JP2015053356A - サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ - Google Patents

サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ Download PDF

Info

Publication number
JP2015053356A
JP2015053356A JP2013184785A JP2013184785A JP2015053356A JP 2015053356 A JP2015053356 A JP 2015053356A JP 2013184785 A JP2013184785 A JP 2013184785A JP 2013184785 A JP2013184785 A JP 2013184785A JP 2015053356 A JP2015053356 A JP 2015053356A
Authority
JP
Japan
Prior art keywords
film
thermistor
metal nitride
nitride material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013184785A
Other languages
English (en)
Other versions
JP6115823B2 (ja
Inventor
田中 耕一
Koichi Tanaka
耕一 田中
利晃 藤田
Toshiaki Fujita
利晃 藤田
寛 田中
Hiroshi Tanaka
寛 田中
長友 憲昭
Kensho Nagatomo
憲昭 長友
正訓 高橋
Masakuni Takahashi
正訓 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013184785A priority Critical patent/JP6115823B2/ja
Publication of JP2015053356A publication Critical patent/JP2015053356A/ja
Application granted granted Critical
Publication of JP6115823B2 publication Critical patent/JP6115823B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

【課題】 フィルム等に直接成膜することができ、高い耐熱性を有して信頼性が高いサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサを提供すること。
【解決手段】 サーミスタに用いられる金属窒化物材料であって、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相である。このサーミスタ用金属窒化物材料の製造方法は、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着法により成膜する成膜工程を有している。
【選択図】図1

Description

本発明は、フィルム等に直接成膜可能なサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサに関する。
温度センサ等に使用されるサーミスタ材料は、高精度、高感度のために、高いB定数が求められている。従来、このようなサーミスタ材料には、Mn,Co,Fe等の遷移金属酸化物が一般的である(特許文献1〜3参照)。また、これらのサーミスタ材料では、安定なサーミスタ特性を得るために、550℃以上の焼成等の熱処理が必要である。
また、上記のような金属酸化物からなるサーミスタ材料の他に、例えば特許文献4では、一般式:M(但し、MはTa,Nb,Cr,Ti及びZrの少なくとも1種、AはAl,Si及びBの少なくとも1種を示す。0.1≦x≦0.8、0<y≦0.6、0.1≦z≦0.8、x+y+z=1)で示される窒化物からなるサーミスタ用材料が提案されている。また、この特許文献4では、Ta−Al−N系材料で、0.5≦x≦0.8、0.1≦y≦0.5、0.2≦z≦0.7、x+y+z=1としたものだけが実施例として記載されている。このTa−Al−N系材料では、上記元素を含む材料をターゲットとして用い、窒素ガス含有雰囲気中でスパッタリングを行って作製されている。また、必要に応じて、得られた薄膜を350〜600℃で熱処理を行っている。
また、サーミスタ材料とは異なる例として、例えば特許文献5では、一般式:Cr100−x−y(但し、MはTi、V、Nb、Ta、Ni、Zr、Hf、Si、Ge、C、O、P、Se、Te、Zn、Cu、Bi、Fe、Mo、W、As、Sn、Sb、Pb、B、Ga、In、Tl、Ru、Rh、Re、Os、Ir、Pt、Pd、Ag、Au、Co、Be、Mg、Ca、Sr、Ba、Mn、Alおよび希土類元素から選択される1種または2種以上の元素であり、結晶構造が主としてbcc構造または主としてbcc構造とA15型構造との混合組織である。0.0001≦x≦30、0≦y≦30、0.0001≦x+y≦50)で示される窒化物からなる歪センサ用抵抗膜材料が提案されている。この歪センサ用抵抗膜材料は、窒素量x、副成分元素M量yをともに30原子%以下の組成において、Cr− N基歪抵抗膜のセンサの抵抗変化から、歪や応力の計測ならびに変換に用いられる。また、このCr−N−M系材料では、上記元素を含む材料等のターゲットとして用い、上記副成分ガスを含む成膜雰囲気中で反応性スパッタリングを行って作製されている。また、必要に応じて、得られた薄膜を200〜1000℃で熱処理を行っている。
特開2000−068110号公報 特開2000−348903号公報 特開2006−324520号公報 特開2004−319737号公報 特開平10−270201号公報
上記従来の技術には、以下の課題が残されている。
近年、樹脂フィルム上にサーミスタ材料を形成したフィルム型サーミスタセンサの開発が検討されており、フィルムに直接成膜できるサーミスタ材料の開発が望まれている。すなわち、フィルムを用いることで、フレキシブルなサーミスタセンサが得られることが期待される。さらに、0.1mm程度の厚さを持つ非常に薄いサーミスタセンサの開発が望まれているが、従来はアルミナ等のセラミックスを用いた基板がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、フィルムを用いることで非常に薄いサーミスタセンサが得られることが期待される。
