediate oxynitride layer 3a is a metal oxynitride layer formed by oxidizing the thermistor material of the underlying thermistor layer 3 immediately below.
  • the base thermistor layer 3 and the main metal nitride film layer 4 are M-A-N (where M represents at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and A represents Al) Or (Al and Si), M'-Al-N (wherein M 'represents at least one of Zr, Nb, Mo, Hf, Ta and W), or G-A'-Al. -N (wherein G represents at least one of Ti, V, Cr, Mn, Fe and Co, and A 'represents at least one of Sc, Zr, Mo, Nb and W).
  • the crystal structure of the main metal nitride film layer 4 is a hexagonal wurtzite single phase.
  • the intermediate oxynitride layer 3a is a metal oxynitride layer formed by oxidizing the thermistor material of the underlying thermistor layer 3 immediately below. That is, the intermediate oxynitride layer 3a is M-A-N (where M is at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and A is Al or (Al and Si).
  • the intermediate oxynitride layer 3a is formed by oxidizing the surface of the base thermistor layer 3 immediately below. That is, the base thermistor layer 3 of the present embodiment is an initial film formation layer for forming the intermediate oxynitride layer 3a.
  • the film thickness of the base thermistor layer 3 is preferably 6 to 10 nm.
  • the film thickness of the intermediate oxynitride layer 3a is about 1 nm.
  • the film thickness of the main metal nitride film layer 4 is, for example, 90 nm.
  • the base thermistor layer 3 and the main metal nitride film layer 4 have the general formula: M x A y N z (where M is at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu)
  • the base thermistor layer 3 has conductivity and exhibits thermistor characteristics. Further, the crystal structure of the main metal nitride film layer 4 is a film having a single-phase hexagonal wurtzite type (space group P6 3 mc (No. 186)) as described above, and having thermistor characteristics.
  • A is Al or (Al and Si), that is, Al or Al and Si, and contains at least Al.
  • the main metal nitride film layer 4 has crystal orientation with a large degree of c-axis orientation in the direction (film thickness direction) perpendicular to the substrate surface. Identification of the crystal phase is carried out by grazing incidence X-ray diffraction, and the tube is made Cu, and the incident angle is once. The determination of whether the a-axis orientation (100) is strong or the c-axis orientation (002) is strong in the direction perpendicular to the film surface (film thickness direction) is based on the crystal axis using the above X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the base thermistor layer 3 and the main metal nitride film layer 4 preferably have the same composition.
  • the base thermistor layer 3 and the main metal nitride film layer 4 are the M-A-N, the element of the M in the M-A-N is Ti, and the element of the A is Al. is there.
  • the wurtz when the above “y / (x + y)” ie, A / (M + A)
  • a mineral type single phase can not be obtained, and a coexistence phase with the NaCl type phase or a crystal phase of only the NaCl type can not be obtained, and a sufficiently high resistance and a high B constant can not be obtained.
  • the above “y / (x + y)” ie, A / (M + A)
  • exceeds 0.98 the resistivity is very high and the insulation property is extremely high, so that it can not be applied as a thermistor material.
  • the wurtzite crystal structure is a hexagonal space group P6 3 mc (No. 186), and M and A belong to the same atomic site (M is Ti, V, Cr, Mn, While showing at least 1 sort (s) of Fe, Co, Ni, and Cu, A is in the so-called solid solution state of Al or (Al and Si).
  • the wurtzite type has an apex-connected structure of (M, A) N4 tetrahedron, and the closest site of the (M, A) site is N (nitrogen), and (M, A) has four-nitrogen coordination .
  • V vanadium
  • Cr chromium
  • Mn manganese
  • Fe iron
  • Co cobalt
  • Ni nickel
  • Cu copper
  • the effective ion radius is a physical property value often used to grasp the distance between atoms, and the wurtzite-type M x A can be logically used, especially using the well-known literature value of Shannon's ion radius. It can be inferred that y N z (wherein M represents at least one of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, and A represents Al or (Al and Si)). .
  • Table 1 shows the effective ion radiuses of each ion species of Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Si (see the article R. D. Shannon, Acta Crystallogr., Sect. A. , 32, 751 (1976)).
  • the wurtzite type has four coordination, and the effective ionic radius of four coordination with respect to M is Ni ⁇ Cu ⁇ Co ⁇ Fe ⁇ Mn in the case of bivalent, and Al ⁇ Fe in the case of trivalent.
  • Mn ⁇ Co ⁇ Cr ⁇ Ti
  • Cr pentavalent
  • the present invention carries out carrier doping by replacing Al sites of crystalline Al-N, which is a nitride insulator having a wurtzite type crystal structure, with M such as Ti, thereby increasing the electrical conductivity, and thus the thermistor characteristics.
  • Al site is replaced with Ti, for example, the effective ion radius of Ti is larger than that of Al, and as a result, the average ion radius of Al and Ti increases. As a result, it can be inferred that the interatomic distance increases and the lattice constant increases.
  • the wurtzite type M x A y N z (where M represents at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, Is Al or (Al and Si) are obtained, and the thermistor characteristics are obtained. Moreover, it is reported that the increase of the lattice constant by substituting Al site
  • the above-mentioned “y / (x + y)” (that is, Al / (M ′ + Al)) is less than 0.65.
  • y / (x + y) that is, Al / (M ′ + Al)
  • y / (x + y) that is, Al / (M ′ + Al)
  • a wurtzite type single phase can not be obtained, and in some M 'elements, a coexistence phase with the NaCl type phase or a crystal phase only with the NaCl type is obtained, and a sufficiently high resistance and a high B constant Can not be obtained.
  • an insulating film such as polyimide is employed.
  • the insulating film may also be made of PET: polyethylene terephthalate, PEN: polyethylene naphthalate, etc., but flexibility and heat resistance are required.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • heat resistance are required.
  • a polyimide film excellent in heat resistance which is high at a maximum use temperature of about 200 ° C. and can be used at high temperatures is desirable.
  • polyimide films having extremely excellent heat resistance that can be used even at temperatures of 200 ° C. or higher have been developed.
  • This thermistor sensor 10 includes a base 2, a middle laminated portion 7 (a base thermistor layer 3, an intermediate oxynitride layer 3a) and a main metal nitride film layer 4 of the thermistor 1, and a main metal nitride film layer. And 4, a pair of opposing electrodes 5 formed facing each other.
  • the pair of opposing electrodes 5 is formed of a laminated metal film of, for example, a Cr film and an Au film and patterned so as to face each other on the main metal nitride film layer 4 and has a comb pattern having a plurality of comb portions 5a. It is assumed.
  • the intermediate laminated portion forming step includes a base thermistor layer forming step of forming the base thermistor layer 3 with a metal nitride thermistor material, an intermediate oxynitride layer forming step of forming the intermediate oxynitride layer 3 a on the base thermistor layer 3, It consists of two steps.
  • the main metal nitride film layer forming step the main metal nitride film layer is formed on the intermediate oxynitride layer 3a, and in the intermediate oxynitride layer forming step, the surface of the base thermistor layer 3 is oxidized to form the intermediate oxynitride layer 3a.
  • a metal nitride film having thermistor characteristics is formed by reactive sputtering in a nitrogen-containing atmosphere.
  • the film thickness at this time is, for example, 100 nm as the total film thickness of the base thermistor layer 3 and the main metal nitride film layer 4 before the surface is oxidized.
  • a partial pressure of nitrogen gas is set to 30% under a mixed gas atmosphere of Ar gas + nitrogen gas at ⁇ 5 Pa, sputtering gas pressure: 0.2 Pa, target input power (output): 200 W.
  • the base thermistor layer 3 is formed to a film thickness of 10 nm, for example, and in the intermediate oxynitride layer formation step, natural oxidation treatment is performed for 5 minutes in the air at room temperature.
  • the surface is oxidized to form an intermediate oxynitride layer 3a about 1 nm thick.
  • the intermediate oxynitride layer 3a is formed by oxidizing the surface of the base thermistor layer 3 made of metal nitride, and thus is a metal oxynitride layer.
  • heat treatment such as 150 ° C. may be used in the air.
  • the main metal nitride film layer 4 having a film thickness of 90 nm is formed again under the same sputtering conditions as in the base thermistor layer forming step.
  • a Cr film of, for example, 20 nm is formed on the main metal nitride film layer 4 by a sputtering method, and an Au film is further formed of 200 nm. Furthermore, after applying a resist solution with a bar coater, prebaking is performed at 110 ° C. for 1 minute and 30 seconds, after exposure with an exposure device, unnecessary portions are removed with a developer, and post baking at 150 ° C. for 5 minutes Perform patterning at Thereafter, the unnecessary electrode portion is wet-etched with a commercially available Au etchant and Cr etchant to form a counter electrode 5 having a desired comb portion 5a by resist peeling as shown in FIG. Thus, the thermistor sensor 10 of the present embodiment is manufactured.
  • the intermediate oxynitride layer 3a is a metal oxynitride layer formed by oxidizing the thermistor material of the underlying thermistor layer 3 immediately below, other than the oxygen of the intermediate oxynitride layer 3a
  • the main metal nitride film layer 4 having the same constituent elements as the base thermistor layer 3 and containing common elements other than oxygen can be formed, and the intermediate oxynitride layer 3 a of the metal oxynitride layer is formed in the base thermistor layer 3.
  • the main metal nitride film layer 4 can also be obtained which functions as a barrier layer which suppresses the influence of moisture, defects, impurities and the like, and which has a small change in resistance value even after the heat resistance test.
  • the influence of moisture, defects or impurities in the base thermistor layer 3 on the main metal nitride film layer is suppressed by the intermediate oxynitride layer 3a, and the main metal nitride film layer 4 is directly
  • the resistance value change can be further suppressed as compared with the case of forming a film on the substrate 2.
  • the base thermistor layer 3 and the main metal nitride film layer 4 the same composition, it becomes possible to form a highly reliable main metal nitride film layer with high crystallinity.
  • the composition ratio A / (M + A) ratio the same, both lattice constants become the same, and the internal stress difference between both layers becomes extremely small, so the thermal expansion difference becomes extremely small and higher reliability is obtained.