しかしながら、樹脂材料で構成されるフィルムは、一般的に耐熱温度が150℃以下と低く、比較的耐熱温度の高い材料として知られるポリイミドでも200℃程度の耐熱性しかないため、サーミスタ材料の形成工程において熱処理が加わる場合は、適用が困難であった。上記従来の酸化物サーミスタ材料では、所望のサーミスタ特性を実現するために550℃以上の焼成が必要であり、フィルムに直接成膜したフィルム型サーミスタセンサを実現できないという問題点があった。そのため、フィルム等に直接成膜できるサーミスタ材料の開発が望まれているが、上記特許文献4に記載のサーミスタ材料でも、所望のサーミスタ特性を得るために、必要に応じて、得られた薄膜を350〜600℃で熱処理する必要があった。また、このサーミスタ材料では、Ta−Al−N系材料の実施例において、B定数:500〜3000K程度の材料が得られているが、耐熱性に関する記述がなく、窒化物系材料の熱的信頼性が不明であった。
また、特許文献5のCr−N−M系材料は、B定数が500以下と小さい材料であり、また、200℃以上1000℃以下の熱処理を実施しないと、200℃以内の耐熱性が確保できないことから、フィルムに直接成膜したフィルム型サーミスタセンサが実現できないという問題点があった。そのため、フィルム等に直接成膜できるサーミスタ材料の開発が望まれている。
また、上記特許文献5に記載されているように、窒化物材料としてGaを用いることがある。しかし、Gaは融点が30℃程度と非常に低く、例えば、反応性スパッタリングによる成膜を試みる場合、スパッタリンングターゲットとしてGaを用いると、サーミスタ材料を成膜時にターゲットが溶けないような温度にて管理する必要が生じ、製造が大変難しい。
本発明は、前述の課題に鑑みてなされたもので、フィルム等に直接成膜することができ、高い耐熱性を有して信頼性が高いサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサを提供することを目的とする。
本発明者らは、窒化物材料の中でもGaN系に着目し、鋭意、研究を進めたところ、半導体であるGaNは、最適なサーミスタ特性(B定数:1000〜6000K程度)を得ることが難しいが、Gaサイトを、電気伝導を向上させる特定の金属元素で置換すると共に、特定の結晶構造とすることで、良好なB定数と耐熱性とが得られることを見出した。
したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
すなわち、第1の発明に係るサーミスタ用金属窒化物材料は、サーミスタに用いられる金属窒化物材料であって、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であることを特徴とする。
このサーミスタ用金属窒化物材料では、サーミスタに用いられる金属窒化物材料であって、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるので、良好なB定数が得られると共に高い耐熱性を有している。特に、酸素(O)が含まれることで、結晶内の窒素欠陥を酸素が埋める、もしくは、格子間酸素が導入される等の効果によって耐熱性がより向上する。
なお、上記「y/(x+y)」(すなわち、Ga/(Ti+Ga))が0.70未満であると、ウルツ鉱型の単相が得られず、NaCl型相との共存相又はNaCl型のみの結晶相となってしまい、十分な高抵抗と高B定数とが得られない。
また、上記「y/(x+y)」(すなわち、Ga/(Ti+Ga))が0.99を超えると、抵抗率が非常に高く、きわめて高い絶縁性を示すため、サーミスタ材料として適用できない。
また、上記「z」(すなわち、(N+O)/(Ti+Ga+N+O))が0.45未満であると、金属の窒化量が少ないため、ウルツ鉱型の単相が得られず、十分な高抵抗と高B定数とが得られない。
また、上記「z」(すなわち、(N+O)/(Ti+Ga+N+O))が0.55を超えると、ウルツ鉱型の単相を得ることができない。このことは、ウルツ鉱型の単相において窒素サイトにおける欠陥がない場合の化学量論比が、N/(Ti+Ga+N)=0.5であることと、窒素サイトにおける欠陥を酸素が全て補った場合の化学量論比が、(N+O)/(Ti+Ga+N+O)=0.5であることとに起因する。0.5を超えるz量については、格子間酸素が導入されたことと、XPS分析における軽元素(窒素、酸素)の定量精度とに起因するものである。
また、上記「w」(すなわち、O/(N+O))が0.85を超えると、ウルツ鉱型単相を得ることができない。このことは、w=1、かつ、y/(x+y)=0では、ルチル型TiO相であり、w=1、かつ、y/(x+y)=1ではコランダムGa相であることを考慮すると理解できる。
第2の発明に係るサーミスタ用金属窒化物材料は、第1の発明において、膜状に形成され、前記膜の表面に対して垂直方向に延在している柱状結晶であることを特徴とする。
すなわち、このサーミスタ用金属窒化物材料では、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高く、高い耐熱性が得られる。
第3の発明に係るフィルム型サーミスタセンサは、絶縁性フィルムと、該絶縁性フィルム上に第1又は第2の発明のサーミスタ用金属窒化物材料で形成された薄膜サーミスタ部と、少なくとも前記薄膜サーミスタ部の上又は下に形成された一対のパターン電極とを備えていることを特徴とする。
すなわち、このフィルム型サーミスタセンサでは、絶縁性フィルム上に第1又は第2の発明のサーミスタ用金属窒化物材料で薄膜サーミスタ部が形成されているので、比較的低温で成膜可能であって高B定数で耐熱性の高い薄膜サーミスタ部により、樹脂フィルム等の耐熱性の低い絶縁性フィルムを用いることができると共に、良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。
また、従来、アルミナ等のセラミックスを用いた基板がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、本発明においてはフィルムを用いることができるので、例えば、厚さ0.1mmの非常に薄いフィルム型サーミスタセンサを得ることができる。
第4の発明に係るサーミスタ用金属窒化物材料の製造方法は、第1又は第2の発明のサーミスタ用金属窒化物材料を製造する方法であって、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着法により成膜する成膜工程を有していることを特徴とする。
すなわち、このサーミスタ用金属窒化物材料の製造方法では、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着(RPD:Reactive Plasma Deposition)法により成膜する成膜工程を有しているので、上記TiGaNOからなる本発明のサーミスタ用金属窒化物材料を成膜することができる。特に、この製法では、200℃以下の比較的低温で成膜が可能になる。なお、この反応性プラズマ蒸着法を用いれば、Gaの形態は、粒状であっても、液状であっても、その形態に制限されることなく、成膜することが可能である。したがって、反応性プラズマ蒸着法は、反応性スパッタリングに比べて、Gaを含む窒化物材料の成膜に好適な方法である。
本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサーミスタ用金属窒化物材料によれば、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるので、良好なB定数が得られると共に高い耐熱性を有している。また、本発明に係るサーミスタ用金属窒化物材料の製造方法によれば、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着法により成膜するので、上記TiGaNOからなる本発明のサーミスタ用金属窒化物材料を成膜することができる。さらに、本発明に係るフィルム型サーミスタセンサによれば、絶縁性フィルム上に本発明のサーミスタ用金属窒化物材料で薄膜サーミスタ部が形成されているので、樹脂フィルム等の耐熱性の低い絶縁性フィルムを用いて良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。さらに、基板が、薄くすると非常に脆く壊れやすいセラミックスでなく、樹脂フィルムであることから、厚さ0.1mmの非常に薄いフィルム型サーミスタセンサが得られる。
本発明に係るサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサの一実施形態において、サーミスタ用金属窒化物材料の組成範囲を示すTi−Ga−(N+O)系3元系相図である。 本実施形態において、フィルム型サーミスタセンサを示す斜視図である。 本実施形態において、フィルム型サーミスタセンサの製造方法を工程順に示す斜視図である。 反応性プラズマ蒸着(RPD)装置の内部構成を示す簡易的な正面断面図である。 本発明に係るサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサの実施例において、サーミスタ用金属窒化物材料の膜評価用素子を示す正面図及び平面図である。 本発明に係る実施例及び比較例において、25℃抵抗率とB定数との関係を示すグラフである。 本発明に係る実施例及び比較例において、Ga/(Ti+Ga)比とB定数との関係を示すグラフである。 本発明に係る実施例において、N/(Ti+Ga+N)比とO/(N+O)比との関係を示すグラフである。 本発明に係る実施例において、Ga/(Ti+Ga)=0.91とした場合におけるX線回折(XRD)の結果を示すグラフである。 本発明に係る実施例の断面SEM写真である。
以下、本発明に係るサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサにおける一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる図面では、各部を認識可能又は認識容易な大きさとするために必要に応じて縮尺を適宜変更している。
本実施形態のサーミスタ用金属窒化物材料は、サーミスタに用いられる金属窒化物材料であって、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型(空間群P6mc(No.186))の単相である。
このサーミスタ用金属窒化物材料は、図1に示すように、Ti−Ga−(N+O)系3元系相図における点A,B,C,Dで囲まれる領域内の組成を有し、結晶相がウルツ鉱型である金属窒化物である。
なお、上記点A,B,C,Dの各組成比(x,y,z)(atm%)は、A(13.50,31.50,55.00),B(0.45,44.55,55.00),C(0.45,54.45,45.00),D(16.50,38.50,45.00)である。
上述したように、ウルツ鉱型の結晶構造は、六方晶系の空間群P6mc(No.186)であり、TiとGaとは同じ原子サイトに属し、いわゆる固溶状態にある(例えば、Ti0.1Ga0.9Nの場合、同じ原子サイトにTiとGaとが10%,90%の確率で存在している。)。ウルツ鉱型は、(Ti,Ga)(N,O)4四面体の頂点連結構造をとり、(Ti、Ga)サイトの最近接サイトがN(窒素)又はO(酸素)であり、(Ti、Ga)は窒素又は酸素の4配位をとる。
本実施形態のサーミスタ用金属窒化物材料は、膜状に形成され、前記膜の表面に対して垂直方向に延在している柱状結晶である。さらに、本実施形態のサーミスタ用金属窒化物材料は、膜の表面に対して垂直方向にc軸よりa軸が強く配向している。
なお、膜の表面に対して垂直方向(膜厚方向)にa軸配向(100)が強いかc軸配向(002)が強いかの判断は、X線回折(XRD)を用いて結晶軸の配向性を調べることで、(100)(a軸配向を示すhkl指数)と(002)(c軸配向を示すhkl指数)とのピーク強度比から、「(100)のピーク強度」/「(002)のピーク強度」が1未満であることで、c軸配向が強いものとする。
次に、本実施形態のサーミスタ用金属窒化物材料を用いたフィルム型サーミスタセンサについて説明する。このフィルム型サーミスタセンサ1は、図2に示すように、絶縁性フィルム2と、該絶縁性フィルム2上に上記サーミスタ用金属窒化物材料で形成された薄膜サーミスタ部3と、少なくとも薄膜サーミスタ部3上に形成された一対のパターン電極4とを備えている。