  • the base thermistor layer 3 and the main metal nitride film layer 4 are M-A-N (where M is at least one of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, A is Al or (Al and Si) are shown), M'-Al-N (where M 'is at least one of Zr, Nb, Mo, Hf, Ta and W), or G-A'- Al-N (wherein G represents at least one of Ti, V, Cr, Mn, Fe and Co, and A 'represents at least one of Sc, Zr, Mo, Nb and W). Since the crystal structure of the main metal nitride film layer is a hexagonal wurtzite single phase, a film with a high B constant can be obtained.
  • the base material 2 is an insulating film which is an organic base material such as polyimide
  • a good main metal nitride film layer 4 can be obtained.
  • the entire substrate has flexibility as a whole. It can be used as a flexible thermistor that can be installed in a bent state.
  • a polyimide film having extremely excellent heat resistance that can be used even at a temperature of 200 ° C. or higher
  • a flexible thermistor sensor that can be used even at 200 ° C. or higher can be obtained.
  • the thermistor sensor 10 of the present embodiment includes the thermistor 1, a thermistor sensor having a small B value and a good thermistor characteristic with a small change in resistance even after the heat resistance test can be obtained.
  • the intermediate oxynitride layer forming step oxidizes the surface of the base thermistor layer 3 to form the intermediate oxynitride layer 3a. It is not necessary to provide a film formation process for the nitride layer, and the intermediate oxynitride layer 3a of the metal oxynitride layer can be easily obtained at low cost. Further, since the surface oxidation temperature of the base thermistor layer 3 may be 200 ° C. or less, it is possible to use an insulating film which is an organic base material such as polyimide, as the base material 2.
  • the difference between the second embodiment and the first embodiment is that, in the first embodiment, although the base thermistor layer 3 and the intermediate oxynitride layer 3a are laminated one by one to form the intermediate laminated portion 7.
  • the intermediate laminated portion 27 has two layers of the base thermistor layer 3 and the intermediate oxynitride layer 3a in this order on the substrate 2 And a plurality of layers are repeatedly stacked. That is, in the second embodiment, the main metal nitride film layer 4 is formed on the uppermost intermediate oxynitride layer 3 a of the intermediate stacked portion 27.
  • the intermediate laminated portion forming step is configured by repeating the two steps of the base thermistor layer forming step and the intermediate oxynitride layer forming step a plurality of times.
  • the intermediately laminated portion 27 is formed by repeatedly laminating the two layers of the base thermistor layer 3 and the intermediate oxynitride layer 3a twice. That is, the intermediately laminated portion 27 has a four-layer structure in which the base thermistor layer 3, the intermediate oxynitride layer 3a, the base thermistor layer 3, and the intermediate oxynitride layer 3a are stacked in this order on the base material 2.
  • the intermediate laminated portion may be configured by laminating the two layers of the base thermistor layer 3 and the intermediate oxynitride layer 3a three or more times repeatedly.
  • the intermediate laminated portion 27 has a six-layer structure including three base thermistor layers 3 and three intermediate oxynitride layers 3 a alternately laminated on the base material 2.
  • the intermediate laminated portion 27 is formed by repeatedly laminating the base thermistor layer 3 and the intermediate oxynitride layer 3a on the substrate 2 in this order. As a result, the effect as a barrier layer can be further improved.
  • An intermediate oxynitride layer 3a composed of a nitride layer was formed.
  • the oxidation temperature at this time was either room temperature, 150 ° C., or 200 ° C.
  • time was made into 30 minutes.
  • the main metal nitride film layer 4) of 85 Ti 0.15 N was formed to a film thickness of 94 nm or 90 nm.
  • the thickness of the main metal nitride film 4 is 94 nm, and when the film thickness of the base thermistor layer 3 before oxidation is 10 nm, the main metal nitride film 4 The film thickness is 90 nm, and the total film thickness of the base thermistor layer 3 and the main metal nitride film layer 4 before oxidation is 100 nm.
  • the counter electrode 5 was formed on the above-mentioned main metal nitride film layer 4 under the above-mentioned conditions to make a film evaluation element of the embodiment of the present invention.
  • a metal of Ti—Al—N is formed on the substrate 2 of the polyimide substrate.
  • a nitride film having a thickness of 100 nm was similarly produced.
  • the film of the comparative example does not have an intermediate oxynitride layer formed of a metal oxynitride layer.
  • FIG. 10 A cross-sectional TEM image (bright field image) of an example using a TEM (transmission electron microscope) is shown in FIG.
  • HAADF high-angle annular dark field
  • FIG. 5 the intermediate oxynitride layer is described as an oxynitride layer.
  • a main metal nitride film layer of excellent columnar crystals is obtained.
  • a large amount of oxygen is detected in the intermediate oxynitride layer (oxynitride layer).
  • nitrogen is also detected in the oxygen-containing intermediate oxynitride layer, which indicates that the intermediate oxynitride layer is an oxynitride layer.
  • This intermediate oxynitride layer is a metal oxynitride layer formed by oxidizing the surface of the base thermistor layer (Ti-Al-N).
  • the thickness of the intermediate oxynitride layer is about 1 nm.
  • the main metal nitride film layer is formed on the intermediate oxynitride layer. From the time of initial crystal growth of Ti-Al-N immediately after the start of film formation of the main metal nitride film layer, crystalline Ti-Al-N gives a columnar crystallized film with a very small amount of nitrogen defects, and high crystallinity is obtained At the same time, it has a wurtzite crystal structure with a high degree of crystal orientation, and a high B constant can be obtained.
  • the oxygen detected near the interface between the polyimide substrate and the base thermistor layer (Ti-Al-N) is due to the effect of the surface of the polyimide substrate being oxidized in the air before film formation, etc. it is conceivable that.
  • a thermistor in which an intermediate laminated portion is configured by laminating two layers of a base thermistor layer and an intermediate oxynitride layer in this order once on a substrate (Example 7) Were similarly evaluated.
  • Example 7 a base thermistor layer having a thickness of 6 nm and an intermediate oxynitride layer (oxinitride layer) formed by naturally oxidizing the surface are formed on the base material, and the main metal nitride film layer 4 is formed thereon. It formed 94 nm. Moreover, in Example 8, after laminating the base thermistor layer with a film thickness of 6 nm and the intermediate oxynitride layer (oxinitride layer) obtained by naturally oxidizing the surface on the base material, the base with a film thickness of 6 nm is further formed thereon.
  • Example 9 After laminating the thermistor layer and an intermediate oxynitride layer (oxidized layer) of natural oxidation, a main metal nitride film layer was formed thereon in a film thickness of 88 nm.
  • a base thermistor layer having a thickness of 6 nm and an intermediate oxynitride layer (oxynitride layer) formed by naturally oxidizing the surface are formed on a base material, and a base thermistor having a thickness of 3 nm is further formed thereon.
  • Example 10 After laminating the layer and an intermediate oxynitride layer of natural oxidation (oxynitride layer) twice repeatedly, a main metal nitride film layer was formed thereon in a film thickness of 88 nm. Furthermore, in Example 10, a base thermistor layer with a film thickness of 6 nm and an intermediate oxynitride layer (oxynitride layer) formed by naturally oxidizing the surface are formed on a base material, and a base thermistor with a film thickness of 6 nm is further formed thereon.
  • a layer and an intermediate oxynitride layer of natural oxidation were repeatedly laminated twice, and then a main metal nitride film layer was formed thereon to a film thickness of 82 nm.
  • the film was formed such that the total film thickness of the base thermistor layer and the main metal nitride film layer before oxidation was 100 nm. Further, the temperature of the natural oxidation was at room temperature. The results are shown in Table 3. In Table 3, the intermediate oxynitride layer is described as an oxynitride layer.
  • the notation “Al 0.85 Ti 0.15 N 6 nm / oxynitrided layer / Al 0.85 Ti 0.15 N 94 nm” in Example 1 and Example 7 is a Ti—Al—N film (Al 0 .85 Ti 0.15 N) base thermistor layer 3 is formed to a film thickness of 6 nm, and the surface is oxidized to form an intermediate oxynitride layer 3a composed of metal oxynitride, and further, Ti-Al-N is formed thereon. It is shown that the main metal nitride film layer 4 of the film (Al 0.85 Ti 0.15 N) is formed to a film thickness of 94 nm. That is, it is indicated that the total film thickness of the base thermistor layer 3 and the intermediate oxynitride layer 3a is about 6 nm.
  • Example 12 Al 0.80 Ti 0.20 N (10 nm) / intermediate oxynitride layer / Al 0.80 Ti 0.20 N (90 nm) was evaluated, and the oxidation temperature was room temperature.
  • the initial characteristics of the resistance at 25 ° C. were 224 k ⁇ , 242 k ⁇ , and 241 k ⁇ for Comparative Example 3, Example 11, and Example 12, respectively, and the B constants were 2583 K, 2580 K, and 2586 K, respectively.
  • the increase in resistance value at 25 ° C. is 2.6% and 2.6% in Examples 11 and 12, respectively, compared to Comparative Example 3.
  • the rate of change of the absolute value of the B constant is reduced by 0.5% and 0.6%, respectively, in Examples 11 and 12 compared to Comparative Example 3, and the change in the thermistor characteristics before and after the heat resistance test is more It was kept small.
  • the initial characteristics of the resistance at 25 ° C. were 9 k ⁇ , 8 k ⁇ , and 7 k ⁇ for Comparative Example 4, Example 13, and Example 14, respectively, and the B constants were 2029 K, 2024 K, and 2020 K, respectively.
  • the increase in resistance value at 25 ° C. is 1.6% and 2.6% in Examples 13 and 14, respectively, as compared to Comparative Example 4.
  • the rate of change of the absolute value of the B constant is reduced by 0.7% and 0.5% respectively in Examples 13 and 14 compared to Comparative Example 4, and the change in the thermistor characteristics before and after the heat resistance test is more It was kept small.
  • the base thermistor layer and the main metal nitride film layer have the same composition, but the base thermistor layer and the main metal nitride film layer have the same constituent elements but different compositions. It may be a membrane.
  • the intermediate oxynitride layer may be formed by sputtering. That is, when forming the intermediate oxynitride layer on the base thermistor layer, the intermediate oxynitride film may be formed by sputtering in a mixed gas atmosphere containing oxygen gas and nitrogen gas. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