上記絶縁性フィルム2は、例えばポリイミド樹脂シートで帯状に形成されている。なお、絶縁性フィルム2としては、他にPET:ポリエチレンテレフタレート,PEN:ポリエチレンナフタレート等でも構わない。また、絶縁性フィルム2としては、ポリイミド等の200℃以上の耐熱性を有するフィルムが好適である。
上記一対のパターン電極4は、例えばCr膜とAu膜との積層金属膜でパターン形成され、薄膜サーミスタ部3上で互いに対向状態に配した櫛形パターンの一対の櫛形電極部4aと、これら櫛形電極部4aに先端部が接続され基端部が絶縁性フィルム2の端部に配されて延在した一対の直線延在部4bとを有している。
また、一対の直線延在部4bの基端部上には、リード線の引き出し部としてAuめっき等のめっき部4cが形成されている。このめっき部4cには、リード線の一端が半田材等で接合される。さらに、めっき部4cを含む絶縁性フィルム2の端部を除いて該絶縁性フィルム2上にポリイミドカバーレイフィルム5が加圧接着されている。なお、ポリイミドカバーレイフィルム5の代わりに、ポリイミドやエポキシ系の樹脂材料層を印刷で絶縁性フィルム2上に形成しても構わない。
このサーミスタ用金属窒化物材料の製造方法及びこれを用いたフィルム型サーミスタセンサ1の製造方法について、図3を参照して以下に説明する。
まず、本実施形態のサーミスタ用金属窒化物材料の製造方法は、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着(RPD)法により成膜する成膜工程を有している。この成膜工程のRPD法は、窒素ガス及び酸素ガスを反応ガスとして装置内に導入し、図4に示すように、プラズマガン11からGaの蒸発源12及びTiの蒸発源13へArプラズマ14を照射して溶解、昇華、イオン化させ、上部に設置された基板(絶縁性フィルム2)に酸窒化膜の薄膜を堆積させる物理蒸着法である。この成膜に用いているRPD装置10は、圧力勾配型Arプラズマガンを利用したイオンプレーティング装置であって、プラズマガン11を2台搭載し、GaとTiとを独立に制御して蒸着させることができる。
より具体的には、まず、例えば図3の(a)に示す厚さ50μmのポリイミドフィルムの絶縁性フィルム2上を、RPD装置10内の基板回転支持部15に装着する。この基板回転支持部15は、成膜中に軸線回りに回転駆動される。
なお、図4の符号において、16Aは金属Gaを入れたるつぼ、16Bは金属Tiを入れたるつぼ、17は反応ガス導入口である。
さらに、装置内を排気して真空に保持しながら、ヒータ18で炉内を所定温度まで加熱した後、
・炉内雰囲気温度:180〜200℃
・蒸発源12:金属Ga
・蒸発源12に対するプラズマガン放電電力:2kW
・蒸発源13:金属Ti
・蒸発源13に対するプラズマガン放電電力:5〜11kW
・放電ガス流量:アルゴン(Ar)ガス 80sccm
・反応ガス流量:窒素(N)ガス 50〜100sccm
酸素(O)ガス 0〜70sccm
という条件のもと、絶縁性フィルム2の表面に、所定の組成および目標平均層厚の(Ti,Ga)(N,O)層からなる複合酸窒化物層を蒸着形成することにより、サーミスタ用金属窒化物材料で形成された薄膜サーミスタ部3を成膜する。
また、メタルマスクを用いて所望のサイズにサーミスタ用金属窒化物材料を成膜して薄膜サーミスタ部3を形成する。
次に、スパッタ法にて、例えばCr膜を20nm形成し、さらにAu膜を200nm形成する。さらに、その上にレジスト液をバーコーターで塗布した後、110℃で1分30秒のプリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃で5分のポストベークにてパターニングを行う。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントによりウェットエッチングを行い、図3の(c)に示すように、レジスト剥離にて所望の櫛形電極部4aを有したパターン電極4を形成する。なお、絶縁性フィルム2上に先にパターン電極4を形成しておき、その櫛形電極部4a上に薄膜サーミスタ部3を成膜しても構わない。この場合、薄膜サーミスタ部3の下にパターン電極4の櫛形電極部4aが形成されている。
次に、図3の(d)に示すように、例えば厚さ50μmの接着剤付きのポリイミドカバーレイフィルム5を絶縁性フィルム2上に載せ、プレス機にて150℃,2MPaで10分間加圧し接着させる。さらに、図3の(e)に示すように、直線延在部4bの端部を、例えばAuめっき液によりAu薄膜を2μm形成してめっき部4cを形成する。
なお、複数のフィルム型サーミスタセンサ1を同時に作製する場合、絶縁性フィルム2の大判シートに複数の薄膜サーミスタ部3及びパターン電極4を上述のように形成した後に、大判シートから各フィルム型サーミスタセンサ1に切断する。
このようにして、例えばサイズを25×3.6mmとし、厚さを0.1mmとした薄いフィルム型サーミスタセンサ1が得られる。
このように本実施形態のサーミスタ用金属窒化物材料では、一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、その結晶構造が、六方晶系のウルツ鉱型の単相であるので、良好なB定数が得られると共に高い耐熱性を有している。特に、酸素(O)が含まれることで、結晶内の窒素欠陥を酸素が埋める、もしくは、格子間酸素が導入される等の効果によって耐熱性が向上する。
また、このサーミスタ用金属窒化物材料では、膜の表面に対して垂直方向に延在している柱状結晶であるので、膜の結晶性が高く、高い耐熱性が得られる。
本実施形態のサーミスタ用金属窒化物材料の製造方法では、Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着法により成膜工程を有しているので、上記TiGaNOからなる本発明のサーミスタ用金属窒化物材料を成膜することができる。特に、この製法では、200℃以下の比較的低温で成膜が可能になる。
したがって、本実施形態のサーミスタ用金属窒化物材料を用いたフィルム型サーミスタセンサ1では、絶縁性フィルム2上に上記サーミスタ用金属窒化物材料で薄膜サーミスタ部3が形成されているので、比較的低温で成膜可能であって高B定数で耐熱性の高い薄膜サーミスタ部3により、樹脂フィルム等の耐熱性の低い絶縁性フィルム2を用いることができると共に、良好なサーミスタ特性を有した薄型でフレキシブルなサーミスタセンサが得られる。
また、従来、アルミナ等のセラミックスを用いた基板がしばしば用いられ、例えば、厚さ0.1mmへと薄くすると非常に脆く壊れやすい等の問題があったが、本実施形態においてはフィルムを用いることができるので、例えば、厚さ0.1mmの非常に薄いフィルム型サーミスタセンサを得ることができる。
次に、本発明に係るサーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサについて、上記実施形態に基づいて作製した実施例により評価した結果を、図4から図10を参照して具体的に説明する。
<膜評価用素子の作製>
本発明の実施例及び比較例として、図5に示す膜評価用素子121を次のように作製した。なお、以下の本発明の各実施例では、TiGa(N1−wであるサーミスタ用金属窒化物を用いたものを作製した。
まず、上述したRPD法にて、様々な組成比でSi基板Sとなる熱酸化膜付きSiウエハ上に、厚さ500nmの表1に示す様々な組成比で形成されたサーミスタ用金属窒化物材料の薄膜サーミスタ部3を形成した。
次に、上記薄膜サーミスタ部3の上に、スパッタ法でCr膜を20nm形成し、さらにAu膜を200nm形成した。さらに、その上にレジスト液をスピンコーターで塗布した後、110℃で1分30秒のプリベークを行い、露光装置で感光後、現像液で不要部分を除去し、150℃で5分のポストベークにてパターニングを行った。その後、不要な電極部分を市販のAuエッチャント及びCrエッチャントによりウェットエッチングを行い、レジスト剥離にて所望の櫛形電極部124aを有するパターン電極124を形成した。そして、これをチップ状にダイシングして、B定数評価及び耐熱性試験用の膜評価用素子121とした。
なお、比較としてTiGa(N1−wの組成比が本発明の範囲外であって結晶系が異なる比較例についても同様に作製して評価を行った。
<膜の評価>
(1)組成分析
反応性スパッタ法にて得られた薄膜サーミスタ部3について、X線光電子分光法(XPS)にて元素分析を行った。このXPSでは、Arスパッタにより、最表面から深さ20nmのスパッタ面において、定量分析を実施した。その結果を表2に示す。なお、以下の表中の組成比は「原子%」で示している。一部のサンプルに対して、最表面から深さ100nmのスパッタ面における定量分析を実施し、深さ20nmのスパッタ面と定量精度の範囲内で同じ組成であることを確認している。
なお、上記X線光電子分光法(XPS)は、X線源をMgKα(350W)とし、パスエネルギー:58.5eV、測定間隔:0.125eV、試料面に対する光電子取り出し角:45deg、分析エリアを約800μmφの条件下で定量分析を実施した。なお、定量精度について、(N+O)/(Ti+Ga+N+O)の定量精度は±2%、Ga/(Ti+Ga)の定量精度は±1%である。
(2)比抵抗測定
反応性スパッタ法にて得られた薄膜サーミスタ部3について、4端子法にて25℃での比抵抗を測定した。その結果を表2に示す。
(3)B定数測定
膜評価用素子121の25℃及び50℃の抵抗値を恒温槽内で測定し、25℃と50℃との抵抗値よりB定数を算出した。その結果を表2に示す。また、25℃と50℃との抵抗値より負の温度特性をもつサーミスタであることを確認している。
なお、本発明におけるB定数算出方法は、上述したように25℃と50℃とのそれぞれの抵抗値から以下の式によって求めている。
B定数(K)=ln(R25/R50)/(1/T25−1/T50)
R25(Ω):25℃における抵抗値
R50(Ω):50℃における抵抗値
T25(K):298.15K 25℃を絶対温度表示
T50(K):323.15K 50℃を絶対温度表示
これらの結果からわかるように、TiGa(N1−wの組成比が図1に示す3元系の三角図において、点A,B,C,Dで囲まれる領域内、すなわち、「0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1」となる領域内の実施例全てで、抵抗率:1000Ωcm以上、B定数:1000K以上のサーミスタ特性が達成されている。
上記結果から25℃での抵抗率とB定数との関係を示したグラフを、図6に示す。また、Ga/(Ti+Ga)比とB定数との関係を示したグラフを、図7に示す。これらのグラフから、Ga/(Ti+Ga)=0.7〜0.98、かつ、(N+O)/(Ti+Ga+N+O)=0.4〜0.5の領域で、結晶系が六方晶のウルツ鉱型の単一相であるものは、25℃における比抵抗値が1000Ωcm以上、B定数が1000K以上の高抵抗かつ高B定数の領域が実現できている。なお、図7のデータにおいて、同じGa/(Ti+Ga)比に対して、B定数がばらついているのは、結晶中の窒素量及び酸素量が異なる、もしくは窒素欠陥、酸素欠陥等の格子欠陥量が異なるためである。
表1に示す比較例1は、(N+O)/(Ti+Ga+N+O)が40%に満たない領域であり、金属が窒化不足の結晶状態になっている。この比較例1は、NaCl型でも、ウルツ鉱型でもない、非常に結晶性の劣る状態であった。また、これら比較例では、B定数及び抵抗値が共に非常に小さく、金属的振舞いに近いことがわかった。
表1に示す比較例2,3は、Ga/(Ti+Ga)≦0.66の領域であり、結晶系は立方晶のNaCl型となっている。
表1に示す比較例4は、0.66<Ga/(Ti+Ga)<0.70の領域であり、結晶系は六方晶のウルツ鉱型と立方晶のNaCl型が共存している。
このように、Ga/(Ti+Ga)<0.7の領域では、25℃における比抵抗値が1000Ωcm未満、B定数が1000K未満であり、低抵抗かつ低B定数の領域であった。
(4)薄膜X線回折(結晶相の同定)
反応性スパッタ法にて得られた薄膜サーミスタ部3を、視斜角入射X線回折(Grazing Incidence X-ray Diffraction)により、結晶相を同定した。この薄膜X線回折は、微小角X線回折実験であり、管球をCuとし、入射角を1度とすると共に2θ=20〜130度の範囲で測定した。一部のサンプルについては、入射角を0度とし、2θ=20〜100度の範囲で測定した。
その結果、Ga/(Ti+Ga)≧0.7の領域においては、ウルツ鉱型相(六方晶、GaNと同じ相)であり、Ga/(Ti+Ga)≦0.66の領域においては、NaCl型相(立方晶、TiNと同じ相)であった。また、0.66<Ga/(Ti+Ga)<0.7においては、ウルツ鉱型相とNaCl型相との共存する結晶相であった。