耐熱試験前後の抵抗値変化がより小さく、高B定数が得られるサーミスタ及びその製造方法並びにサーミスタセンサを提供する。本発明に係るサーミスタは、基材2上に形成されたサーミスタ1であって、基材上に形成された中間積層部7と、中間積層部上に金属窒化物のサーミスタ材料で形成された主金属窒化膜層4とを備え、中間積層部が、金属窒化物のサーミスタ材料で形成された下地サーミスタ層3と、下地サーミスタ層上に形成された中間酸窒化層3aとを備え、主金属窒化膜層が、中間酸窒化層上に形成され、中間酸窒化層が、直下の下地サーミスタ層のサーミスタ材料が酸化されて形成された金属酸窒化層である。

Description

サーミスタ及びその製造方法並びにサーミスタセンサ
 本発明は、高B定数が得られるサーミスタ及びその製造方法並びにサーミスタセンサに関する。
 温度センサ等に使用されるサーミスタ材料は、高精度、高感度のために、高いB定数が求められている。近年、このようなサーミスタ材料として、非焼成で熱処理が不要であり、高B定数が得られる金属窒化物材料が開発されている。
 例えば、本願発明者らは、非焼成で絶縁性基材に直接成膜できるサーミスタ用金属窒化物材料として、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるサーミスタ用金属窒化物材料を開発している(特許文献1)。その他にも、非焼成で形成でき、Ti,V,Cr,Mn,Fe,Co,Ni,Si,Cu及びAlの少なくとも1種の窒化物材料であり、上記結晶構造を有するものであって高B定数が得られる材料を開発している(特許文献2~7)。
 また、同様に、非焼成で絶縁性基材に直接成膜できるサーミスタ用金属窒化物材料として、一般式:MAl(但し、MはZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。0.65≦y/(x+y)≦0.98、0.35≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であって高B定数が得られる材料も開発している(特許文献8)。
 さらに、一般式:(M1−wAl(但し、MはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、AはSc,Zr,Mo,Nb及びWの少なくとも1種を示す。0.0<w<1.0、0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相である材料も開発している(特許文献9)。
特開2013−179161号公報 特開2014−123646号公報 特開2014−236204号公報 特開2015−65408号公報 特開2015−65417号公報 特開2015−73077号公報 特開2015−73075号公報 特開2016−136609号公報 特開2015−073075号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、上記各特許文献に記載のサーミスタ用金属窒化物材料では高B定数であると共に125℃耐熱試験前後の抵抗値とB定数との変化が比較的低く、良好なサーミスタ特性が得られているが、さらに高温の250℃等の耐熱試験前後の抵抗値変化をさらに抑えたいとの要望がある。
 本発明は、前述の課題に鑑みてなされたもので、耐熱試験前後の抵抗値変化がより小さく、高B定数が得られるサーミスタ及びその製造方法並びにサーミスタセンサを提供することを目的とする。
 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサーミスタは、基材上に形成されたサーミスタであって、前記基材上に形成された中間積層部と、前記中間積層部上に金属窒化物のサーミスタ材料で形成された主金属窒化膜層とを備え、前記中間積層部が、金属窒化物のサーミスタ材料で形成された下地サーミスタ層と、前記下地サーミスタ層上に形成された中間酸窒化層との二層を一対又は複数対積層させて構成され、前記主金属窒化膜層が、前記中間積層部の最上部の前記中間酸窒化層上に形成され、前記中間酸窒化層が、直下の前記下地サーミスタ層のサーミスタ材料が酸化されて形成された金属酸窒化層であることを特徴とする。
 このサーミスタでは、中間酸窒化層が、直下の下地サーミスタ層のサーミスタ材料が酸化されて形成された金属酸窒化層であるので、中間酸窒化層の酸素以外の構成元素が下地サーミスタ層と同じであり、酸素以外の共通元素からなる良質な主金属窒化膜層を成膜できると共に、金属酸窒化層の中間酸窒化層が下地サーミスタ層中の水分,欠陥又は不純物等の影響を抑制するバリア層としても機能し、耐熱試験後でも抵抗値変化の少ない主金属窒化膜層を得ることができる。
 第2の発明に係るサーミスタは、第1の発明において、前記下地サーミスタ層及び前記主金属窒化膜層が、同じ組成であることを特徴とする。
 すなわち、このサーミスタでは、下地サーミスタ層及び主金属窒化膜層が、同じ組成であるので、結晶性が高い、信頼性の高い主金属窒化膜層を形成することが可能となる。組成比A/(M+A)比を同じにすることで、両者の格子定数が同じとなり、両層間の内部応力差が極めて小さくなることから熱膨張差が極めて小さくなり、より高い信頼性を得ることができる。
 第3の発明に係るサーミスタは、第1又は第2の発明において、前記中間積層部が、前記下地サーミスタ層と前記中間酸窒化層とをこの順で前記基材上に複数繰り返して積層して構成されていることを特徴とする。
 すなわち、このサーミスタでは、中間積層部が、下地サーミスタ層と中間酸窒化層との二層をこの順で基材上に複数繰り返して積層して構成されているので、バリア層としての効果をより向上させることができる。
 第4の発明に係るサーミスタは、第1から3のいずれか一項の発明において、前記下地サーミスタ層及び前記主金属窒化膜層が、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)であり、前記主金属窒化膜層の結晶構造が、六方晶系のウルツ鉱型の単相であることを特徴とする。
 すなわち、このサーミスタでは、下地サーミスタ層及び主金属窒化膜層が、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)であり、主金属窒化膜層の結晶構造が、六方晶系のウルツ鉱型の単相であるので、高B定数を得ることができる。
 第5の発明に係るサーミスタは、第4の発明において、前記下地サーミスタ層及び前記主金属窒化膜層が前記M−A−Nであり、前記M−A−Nにおける前記Mの元素がTiであり、前記Aの元素がAlであることを特徴とする。
 すなわち、下地サーミスタ層及び主金属窒化膜層は、ともにTi−Al−Nである。
 第6の発明に係るサーミスタは、第1から第5の発明のいずれかにおいて、前記基材が、絶縁性フィルムであることを特徴とする。
 すなわち、このサーミスタでは、基材が、ポリイミド等の有機基材である絶縁性フィルムであっても、良好な主金属窒化膜層を得ることができる。また、基材が絶縁性フィルムであるので、柔軟性を有する上記下地サーミスタ層,中間酸窒化層及び主金属窒化膜層を成膜すれば、全体として柔軟性を有することができ、曲げた状態で設置等が可能なフレシキブルサーミスタとして使用することが可能になる。
 第7の発明に係るサーミスタは、第1から第6の発明のいずれかのサーミスタと、前記主金属窒化膜層上に互いに対向して形成された一対の対向電極とを備えていることを特徴とする。
 すなわち、このサーミスタセンサでは、第1から第6の発明のいずれかのサーミスタを備えているので、耐熱試験後でも抵抗値変化が小さい良好なサーミスタ特性を有したサーミスタセンサが得られる。
 第8の発明に係るサーミスタの製造方法は、第1から第6のいずれかの発明の製造方法であって、基材上に中間積層部を形成する中間積層部形成工程と、前記中間積層部上に金属窒化物のサーミスタ材料で前記主金属窒化膜層を形成する主金属窒化膜層形成工程とを有し、前記中間積層部形成工程が、金属窒化物のサーミスタ材料で前記下地サーミスタ層を形成する下地サーミスタ層形成工程と、前記下地サーミスタ層上に中間酸窒化層を形成する中間酸窒化層形成工程との二工程を一回又は複数回繰り返して構成され、前記主金属窒化膜層形成工程で、前記中間積層部の最上部の前記中間酸窒化層上に前記主金属窒化膜層を形成し、前記中間酸窒化層形成工程で、前記下地サーミスタ層の表面を酸化させて前記中間酸窒化層を形成することを特徴とする。
 すなわち、このサーミスタの製造方法では、中間酸窒化層形成工程で、下地サーミスタ層の表面を酸化させて中間酸窒化層を形成するので、別途スパッタリングターゲット等を用意して中間酸窒化層用の成膜工程を設ける必要がなく、低コストで容易に金属酸窒化層の中間酸窒化層を得ることができる。
 第9の発明に係るサーミスタの製造方法は、第8の発明において、前記中間積層部形成工程で、前記下地サーミスタ層形成工程と前記中間酸窒化層形成工程との二工程をこの順で複数回繰り返すことを特徴とする。
 すなわち、このサーミスタの製造方法では、中間積層部形成工程で、下地サーミスタ層形成工程と中間酸窒化層形成工程との二工程をこの順で複数回繰り返すので、複数の下地サーミスタ層と中間酸窒化層とを積層することができ、よりバリア層の効果が高いサーミスタを作製することができる。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係るサーミスタによれば、中間酸窒化層が、直下の下地サーミスタ層のサーミスタ材料が酸化されて形成された金属酸窒化層であるので、中間酸窒化層の酸素以外の構成元素が下地サーミスタ層と同じであり、酸素以外の共通元素からなる良質な主金属窒化膜層を成膜できると共に、金属酸窒化層の中間酸窒化層が下地サーミスタ層中の水分,欠陥又は不純物等の影響を抑制するバリア層としても機能し、耐熱試験後でも抵抗値変化の少ない主金属窒化膜層を得ることができる。
 したがって、耐熱試験を行った際に、下地サーミスタ層中の水分,欠陥又は不純物等の主金属窒化膜層への影響が中間酸窒化層によって抑制されて、主金属窒化膜層を直接基材上に成膜した場合に比べて、耐熱試験前後の抵抗値変化をより抑制することができる。
 また、本発明に係るサーミスタの製造方法によれば、中間酸窒化層形成工程が、下地サーミスタ層の表面を酸化させて中間酸窒化層を形成するので、別途スパッタリングターゲット等を用意して中間酸窒化層用の成膜工程を設ける必要がなく、低コストで容易に金属酸窒化層の中間酸窒化層を得ることができる。
 さらに、本発明に係るサーミスタセンサによれば、上記本発明のサーミスタを備えているので、耐熱試験後でも抵抗値変化が小さい良好なサーミスタ特性を有したサーミスタセンサが得られる。