このようにTiGaNO系においては、高抵抗かつ高B定数の領域は、Ga/(Ti+Ga)≧0.7のウルツ鉱型相に存在している。なお、本発明の実施例では、不純物相は確認されておらず、ウルツ鉱型の単一相である。
なお、表1に示す比較例1は、上述したように結晶相がウルツ鉱型相でもNaCl型相でもなく、本試験においては同定できなかった。また、これらの比較例は、XRDのピーク幅が非常に広いことから、非常に結晶性の劣る材料であった。これは、電気特性により金属的振舞いに近いことから、窒化不足、かつ、酸化不足の金属相になっていると考えられる。
次に、本発明の実施例は全てウルツ鉱型相の膜であり、配向性が強いことから、Si基板S上に垂直な方向(膜厚方向)の結晶軸においてa軸配向性が強いか、c軸配向性が強いかについて、XRDを用いて調査した。この際、結晶軸の配向性を調べるために、(100)(a軸配向を示すhkl指数)と(002)(c軸配向を示すhkl指数)とのピーク強度比を測定した。
この結果、本発明の実施例は、a軸配向性が強かった。
なお、同じ成膜条件でポリイミドフィルムに成膜しても、同様にウルツ鉱型の単一相が形成されていることを確認している。また、同じ成膜条件でポリイミドフィルムに成膜しても、配向性は変わらないことを確認している。
a軸配向が強い実施例のXRDプロファイルの一例を、図8に示す。この実施例は、Ga/(Ti+Ga)=0.91(ウルツ鉱型、六方晶)であり、入射角を1度として測定した。この結果からわかるように、この実施例では、(002)よりも(100)の強度が強くなっている。
なお、グラフ中(*)は装置由来および熱酸化膜付きSi基板由来のピークであり、サンプル本体のピーク、もしくは、不純物相のピークではないことを確認している。また、入射角を0度として、対称測定を実施し、そのピークが消失していることを確認し、装置由来および熱酸化膜付きSi基板由来のピークであることを確認した。
本発明の実施例のウルツ鉱型材料に関して、さらに、窒素量と酸素量との相関を調べた。図8には、N/(Ti+Ga+N)比とO/(N+O)比との関係を調べた結果を示す。この結果からわかるように、N/(Ti+Ga+N)が少ないサンプルほど、O/(N+O)量が多い傾向がある。つまり、窒素サイトにおける原子欠陥量が少ない材料のほうが、酸素量が少なくて済むことを示している。
<結晶形態の評価>
次に、薄膜サーミスタ部3の断面における結晶形態を示す一例として、熱酸化膜付きSi基板S上に140nm程度成膜された実施例(Ga/(Ti+Ga)=0.91,ウルツ鉱型、六方晶、a軸配向性が強い)の薄膜サーミスタ部3における断面SEM写真を、図9に示す。
この実施例のサンプルは、Si基板Sをへき開破断したものを用いている。また、45°の角度で傾斜観察した写真である。
この写真からわかるように、本発明の実施例は緻密な柱状結晶で形成されている。すなわち、基板面に垂直な方向に柱状の結晶が成長している様子が観測されている。なお、柱状結晶の破断は、Si基板Sをへき開破断した際に生じたものである。なお、熱酸化膜付きSi基板S上に200nm、500nm、1000nmの厚さでそれぞれ成膜された場合にも、上記同様、緻密な柱状結晶で形成されていることを確認している。
なお、図中の柱状結晶サイズについて、図8のa軸配向が強い実施例は、粒径が15nmφ(±5nmφ)、長さ140nm程度であった。なお、ここでの粒径は、基板面内における柱状結晶の直径であり、長さは、基板面に垂直な方向の柱状結晶の長さ(膜厚)である。
柱状結晶のアスペクト比を(長さ)÷(粒径)として定義すると、本実施例は7以上の大きいアスペクト比をもっている。柱状結晶の粒径が小さいことにより、膜が緻密となっていると考えられる。
<耐熱試験評価>
表1に示す実施例及び比較例の一部において、大気中,125℃,1000hの耐熱試験前後における抵抗値及びB定数を評価した。その結果を表2に示す。なお、比較として従来のTa−Al−N系材料による比較例も同様に評価した。
これらの結果からわかるように、Ta−Al−N系である比較例と同程度量のB定数をもつ実施例で比較したとき、Ti−Ga−(N+O)系の方が抵抗値上昇率、B定数上昇率がともに小さく、耐熱試験前後における電気特性変化でみたときの耐熱性は、Ti−Ga−(N+O)系の方が優れている。
なお、Ta−Al−N系材料では、Taのイオン半径がTiやAlに比べて非常に大きいため、高濃度Al領域でウルツ鉱型相を作製することができないと考えられる。TaAlN系がウルツ鉱型相でないがゆえ、ウルツ鉱型のTi−Ga−(N+O)系の方が耐熱性が良好であると考えられる。
このように上記評価において、(N+O)/(Ti+Ga+N+O):0.45〜0.55の範囲で作製すれば、良好なサーミスタ特性を示すことができることがわかる。
なお、窒素および酸素欠陥のない理想的な化学量論比は、(N+O)/(Ti+Ga+N+O)=0.5である。今回の試験においては、0.5を超える(N+O)/(Ti+Ga+N+O)量のサンプルがあるが、格子間酸素が導入されたことと、XPS分析における軽元素(窒素、酸素)の定量精度とに起因するものと考えられる。一方で、0.5よりも小さい(N+O)/(Ti+Ga+N+O)量のサンプルがあり、それらのサンプルのサーミスタ材料中の窒素、酸素サイトに原子欠陥があることがわかる。さらに、欠陥を補うためには、特に窒素欠陥を補うプロセスを加えることが望ましく、その一つとして窒素プラズマ照射などを行うことが好ましい。
なお、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
1…フィルム型サーミスタセンサ、2…絶縁性フィルム、3…薄膜サーミスタ部、4,124…パターン電極
<膜の評価>
(1)組成分析
RPD法で得られた薄膜サーミスタ部3について、X線光電子分光法(XPS)にて元素分析を行った。このXPSでは、Arスパッタにより、最表面から深さ20nmのスパッタ面において、定量分析を実施した。その結果を表2に示す。なお、以下の表中の組成比は「原子%」で示している。一部のサンプルに対して、最表面から深さ100nmのスパッタ面における定量分析を実施し、深さ20nmのスパッタ面と定量精度の範囲内で同じ組成であることを確認している。
(2)比抵抗測定
RPD法で得られた薄膜サーミスタ部3について、4端子法にて25℃での比抵抗を測定した。その結果を表2に示す。
(3)B定数測定
膜評価用素子121の25℃及び50℃の抵抗値を恒温槽内で測定し、25℃と50℃との抵抗値よりB定数を算出した。その結果を表2に示す。また、25℃と50℃との抵抗値より負の温度特性をもつサーミスタであることを確認している。
(4)薄膜X線回折(結晶相の同定)
RPD法で得られた薄膜サーミスタ部3を、視斜角入射X線回折(Grazing Incidence X-ray Diffraction)により、結晶相を同定した。この薄膜X線回折は、微小角X線回折実験であり、管球をCuとし、入射角を1度とすると共に2θ=20〜130度の範囲で測定した。一部のサンプルについては、入射角を0度とし、2θ=20〜100度の範囲で測定した。

Claims (4)

  1. サーミスタに用いられる金属窒化物材料であって、
    一般式:TiGa(N1−w(0.0≦w≦0.85、0.70≦y/(x+y)≦0.99、0.45≦z≦0.55、x+y+z=1)で示される金属窒化物からなり、
    その結晶構造が、六方晶系のウルツ鉱型の単相であることを特徴とするサーミスタ用金属窒化物材料。
  2. 請求項1に記載のサーミスタ用金属窒化物材料において、
    膜状に形成され、
    前記膜の表面に対して垂直方向に延在している柱状結晶であることを特徴とするサーミスタ用金属窒化物材料。
  3. 絶縁性フィルムと、
    該絶縁性フィルム上に請求項1又は2に記載のサーミスタ用金属窒化物材料で形成された薄膜サーミスタ部と、
    少なくとも前記薄膜サーミスタ部の上又は下に形成された一対のパターン電極とを備えていることを特徴とするフィルム型サーミスタセンサ。
  4. 請求項1又は2に記載のサーミスタ用金属窒化物材料を製造する方法であって、
    Gaの蒸発源と、Tiの蒸発源とを用いて窒素及び酸素含有雰囲気中で反応性プラズマ蒸着法により成膜する成膜工程を有していることを特徴とするサーミスタ用金属窒化物材料の製造方法。
JP2013184785A 2013-09-06 2013-09-06 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ Expired - Fee Related JP6115823B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184785A JP6115823B2 (ja) 2013-09-06 2013-09-06 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184785A JP6115823B2 (ja) 2013-09-06 2013-09-06 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Publications (2)

Publication Number Publication Date
JP2015053356A true JP2015053356A (ja) 2015-03-19
JP6115823B2 JP6115823B2 (ja) 2017-04-19

Family

ID=52702177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184785A Expired - Fee Related JP6115823B2 (ja) 2013-09-06 2013-09-06 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Country Status (1)

Country Link
JP (1) JP6115823B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131570A1 (ja) * 2017-12-25 2019-07-04 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
JP2019114779A (ja) * 2017-12-25 2019-07-11 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
JP7453607B2 (ja) 2019-03-29 2024-03-21 株式会社Flosfia サーミスタならびにその製品およびシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203489A (ja) * 2008-02-26 2009-09-10 Tungaloy Corp 被覆部材
JP2012068116A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 温度センサ付き電池
WO2013129638A1 (ja) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097949A1 (ja) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097910A1 (ja) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014196583A1 (ja) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014196488A1 (ja) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203489A (ja) * 2008-02-26 2009-09-10 Tungaloy Corp 被覆部材
JP2012068116A (ja) * 2010-09-23 2012-04-05 Mitsubishi Materials Corp 温度センサ付き電池