本発明に係るサーミスタ及びその製造方法並びにサーミスタセンサの第1実施形態において、サーミスタを示す断面図である。 本実施形態及び本発明に係る実施例において、サーミスタセンサ及び膜評価用素子を示す正面図及び平面図である。 本発明に係るサーミスタ及びその製造方法並びにサーミスタセンサの実施例及び比較例において、250℃耐熱試験後の25℃抵抗値変化率を示すグラフである。 本発明に係る実施例において、サーミスタを示す断面TEM像である。 本発明に係る実施例において、サーミスタを示す断面のHAADF像と、酸素、窒素、Al、TiのTEM−EDS像である。 本発明に係るサーミスタ及びその製造方法並びにサーミスタセンサの第2実施形態において、サーミスタを示す断面図である。
 以下、本発明に係るサーミスタ及びその製造方法並びにサーミスタセンサにおける第1実施形態を、図1及び図2を参照しながら説明する。なお、以下の説明に用いる図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
 本実施形態のサーミスタ1は、図1に示すように、基材2上に形成されたサーミスタであって、基材2上に形成された中間積層部7と、中間積層部7上に金属窒化物のサーミスタ材料で形成された主金属窒化膜層4とを備えている。
 上記中間積層部7は、金属窒化物のサーミスタ材料で形成された下地サーミスタ層3と、下地サーミスタ層3上に形成された中間酸窒化層3aとの二層を一対積層させて構成されている。
 上記主金属窒化膜層4は、中間酸窒化層3a上に形成され、中間酸窒化層3aは、直下の下地サーミスタ層3のサーミスタ材料が酸化されて形成された金属酸窒化層である。
 上記下地サーミスタ層3及び主金属窒化膜層4は、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)である。
 上記主金属窒化膜層4の結晶構造は、六方晶系のウルツ鉱型の単相である。
 また、中間酸窒化層3aは、直下の下地サーミスタ層3のサーミスタ材料が酸化されて形成された金属酸窒化層である。すなわち、中間酸窒化層3aは、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)の酸化層である。なお、本実施形態では、直下の下地サーミスタ層3の表面を酸化させることで、中間酸窒化層3aを形成している。すなわち、本実施形態の下地サーミスタ層3は、中間酸窒化層3aを形成するための初期成膜層である。
 上記下地サーミスタ層3の膜厚は、6~10nmが好ましい。
 上記中間酸窒化層3aの膜厚は、約1nmである。
 上記主金属窒化膜層4の膜厚は、例えば90nmである。
 本実施形態では、下地サーミスタ層3及び主金属窒化膜層4が、一般式:M(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物、一般式:M’Al(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。0.65≦y/(x+y)≦0.98、0.35≦z≦0.5、x+y+z=1)で示される金属窒化物、又は一般式:(G1−wA’Al(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。0.0<w<1.0、0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなる。
 なお、下地サーミスタ層3は、導電性を有し、サーミスタ特性を示す。
 また、主金属窒化膜層4の結晶構造は、上述したように六方晶系のウルツ鉱型(空間群P6mc(No.186))の単相であり、サーミスタ特性を有する膜である。なお、Aは、Al又は(Al及びSi)、すなわちAlか、Al及びSiであって、少なくともAlを含む。
 なお、主金属窒化膜層4は、基板面に垂直な方向(膜厚方向)にc軸配向度が大きい結晶配向をもつ。結晶相の同定は、視斜角入射X線回折(Grazing Incidence X−ray Diffraction)により実施し、管球をCuとし、入射角を1度とする。なお、膜の表面に対して垂直方向(膜厚方向)にa軸配向(100)が強いかc軸配向(002)が強いかの判断は、上記X線回折(XRD)を用いて結晶軸の配向性を調べ、(100)(a軸配向を示すhkl指数)と(002)(c軸配向を示すhkl指数)とのピーク強度比から、「(100)のピーク強度」/「(002)のピーク強度」が1未満である場合、c軸配向が強いものとする。TEM(透過型電子顕微鏡)を用いる場合は、膜断面の電子線回折像を取得することで、主金属窒化膜層4の膜厚方向にc軸配向度が高いことが確認される。
 また、主金属窒化膜層4は、緻密な柱状結晶化膜である。これは、断面SEMや断面TEMの結晶形態の評価によって確認することができる。
 下地サーミスタ層3及び主金属窒化膜層4は、同じ組成であることが好ましい。
 本実施形態では、例えば下地サーミスタ層3及び主金属窒化膜層4が前記M−A−Nであり、前記M−A−Nにおける前記Mの元素がTiであり、前記Aの元素がAlである。特に、下地サーミスタ層3及び主金属窒化膜層4は、一般式:TiAl(0.70≦y/(x+y)≦0.95、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物からなる。
 なお、主金属窒化膜層4である結晶性の上記Mについては、上記「y/(x+y)」(すなわち、A/(M+A))が0.70未満であると、ウルツ鉱型の単相が得られず、NaCl型相との共存相又はNaCl型のみの結晶相となってしまい、十分な高抵抗と高B定数とが得られない。
 また、上記「y/(x+y)」(すなわち、A/(M+A))が0.98を超えると、抵抗率が非常に高く、きわめて高い絶縁性を示すため、サーミスタ材料として適用できない。
 また、上記「z」(すなわち、N/(M+A+N))が0.4未満であると、金属の窒化量が少ないため、ウルツ鉱型の単相が得られず、十分な高抵抗と高B定数とが得られない。
 さらに、上記「z」(すなわち、N/(M+A+N))が0.5を超えると、ウルツ鉱型の単相を得ることができない。このことは、ウルツ鉱型の単相において、窒素サイトにおける欠陥がない場合の化学量論比が0.5(すなわち、N/(M+A+N)=0.5)であることに起因する。
 なお、結晶相の同定は、視斜角入射X線回折(Grazing Incidence X−ray Diffraction)により、実施し、管球をCuとし、入射角を1度とした。
 上述したようにウルツ鉱型の結晶構造は、六方晶系の空間群P6mc(No.186)であり、MとAとは同じ原子サイトに属し(MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、いわゆる固溶状態にある。ウルツ鉱型は、(M,A)N4四面体の頂点連結構造をとり、(M,A)サイトの最近接サイトがN(窒素)であり、(M,A)は窒素4配位をとる。
 なお、Ti以外に、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)が同様に上記結晶構造においてTiと同じ原子サイトに存在することができ、Mの元素となり得る。有効イオン半径は、原子間の距離を把握することによく使われる物性値であり、特によく知られているShannonのイオン半径の文献値を用いると、論理的にもウルツ鉱型のM(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)が得られると推測できる。
 以下の表1にAl,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Siの各イオン種における有効イオン半径を示す(参照論文R.D.Shannon,Acta Crystallogr.,Sect.A,32,751(1976))。
Figure JPOXMLDOC01-appb-T000001
 ウルツ鉱型は4配位であり、Mに関して4配位の有効イオン半径を見ると、2価の場合、Ni<Cu<Co<Fe<Mnであり、3価の場合、Al<Feであり、4価の場合、Mn<Co<Cr<Tiであり、5価の場合、Cr<Vとなっている。これらの結果より、(Al,Cu,Co,Fe,Ni,Mn)<Cr<(V,Ti)であると考えられる。(Ti及びV、もしくは、Cu,Co,Fe,Ni,Mn及びAlのイオン半径の大小関係は判別できない。)ただし、4配位のデータは価数がそれぞれ異なっているので、厳密な比較とはならないため、参考で3価イオンに固定したときの6配位(MN6八面体)のデータを用いて比較した。表1中のHSは高スピン状態、LSは低スピン状態を示す。低スピン状態(LS)のとき、イオン半径が、Al<Cu<Co<Fe<Ni<Mn<Cr<V<Tiとなっていることがわかる。(高スピン状態のとき、Mn,Fe,Co,Niのイオン半径は、Alのイオン半径より大きく、Tiのイオン半径より小さい。)
 本発明は、ウルツ鉱型の結晶構造をもつ窒化物絶縁体である結晶性Al−NのAlサイトをTi等のMに置き換えることにより、キャリアドーピングし、電気伝導が増加することで、サーミスタ特性が得られるものであるが、例えばAlサイトをTiに置き換えた場合は、AlよりTiの方が有効イオン半径が大きいので、その結果、AlとTiとの平均イオン半径は増加する。その結果、原子間距離が増加し、格子定数が増加すると推測できる。
 実際に、特許文献2~7にて、ウルツ鉱型のM(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)が得られ、サーミスタ特性が得られている。また、結晶性Al−NのAlサイトをTi等に置き換えることによる格子定数の増加が、X線データより確認されていることが報告されている。なお、Siについては、表1より、Si及びAlのイオン半径の大小関係は判別できないが、特許文献5にて、AlとSiの双方を含むMにて、ウルツ鉱型の結晶構造をもち、さらに、サーミスタ特性が得られていることが報告されている。
 また、主金属窒化膜層4である結晶性の上記M’Alについては、上記「y/(x+y)」(すなわち、Al/(M’+Al))が0.65未満であると、ウルツ鉱型の単相が得られず、一部のM’元素においては、NaCl型相との共存相又はNaCl型のみの結晶相となってしまい、十分な高抵抗と高B定数とが得られない。
 また、上記「y/(x+y)」(すなわち、Al/(M’+Al))が0.98を超えると、抵抗率が非常に高く、きわめて高い絶縁性を示すため、サーミスタ材料として適用できない。
 また、上記「z」(すなわち、N/(M’+Al+N))が0.35未満であると、金属の窒化量が少ないため、ウルツ鉱型の単相が得られず、十分な高抵抗と高B定数とが得られない。
 また、上記「z」(すなわち、N/(M’+Al+N))が0.5を超えると、ウルツ鉱型の単相を得ることができない。このことは、ウルツ鉱型の単相において、窒素サイトにおける欠陥がない場合の化学量論比が0.5(すなわち、N/(M’+Al+N)=0.5)であることに起因する。
 なお、実際に、特許文献8にて、ウルツ鉱型のM’Al(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。0.65≦y/(x+y)≦0.98、0.35≦z≦0.5、x+y+z=1)で示される金属窒化物では、非焼成で良好なB定数のサーミスタ特性が得られている。
 さらに、主金属窒化膜層4である結晶性の上記(G1−wA’Alについては、上記「y/(x+y)」(すなわち、Al/(G+A’+Al))が0.70未満であると、ウルツ鉱型の単相が得られず、NaCl型相との共存相又はNaCl型のみの結晶相となってしまい、十分な高抵抗と高B定数とが得られない。
 また、上記「y/(x+y)」(すなわち、Al/(G+A’+Al))が0.98を超えると、抵抗率が非常に高く、きわめて高い絶縁性を示すため、サーミスタ材料として適用できない。
 また、上記「z」(すなわち、N/(G+A’+Al+N))が0.4未満であると、金属の窒化量が少ないため、ウルツ鉱型の単相が得られず、十分な高抵抗と高B定数とが得られない。
 さらに、上記「z」(すなわち、N/(G+A’+Al+N))が0.5を超えると、ウルツ鉱型の単相を得ることができない。このことは、ウルツ鉱型の単相において、窒素サイトにおける欠陥がない場合の化学量論比が0.5(すなわち、N/(G+A’+Al+N)=0.5)であることに起因する。
 なお、実際に、特許文献9にて、ウルツ鉱型の(G1−wA’Al(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。0.0<w<1.0、0.70≦y/(x+y)≦0.98、0.4≦z≦0.5、x+y+z=1)で示される金属窒化物では、非焼成で良好なB定数のサーミスタ特性が得られている。
 上記基材2は、ポリイミド等の絶縁性フィルムが採用される。なお、絶縁性フィルムとしては、他にPET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも作製できるが、柔軟性と耐熱性とが要求される。例えば定着ローラの温度測定用としては、最高使用温度が200℃程度と高く、高温での使用が可能な、耐熱性に優れたポリイミドフィルムが望ましい。なお、近年、200℃以上の温度でも使用可能な耐熱性が極めて優れたポリイミドフィルムが開発されている。
 次に、本実施形態のサーミスタを用いたサーミスタセンサについて説明する。このサーミスタセンサ10は、図2に示すように、サーミスタ1の基材2,中間積層部7(下地サーミスタ層3,中間酸窒化層3a)及び主金属窒化膜層4と、主金属窒化膜層4の上に互いに対向して形成された一対の対向電極5とを備えている。
 上記一対の対向電極5は、例えばCr膜とAu膜との積層金属膜でパターン形成され、主金属窒化膜層4上で互いに対向状態とされていると共に、複数の櫛部5aを有した櫛形パターンとされている。
 上記サーミスタ1の製造方法及びこれを用いたサーミスタセンサ10の製造方法について、以下に説明する。
 本実施形態のサーミスタ1の製造方法は、基材2上に中間積層部7を形成する中間積層部形成工程と、中間積層部7上に金属窒化物のサーミスタ材料で主金属窒化膜層4を形成する主金属窒化膜層形成工程とを有している。
 上記中間積層部形成工程は、金属窒化物のサーミスタ材料で下地サーミスタ層3を形成する下地サーミスタ層形成工程と、下地サーミスタ層3上に中間酸窒化層3aを形成する中間酸窒化層形成工程との二工程で構成されている。
 上記主金属窒化膜層形成工程では、中間酸窒化層3a上に主金属窒化膜層を形成し、上記中間酸窒化層形成工程では、下地サーミスタ層3の表面を酸化させて中間酸窒化層3aを形成する。
 中間積層部7となる下地サーミスタ層3及び主金属窒化膜層4を成膜するには、例えば窒素含有雰囲気中の反応性スパッタ法にてサーミスタ特性を有する金属窒化膜を成膜する。このときの膜厚は、例えば、表面を酸化させる前の下地サーミスタ層3及び主金属窒化膜層4の合計の膜厚を100nmとする。
 例えば、M=Ti,A=Alとした場合、その時のスパッタ条件は、例えば、組成比Al/(Al+Ti)比=0.85のTi−Al合金スパッタリングターゲットを用い、到達真空度:4×10−5Pa、スパッタガス圧:0.2Pa、ターゲット投入電力(出力):200Wで、Arガス+窒素ガスの混合ガス雰囲気下において窒素ガス分圧:30%とする。
 上記下地サーミスタ層形成工程では、下地サーミスタ層3を例えば膜厚10nmで成膜し、中間酸窒化層形成工程では、例えば室温の大気中で5分間の自然酸化処理を行って下地サーミスタ層3の表面を酸化させ、約1nm厚の中間酸窒化層3aを形成する。この中間酸窒化層3aは、金属窒化物からなる下地サーミスタ層3の表面が酸化されて形成されたものであるので、金属酸窒化層である。
 酸化処理の方法としては、大気中で150℃等の熱処理を用いてもよい。
 その後、主金属窒化膜層形成工程で、再び下地サーミスタ層形成工程と同様のスパッタ条件で膜厚90nmの主金属窒化膜層4を形成する。
 また、本実施形態のサーミスタセンサ10を製造する場合、主金属窒化膜層4上にスパッタ法にて、例えばCr膜を20nm形成し、さらにAu膜を200nm形成する。さらに、その上にレジスト液をバーコーターで塗布した後、110℃で1分30秒のプリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃で5分のポストベークにてパターニングを行う。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントによりウェットエッチングを行い、図2に示すように、レジスト剥離にて所望の櫛部5aを有した対向電極5を形成する。このようにして本実施形態のサーミスタセンサ10が作製される。
 このように本実施形態のサーミスタ1では、中間酸窒化層3aが、直下の下地サーミスタ層3のサーミスタ材料が酸化されて形成された金属酸窒化層であるので、中間酸窒化層3aの酸素以外の構成元素が下地サーミスタ層3と同じであり、酸素以外の共通元素からなる良質な主金属窒化膜層4を成膜できると共に、金属酸窒化層の中間酸窒化層3aが下地サーミスタ層3中の水分,欠陥又は不純物等の影響を抑制するバリア層としても機能し、耐熱試験後でも抵抗値変化の少ない主金属窒化膜層4を得ることができる。
 したがって、耐熱試験を行った際に、下地サーミスタ層3中の水分,欠陥又は不純物等の主金属窒化膜層への影響が中間酸窒化層3aによって抑制されて、主金属窒化膜層4を直接基材2上に成膜した場合に比べて抵抗値変化をより抑制することができる。
 また、下地サーミスタ層3及び主金属窒化膜層4を同じ組成とすることで、結晶性が高い、信頼性の高い主金属窒化膜層を形成することが可能となる。組成比A/(M+A)比を同じにすることで、両者の格子定数が同じとなり、両層間の内部応力差が極めて小さくなることから熱膨張差が極めて小さくなり、より高い信頼性を得ることができる。
 さらに、下地サーミスタ層3及び主金属窒化膜層4が、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)であり、主金属窒化膜層の結晶構造が、六方晶系のウルツ鉱型の単相であるので、高B定数の膜を得ることができる。
 さらに、基材2が、ポリイミド等の有機基材である絶縁性フィルムであっても、良好な主金属窒化膜層4を得ることができる。また、基材2を絶縁性フィルムとすることで、柔軟性を有する上記下地サーミスタ層3,中間酸窒化層3a及び主金属窒化膜層4を成膜することで、全体として柔軟性を有することができ、曲げた状態で設置等が可能なフレシキブルサーミスタとして使用することが可能になる。
 200℃以上の温度でも使用可能な耐熱性が極めて優れたポリイミドフィルムを採用することで、200℃以上でも使用可能なフレシキブルサーミスタセンサを得ることができる。
 本実施形態のサーミスタセンサ10では、上記サーミスタ1を備えているので、耐熱試験後でも抵抗値変化が小さく高B定数で良好なサーミスタ特性を有したサーミスタセンサが得られる。
 また、本実施形態のサーミスタの製造方法では、中間酸窒化層形成工程が、下地サーミスタ層3の表面を酸化させて中間酸窒化層3aを形成するので、別途スパッタリングターゲット等を用意して中間酸窒化層用の成膜工程を設ける必要がなく、低コストで容易に金属酸窒化層の中間酸窒化層3aを得ることができる。
 また、下地サーミスタ層3の表面酸化温度が200℃以下でよいので、基材2を、ポリイミド等の有機基材である絶縁性フィルムを使用することが可能となる。
 次に、本発明に係るサーミスタ及びその製造方法の第2実施形態について、図6を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。
 第2実施形態と第1実施形態との異なる点は、第1実施形態では、下地サーミスタ層3と中間酸窒化層3aとがそれぞれ一層ずつ積層されて中間積層部7が構成されているのに対し、第2実施形態のサーミスタ21及びその製造方法では、図6に示すように、中間積層部27が、下地サーミスタ層3と中間酸窒化層3aとの二層をこの順で基材2上に複数繰り返して積層して構成されている点である。
 すなわち、第2実施形態では、主金属窒化膜層4が中間積層部27の最上部の中間酸窒化層3a上に形成される。
 第2実施形態では、中間積層部形成工程が、下地サーミスタ層形成工程と、中間酸窒化層形成工程との二工程を複数回繰り返して構成されている。
 例えば図6に示すように、下地サーミスタ層3と中間酸窒化層3aとの二層を2回繰り返して積層することで、中間積層部27が形成されている。すなわち、中間積層部27は、基材2上に下地サーミスタ層3,中間酸窒化層3a,下地サーミスタ層3,中間酸窒化層3aの順で積層された4層構造を有している。
 なお、下地サーミスタ層3と中間酸窒化層3aとの二層を3回以上繰り返して積層することで、中間積層部を構成しても構わない。この場合、中間積層部27は、基材2上に交互に積層された3つの下地サーミスタ層3と3つの中間酸窒化層3aとからなる6層構造を有している。
 このように第2実施形態のサーミスタ21及びその製造方法では、中間積層部27が、下地サーミスタ層3と中間酸窒化層3aとの二層をこの順で基材2上に複数繰り返して積層して構成されているので、バリア層としての効果をより向上させることができる。
 次に本発明に係るサーミスタ及びその製造方法並びにサーミスタセンサについて、上記実施形態に基づいて作製した実施例により評価した結果を、図2から図5を参照して具体的に説明する。
<膜評価用素子の作製>
 本発明の実施例及び比較例として、図2に示すサーミスタセンサを膜評価用素子として次のように作製した。
 まず、本発明の実施例として、反応性スパッタ法にて、組成比Al/(Ti+Al)=0.85としたTi−Al合金ターゲットを用いて、ポリイミド基板の基材2上にTi−Al−N膜(Al0.85Ti0.15N)の下地サーミスタ層3を膜厚6nm又は10nm形成し、次に、下地サーミスタ層3の表面を、大気中に5分間、自然酸化させて金属酸窒化層からなる中間酸窒化層3aを形成した。この際の酸化温度は、室温,150℃,200℃のいずれかとした。なお、酸化温度150℃,200℃の場合は、時間を30分間とした。
 さらにこの上に、反応性スパッタ法にて、組成比Al/(Ti+Al)=0.85としたTi−Al合金ターゲットを用いて、サーミスタ特性を有する結晶性Ti−Al−N膜(Al0.85Ti0.15Nの主金属窒化膜層4)を膜厚94nm又は90nm形成した。酸化させる前の下地サーミスタ層3を膜厚6nmとした場合は、主金属窒化膜層4を94nmとし、酸化させる前の下地サーミスタ層3を膜厚10nmとした場合は、主金属窒化膜層4を90nmとし、酸化させる前の下地サーミスタ層3と主金属窒化膜層4の合計の膜厚が100nmとなるように成膜した。
 次に、上記主金属窒化膜層4の上に、上述した条件で対向電極5を形成し、本発明の実施例の膜評価用素子とした。
 なお、比較例として、反応性スパッタ法にて、組成比Al/(Ti+Al)=0.85としたTi−Al合金ターゲットを用いて、ポリイミド基板の基材2上にTi−Al−Nの金属窒化膜を膜厚100nm形成したものも、同様に作製した。なお、比較例の膜は、金属酸窒化層からなる中間酸窒化層を有しない。
<比抵抗測定>
 上記比較例及び本発明の各実施例について、4端子法(van der pauw法)にて25℃での比抵抗を測定した。その結果を表2に示す。表2では、中間酸窒化層を酸窒化層と記載している。
Figure JPOXMLDOC01-appb-T000002
<B定数測定>
 各膜評価用素子の25℃及び50℃の抵抗値を恒温槽内で測定し、25℃と50℃との抵抗値よりB定数を算出した。その結果も表2に示す。また、25℃と50℃との抵抗値より負の温度特性をもつサーミスタであることを確認している。
 なお、本発明におけるB定数算出方法は、上述したように25℃と50℃とのそれぞれの抵抗値から以下の式によって求めている。
 B定数(K)=In(R25/R50)/(1/T25−1/T50)
 R25(Ω):25℃における抵抗値
 R50(Ω):50℃における抵抗値
 T25(K):298.15K 25℃を絶対温度表示
 T50(K):323.15K 50℃を絶対温度表示
 また、上記各実施例及び比較例において、250℃で1000hの耐熱試験を行った後に25℃での抵抗値上昇率及びB定数変化率を調べた。その結果を表2及び図3に示す。
 なお、図3の「比較例100nm」,「実施例6nm/酸窒化層/94nm」,「実施例10nm/酸窒化層/90nm」は、表2の「比較例1」,「実施例1」,「実施例4」である。
 これらの結果からわかるように、本発明の実施例及び比較例は、いずれも高い抵抗率及びB定数が得られているが、本発明の実施例は、いずれも比較例に比べて耐熱試験後の25℃抵抗値の上昇率が低く抑えられている。
 TEM(透過型電子顕微鏡)を用いた実施例の断面TEM像(明視野像)を図4に示す。
 また、本発明の実施例について、HAADF(high−angle annular dark field)像、酸素、窒素、Al、TiのTEM−EDS像を図5に示す。
 なお、これらの実施例は、組成比Al/(Ti+Al)=0.85とした下地サーミスタ層(膜厚10nm)及び主金属窒化膜層(膜厚90nm)を採用している。
 また、図5では、中間酸窒化層を酸窒化層と記載している。
 上記断面TEM像からわかるように、良好な柱状結晶の主金属窒化膜層が得られている。
 また、酸素のTEM−EDS像では、中間酸窒化層(酸窒化層)で酸素が多く検出されていることがわかる。窒素のTEM−EDS像で、酸素を有する中間酸窒化層においても窒素が検出されていることから、この中間酸窒化層は酸窒化層であることがわかる。この中間酸窒化層は、下地サーミスタ層(Ti−Al−N)の表面が酸化されて形成された金属酸窒化層であることを示す。この中間酸窒化層の膜厚は約1nmである。
 主金属窒化膜層はこの中間酸窒化層の上に成膜される。主金属窒化膜層の成膜開始直後のTi−Al−Nの初期結晶成長時より、結晶性Ti−Al−Nは窒素欠陥量が極めて少ない柱状結晶化膜が得られ、高い結晶性が得られると共に結晶配向度が高くなったウルツ鉱型結晶構造を有して、高いB定数が得られる。
 なお、ポリイミドの基材と下地サーミスタ層(Ti−Al−N)との界面近傍で検出された酸素は、成膜前に大気中でポリイミドの基材表面が酸化された影響などに起因するものと考えられる。
 次に、第2実施形態の実施例として、下地サーミスタ層と中間酸窒化層との二層をこの順でポリイミドの基材上に2回繰り返して積層して中間積層部が構成されているサーミスタ(実施例8)と、下地サーミスタ層と中間酸窒化層との二層をこの順で基材上に3回繰り返して積層して中間積層部が構成されているサーミスタ(実施例9,10)とを作製して、上記と同様に評価した。なお、第1実施形態の実施例として、下地サーミスタ層と中間酸窒化層との二層をこの順で基材上に1回積層して中間積層部が構成されているサーミスタ(実施例7)についても、同様に評価した。
 上記実施例7~10の下地サーミスタ層及び主金属窒化膜層は、いずれも組成比Al/(Ti+Al)=0.85とした。
 なお、実施例7では、基材上に膜厚6nmの下地サーミスタ層とその表面を自然酸化させた中間酸窒化層(酸窒化層)とを形成し、その上に主金属窒化膜層4を94nm形成した。また、実施例8では、基材上に膜厚6nmの下地サーミスタ層とその表面を自然酸化させた中間酸窒化層(酸窒化層)とを積層した後、さらにその上に膜厚6nmの下地サーミスタ層と自然酸化の中間酸窒化層(酸窒化層)とを積層した後、その上に主金属窒化膜層を膜厚88nm形成した。また、実施例9では、基材上に膜厚6nmの下地サーミスタ層とその表面を自然酸化させた中間酸窒化層(酸窒化層)とを形成し、さらにその上に膜厚3nmの下地サーミスタ層と自然酸化の中間酸窒化層(酸窒化層)とを2回繰り返して積層した後、その上に主金属窒化膜層を膜厚88nm形成した。さらに、実施例10では、基材上に膜厚6nmの下地サーミスタ層とその表面を自然酸化させた中間酸窒化層(酸窒化層)とを形成し、さらにその上に膜厚6nmの下地サーミスタ層と自然酸化の中間酸窒化層(酸窒化層)とを2回繰り返して積層した後、その上に主金属窒化膜層を膜厚82nm形成した。
 いずれも酸化する前の下地サーミスタ層と主金属窒化膜層との合計の膜厚が100nmとなるように成膜した。また、上記自然酸化の温度は、室温とした。
 これらの結果を表3に示す。表3では、中間酸窒化層を酸窒化層と記載している。
 また、表2及び表3において、例えば実施例1及び実施例7の「Al0.85Ti0.15N 6nm/酸窒化層/Al0.85Ti0.15N 94nm」の表記は、Ti−Al−N膜(Al0.85Ti0.15N)の下地サーミスタ層3を膜厚6nm形成し、その表面を酸化させて金属酸窒化物からなる中間酸窒化層3aを形成し、さらにその上にTi−Al−N膜(Al0.85Ti0.15N)の主金属窒化膜層4を膜厚94nm形成していることを示している。つまり、下地サーミスタ層3と中間酸窒化層3aとの合計膜厚が約6nmであることを示している。
Figure JPOXMLDOC01-appb-T000003
 これらの結果からわかるように、本発明の実施例7~10は、いずれも高い抵抗率及びB定数が得られている。特に、下地サーミスタ層と中間酸窒化層との二層をこの順で基材上に2回又は3回繰り返して積層して中間積層部が構成されているサーミスタ(実施例8,9,10)は、下地サーミスタ層と中間酸窒化層との二層をこの順で基材上に1回積層して中間積層部が構成されているサーミスタ(実施例7)に比べて、耐熱試験後の25℃抵抗値の上昇率がより低く抑えられている。
 次に、下地サーミスタ層及び主金属窒化膜層の組成比Al/(Ti+Al)=0.80又は0.75として作製した実施例についても、同様に評価を行った。
 組成比Al/(Ti+Al)=0.80については、中間積層部のない比較例3(Al0.80Ti0.20N(100nm))と、中間積層部を有する実施例11(Al0.80Ti0.20N(6nm)/中間酸窒化層/Al0.80Ti0.20N(94nm))、実施例12(Al0.80Ti0.20N(10nm)/中間酸窒化層/Al0.80Ti0.20N(90nm)を評価した。なお、酸化温度は、室温とした。
 この結果、25℃抵抗値の初期特性は、比較例3,実施例11,実施例12は、それぞれ224kΩ,242kΩ,241kΩであり、B定数は、それぞれ2583K,2580K,2586Kであった。
 また、250℃1000h耐熱試験後の変化率を評価した結果、25℃での抵抗値上昇率は、比較例3に比べて、実施例11,12は、それぞれ2.6%,2.6%低減し、B定数の絶対値の変化率は、比較例3に比べて、実施例11,12は、それぞれ0.5%,0.6%低減し、耐熱試験前後のサーミスタ特性の変化がより小さく抑えられていた。
 組成比Al/(Ti+Al)=0.75については、中間積層部のない比較例4(Al0.75Ti0.25N(100nm))と、中間積層部を有する実施例13(Al0.75Ti0.25N(6nm)/中間酸窒化層/Al0.75Ti0.25N(94nm)),実施例14(Al0.75Ti0.25N(10nm)/中間酸窒化層/Al0.75Ti0.25N(90nm))を評価した。なお、酸化温度は、室温とした。
 この結果、25℃抵抗値の初期特性は、比較例4,実施例13,実施例14は、それぞれ9kΩ,8kΩ,7kΩであり、B定数は、それぞれ2029K,2024K,2020Kであった。
 また、250℃1000h耐熱試験後の変化率を評価した結果、25℃での抵抗値上昇率は、比較例4に比べて、実施例13,14は、それぞれ1.6%,2.6%低減し、B定数の絶対値の変化率は、比較例4に比べて、実施例13,14は、それぞれ0.7%,0.5%低減し、耐熱試験前後のサーミスタ特性の変化がより小さく抑えられていた。
 なお、本発明の技術範囲は上記各実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上述したように、下地サーミスタ層と主金属窒化膜層とが同じ組成であることが好ましいが、下地サーミスタ層と主金属窒化膜層とが、互いに構成元素が同じであるが異なる組成の膜であっても構わない。
 また、下地サーミスタ層を複数設けた場合、複数の下地サーミスタ層のうち、少なくとも一層が他の層と異なる組成であっても構わない。
 さらに、中間酸窒化層をスパッタで成膜しても構わない。すなわち、下地サーミスタ層上に中間酸窒化層を成膜する際に、酸素ガスと窒素ガスとを含む混合ガス雰囲気下においてスパッタで成膜することで、中間酸窒化膜を形成しても構わない。
 1,21…サーミスタ、2…基材、3…下地サーミスタ層、3a…中間酸窒化層、4…主金属窒化膜層、7,27…中間積層部、10…サーミスタセンサ

Claims (9)

  1.  基材上に形成されたサーミスタであって、
     前記基材上に形成された中間積層部と、
     前記中間積層部上に金属窒化物のサーミスタ材料で形成された主金属窒化膜層とを備え、
     前記中間積層部が、金属窒化物のサーミスタ材料で形成された下地サーミスタ層と、
     前記下地サーミスタ層上に形成された中間酸窒化層との二層を一対又は複数対積層させて構成され、
     前記主金属窒化膜層が、前記中間積層部の最上部の前記中間酸窒化層上に形成され、
     前記中間酸窒化層が、直下の前記下地サーミスタ層のサーミスタ材料が酸化されて形成された金属酸窒化層であることを特徴とするサーミスタ。
  2.  請求項1に記載のサーミスタにおいて、
     前記下地サーミスタ層及び前記主金属窒化膜層が、同じ組成であることを特徴とするサーミスタ。
  3.  請求項1に記載のサーミスタにおいて、
     前記中間積層部が、前記下地サーミスタ層と前記中間酸窒化層との二層をこの順で前記基材上に複数繰り返して積層して構成されていることを特徴とするサーミスタ。
  4.  請求項1に記載のサーミスタにおいて、
     前記下地サーミスタ層及び前記主金属窒化膜層が、M−A−N(但し、MはTi,V,Cr,Mn,Fe,Co,Ni及びCuの少なくとも1種を示すと共に、AはAl又は(Al及びSi)を示す。)、M’−Al−N(但し、M’はZr,Nb,Mo,Hf,Ta及びWの少なくとも1種を示す。)、又はG−A’−Al−N(但し、GはTi,V,Cr,Mn,Fe及びCoの少なくとも1種を示すと共に、A’はSc,Zr,Mo,Nb及びWの少なくとも1種を示す。)であり、
     前記主金属窒化膜層の結晶構造が、六方晶系のウルツ鉱型の単相であることを特徴とするサーミスタ。
  5.  請求項4に記載のサーミスタにおいて、
     前記下地サーミスタ層及び前記主金属窒化膜層が前記M−A−Nであり、前記M−A−Nにおける前記Mの元素がTiであり、前記Aの元素がAlであることを特徴とするサーミスタ。
  6.  請求項1に記載のサーミスタにおいて、
     前記基材が、絶縁性フィルムであることを特徴とするサーミスタ。
  7.  請求項1に記載のサーミスタと、
     前記主金属窒化膜層上に互いに対向して形成された一対の対向電極とを備えていることを特徴とするサーミスタセンサ。
  8.  請求項1に記載のサーミスタの製造方法であって、
     基材上に中間積層部を形成する中間積層部形成工程と、
     前記中間積層部上に金属窒化物のサーミスタ材料で前記主金属窒化膜層を形成する主金属窒化膜層形成工程とを有し、
     前記中間積層部形成工程が、金属窒化物のサーミスタ材料で前記下地サーミスタ層を形成する下地サーミスタ層形成工程と、
     前記下地サーミスタ層上に中間酸窒化層を形成する中間酸窒化層形成工程との二工程を一回又は複数回繰り返して構成され、
     前記主金属窒化膜層形成工程で、前記中間積層部の最上部の前記中間酸窒化層上に前記主金属窒化膜層を形成し、
     前記中間酸窒化層形成工程で、前記下地サーミスタ層の表面を酸化させて前記中間酸窒化層を形成することを特徴とするサーミスタの製造方法。
  9.  請求項8に記載のサーミスタの製造方法において、
     前記中間積層部形成工程で、前記下地サーミスタ層形成工程と前記中間酸窒化層形成工程との二工程をこの順で複数回繰り返すことを特徴とするサーミスタの製造方法。
PCT/JP2018/047419 2017-12-25 2018-12-17 サーミスタ及びその製造方法並びにサーミスタセンサ WO2019131570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18897145.1A EP3734621A4 (en) 2017-12-25 2018-12-17 THERMISTANCE, ITS MANUFACTURING PROCESS AND THERMISTANCE SENSOR
US16/957,438 US11532410B2 (en) 2017-12-25 2018-12-17 Thermistor, method for manufacturing same, and thermistor sensor
CN201880076342.8A CN111418032A (zh) 2017-12-25 2018-12-17 热敏电阻及其制造方法和热敏电阻传感器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017247424 2017-12-25
JP2017-247424 2017-12-25
JP2018202680A JP7234573B2 (ja) 2017-12-25 2018-10-29 サーミスタ及びその製造方法並びにサーミスタセンサ
JP2018-202680 2018-10-29

Publications (1)

Publication Number Publication Date
WO2019131570A1 true WO2019131570A1 (ja) 2019-07-04

Family

ID=67067295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047419 WO2019131570A1 (ja) 2017-12-25 2018-12-17 サーミスタ及びその製造方法並びにサーミスタセンサ

Country Status (1)

Country Link
WO (1) WO2019131570A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319737A (ja) * 2003-04-16 2004-11-11 Osaka Prefecture サーミスタ用材料及びその製造方法
JP2013179161A (ja) 2012-02-28 2013-09-09 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014123646A (ja) 2012-12-21 2014-07-03 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014236204A (ja) 2013-06-05 2014-12-15 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015053356A (ja) * 2013-09-06 2015-03-19 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015065417A (ja) 2013-08-30 2015-04-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015065408A (ja) 2013-07-25 2015-04-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015073077A (ja) 2013-08-30 2015-04-16 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015073075A (ja) 2013-08-12 2015-04-16 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016136609A (ja) 2015-01-19 2016-07-28 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2017163127A (ja) * 2016-03-04 2017-09-14 三菱マテリアル株式会社 サーミスタ用金属窒化膜構造及びその製造方法並びにサーミスタセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319737A (ja) * 2003-04-16 2004-11-11 Osaka Prefecture サーミスタ用材料及びその製造方法
JP2013179161A (ja) 2012-02-28 2013-09-09 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014123646A (ja) 2012-12-21 2014-07-03 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014236204A (ja) 2013-06-05 2014-12-15 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015065408A (ja) 2013-07-25 2015-04-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015073075A (ja) 2013-08-12 2015-04-16 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015065417A (ja) 2013-08-30 2015-04-09 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015073077A (ja) 2013-08-30 2015-04-16 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015053356A (ja) * 2013-09-06 2015-03-19 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016136609A (ja) 2015-01-19 2016-07-28 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2017163127A (ja) * 2016-03-04 2017-09-14 三菱マテリアル株式会社 サーミスタ用金属窒化膜構造及びその製造方法並びにサーミスタセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734621A4 *

Similar Documents

Publication Publication Date Title
JP6354947B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015423B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2015012413A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311878B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097910A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
TW201529526A (zh) 熱敏電阻用金屬氮化物材料及其製造方法以及薄膜型熱敏電阻感測器
WO2014097949A1 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6769372B2 (ja) 温度センサ及びその製造方法
US10304597B2 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
TW201516161A (zh) 熱敏電阻用金屬氮化物材料及其製造方法以及薄膜型熱敏電阻感測器
WO2019131570A1 (ja) サーミスタ及びその製造方法並びにサーミスタセンサ
JP6769373B2 (ja) 温度センサ及びその製造方法
JP2019114779A (ja) サーミスタ及びその製造方法並びにサーミスタセンサ
JP2017163127A (ja) サーミスタ用金属窒化膜構造及びその製造方法並びにサーミスタセンサ
JP2019129186A (ja) サーミスタ及びその製造方法並びにサーミスタセンサ
JP6015425B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6944659B2 (ja) サーミスタセンサ及びその製造方法
JP2016134505A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2018160601A (ja) サーミスタ及びその製造方法並びにサーミスタセンサ
JP2016134504A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134490A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134491A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897145

Country of ref document: EP

Effective date: 20200727