WO2013129638A1 (ja) * 2012-02-28 2013-09-06 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097949A1 (ja) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014097910A1 (ja) * 2012-12-21 2014-06-26 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014122388A (ja) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014123647A (ja) * 2012-12-21 2014-07-03 Mitsubishi Materials Corp サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014196583A1 (ja) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
WO2014196488A1 (ja) * 2013-06-05 2014-12-11 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2014236205A (ja) * 2013-06-05 2014-12-15 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2015043410A (ja) * 2013-06-05 2015-03-05 三菱マテリアル株式会社 サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131570A1 (ja) * 2017-12-25 2019-07-04 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
JP2019114779A (ja) * 2017-12-25 2019-07-11 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
CN111418032A (zh) * 2017-12-25 2020-07-14 三菱综合材料株式会社 热敏电阻及其制造方法和热敏电阻传感器
US11532410B2 (en) 2017-12-25 2022-12-20 Mitsubishi Materials Corporation Thermistor, method for manufacturing same, and thermistor sensor
JP7234573B2 (ja) 2017-12-25 2023-03-08 三菱マテリアル株式会社 サーミスタ及びその製造方法並びにサーミスタセンサ
JP7453607B2 (ja) 2019-03-29 2024-03-21 株式会社Flosfia サーミスタならびにその製品およびシステム

Also Published As

Publication number Publication date
JP6115823B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6354947B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308435B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP5477671B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318915B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015426B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311879B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015423B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120250B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6120251B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6311878B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308436B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6015424B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6318916B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6115823B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6308365B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6355022B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016136609A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6115825B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにサーミスタセンサ
JP6308364B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP6601614B2 (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134505A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134491A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134504A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ
JP2016134490A (ja) サーミスタ用金属窒化物材料及びその製造方法並びにフィルム型サーミスタセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6115823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees