WO2019131173A1 - 分離回収システム及び分離回収方法 - Google Patents

分離回収システム及び分離回収方法 Download PDF

Info

Publication number
WO2019131173A1
WO2019131173A1 PCT/JP2018/045863 JP2018045863W WO2019131173A1 WO 2019131173 A1 WO2019131173 A1 WO 2019131173A1 JP 2018045863 W JP2018045863 W JP 2018045863W WO 2019131173 A1 WO2019131173 A1 WO 2019131173A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
separation
metal porous
main surface
particles
Prior art date
Application number
PCT/JP2018/045863
Other languages
English (en)
French (fr)
Inventor
誠治 神波
近藤 孝志
萬壽 優
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880084610.0A priority Critical patent/CN111526932B/zh
Priority to JP2019562975A priority patent/JP6863484B2/ja
Publication of WO2019131173A1 publication Critical patent/WO2019131173A1/ja
Priority to US16/895,357 priority patent/US20200298150A1/en
Priority to US18/065,418 priority patent/US11833455B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/663Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps by using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/90Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/10Separation devices for use in medical, pharmaceutical or laboratory applications, e.g. separating amalgam from dental treatment residues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler

Definitions

  • the present invention relates to a separation and recovery system and a separation and recovery method.
  • Patent Document 1 discloses a method of collecting cells trapped in a membrane filter by capturing cells in a liquid using a membrane filter and backwashing.
  • Patent Document 1 still has room for improvement in terms of the improvement of the recovery rate of the separation object.
  • An object of the present invention is to provide a separation and recovery system and a separation and recovery method capable of improving the recovery rate of an object to be separated.
  • the separation and recovery system of one embodiment of the present invention is A system for separating and recovering separated objects in a fluid, comprising: A metallic porous film having a first main surface and a second main surface opposite to the first main surface, and having a plurality of through holes, A supply device for supplying a fluid containing the separation target from the first main surface of the porous metal membrane to the second main surface; A backwashing device for supplying a fluid containing a plurality of particles larger than the size of the through hole of the metallic porous film from the second major surface of the metallic porous film to the first major surface; Equipped with
  • the separation and recovery method of one embodiment of the present invention is A method of separating and recovering an object to be separated in a fluid, comprising: By supplying a fluid including the object to be separated from the first main surface of the metal porous film having a plurality of through holes toward the second main surface facing the first main surface, the metal porous film Capturing the separation target on the first major surface, With respect to the metal porous film which has captured the separation object, a plurality of sizes larger than the size of the through hole of the metal porous film, from the second main surface to the first main surface of the metal porous film Supplying a fluid containing particles of Trapping the plurality of particles on the second major surface of the metallic porous film; including.
  • FIG. 1 is a schematic block diagram of an example of a separation and recovery system according to a first embodiment of the present invention. It is a schematic block diagram of an example of the metal porous membrane in the separation-and-recovery system of Embodiment 1 concerning the present invention. It is an enlarged perspective view of a part of film part of metal porous film shown in FIG. It is the schematic which looked at a part of film part of the metal porous film shown in FIG. 3 from the thickness direction. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of an example of the isolation
  • FIG. 1 It is the schematic which shows an example of the process of the separation-and-recovery method of Embodiment 1 which concerns on this invention. It is an expanded sectional view of a part of metal porous membrane of the modification in the separation-and-recovery system of Embodiment 1 concerning the present invention. It is the enlarged photograph which image
  • FIG. 1 It is an enlarged photograph image
  • a separation and recovery method using a membrane filter is known as a separation and recovery method of separation objects in a fluid.
  • the separation target in the fluid is captured by the membrane filter, and the separation target is recovered by backwashing.
  • the membrane filter has a structure in which a plurality of through holes are formed in three-dimensionally different directions. That is, in the membrane filter, the plurality of through holes are not formed regularly regularly in the thickness direction of the filter. Therefore, in the membrane filter, the fluid does not easily pass through the through holes, and the pressure loss when passing the fluid becomes large.
  • the fluid in order to separate the separation target from the fluid, the fluid is passed through the membrane filter, for example, by pressing the fluid against the membrane filter.
  • the pressing force needs to be increased according to the pressure loss. If the separation target is a cell or bacteria that is easily deformed, if the pressing force is increased, the separation target is deformed and passes through the through hole or dips into the through hole to be separated by backwashing. It may be difficult to collect things.
  • the present inventors have found that a separation target in a fluid is separated and recovered using a porous metal membrane.
  • the metal porous film In the metal porous film, a plurality of through holes are regularly formed three-dimensionally in the same direction, that is, in the thickness direction of the film.
  • the thickness of the metal porous membrane is thinner than the thickness of the membrane filter.
  • the metal porous membrane has an advantage that the pressure loss at the time of passing the fluid can be reduced and the pressing force of the fluid can be reduced as compared with the membrane filter.
  • the metal porous membrane has an advantage that recovery of the separation target by backwashing is easier than the membrane filter.
  • the present inventors improve the recovery rate by backwashing the metal porous membrane using a fluid containing a plurality of particles larger than the through holes of the metal porous membrane. It has been found that the present invention can be achieved.
  • the separation and recovery system of one embodiment of the present invention is A system for separating and recovering separated objects in a fluid, comprising: A metallic porous film having a first main surface and a second main surface opposite to the first main surface, and having a plurality of through holes, A supply device for supplying a fluid containing the separation target from the first main surface of the porous metal membrane to the second main surface; A backwashing device for supplying a fluid containing a plurality of particles larger than the size of the through hole of the metallic porous film from the second major surface of the metallic porous film to the first major surface; Equipped with
  • Such a configuration can improve the recovery rate of the separation target.
  • the backwashing device may set the pressure on the second main surface side of the metal porous film to be greater than the pressure on the first main surface side, whereby the number of the metal porous films is increased.
  • a fluid containing the separation target may be supplied in a direction from the two major surfaces toward the first major surface.
  • the separation object can be peeled off from the metal porous film by the pressure difference between the second main surface side and the first main surface side of the metal porous film, and the separation object can be easily recovered. . Thereby, the recovery rate can be further improved.
  • the plurality of particles may be smaller than a pitch of the plurality of through holes of the metal porous film.
  • Such a configuration makes it easy for particles to be trapped in the through holes. Thereby, the separation subject can be easily peeled off from the metal porous membrane, and the recovery rate of the separation subject can be further improved.
  • the number of the plurality of particles may be larger than the number of the plurality of through holes of the metal porous film.
  • Such a configuration makes it easy for particles to be trapped in the through holes. Thereby, the separation subject can be easily peeled off from the metal porous membrane, and the recovery rate of the separation subject can be further improved.
  • each of the plurality of particles may have a spherical shape.
  • the separation target can be easily peeled off from the metal porous membrane, and the recovery rate of the separation target can be further improved.
  • each of the plurality of through holes of the metallic porous film may have a circular shape when viewed from the thickness direction of the metallic porous film.
  • the separation target can be more easily peeled off from the metallic porous membrane, and the recovery rate of the separation target can be further improved.
  • the cross-sectional shape of each of the plurality of particles may be different from the shape of the through hole of the metal porous film.
  • the separation and recovery method of one embodiment of the present invention is A method of separating and recovering an object to be separated in a fluid, comprising: By supplying a fluid including the object to be separated from the first main surface of the metal porous film having a plurality of through holes toward the second main surface facing the first main surface, the metal porous film Capturing the separation target on the first major surface, With respect to the metal porous film which has captured the separation object, a plurality of sizes larger than the size of the through hole of the metal porous film, from the second main surface to the first main surface of the metal porous film Supplying a fluid containing particles of Trapping the plurality of particles on the second major surface of the metallic porous film; including.
  • Such a configuration can improve the recovery rate of the separation target.
  • the pressure on the second main surface side of the metal porous film is made larger than the pressure on the first main surface side. Supplying a fluid including the separation target in a direction from the second major surface to the first major surface of the metal porous film.
  • the separation object can be peeled off from the metal porous film by the pressure difference between the second main surface side and the first main surface side of the metal porous film, and the separation object can be easily recovered. . Thereby, the recovery rate can be further improved.
  • the plurality of particles may be smaller than the pitch of the plurality of through holes of the metal porous film.
  • Such a configuration makes it easy for particles to be trapped in the through holes. Thereby, the separation object can be easily separated from the metal porous membrane, and the recovery rate of the separation object can be further improved.
  • the number of the plurality of particles may be larger than the number of the plurality of through holes of the metal porous film.
  • Such a configuration makes it easy for particles to be trapped in the through holes. Thereby, the separation subject can be easily peeled off from the metal porous membrane, and the recovery rate of the separation subject can be further improved.
  • each of the plurality of particles may have a spherical shape.
  • the separation target can be more easily peeled off from the metallic porous membrane, and the recovery rate of the separation target can be further improved.
  • each of the plurality of through holes of the metal porous film may have a circular shape when viewed from the thickness direction of the metal porous film.
  • the separation target can be more easily peeled off from the metallic porous membrane, and the recovery rate of the separation target can be further improved.
  • the cross-sectional shape of each of the plurality of particles may be different from the shape of the through hole of the metal porous film.
  • FIG. 1 is a schematic block diagram of an example of a separation and recovery system 1 according to a first embodiment of the present invention.
  • the separation and recovery system 1 includes a porous film 10 made of metal, a holder 20, a supply device 30, and a backwash device 40.
  • the metal porous film 10 is held by the holder 20.
  • the supply device 30 and the backwashing device 40 are detachably connected to the holder 20.
  • the separation and recovery system 1 includes the holder 20
  • the present invention is not limited to this.
  • the holder 20 is provided in consideration of the convenience of the system, and is not an essential configuration.
  • separating object means an object to be separated from the fluid.
  • the separation targets include, for example, targets derived from organisms such as cells, bacteria, viruses and the like.
  • cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell clusters, suspension cells, adherent cells, nerve cells
  • iPS cells induced pluripotent stem cells
  • ES cells induced pluripotent stem cells
  • stem cells mesenchymal stem cells
  • mononuclear cells single cells, cell clusters, suspension cells, adherent cells, nerve cells
  • white blood cells lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells in blood (CTC), HL-60, HELA, yeast and the like.
  • bacteria include gram positive bacteria, gram negative bacteria, E. coli, staphylococci, tuberculosis bacteria and the like.
  • virus examples include DNA virus, RNA virus, rotavirus, (bird) influenza virus, yellow fever virus, dengue fever virus, encephalitis virus, hemorrhagic fever virus, immunodeficiency virus and the like.
  • the object to be separated may be ceramic particles, binder particles, inorganic substances such as aerosol, organic substances, or metals.
  • fluid means liquid or gas
  • FIG. 2 is a schematic configuration view of an example of the porous metal membrane 10 in the separation and recovery system 1 according to the first embodiment of the present invention.
  • the X, Y, and Z directions in FIG. 2 indicate the longitudinal direction, the lateral direction, and the thickness direction of the metal porous film 10, respectively.
  • the metal porous film 10 includes a film portion 11 and a frame portion 12 provided on the outer periphery of the film portion 11.
  • the metal porous membrane 10 is a plate-like structure which is held by the holder 20 by the frame portion 12 and which captures an object to be separated in the fluid by the membrane portion 11.
  • the outer shape of the metal porous film 10 is, for example, circular when viewed from the Z direction.
  • the outer shape of the metal porous film 10 is not limited to a circle, and may be a square, a rectangle, a polygon, or an ellipse.
  • the film portion 11 is formed of a filter base portion 14 in which a plurality of through holes 13 are formed.
  • FIG. 3 is an enlarged perspective view of a part of the film portion 11 of the metal porous film 10 shown in FIG.
  • FIG. 4 is a schematic view of a part of the film portion 11 of the metal porous film 10 shown in FIG. 3 as viewed from the thickness direction.
  • the film unit 11 has a first main surface PS1 and a second main surface PS2 facing each other.
  • the plurality of through holes 13 are formed through the first main surface PS1 and the second main surface PS2 and are periodically formed. Specifically, the plurality of through holes 13 are formed in the film portion 11 at equal intervals in a matrix.
  • the through hole 13 has a square shape of one side D when viewed from the first main surface PS1 side of the film portion 11, that is, the Z direction.
  • One side D of the through hole 13 is appropriately designed according to the size, shape, nature, elasticity or amount of the separation object to be separated.
  • the hole pitch P of the through holes 13 is also appropriately designed in accordance with the size, shape, nature, elasticity or amount of the separation object to be separated.
  • the hole pitch P of the square through holes 13 is the distance between one side of any through hole 13 and one side of the adjacent through hole 13 as viewed from the first main surface PS1 side of the film portion 11 Means
  • the aperture ratio of the film part 11 is 5% or more, preferably the aperture ratio is 45% or more.
  • the aperture ratio is calculated by (the area occupied by the through holes 13) / (the projected area of the first main surface PS1 of the film portion 11 when it is assumed that the through holes 13 are not open).
  • the thickness of the film portion 11 is preferably greater than 0.01 times and not more than 10 times the size (one side D) of the through hole 13. More preferably, the thickness of the film part 11 is more than 0.05 times and not more than 7 times the size (one side D) of the through hole 13. Such a configuration makes it possible to reduce the resistance of the film portion 11 to the fluid and shorten the processing time.
  • the through hole 13 communicates through a wall surface in which an opening on the first main surface PS1 side and an opening on the second main surface PS2 side are continuous.
  • the through hole 13 is formed so that the opening on the first main surface PS1 side can be projected to the opening on the second main surface PS2 side. That is, when the film part 11 is seen from the 1st main surface PS1 side, the through-hole 13 is provided so that the opening by the side of 1st main surface PS1 may overlap with the opening by the side of 2nd main surface PS2.
  • through hole 13 is provided such that the inner wall thereof is substantially perpendicular to first main surface PS1 and second main surface PS2.
  • the shape (cross-sectional shape) of through hole 13 projected on a plane perpendicular to first main surface PS1 of film portion 11 is rectangular.
  • the cross-sectional shape of the through hole 13 is a rectangle in which the length of one side in the radial direction of the film portion 11 is longer than the length of one side in the thickness direction of the film portion 11.
  • the cross-sectional shape of the through-hole 13 is not limited to a rectangle, For example, a parallelogram, a trapezoid, etc. may be sufficient.
  • the plurality of through holes 13 are arranged in two arrangement directions parallel to each side of the square when viewed from the first main surface PS1 side (Z direction) of film portion 11, that is, the X direction in FIG. It is formed at equal intervals in the Y direction.
  • the aperture ratio can be increased, and the passage resistance (pressure loss) of the fluid to the film portion 11 can be reduced.
  • the arrangement of the plurality of through holes 13 is not limited to the square lattice arrangement, and may be, for example, a quasi-periodic arrangement or a periodic arrangement.
  • the periodic arrangement as long as it is a rectangular arrangement, it may be a rectangular arrangement in which the intervals in the two arrangement directions are not equal, or it may be a triangular lattice arrangement or an equilateral triangular lattice arrangement.
  • the through-hole 13 should just be formed in multiple numbers by the film part 11, and arrangement
  • membrane part 11 has a metal and / or a metal oxide as a main component.
  • the material constituting the filter base portion 14 may be, for example, gold, silver, copper, platinum, nickel, palladium, alloys thereof, and oxides thereof.
  • the frame portion 12 is provided on the outer periphery of the film portion 11, and is formed in a ring shape as viewed from the first main surface PS1 side of the film portion 11.
  • the frame portion 12 is a portion of the metal porous film 10 in which the through holes 13 are not provided.
  • the thickness of the frame portion 12 may be thicker than the thickness of the film portion 11. Such a configuration can increase the mechanical strength of the metal porous film 10.
  • the holder 20 is a member that holds the metal porous film 10 and is detachably attached to the supply device 30 and the backwashing device 40.
  • FIG. 5A and 5B are schematic configuration diagrams of an example of the separation and recovery system according to the first embodiment of the present invention.
  • FIG. 5A shows a schematic configuration in which the supply device 30 is attached to the holder 20.
  • FIG. 5B shows a schematic configuration in which the backwashing device 40 is attached to the holder 20.
  • the holder 20 includes a first holding member 21 and a second holding member 22.
  • the first holding member 21 and the second holding member 22 hold the metal porous film 10 inside the holder 20 by sandwiching the frame portion 12 of the metal porous film 10 in the thickness direction of the metal porous film 10. Hold.
  • the first holding member 21 is formed in a substantially cylindrical shape, and provided so as to face the first recess 23 in which the metal porous film 10 is disposed and the first main surface PS1 of the metal porous film 10 And the first flow path 24.
  • the first recess 23 is cylindrically recessed from the lower surface of the first holding member 21 toward the upper surface at the bottom of the first holding member 21.
  • the first flow path 24 is provided to extend from the first recess 23 toward the upper surface of the first holding member 21.
  • the second holding member 22 is formed in a substantially cylindrical shape, and provided so as to face the second recess 25 in which the metal porous film 10 is disposed and the second main surface PS2 of the metal porous film 10 And the second flow path 26.
  • the second recess 25 is cylindrically recessed in the upper surface of the second holding member 22 from the upper surface of the second holding member 22 toward the lower surface.
  • the second flow path 26 is provided to extend from the second recess 25 toward the lower surface of the second holding member 22.
  • the supply device 30 is attached to the first holding member 21 of the holder 20. Specifically, the supply device 30 is detachably attached to the first flow passage port 24 a of the first flow passage 24 of the first holding member 21.
  • the backwashing apparatus 40 is attached to the 2nd holding member 22 of the holder 20. As shown in FIG. Specifically, the backwashing device 40 is detachably attached to the second flow passage port 26 a of the second flow passage 26 of the second holding member 22.
  • the holder 20 can be made of, for example, a material that can be gamma sterilized or autoclaved.
  • the holder 20 is made of, for example, polyethylene, polyethylene terephthalate, polyurethane, polystyrene, silicone rubber, ABS resin, polyamide, polyamideimide, polysulfone, polycarbonate, polyacetal, natural rubber, latex, urethane rubber, silicone rubber, ethylene vinyl acetate, polyester , Epoxy, phenols, silica, alumina, gold, platinum, nickel, stainless steel, titanium, and the like.
  • the supply device 30 is a device for supplying the fluid 51 including the separation target 50 to the porous metal membrane 10.
  • the supply device 30 is, for example, a syringe.
  • the supply device 30 includes an outer cylinder that contains the fluid 51, and a plunger that can move inside the outer cylinder. As shown in FIG. 5A, the supply device 30 is attached to the first flow passage port 24 a of the first holding member 21 of the holder 20.
  • the supply device 30 supplies the fluid 51 including the separation target 50 from the first main surface PS1 to the second main surface PS2 of the porous film 10 made of metal.
  • the supply device 30 supplies the fluid 51 in the direction 60 from the first major surface PS1 to the second major surface PS2 of the porous film 10 made of metal, for example, by pressing the fluid 51.
  • the fluid 51 from the supply device 30 is supplied to the porous metal membrane 10 through the first flow path 24 of the first holding member 21. As a result, the separation target 50 larger than the through hole 13 is captured by the porous metal membrane 10.
  • the supply device 30 may supply the fluid 51 including the separation target 50 in the direction 60 from the first main surface PS1 to the second main surface PS2 of the metal porous film 10 by suction.
  • the supply device 30 supplies the fluid 51 to the metal porous membrane 10 by being controlled by, for example, a control unit.
  • the backwashing device 40 is a device that supplies the fluid 71 including the plurality of particles 70 to the porous metal membrane 10 and backwashes the porous metal membrane 10 that has captured the separation target 50.
  • the backwashing device 40 is, for example, a syringe or the like.
  • the backwashing device 40 includes an outer cylinder that contains the fluid 71, and a plunger that can move inside the outer cylinder.
  • the backwashing apparatus 40 is attached to the 2nd flow-path port 26a of the 2nd holding member 22 of the holder 20. As shown in FIG.
  • the backwashing apparatus 40 supplies the fluid 71 including the plurality of particles 70 from the second main surface PS2 of the porous film 10 made of metal to the first main surface PS1.
  • the backwashing apparatus 40 supplies the fluid 71 in the direction 61 from the second major surface PS2 of the porous film 10 made of metal to the first major surface PS1, for example, by pressing the fluid 71.
  • the fluid 71 from the supply device 30 is supplied to the porous metal membrane 10 through the second flow path 26 of the second holding member 22.
  • the flow velocity of the fluid 71 supplied from the backwashing device 40 be higher than the flow velocity of the fluid 51 supplied from the supply device 30.
  • the backwashing apparatus 40 supplies the fluid 71 to the metal porous membrane 10 by being controlled by, for example, a controller.
  • the backwashing apparatus 40 may supply the fluid 71 containing the plurality of particles 70 in the direction 60 from the second main surface PS2 of the porous film 10 to the first main surface PS1 by suction.
  • the particles 70 are formed of a material that is less likely to be deformed by external stress.
  • a material which comprises particle 70 silica, latex, metal, etc. are mentioned, for example.
  • the particle 70 is larger than the size of the through hole 13 of the metal porous film 10.
  • the dimension of the through hole 13 of the metal porous film 10 means the shortest side among the sides defining the opening of the through hole 13.
  • the dimension of the through hole 13 is one side when the opening of the through hole 13 is square, and the short side when it is rectangular, as viewed in the Z direction.
  • the dimension of the through hole 13 is a diameter when the opening of the through hole 13 is circular when viewed from the Z direction, and is a short diameter when the opening is elliptical.
  • the dimension of the through hole 13 means one side D of the through hole 13 shown in FIG.
  • the particle size can be 2 ⁇ m or 3 ⁇ m for a through hole size of 1.8 ⁇ m, or 3 ⁇ m or 4 ⁇ m for a through hole size of 2.5 ⁇ m.
  • particles 70 are spherical. Therefore, the diameter of the particle 70 is larger than the dimension (one side D) of the through hole 13.
  • the particle diameter of the particles 70 is preferably smaller than the hole pitch P of the through holes 13.
  • the number of particles 70 contained in the fluid 71 is larger than the number of the through holes 13 of the metal porous film 10.
  • the plurality of particles 70 are formed with uniform particle sizes.
  • the particles may be classified using a filter in order to make the particle size of the particles 70 uniform.
  • the particles 70 may be classified using a metal porous film having a plurality of through holes.
  • the fluid 71 is a fluid for backwashing.
  • the fluid 71 may be any fluid that does not damage the separation target 50.
  • the fluid 71 may be the same fluid as the fluid 51 supplied from the supply device 30.
  • the fluid 71 may be a cell culture solution or the like.
  • FIG. 6 is an example of a flowchart of the separation and recovery method according to the first embodiment of the present invention.
  • step ST11 the fluid 51 including the separation target is supplied from the first main surface PS1 to the second main surface PS2 of the porous film 10 made of metal. Thereby, the fluid 51 is allowed to pass through the metal porous film 10, and the separation target 50 is captured on the first main surface PS1 of the metal porous film 10.
  • the supply device 30 is attached to the first flow passage port 24 a of the holder 20.
  • the supply device 30 presses the fluid 51 including the plurality of separation objects 50 in the direction 60 from the first main surface PS1 to the second main surface PS2 of the porous film 10 made of metal.
  • the fluid 51 from the supply device 30 is supplied to the porous metal membrane 10 through the first flow path 24 of the first holding member 21 of the holder 20.
  • the fluid 51 passes through the through holes 13, and the separation target 50 larger than the through holes 13 is captured by the first main surface PS ⁇ b> 1 of the metal porous film 10.
  • the supply device 30 After capturing the object to be separated 50 on the first main surface PS1 of the metal porous film 10, the supply device 30 is removed from the holder 20.
  • step ST12 the through hole 13 of the metal porous film 10 is formed from the second main surface PS2 of the metal porous film 10 to the first main surface PS1 with respect to the metal porous film 10 capturing the separation target 50.
  • a fluid 71 comprising a plurality of particles 70 larger than the size of That is, in step ST12, the metal porous film 10 having captured the separation target 50 is backwashed by the fluid 71 containing the plurality of particles 70.
  • the backwashing device 40 is attached to the second flow passage port 26a of the holder 20.
  • the backwashing apparatus 40 presses the fluid 71 containing the plurality of particles 70 in the direction 61 from the second major surface PS2 of the porous film 10 made of metal to the first major surface PS1.
  • the fluid 71 from the backwashing device 40 is supplied to the porous metal membrane 10 through the first flow path 24 of the first holding member 21 of the holder 20.
  • a recovery device for recovering the separation target 50 is attached to the first flow path port 24a of the holder 20.
  • the recovery device recovers the separation target 50 separated from the metal porous membrane 10 by being backwashed by the backwash device 40.
  • the recovery device may, for example, be a container.
  • step ST13 the plurality of particles 70 are captured on the second main surface PS2 of the metal porous film 10. Specifically, the plurality of particles 70 are captured in the plurality of through holes 13 of the film portion 11 of the metal porous film 10 by the supply of the fluid 71 in step ST12.
  • Step ST13 will be described in detail with reference to FIGS. 7A to 7D.
  • 7A to 7D are schematic views showing an example of steps of the separation and recovery method of the first embodiment according to the present invention.
  • 7A to 7D show schematic views in which a part of the metal porous film 10 is enlarged.
  • separation objects 50a, 50b, 50c, and 50d are captured by the first main surface PS1 of the metal porous film 10 at the start of the backwashing. That is, at the start of the backwashing, the through holes 13 are blocked by the separation objects 50a, 50b, 50c, and 50d. Therefore, when the fluid 71 containing the plurality of particles 70 is supplied by the backwashing device 40, the direction from the second main surface PS2 to the first main surface PS1 is provided on the second main surface PS2 side of the porous film 10 made of metal. Pressure 80 is generated.
  • the manner in which the objects to be separated 50a, 50b, 50c, and 50d dive into the through holes 13 is not uniform, but different from each other.
  • FIG. 7A is an example, the intruding into the through hole 13 is shallower in the separated objects 50b and 50d than in the separated objects 50a and 50c.
  • the backwashing fluid 71 passes through the through holes 13 from which the separation objects 50b and 50d are removed, and the It will flow to the 1 main surface PS1 side (see arrow 61 shown in FIG. 7B).
  • the pressure 80 applied to the second main surface PS2 side of the metal porous film 10 decreases, and the separation objects 50a and 50c remaining in the metal porous film 10 are penetrated. The force pushing out of the hole 13 is reduced. For this reason, when the backwashing proceeds, it becomes difficult to separate the separation target objects 50a and 50c from the through holes 13.
  • the particles 70 are captured on the second main surface PS2 side of the porous film 10 made of metal in the through holes 13 from which the separation objects 50b and 50d have been removed. That is, the through holes 13 from which the separation objects 50b and 50d have been removed are closed by the particles 70. Thereby, the fluid 71 can be inhibited from passing through the through hole 13, and the pressure 80 applied to the second main surface PS2 side of the porous film 10 made of metal can be increased.
  • the four corners of the through holes 13 may not be blocked by the particles 70 as long as the spherical particles 70 are fitted in the through holes 13.
  • the separation object 50 is separated and recovered using the metal porous membrane 10.
  • the recovery rate of the separation target 50 can be improved as compared with the case of separation and recovery using the membrane filter.
  • the through holes 13 of the metal porous film 10 communicate with each other through a wall surface in which the opening on the first main surface PS1 side of the film portion 11 and the opening on the second main surface PS2 are continuous.
  • the opening on the first main surface PS1 side of the film portion 11 is provided so as to be projectable on the opening on the second main surface PS2 side.
  • the metal porous membrane 10 can be designed thinner than the thickness of the membrane filter.
  • the thickness of the metal porous film 10 can be designed to be thinner than one side D of the through hole 13. Such a configuration can reduce the pressure loss because the fluid can easily pass as compared with the membrane filter.
  • the pressure loss at the time of fluid passage can be reduced in the metal porous film 10, when the fluid 51 including the separation object 50 is pressed by passing through the metal porous film 10, the pressing force Can be made smaller. As a result, it is possible to suppress deep penetration of the separation target 50 into the through hole 13, and therefore, the separation target 50 can be easily peeled off from the metal porous film 10 at the time of backwashing.
  • Recovery of the separation target 50 is performed by backwashing the metal porous film 10 using a fluid 71 containing a plurality of particles 70 larger than the size of the through holes 13 of the metal porous film 10.
  • the particles 70 are captured in the through holes 13 from which the separation target 50 is extruded.
  • the through holes 13 from which the separation object 50 has been removed can be closed by the particles 70, and the reduction of the pressure 80 applied to the second main surface PS2 side of the metal porous film 10 can be suppressed. .
  • the separation target 50 that has entered the through hole 13 can be pushed out from the through hole 13, so that the recovery rate of the separation target 50 can be improved.
  • the particles 70 are preferably larger than the dimension (one side D of a square) of the through holes 13 of the metal porous film 10 and smaller than the hole pitch P.
  • the through holes 13 can be closed from the side of the second main surface PS2 of the metal porous film 10 without the plurality of particles 70 interfering with each other at the time of backwashing.
  • particles 70 captured in adjacent through holes 13 can be spaced apart from one another to close through holes 13.
  • the through holes 13 from which the separation object 50 has been removed can be efficiently blocked by the particles 70, so that the pressure 80 applied to the second main surface PS2 side of the metal porous film 10 can be reduced. It can be efficiently suppressed. For this reason, the separation target 50 that has entered the through hole 13 can be easily pushed out from the through hole 13, and the recovery rate of the separation target 50 can be improved.
  • the number of particles 70 is greater than the number of through holes 13 of the metal porous film 10. With such a configuration, the through holes 13 of the metal porous film 10 can be easily blocked by the particles 70. Thereby, at the time of backwashing, the reduction of the pressure 80 applied to the second main surface PS2 side of the metal porous film 10 is further suppressed, and the separation object 50 embedded in the through hole 13 is more easily pushed out from the through hole 13 be able to.
  • the shape of the particles 70 is spherical. With such a configuration, the second main surface PS2 of the metal porous film 10 is rolled, and the particles 70 are easily captured by the through holes 13. When the through holes 13 are square, even if the spherical particles 70 are captured by the through holes 13, gaps can be formed at the four corners without completely closing the through holes 13. Since the fluid 71 can be released from this gap, the pressure 80 applied to the second main surface PS2 side can be prevented from becoming too large and breaking the metal porous film 10. In addition, by suppressing the pressure 80 from becoming too large, it is possible to suppress that the separation object 50 is broken by the pressure 80.
  • the spherical particles 70 can correspond to various shapes of the through holes 13 of the metal porous film 10. For example, even if the shape of the through hole 13 is a shape other than a square, the spherical particle 70 has little variation in the state in which the through hole 13 is closed, and can close the through hole 13 without deviation.
  • the shape of the through hole 13 is square has been described, but the present invention is not limited to this.
  • the shape of the through hole 13 may be, for example, a circle, an ellipse, a polygon, a rectangle, or the like.
  • FIG. 8 is an enlarged cross-sectional view of a part of the membrane portion 11a of the metal porous membrane 10a of the modification of the separation and recovery system 1 according to the first embodiment of the present invention.
  • the film part 11a may be comprised by the filter base
  • the through holes 13a may have a circular shape.
  • the through holes 13 a have, for example, a diameter D and a hole pitch P.
  • the hole pitch P of the circular through holes 13a means the distance between the center of an arbitrary through hole 13a and the center of the adjacent through hole 13a.
  • the circular through holes 13 a are more easily blocked by the spherical particles 70 than the square through holes 13. Further, the circular through hole 13a can be made smaller in gap than the square through hole 13a in a state of being closed by the particles 70. Therefore, by making the shape of the through holes 13a circular, it is possible to further suppress the reduction of the pressure 80 applied to the second main surface PS2 side of the metal porous film 10a. As a result, the separation target 50 can be more easily pushed out of the through hole 13 a, and the recovery rate of the separation target 50 can be further improved.
  • the particles 70 may have any shape that can be captured by the through holes 13.
  • the cross-sectional shape of the particle 70 may be different from the shape of the through hole 13.
  • the fluid 71 is supplied to the metal porous film 10 by pressing the fluid 71 containing the plurality of particles 70 during the backwash, but the invention is limited thereto. I will not.
  • the backwashing apparatus 40 sets the pressure on the second main surface PS2 side of the metal porous film 10 to be greater than the pressure on the first main surface PS1 side, so that the first back surface PS2 of the metal porous film 10
  • the fluid 71 containing the plurality of particles 70 may be supplied in the direction 61 toward the main surface PS1.
  • the fluid 71 containing the plurality of particles 70 may be supplied to the porous metal membrane 10 by suction or other methods. Also in such a configuration, the recovery rate of the separation target 50 can be improved.
  • Embodiment 1 in the holder 20, the example in which the metal porous film 10 is held by the first holding member 21 and the second holding member 22 has been described, but the present invention is not limited thereto.
  • the first holding member 21 and the second holding member 22 may be integrally formed.
  • Embodiment 1 described an example in which the separation and recovery system 1 includes the metal porous film 10, the holder 20, the supply device 30, and the backwash device 40
  • the present invention is not limited to this.
  • the components may be added or reduced depending on the environment or situation to which the separation and recovery system 1 is applied.
  • the separation and recovery system 1 may be a system that does not include the holder 20 and includes the metal porous membrane 10, the supply device 30, and the backwash device 40.
  • the metal porous membrane 10 may be used as a backwashing system including the metal porous membrane 10, the holder 20, and the backwashing device 40 without including the supply device 30.
  • Example 1 the separation and recovery experiment of the separation target 50 was performed using the separation and recovery system 1 of the first embodiment.
  • the separation target 50 is HL-60 (Human promyelocytic leukemia cells) cells, and the fluid 51 is a solvent (PBS (Phosphate Buffered Saline)).
  • PBS Phosphate Buffered Saline
  • the metal porous film 10 a metal mesh having a film portion 11 with a diameter of 6 mm and having a square through hole 13 was used. The dimension (one side D) of the through hole 13 is 2.5 ⁇ m, and the hole pitch P of the through hole 13 is 3.6 ⁇ m.
  • a disposable syringe manufactured by Terumo Corp. and a syringe pump “YSP-201” manufactured by YMC Co., Ltd. were used.
  • the particles 70 silica spherical particles with a particle diameter of 3 ⁇ m manufactured by Core Front Co., Ltd. were used.
  • a solvent (PBS) was used as the fluid 51.
  • Subculture of HL-60 cells was carried out for 7 days after seeding in a CO 2 incubator. After culture, the medium containing HL-60 cells was centrifuged with a centrifugal force of about 100 G to sediment HL-60 cells, then the supernatant medium was discarded and the solvent was replaced with PBS. Measure the number of cells in the HL-60 cell solution after PBS replacement with a cell counter, and adjust the cell number concentration in the solution with PBS to obtain a standard cell number concentration of 3 ⁇ 10 6 [cells / mL]. I got a liquid.
  • the standard solution was diluted with PBS to obtain a cell number concentration of 1.5 ⁇ 10 4 [cells / mL] (10 mL of the test solution (total cell number in solution: 1.5 ⁇ 10 5 )), Terumo (strain) Placed in a manufactured disposable syringe. Then, using a syringe pump “YSP-201” manufactured by YMC Co., Ltd., the test solution is applied to the porous metal membrane 10 at a flow rate of 0.006 [m / sec] (flow rate of 10 [mL / min]). I let it pass. Thus, HL-60 cells in the solution were trapped on the first major surface PS1 of the porous film 10 made of metal.
  • the metal porous membrane 10 is taken out, the luminescence amount [cps] is measured by the ATP assay device, and the HL-60 cells trapped on the first main surface PS1 of the metal porous membrane 10 from the above calibration curve. It was found that the number was 1.36 ⁇ 10 5 .
  • the metal porous membrane 10 capturing the HL-60 cells was reversely selected by the backwashing apparatus 40, and then the number of HL-60 cells remaining on the first main surface PS1 of the metal porous membrane 10 was calculated. .
  • Example 1 As Comparative Example 1, HL-60 cells left on the first main surface PS1 of the metal porous film 10 in the case of backwashing using a fluid not containing the particles 70 The number was also calculated.
  • Example 1 the solvent is replaced with PBS by centrifugation using a silica spherical particle aqueous solution with a particle diameter of 3 ⁇ m manufactured by Corefront Co., Ltd., and then the particle number concentration is 8 ⁇ 10 4 [particles / in PBS]. It adjusted to become mL]. 10 mL of the silica particle solution after concentration adjustment is put in a disposable syringe manufactured by Terumo Corporation (the number of silica particles in the solution is 8 ⁇ 10 5 ), the flow rate 0.006 [m / sec] (flow rate 10 [mL / mL] At this time, the silica particle solution was allowed to pass through the porous metal membrane 10. Thereby, backwashing of the HL-60 cells trapped on the first major surface PS1 of the porous film 10 was performed.
  • the backwashed metal porous membrane 10 is removed from the holder 20, and the backwashed metal of Example 1 is contained in a solution of 0.5 mL each of the ATP assay reagent "CA50" and PBS mixed in 24 wells.
  • the porous film 10 was immersed, and the reagent reaction was performed under the same conditions as described above. After the reaction, the metal porous film 10 is taken out, the amount of luminescence [cps] is measured by the ATP assay device, and the first main surface PS1 of the metal porous film 10 after backwashing in Example 1 is measured from the above calibration curve. The number of remaining HL-60 cells was determined.
  • Comparative Example 1 10 mL of PBS is put into a disposable syringe manufactured by Terumo Corporation as a fluid for backwashing, and a syringe pump “YSP-201” manufactured by YMC Co., Ltd. is used to set a flow rate of 0.006 [ PBS was allowed to pass through the metal porous membrane 10 at a flow rate of 10 [mL / min]. Thereby, backwashing of the HL-60 cells trapped on the first major surface PS1 of the porous film 10 was performed.
  • the metal porous membrane 10 which has been backwashed is removed from the holder 20, and the metal of backwashed in Comparative Example 1 is mixed in a solution in which 0.5 mL each of ATP assay reagent "CA50" and PBS are mixed in 24 wells.
  • the porous film 10 was immersed, and the reagent reaction was performed under the same conditions as described above. After the reaction, the metal porous film 10 is taken out, the luminescence amount [cps] is measured by the ATP assay device, and the first main surface PS1 of the metal porous film 10 after backwashing in Comparative Example 1 is measured from the above calibration curve. The number of remaining HL-60 cells was determined.
  • Example 1 The experimental results of Example 1 and Comparative Example 1 are shown in Table 1.
  • Example 1 the number of HL-60 cells remaining in the metal porous film 10 after backwashing is 0.78 ⁇ 10 4 in Example 1 and 3.2 ⁇ 10 4 in Comparative Example 1. Met. Based on the fact that the number of HL-60 cells trapped in the metal porous membrane 10 before backwashing was 1.36 ⁇ 10 5 , the number of HL-60 cells in Example 1 was 1.282 ⁇ 10 5 in comparison. In Example 1, it can be seen that 1.04 ⁇ 10 5 HL-60 cells are recovered. The recovery rate is calculated to be 94.3% in Example 1 and 76.4% in Comparative Example 1. Thus, it was confirmed that the recovery rate was improved in Example 1 as compared with Comparative Example 1.
  • Example 1 and Comparative Example 1 the photograph of metal porous film 10 before and behind backwashing was image
  • FIG. 9A is an enlarged photograph of the metal porous film 10 before back washing taken from the first main surface PS1 side.
  • FIG. 9B is an enlarged photograph of the metal porous film 10 before back washing taken from the second main surface PS2 side.
  • HL-60 cells which are the separation target 50 are captured.
  • FIG. 9B it is possible to observe HL-60 cells embedded in the through holes 13 from the second main surface PS2 side of the porous film 10 made of metal.
  • FIG. 10A is an enlarged photograph taken from the first main surface PS1 side of the metal porous film 10 after backwashing in Example 1.
  • FIG. 10B is an enlarged photograph taken from the second main surface PS2 side of the metal porous film 10 after backwashing in Example 1.
  • FIG. 10A in Example 1, it can be seen that almost no HL-60 cells remain on the first major surface PS1 of the metal porous film 10 after backwashing.
  • FIG. 10B in Example 1, the silica particles which are the particles 70 are trapped on the second main surface PS2 of the metal porous film 10 after the backwashing.
  • Example 1 it can be seen that the HL-60 cells captured by the metal porous film 10 are exfoliated from the first major surface PS1 and recovered.
  • FIG. 11A is an enlarged photograph taken from the first main surface PS1 side of the metal porous film 10 after backwashing in Comparative Example 1.
  • 11B is an enlarged photograph taken from the second main surface PS2 side of the metal porous film 10 after backwashing in Comparative Example 1.
  • FIG. 11A and 11B in Comparative Example 1, HL-60 cells partially remain in the metal porous membrane 10 after backwashing, and a part of the HL-60 cells can be recovered. I understand that there is not.
  • Example 2-4 the experiment similar to Example 1 was conducted by using the concentration of particles 70 as a parameter.
  • Example 2-4 Silica solution of Example 2-4, respectively, the silica particle concentration 2.0 ⁇ 10 5 [number /mL],3.0 ⁇ 10 5 [number /mL],4.0 ⁇ 10 5 [pieces / mL]
  • the experiment was performed using The experimental results of Example 5-7 are shown in Table 2.
  • Table 2 also shows, as a reference, experimental results of the silica particle concentration of 8.0 ⁇ 10 4 [particles / mL] in Example 1.
  • the coating rate exceeds 100%, the pressure applied to the metal porous film 10 at the time of backwashing becomes large, and the metal porous film 10 may be damaged.
  • the coating ratio is preferably 1% or more and 100% or less. More preferably, it is 10% or more and 100% or less.
  • Example 5-7 an experiment similar to Example 1 was conducted, using the flow velocity of the fluid 71 at the time of backwashing as a parameter. Specifically, in Examples 8-10, experiments were performed at flow rates of 0.003 [m / sec], 0.012 [m / sec], and 0.018 [m / sec] of the silica particle solution, respectively. The The experimental results of Example 5-7 are shown in Table 3. Table 3 also shows, as a reference, the experimental results of the flow velocity 0.006 [m / sec] of the fluid 71 of the first embodiment.
  • FIG. 12 is a graph showing the relationship between the flow rate of fluid at the time of backwashing and the recovery rate in Examples 1 and 5-7. As shown in Table 3 and FIG. 12, it can be confirmed that the recovery rate increases as the flow rate of the silica particle solution at the time of backwashing is increased in the order of Examples 5, 1, 6, 7 . In addition, it can be seen that the slope of the graph is largely changed when the flow velocity of the silica particle solution during backwashing is 0.006 m / sec. From this, it was found that the flow rate of the silica particle solution at the time of backwashing is preferably 0.006 [m / sec] or more.
  • the separation and recovery system and the separation and recovery method of the present invention are useful for applications such as cell sorting, cell preparation, cell screening, and in-situ diagnosis / rapid diagnosis of bacteria and viruses.

Abstract

分離対象物の回収率を向上させる。本発明の分離回収システム(1)は、流体(51)中の分離対象物(50)を分離して回収するシステムであって、第1主面(PS1)及び前記第1主面に対向する第2主面(PS2)を有すると共に、複数の貫通孔(13)を有する金属製多孔膜(10)と、前記金属製多孔膜の前記第1主面から前記第2主面に向かって前記分離対象物を含む流体を供給する供給装置(30)と、前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子(70)を含む流体(71)を供給する逆洗装置(40)と、を備える。

Description

分離回収システム及び分離回収方法
 本発明は、分離回収システム及び分離回収方法に関する。
 特許文献1には、メンブレンフィルターを用いて液体中の細胞を捕捉し、逆洗することによって、メンブレンフィルターに捕捉された細胞を回収する方法が開示されている。
特開2009-136246号公報
 しかしながら、特許文献1の回収方法では、分離対象物の回収率の向上といった点で、未だ改善の余地がある。
 本発明は、分離対象物の回収率を向上させることができる分離回収システム及び分離回収方法を提供することを目的とする。
 本発明の一態様の分離回収システムは、
 流体中の分離対象物を分離して回収するシステムであって、
 第1主面及び前記第1主面に対向する第2主面を有すると共に、複数の貫通孔を有する金属製多孔膜と、
 前記金属製多孔膜の前記第1主面から前記第2主面に向かって前記分離対象物を含む流体を供給する供給装置と、
 前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給する逆洗装置と、
を備える。
 本発明の一態様の分離回収方法は、
 流体中の分離対象物を分離して回収する方法であって、
 複数の貫通孔を有する金属製多孔膜の第1主面から前記第1主面に対向する第2主面に向かって前記分離対象物を含む流体を供給することによって、前記金属製多孔膜の第1主面に前記分離対象物を捕捉するステップ、
 前記分離対象物を捕捉した前記金属製多孔膜に対して、前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給するステップ、
 前記金属製多孔膜の前記第2主面に前記複数の粒子を捕捉するステップ、
を含む。
 本発明によれば、分離対象物の回収率を向上させることができる分離回収システム及び分離回収方法を提供することができる。
本発明に係る実施の形態1の分離回収システムの一例の概略ブロック図である。 本発明に係る実施の形態1の分離回収システムにおける金属製多孔膜の一例の概略構成図である。 図2に示す金属製多孔膜の膜部の一部の拡大斜視図である。 図3に示す金属製多孔膜の膜部の一部を厚み方向から見た概略図である。 本発明に係る実施の形態1の分離回収システムの一例の概略構成図である。 本発明に係る実施の形態1の分離回収システムの一例の概略構成図である。 本発明に係る実施の形態1の分離回収方法のフローチャートの一例である。 本発明に係る実施の形態1の分離回収方法の工程の一例を示す概略図である。 本発明に係る実施の形態1の分離回収方法の工程の一例を示す概略図である。 本発明に係る実施の形態1の分離回収方法の工程の一例を示す概略図である。 本発明に係る実施の形態1の分離回収方法の工程の一例を示す概略図である。 本発明に係る実施の形態1の分離回収システムにおける変形例の金属製多孔膜の一部の拡大断面図である。 逆洗前における金属製多孔膜を第1主面側から撮影した拡大写真である。 逆洗前における金属製多孔膜を第2主面側から撮影した拡大写真である。 実施例1の逆洗した後の金属製多孔膜の第1主面側から撮影した拡大写真である。 実施例1の逆洗した後の金属製多孔膜の第2主面側から撮影した拡大写真である。 比較例1の逆洗後の金属製多孔膜の第1主面側から撮影した拡大写真である。 比較例1の逆洗後の金属製多孔膜の第2主面側から撮影した拡大写真である。 実施例1及び5-7における逆洗時の流体の流速と回収率との関係を示すグラフである。
(本発明に至った経緯)
 流体中の分離対象物の分離回収方法として、メンブレンフィルターを用いた分離回収方法が知られている。メンブレンフィルターを用いた分離回収方法では、流体中の分離対象物をメンブレンフィルターで捕捉し、逆洗することによって分離対象物を回収している。
 メンブレンフィルターは、3次元的に異なる方向に複数の貫通孔が形成された構造を有している。即ち、メンブレンフィルターにおいて、複数の貫通孔は、フィルタの厚み方向に真っ直ぐに規則的に形成されていない。このため、メンブレンフィルターでは、流体が貫通孔を通過し難く、流体通過時の圧力損失が大きくなる。
 このようなメンブレンフィルターにおいては、分離対象物を流体中から分離するために、例えば、流体をメンブレンフィルターに押圧することによって、流体をメンブレンフィルターに通過させている。押圧により流体をメンブレンフィルターに通過させる場合、圧力損失に応じて押圧力を大きくする必要がある。分離対象物が細胞又は細菌等の変形しやすいものである場合、押圧力を大きくすると、分離対象物が変形して貫通孔を通過してしまったり、貫通孔内に潜り込み、逆洗による分離対象物の回収が困難になることがある。
 このように、メンブレンフィルターを用いた分離対象物の分離回収方法では、回収率を向上させることが困難である。そこで、本発明者らは、金属製多孔膜を用いて流体中の分離対象物を分離回収することを見出した。
 金属製多孔膜においては、複数の貫通孔が3次元的に同じ方向、即ち膜の厚み方向に真っ直ぐに規則的に形成されている。また、金属製多孔膜の厚さは、メンブレンフィルターの厚さに比べて薄い。このため、金属製多孔膜は、メンブレンフィルターに比べて、流体通過時の圧力損失を小さくすることができ、流体の押圧力を小さくすることができるという利点がある。また、金属製多孔膜は、メンブレンフィルターに比べて、逆洗による分離対象物の回収が容易であるという利点がある。
 しかしながら、金属製多孔膜を用いた分離回収方法においても、回収率の向上といった点で未だ改善の余地がある。
 金属製多孔膜において分離対象物を逆洗により回収する場合、逆洗が進んで貫通孔から分離対象物が取り除かれると、逆洗用の流体は、分離対象物が取り除かれた貫通孔を流れるようになるため、金属製多孔膜に残っている分離対象物を剥離させる力が小さくなる。このため、逆洗が進むと、金属製多孔膜から分離対象物を剥離させることが難しくなり、分離対象物を回収することが困難になる。これは、本発明者らが新たに見出した課題である。
 そこで、本発明者らは、この課題を解決すべく、金属製多孔膜の貫通孔より大きい複数の粒子を含む流体を用いて金属製多孔膜を逆洗することによって、回収率を向上させることができることを見出し、本発明に至った。
 本発明の一態様の分離回収システムは、
 流体中の分離対象物を分離して回収するシステムであって、
 第1主面及び前記第1主面に対向する第2主面を有すると共に、複数の貫通孔を有する金属製多孔膜と、
 前記金属製多孔膜の前記第1主面から前記第2主面に向かって前記分離対象物を含む流体を供給する供給装置と、
 前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給する逆洗装置と、
を備える。
 このような構成により、分離対象物の回収率を向上させることができる。
 前記分離回収システムにおいて、前記逆洗装置は、前記金属製多孔膜の前記第2主面側の圧力を前記第1主面側の圧力よりも大きくすることによって、前記金属製多孔膜の前記第2主面から前記第1主面に向かう方向に前記分離対象物を含む流体を供給してもよい。
 このような構成により、金属製多孔膜の第2主面側と第1主面側の圧力差によって、分離対象物を金属製多孔膜から剥離させ、分離対象物を容易に回収することができる。これにより、回収率を更に向上させることができる。
 前記分離回収システムにおいて、前記複数の粒子は、前記金属製多孔膜の前記複数の貫通孔の孔ピッチより小さくてもよい。
 このような構成により、粒子が貫通孔に捕捉され易くなる。これにより、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収システムにおいて、前記複数の粒子の数は、前記金属製多孔膜の前記複数の貫通孔の数よりも多くてもよい。
 このような構成により、粒子が貫通孔に捕捉されやすくなる。これにより、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収システムにおいて、前記複数の粒子のそれぞれの形状は、球状であってもよい。
 このような構成により、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収システムにおいて、前記金属製多孔膜の前記複数の貫通孔のそれぞれの形状は、前記金属製多孔膜の厚み方向から見て円形であってもよい。
 このような構成により、分離対象物を金属製多孔膜からより容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記複数の粒子のそれぞれの断面形状は、前記金属製多孔膜の貫通孔の形状と異なっていてもよい。
 このような構成により、金属製多孔膜にかかる圧力を低減しつつ、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 本発明の一態様の分離回収方法は、
 流体中の分離対象物を分離して回収する方法であって、
 複数の貫通孔を有する金属製多孔膜の第1主面から前記第1主面に対向する第2主面に向かって前記分離対象物を含む流体を供給することによって、前記金属製多孔膜の第1主面に前記分離対象物を捕捉するステップ、
 前記分離対象物を捕捉した前記金属製多孔膜に対して、前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給するステップ、
 前記金属製多孔膜の前記第2主面に前記複数の粒子を捕捉するステップ、
を含む。
 このような構成により、分離対象物の回収率を向上させることができる。
 前記分離回収方法において、前記複数の粒子を含む流体を供給するステップは、前記金属製多孔膜の前記第2主面側の圧力を前記第1主面側の圧力よりも大きくすることによって、前記金属製多孔膜の前記第2主面から前記第1主面に向かう方向に前記分離対象物を含む流体を供給すること、を含んでもよい。
 このような構成により、金属製多孔膜の第2主面側と第1主面側の圧力差によって、分離対象物を金属製多孔膜から剥離させ、分離対象物を容易に回収することができる。これにより、回収率を更に向上させることができる。
 前記分離回収方法において、前記複数の粒子は、前記金属製多孔膜の前記複数の貫通孔の孔ピッチより小さくてもよい。
 このような構成により、粒子が貫通孔に捕捉され易くなる。これにより、分離対象物を金属製多孔膜から容易に離脱させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収方法において、前記複数の粒子の数は、前記金属製多孔膜の前記複数の貫通孔の数よりも多くてもよい。
 このような構成により、粒子が貫通孔に捕捉され易くなる。これにより、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収方法において、前記複数の粒子のそれぞれの形状は、球状であってもよい。
 このような構成により、分離対象物を金属製多孔膜からより容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収方法において、前記金属製多孔膜の前記複数の貫通孔のそれぞれの形状は、前記金属製多孔膜の厚み方向から見て円形であってもよい。
 このような構成により、分離対象物を金属製多孔膜からより容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 前記分離回収方法において、前記複数の粒子のそれぞれの断面形状は、前記金属製多孔膜の貫通孔の形状と異なっていてもよい。
 このような構成により、金属製多孔膜にかかる圧力を低減しつつ、分離対象物を金属製多孔膜から容易に剥離させることができ、分離対象物の回収率を更に向上させることができる。
 以下、本発明に係る実施の形態1について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
(実施の形態1)
[分離回収システム]
 図1は、本発明に係る実施の形態1の分離回収システム1の一例の概略ブロック図である。図1に示すように、分離回収システム1は、金属製多孔膜10、保持具20、供給装置30、及び逆洗装置40を備える。実施の形態1では、金属製多孔膜10は、保持具20に保持されている。また、供給装置30及び逆洗装置40は、保持具20に着脱可能に接続される。
 なお、実施の形態1では、分離回収システム1が保持具20を備える例を説明するが、これに限定されない。分離回収システム1において、保持具20は、システムの利便性を考慮して備えられるものであり、必須の構成ではない。
 本明細書において、「分離対象物」とは、流体中から分離される対象物を意味する。分離対象物としては、例えば、細胞、細菌、ウィルス等の生物に由来する対象物を含む。細胞としては、例えば、卵、精子、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、酵母などを含む。細菌としては、例えば、グラム陽性菌、グラム陰性菌、大腸菌、ブドウ球菌、結核菌などを含む。ウィルスとしては、例えば、DNAウィルス、RNAウィルス、ロタウィルス、(鳥)インフルエンザウィルス、黄熱病ウィルス、デング熱病ウィルス、脳炎ウィルス、出血熱ウィルス、免疫不全ウィルスなどを含む。なお、分離対象物は、セラミック粒子、バインダー粒子、エアロゾル等の無機物、有機物、又は金属であってもよい。
 なお、本明細書において、「流体」とは、液体又は気体を意味する。
<金属製多孔膜>
 図2は、本発明に係る実施の形態1の分離回収システム1における金属製多孔膜10の一例の概略構成図である。図2中のX、Y、Z方向は、それぞれ金属製多孔膜10の縦方向、横方向、厚み方向を示している。図2に示すように、金属製多孔膜10は、膜部11と、膜部11の外周に設けられた枠部12と、を備える。
 金属製多孔膜10は、枠部12で保持具20によって保持され、膜部11で流体中の分離対象物を捕捉する板状構造体である。実施の形態1において、金属製多孔膜10の外形は、例えば、Z方向から見て、円形に形成されている。なお、金属製多孔膜10の外形は、円形に限定されることなく、正方形、長方形、多角形、又は楕円形などであってもよい。
 膜部11は、複数の貫通孔13が形成されたフィルター基体部14で形成されている。図3は、図2に示す金属製多孔膜10の膜部11の一部の拡大斜視図である。図4は、図3に示す金属製多孔膜10の膜部11の一部を厚み方向から見た概略図である。図3及び図4に示すように、膜部11は、互いに対向する第1主面PS1と第2主面PS2とを有している。複数の貫通孔13は、第1主面PS1と第2主面PS2とを貫通して形成されると共に、周期的に形成されている。具体的には、複数の貫通孔13は、膜部11においてマトリクス状に等間隔で形成されている。
 実施の形態1では、図4に示すように、貫通孔13は、膜部11の第1主面PS1側、即ちZ方向から見て、一辺Dの正方形の形状を有する。貫通孔13の一辺Dは、分離する分離対象物の大きさ、形態、性質、弾性又は量に応じて適宜設計される。また、貫通孔13の孔ピッチPについても、分離する分離対象物の大きさ、形態、性質、弾性又は量に応じて適宜設計される。ここで、正方形の貫通孔13の孔ピッチPとは、膜部11の第1主面PS1側から見て、任意の貫通孔13の一辺と、隣接する貫通孔13の一辺との間の距離を意味する。
 例えば、膜部11の開口率は、5%以上であり、好ましくは開口率は、45%以上である。このような構成により、膜部11に対する流体の通過抵抗を低減することができる。なお、開口率とは、(貫通孔13が占める面積)/(貫通孔13が空いていないと仮定したときの膜部11における第1主面PS1の投影面積)で計算される。
 膜部11の厚みは、貫通孔13の大きさ(一辺D)の0.01倍より大きく10倍以下が好ましい。より好ましくは、膜部11の厚みは、貫通孔13の大きさ(一辺D)の0.05倍より大きく7倍以下である。このような構成により、流体に対する膜部11の抵抗を低減することができ、処理時間を短くすることができる。
 図4に示すように、貫通孔13は、第1主面PS1側の開口と第2主面PS2側の開口とが連続した壁面を通じて連通している。具体的には、貫通孔13は、第1主面PS1側の開口が第2主面PS2側の開口に投影可能に形成されている。即ち、膜部11を第1主面PS1側から見た場合に、貫通孔13は、第1主面PS1側の開口が第2主面PS2側の開口と重なるように設けられている。実施の形態1において、貫通孔13は、その内壁が第1主面PS1及び第2主面PS2に対して概ね垂直となるように設けられている。
 実施の形態1では、膜部11の第1主面PS1に対して垂直な面に投影した貫通孔13の形状(断面形状)は、長方形である。具体的には、貫通孔13の断面形状は、膜部11の径方向の一辺の長さが膜部11の厚み方向の一辺の長さより長い長方形である。なお、貫通孔13の断面形状は、長方形に限定されず、例えば、平行四辺形又は台形等であってもよい。
 実施の形態1では、複数の貫通孔13は、膜部11の第1主面PS1側(Z方向)から見て正方形の各辺と平行な2つの配列方向、即ち図4中のX方向とY方向に等しい間隔で形成されている。このように、複数の貫通孔13を正方格子配列で設けることによって、開口率を高めることが可能であり、膜部11に対する流体の通過抵抗(圧力損失)を低減することができる。
 なお、複数の貫通孔13の配列は、正方格子配列に限定されず、例えば、準周期配列、又は周期配列であってもよい。周期配列の例としては、方形配列であれば、2つの配列方向の間隔が等しくない長方形配列でもよく、三角格子配列又は正三角格子配列などであってもよい。なお、貫通孔13は、膜部11に複数形成されていればよく、配列は限定されない。
 膜部11の基体部分を形成するフィルター基体部14を構成する材料は、金属及び/又は金属酸化物を主成分としている。フィルター基体部14を構成する材料としては、例えば、金、銀、銅、白金、ニッケル、パラジウム、これらの合金及びこれらの酸化物であってもよい。
 枠部12は、膜部11の外周に設けられており、膜部11の第1主面PS1側から見て、リング状に形成されている。枠部12は、金属製多孔膜10において貫通孔13が設けられていない部分である。枠部12の厚みは、膜部11の厚みよりも厚くてもよい。このような構成により、金属製多孔膜10の機械強度を高めることができる。
<保持具>
 保持具20は、金属製多孔膜10を保持する共に、供給装置30及び逆洗装置40と着脱可能に取り付けられる部材である。
 図5A及び図5Bは、本発明に係る実施の形態1の分離回収システムの一例の概略構成図である。図5Aは、保持具20に供給装置30が取り付けられた概略構成を示す。図5Bは、保持具20に逆洗装置40が取り付けられた概略構成を示す。
 図5A及び図5Bに示すように、保持具20は、第1保持部材21と、第2保持部材22とを備える。第1保持部材21と第2保持部材22とは、金属製多孔膜10の枠部12を金属製多孔膜10の厚み方向に挟持することによって、金属製多孔膜10を保持具20の内部に保持する。
 第1保持部材21は、略円筒形に形成されており、内部に金属製多孔膜10が配置される第1凹部23と、金属製多孔膜10の第1主面PS1に対向するように設けられた第1流路24と、を備える。実施の形態1では、第1凹部23は、第1保持部材21の底部において、第1保持部材21の下面から上面に向かって円柱状に窪んでいる。第1流路24は、第1凹部23から第1保持部材21の上面に向かって延びるように設けられている。
 第2保持部材22は、略円筒形に形成されており、内部に金属製多孔膜10が配置される第2凹部25と、金属製多孔膜10の第2主面PS2に対向するように設けられた第2流路26と、を備える。実施の形態1では、第2凹部25は、第2保持部材22の上面において、第2保持部材22の上面から下面に向かって円柱状に窪んでいる。第2流路26は、第2凹部25から第2保持部材22の下面に向かって延びるように設けられている。
 第1保持部材21と第2保持部材22とが、金属製多孔膜10を挟んで互いに嵌合されることにより、第1凹部23と第2凹部25とで形成される空間S1に金属製多孔膜10が保持される。
 図5Aに示すように、保持具20の第1保持部材21には、供給装置30が取り付けられる。具体的には、第1保持部材21の第1流路24の第1流路口24aに、供給装置30が着脱可能に取り付けられる。
 図5Bに示すように、保持具20の第2保持部材22には、逆洗装置40が取り付けられる。具体的には、第2保持部材22の第2流路26の第2流路口26aに、逆洗装置40が着脱可能に取り付けられる。
 保持具20は、例えば、ガンマ滅菌又はオートクレーブ滅菌可能な材料で構成することができる。保持具20は、例えば、ポリエチレン、ポリエチレンテレフタレート、ポリウレタン、ポリスチレン、シリコンゴム、ABS樹脂、ポリアミド、ポリアミドイミド、ポリスルフォン、ポリカーボネート、ポリアセタール、天然ゴム、ラテックス、ウレタンゴム、シリコンゴム、エチレン酢酸ビニル、ポリエステル類、エポキシ類、フェノール類、シリカ、アルミナ、金、白金、ニッケル、ステンレス、チタン、などを含む材料で形成されていてもよい。
<供給装置>
 供給装置30は、分離対象物50を含む流体51を金属製多孔膜10に供給する装置である。供給装置30は、例えば、シリンジなどである。具体的には、供給装置30は、流体51を収容する外筒と、外筒の内部を移動可能なプランジャーと、を備える。図5Aに示すように、供給装置30は、保持具20の第1保持部材21の第1流路口24aに取り付けられる。
 供給装置30は、金属製多孔膜10の第1主面PS1から第2主面PS2に向かって、分離対象物50を含む流体51を供給する。供給装置30は、例えば、流体51を押圧することによって、金属製多孔膜10の第1主面PS1から第2主面PS2に向かう方向60に流体51を供給する。供給装置30からの流体51は、第1保持部材21の第1流路24を通って、金属製多孔膜10に供給される。これにより、貫通孔13より大きい分離対象物50を金属製多孔膜10に捕捉させる。
 なお、供給装置30は、吸引によって、金属製多孔膜10の第1主面PS1から第2主面PS2に向かう方向60に、分離対象物50を含む流体51を供給してもよい。
 供給装置30は、例えば、制御部などによって制御されることによって、流体51を金属製多孔膜10に供給する。
<逆洗装置>
 逆洗装置40は、複数の粒子70を含む流体71を金属製多孔膜10に供給して、分離対象物50を捕捉した金属製多孔膜10を逆洗する装置である。逆洗装置40は、例えば、シリンジなどである。具体的には、逆洗装置40は、流体71を収容する外筒と、外筒の内部を移動可能なプランジャーと、を備える。図5Bに示すように、逆洗装置40は、保持具20の第2保持部材22の第2流路口26aに取り付けられる。
 逆洗装置40は、金属製多孔膜10の第2主面PS2から第1主面PS1に向かって、複数の粒子70を含む流体71を供給する。逆洗装置40は、例えば、流体71を押圧することによって、金属製多孔膜10の第2主面PS2から第1主面PS1に向かう方向61に流体71を供給する。これにより、供給装置30からの流体71は、第2保持部材22の第2流路26を通って、金属製多孔膜10に供給される。
 実施の形態1では、逆洗装置40から供給される流体71の流速は、供給装置30から供給される流体51の流速よりも速いことが好ましい。
 逆洗装置40は、例えば、制御部などによって制御されることによって、流体71を金属製多孔膜10に供給する。
 なお、逆洗装置40は、吸引によって、金属製多孔膜10の第2主面PS2から第1主面PS1に向かう方向60に、複数の粒子70を含む流体71を供給してもよい。
 粒子70は、外部応力による変形が小さい材料で形成される。粒子70を構成する材料としては、例えば、シリカ、ラテックス、金属などが挙げられる。
 粒子70は、金属製多孔膜10の貫通孔13の寸法よりも大きい。ここで、金属製多孔膜10の貫通孔13の寸法とは、貫通孔13の開口を画定する辺のうち最も短い辺を意味する。例えば、貫通孔13の寸法は、Z方向から見て、貫通孔13の開口が、正方形である場合は一辺であり、長方形である場合は短辺である。また、貫通孔13の寸法は、Z方向から見て、貫通孔13の開口が、円形である場合は直径であり、楕円形である場合は短径である。実施の形態1では、貫通孔13の形状はZ方向から見て正方形であるため、貫通孔13の寸法は、図4に示す貫通孔13の一辺Dを意味する。例えば、貫通孔の寸法が1.8μmに対して、粒子は2μmまたは3μmとしたり、貫通孔の寸法が2.5μmに対して、粒子は3μmまたは4μmとすることができる。
 実施の形態1では、粒子70は、球形である。したがって、粒子70の直径は、貫通孔13の寸法(一辺D)よりも大きい。また、粒子70の粒径は、貫通孔13の孔ピッチPよりも小さいことが好ましい。流体71中に含まれる粒子70の数は、金属製多孔膜10の貫通孔13の数よりも多い。
 また、複数の粒子70は、均一な粒径で形成されている。なお、粒子70の粒径のばらつきが大きい場合、粒子70の粒径を均一にするためにフィルターを用いて分級してもよい。例えば、複数の貫通孔を有する金属製多孔膜を用いて、粒子70を分級してもよい。
 流体71は、逆洗用の流体である。流体71は、分離対象物50に損傷を与えない流体であればよい。流体71は、供給装置30から供給される流体51と同じ流体であってもよい。例えば、分離対象物50が細胞である場合、流体71は、細胞培養液などであってもよい。
[分離回収方法]
 本発明に係る実施の形態1の分離対象物の分離回収方法について、図6を用いて説明する。図6は、本発明に係る実施の形態1の分離回収方法のフローチャートの一例である。
 図6に示すように、ステップST11において、金属製多孔膜10の第1主面PS1から第2主面PS2に向かって分離対象物を含む流体51を供給する。これにより、流体51を金属製多孔膜10に通過させ、金属製多孔膜10の第1主面PS1に分離対象物50を捕捉する。
 具体的には、図5Aに示すように、保持具20の第1流路口24aに供給装置30を取り付ける。供給装置30は、複数の分離対象物50を含む流体51を金属製多孔膜10の第1主面PS1から第2主面PS2に向かう方向60に押圧する。これにより、供給装置30からの流体51が、保持具20の第1保持部材21の第1流路24を通って金属製多孔膜10に供給される。金属製多孔膜10においては、流体51が貫通孔13を通過していくと共に、貫通孔13よりも大きい分離対象物50が、金属製多孔膜10の第1主面PS1で捕捉される。
 金属製多孔膜10の第1主面PS1に分離対象物50を捕捉後、保持具20から供給装置30を取り外す。
 ステップST12において、分離対象物50を捕捉した金属製多孔膜10に対して、金属製多孔膜10の第2主面PS2から第1主面PS1に向かって、金属製多孔膜10の貫通孔13の寸法より大きい複数の粒子70を含む流体71を供給する。即ち、ステップST12においては、複数の粒子70を含む流体71によって、分離対象物50を捕捉した金属製多孔膜10を逆洗する。
 具体的には、図5Bに示すように、保持具20の第2流路口26aに逆洗装置40を取り付ける。逆洗装置40は、複数の粒子70を含む流体71を金属製多孔膜10の第2主面PS2から第1主面PS1に向かう方向61に押圧する。これにより、逆洗装置40からの流体71が、保持具20の第1保持部材21の第1流路24を通って金属製多孔膜10に供給される。
 なお、図5Bには図示していないが、実施の形態1では、保持具20の第1流路口24aに、分離対象物50を回収するための回収装置が取り付けられている。回収装置は、逆洗装置40により逆洗されることによって、金属製多孔膜10から剥離した分離対象物50を回収する。回収装置は、例えば、容器などが挙げられる。
 ステップST13において、金属製多孔膜10の第2主面PS2に複数の粒子70を捕捉する。具体的には、ステップST12による流体71の供給により、金属製多孔膜10の膜部11の複数の貫通孔13に、複数の粒子70を捕捉する。
 ステップST13について、図7A~図7Dを用いて詳細に説明する。図7A~図7Dは、本発明に係る実施の形態1の分離回収方法の工程の一例を示す概略図である。なお、図7A~図7Dは、金属製多孔膜10の一部を拡大した概略図を示している。
 図7Aに示すように、逆洗開始時において、分離対象物50a、50b、50c、50dが、金属製多孔膜10の第1主面PS1に捕捉されている。即ち、逆洗開始時においては、分離対象物50a、50b、50c、50dによって、貫通孔13が塞がれている。このため、逆洗装置40によって複数の粒子70を含む流体71が供給されると、金属製多孔膜10の第2主面PS2側に、第2主面PS2から第1主面PS1への方向に圧力80が発生する。
 ここで、分離対象物50a、50b、50c、50dの貫通孔13への潜り込み方は、一様ではなく、それぞれ異なっている。図7Aは一例であるが、分離対象物50b、50dは、分離対象物50a、50cと比べて、貫通孔13への潜り込みが浅くなっている。
 金属製多孔膜10の第2主面PS2側に圧力80がかかると、図7Bに示すように、貫通孔13への潜り込みが浅い分離対象物50b、50dが、貫通孔13から押し出され、金属製多孔膜10の第1主面PS1から剥離する。
 分離対象物50b、50dが貫通孔13から剥離して取り除かれると、逆洗用の流体71は、分離対象物50b、50dが取り除かれた貫通孔13を通って、金属製多孔膜10の第1主面PS1側へ流れるようになる(図7Bに示す矢印61参照)。流体71が貫通孔13を通過するようになると、金属製多孔膜10の第2主面PS2側にかかる圧力80が小さくなり、金属製多孔膜10に残っている分離対象物50a、50cを貫通孔13から押し出す力が小さくなる。このため、逆洗が進むと、分離対象物50a、50cを貫通孔13から剥離させることが困難になってくる。
 次に、図7Cに示すように、分離対象物50b、50dが取り除かれた貫通孔13において、金属製多孔膜10の第2主面PS2側で粒子70が捕捉される。即ち、分離対象物50b、50dが取り除かれた貫通孔13を粒子70によって塞ぐ。これにより、流体71が貫通孔13を通過するのを抑制することができ、金属製多孔膜10の第2主面PS2側にかかる圧力80を大きくすることができる。なお、正方形の貫通孔13においては、球状の粒子70が貫通孔13に嵌まった状態であればよく、貫通孔13の四隅は粒子70によって塞がれていなくてもよい。
 金属製多孔膜10の第2主面PS2側にかかる圧力80が大きくなると、分離対象物50a、50cを貫通孔13から押し出す力が大きくなる。これにより、図7Dに示すように、分離対象物50b、50dに比べて、貫通孔13に深く潜り込んでいた分離対象物50a、50cについても、金属製多孔膜10の第1主面PS1から剥離させることができる。
[効果]
 実施の形態1に係る分離回収システム1及び分離回収方法によれば、以下の効果を奏することができる。
 実施の形態1の分離回収システム1及び分離回収方法においては、金属製多孔膜10を用いて分離対象物50を分離回収している。これにより、分離回収システム1及び分離回収方法では、メンブレンフィルターを用いて分離回収した場合と比べて、分離対象物50の回収率を向上させることができる。
 金属製多孔膜10の貫通孔13は、膜部11の第1主面PS1側の開口と第2主面PS2側の開口とが連続した壁面を通じて連通している。また、貫通孔13では、膜部11の第1主面PS1側の開口が第2主面PS2側の開口に投影可能に設けられている。このような構成により、流体が貫通孔13を通過しやすいため、3次元的に異なる方向に貫通孔が形成されているメンブレンフィルターに比べて、流体通過時の圧力損失を低減することができる。
 金属製多孔膜10は、メンブレンフィルターの厚さよりも薄く設計することができる。例えば、金属製多孔膜10の厚さは、貫通孔13の一辺Dよりも薄く設計することができる。このような構成により、メンブレンフィルターに比べて、流体が通過しやすいため、圧力損失を低減することができる。
 このように、金属製多孔膜10では、流体通過時の圧力損失を低減することができるため、分離対象物50を含む流体51を押圧することによって金属製多孔膜10に通過させる場合、押圧力を小さくすることができる。これにより、分離対象物50が貫通孔13に深く潜り込むのを抑制することができるため、逆洗時において、金属製多孔膜10から分離対象物50を容易に剥離することができる。
 分離対象物50の回収は、金属製多孔膜10の貫通孔13の寸法よりも大きい複数の粒子70を含む流体71を用いて金属製多孔膜10を逆洗することによって行われる。金属製多孔膜10を流体71で逆洗することによって、分離対象物50が押し出された貫通孔13に粒子70を捕捉する。このような構成により、分離対象物50が取り除かれた貫通孔13を粒子70によって塞ぐことができ、金属製多孔膜10の第2主面PS2側にかかる圧力80の低減を抑制することができる。これにより、逆洗が進んだ状態でも、貫通孔13に潜り込んだ分離対象物50を貫通孔13から押し出すことができるため、分離対象物50の回収率を向上させることができる。
 粒子70は、金属製多孔膜10の貫通孔13の寸法(正方形の一辺D)より大きく、孔ピッチPよりも小さいことが好ましい。このような構成により、逆洗時に複数の粒子70が互いに阻害し合うことなく、金属製多孔膜10の第2主面PS2側から貫通孔13を塞ぐことができる。例えば、隣接する貫通孔13において捕捉される粒子70は、互いに間隔を有して貫通孔13を塞ぐことができる。これにより、逆洗時において、分離対象物50が取り除かれた貫通孔13を粒子70で効率良く塞ぐことができるため、金属製多孔膜10の第2主面PS2側にかかる圧力80の低減を効率良く抑制することができる。このため、貫通孔13に潜り込んだ分離対象物50を容易に貫通孔13から押し出すことができ、分離対象物50の回収率を向上させることができる。
 粒子70の数は、金属製多孔膜10の貫通孔13の数よりも多い。このような構成により、金属製多孔膜10の貫通孔13を粒子70で塞ぎやすくなる。これにより、逆洗時において、金属製多孔膜10の第2主面PS2側にかかる圧力80の低減を更に抑制し、貫通孔13に潜り込んだ分離対象物50をより容易に貫通孔13から押し出すことができる。
 粒子70の形状は、球状である。このような構成により、金属製多孔膜10の第2主面PS2を転がり、貫通孔13に粒子70が捕捉されやすくなる。また、貫通孔13が正方形である場合、球状の粒子70が貫通孔13に捕捉されても、貫通孔13を完全に塞がずに、四隅に隙間を形成することができる。この隙間より、流体71を逃がすことができるため、第2主面PS2側にかかる圧力80が大きくなりすぎて、金属製多孔膜10を破壊してしまうのを抑制することができる。また、圧力80が大きくなりすぎるのを抑制することにより、分離対象物50が圧力80によって破壊されるのも抑制することができる。
 また、球状の粒子70は、金属製多孔膜10の貫通孔13の様々な形状に対応することができる。球状の粒子70は、例えば、貫通孔13の形状が正方形以外の形状であっても、貫通孔13を塞いだ状態にばらつきが少なく、偏りなく貫通孔13を塞ぐことができる。
 なお、実施の形態1では、貫通孔13の形状が正方形である例を説明したが、これに限定されない。貫通孔13の形状は、例えば、円形、楕円形、多角形、長方形などであってもよい。
 図8は、本発明に係る実施の形態1の分離回収システム1における変形例の金属製多孔膜10aの膜部11aの一部の拡大断面図である。図8に示すように、膜部11aは、円形の複数の貫通孔13aが形成されたフィルター基体部14で構成されていてもよい。具体的には、金属製多孔膜10aを第1主面PS1側から見て、即ち、Z方向から見て、貫通孔13aが円形形状であってもよい。貫通孔13aは、例えば、直径D、孔ピッチPで形成されている。ここで、円形の貫通孔13aの孔ピッチPとは、任意の貫通孔13aの中心と隣接する貫通孔13aの中心との間の距離を意味する。なお、変形例の金属製多孔膜10aを用いる場合、粒子70は、貫通孔13aの直径Dより大きく、孔ピッチPより小さいものが使用される。
 このような構成により、粒子70が球形である場合、正方形の貫通孔13よりも円形の貫通孔13aの方が球形の粒子70によって塞がれやすい。また、円形の貫通孔13aは、粒子70によって塞がれた状態において、正方形の貫通孔13aと比べて、隙間を小さくすることができる。このため、貫通孔13aの形状を円形にすることによって、金属製多孔膜10aの第2主面PS2側にかかる圧力80の低減を更に抑制することができる。その結果、貫通孔13aから分離対象物50をより容易に押し出すことができ、分離対象物50の回収率を更に向上させることができる。
 実施の形態1では、粒子70が球状である例を説明したが、これに限定されない。粒子70は、貫通孔13に捕捉され得る形状であればよい。例えば、粒子70の断面形状が、貫通孔13の形状と異なっていてもよい。このような構成により、粒子70が貫通孔13で捕捉された場合、粒子70によって貫通孔13を完全に塞がないようにすることで、流体71の抜け道を形成することができる。これにより、逆洗時において、金属製多孔膜10の第2主面PS2側にかかる圧力80が大きくなりすぎて、金属製多孔膜10を破断することを抑制することができる。
 実施の形態1では、逆洗時において、逆洗装置40が複数の粒子70を含む流体71を押圧することによって、流体71を金属製多孔膜10に供給する例について説明したが、これに限定されない。逆洗装置40は、金属製多孔膜10の第2主面PS2側の圧力を第1主面PS1側の圧力よりも大きくすることによって、金属製多孔膜10の第2主面PS2から第1主面PS1に向かう方向61に複数の粒子70を含む流体71を供給すればよい。例えば、吸引、及びその他の方法によって複数の粒子70を含む流体71を金属製多孔膜10に供給してもよい。このような構成においても、分離対象物50の回収率を向上させることができる。
 実施の形態1では、保持具20においては、第1保持部材21と第2保持部材22によって金属製多孔膜10を挟持する例について説明したが、これに限定されない。例えば、第1保持部材21と第2保持部材22とは、一体で形成されていてもよい。
 実施の形態1では、分離回収システム1は、金属製多孔膜10、保持具20、供給装置30及び逆洗装置40を備える例について説明したが、これに限定されない。分離回収システム1が適用される環境又は状況などに応じて、構成要素を追加してもよいし、減少してもよい。例えば、分離回収システム1は、保持具20を備えず、金属製多孔膜10、供給装置30、及び逆洗装置40を備えるシステムであってもよい。あるいは、金属製多孔膜10を逆洗するのみであれば、供給装置30を含めず、金属製多孔膜10、保持具20、及び逆洗装置40を備える逆洗システムとして使用してもよい。
(1)実施例1について
 実施例1では、実施の形態1の分離回収システム1を用いて、分離対象物50の分離回収実験を行った。
 実施例1において、分離対象物50は、HL-60(Human promyelocytic leukemia cells)細胞であり、流体51は溶媒(PBS(Phosphate Buffered Saline))である。金属製多孔膜10としては、直径6mmの膜部11を有し、貫通孔13が正方形形状の金属メッシュを用いた。貫通孔13の寸法(一辺D)は、2.5μmであり、貫通孔13の孔ピッチPは3.6μmである。供給装置30及び逆洗装置40は、テルモ(株)製ディスポーザルシリンジ及び(株)ワイエムシィ社製のシリンジポンプ「YSP-201」を用いた。粒子70としては、コアフロント(株)社製の粒径3μmのシリカ球状粒子を用いた。流体71としは、溶媒(PBS)を用いた。
 実験について、具体的に説明する。
 COインキュベーターにて、HL-60細胞の継代培養を播種後7日間行った。培養後、HL-60細胞を含有する培地を約100Gの遠心力で遠心分離し、HL-60細胞を沈降させた後、上澄みの培地を廃棄し、溶媒をPBSに置換した。セルカウンターにて、PBS置換後のHL-60細胞溶液中の細胞数を計測し、PBSで溶液中の細胞数濃度を調整することにより、細胞数濃度3×10[個/mL]の標準液を得た。
 標準液をPBSで希釈することにより、細胞数濃度3×10、3×10、3×10、3×10[個/mL]の4種類のHL-60細胞溶液を作製し、ATPアッセイ用の検量線を作成した。
 東洋インキ製造(株)製のATPアッセイ試薬「CA50」と各HL-60細胞溶液を0.5mLずつ、24ウェル中で混合し、遮光して室温で10min静置して反応を進展させた後、溶液が均一になるように1min揺動した。その後、中立電機(株)製のATPアッセイ装置「CL24-U」にて、各々の細胞溶液の試薬反応後溶液の発光量[cps]を測定し、発光量Y[cps]と細胞数X個の関係が、Y=1.94Xとなる検量線を得た。
 標準液をPBSで希釈して、細胞数濃度1.5×10[個/mL]とした試験液10mL(溶液中の全細胞数は1.5×10個)を、テルモ(株)製ディスポーザルシリンジに入れた。そして、(株)ワイエムシィ社製のシリンジポンプ「YSP-201」を用いて、流速0.006[m/sec](流量10[mL/min])にて、試験液を金属製多孔膜10に通過させた。これにより、溶液中のHL-60細胞を金属製多孔膜10の第1主面PS1上に捕捉した。
 HL-60細胞の分離が終わった金属製多孔膜10を保持具20から取り出し、24ウェルにて、ATPアッセイ試薬「CA50」とPBSを0.5mLずつ混合した溶液中に、HL-60細胞を捕捉した金属製多孔膜10を浸漬し、前述と同条件で試薬反応を行った。
 反応後、金属製多孔膜10を取り出し、ATPアッセイ装置にて発光量[cps]を測定し、前述の検量線から金属製多孔膜10の第1主面PS1上に捕捉されたHL-60細胞の数を求めたところ、1.36×10個になることがわかった。
 次に、HL-60細胞を捕捉した金属製多孔膜10を逆洗装置40によって逆選した後、金属製多孔膜10の第1主面PS1上に残ったHL-60細胞の数を算出した。なお、実施例1と比較するために、比較例1として、粒子70を含まない流体を用いて逆洗した場合の金属製多孔膜10の第1主面PS1上に残ったHL-60細胞の数も算出した。
 まず、実施例1について説明する。
 実施例1では、コアフロント(株)社製の粒径3μmのシリカ球状粒子水溶液を用いて、遠心分離にて溶媒をPBSに置換した後、PBSで粒子数濃度が8×10[個/mL]になるように調整した。テルモ(株)製ディスポーザルシリンジに、濃度調整後のシリカ粒子溶液を10mL入れ(溶液中のシリカ粒子数は8×10個)、流速0.006[m/sec](流量10[mL/min])にて、シリカ粒子溶液を金属製多孔膜10に通過させた。これにより、金属製多孔膜10の第1主面PS1上に捕捉されたHL-60細胞の逆洗を行った。
 逆洗が終わった金属製多孔膜10を保持具20から取り出し、24ウェルにて、ATPアッセイ試薬「CA50」とPBSを0.5mLずつ混合した溶液中に、実施例1の逆洗済みの金属製多孔膜10を浸漬し、前述と同条件で試薬反応を行った。反応後、金属製多孔膜10を取り出し、ATPアッセイ装置にて発光量[cps]を測定し、前述の検量線から実施例1の逆洗後の金属製多孔膜10の第1主面PS1上に残ったHL-60細胞の数を求めた。
 次に、比較例1について説明する。
 比較例1では、逆洗用の流体として、10mLのPBSをテルモ(株)製ディスポーザルシリンジに入れ、(株)ワイエムシィ社製のシリンジポンプ「YSP-201」を用いて、流速0.006[m/sec](流量10[mL/min])にて、PBSを金属製多孔膜10に通過させた。これにより、金属製多孔膜10の第1主面PS1上に捕捉されたHL-60細胞の逆洗を行った。
 逆洗が終わった金属製多孔膜10を保持具20から取り出し、24ウェルにて、ATPアッセイ試薬「CA50」とPBSを0.5mLずつ混合した溶液中に、比較例1の逆洗済みの金属製多孔膜10を浸漬し、前述と同条件で試薬反応を行った。反応後、金属製多孔膜10を取り出し、ATPアッセイ装置にて発光量[cps]を測定し、前述の検量線から比較例1の逆洗後の金属製多孔膜10の第1主面PS1上に残ったHL-60細胞の数を求めた。
 実施例1及び比較例1の実験結果について、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、逆洗後において金属製多孔膜10に残ったHL-60細胞の数は、実施例1では0.78×10個、比較例1では3.2×10個であった。
逆洗前の金属製多孔膜10に捕捉されていたHL-60細胞の数が1.36×10個であったのを基準とすると、実施例1では1.282×10個、比較例1では1.04×10個のHL-60細胞が回収されていることがわかる。回収率を算出すると、実施例1では94.3%、比較例1では76.4%となる。このように、実施例1では、比較例1と比べて、回収率が向上していることが確認できた。
 また、実施例1及び比較例1においては、逆洗前後の金属製多孔膜10の写真をSEM(Scanning Electron Microscope)で撮影した。
 図9Aは、逆洗前における金属製多孔膜10を第1主面PS1側から撮影した拡大写真である。図9Bは、逆洗前における金属製多孔膜10を第2主面PS2側から撮影した拡大写真である。図9Aに示すように、金属製多孔膜10の第1主面PS1上には、分離対象物50であるHL-60細胞が捕捉されている。また、図9Bに示すように、金属製多孔膜10の第2主面PS2側から、貫通孔13に潜り込んだHL-60細胞が観察できる。
 図10Aは、実施例1の逆洗した後の金属製多孔膜10の第1主面PS1側から撮影した拡大写真である。図10Bは、実施例1の逆洗した後の金属製多孔膜10の第2主面PS2側から撮影した拡大写真である。図10Aに示すように、実施例1においては、逆洗後の金属製多孔膜10の第1主面PS1上には、HL-60細胞がほぼ残っていないことがわかる。また、図10Bに示すように、実施例1においては、逆洗後の金属製多孔膜10の第2主面PS2上には、粒子70であるシリカ粒子が捕捉されている。このように、実施例1では、金属製多孔膜10で捕捉されたHL-60細胞が、第1主面PS1から剥離して、回収されていることがわかる。
 図11Aは、比較例1の逆洗した後の金属製多孔膜10の第1主面PS1側から撮影した拡大写真である。図11Bは、比較例1の逆洗した後の金属製多孔膜10の第2主面PS2側から撮影した拡大写真である。図11A及び図11Bに示すように、比較例1においては、逆洗後の金属製多孔膜10には、HL-60細胞が一部残っており、HL-60細胞の一部が回収できていないことがわかる。
(2)実施例2-4について
 実施例2-4においては、粒子70の濃度をパラメータとして、実施例1と同様の実験を行った。
 実施例2-4は、それぞれ、シリカ粒子濃度2.0×10[個/mL]、3.0×10[個/mL]、4.0×10[個/mL]のシリカ溶液を用いて実験を行った。実施例5-7の実験結果を表2に示す。なお、表2には、参考として、実施例1のシリカ粒子濃度8.0×10[個/mL]の実験結果についても示している。
Figure JPOXMLDOC01-appb-T000002
 本明細書において、「被覆率」とは、金属製多孔膜10の膜部11の表面積約28.3mmに対して、逆洗用の粒子溶液中のシリカ粒子数を意味する。具体的には、(被覆率[%])=100×(シリカ球状粒子の断面積[mm]×粒子溶液中のシリカ粒子数[個])/(金属製多孔膜10の膜部11の表面積[mm])によって定義される。
 表2に示すように、実施例1-4の順に、シリカ粒子濃度が大きくなるにしたがって、HL-60細胞の回収率が高くなっていることが確認できた。即ち、被膜率が高くなるほど、回収率が向上することがわかる。
 なお、被膜率100%を超えると、逆洗時に金属製多孔膜10にかかる圧力が大きくなり、金属製多孔膜10を破損する可能性がある。
 以上の結果から、被膜率は、1%以上100%以下であることが好ましい。より好ましくは、10%以上100%以下である。
(3)実施例5-7について
 実施例5-7においては、逆洗時における流体71の流速をパラメータとして、実施例1と同様の実験を行った。具体的には、実施例8-10は、それぞれ、シリカ粒子溶液の流速0.003[m/sec]、0.012[m/sec]、0.018[m/sec]にて実験を行った。実施例5-7の実験結果を表3に示す。なお、表3には、参考として、実施例1の流体71の流速0.006[m/sec]の実験結果についても示されている。
Figure JPOXMLDOC01-appb-T000003
 図12は、実施例1及び5-7における逆洗時の流体の流速と回収率との関係を示すグラフである。表3及び図12に示すように、実施例5、1、6、7の順に、逆洗時のシリカ粒子溶液の流速を大きくするのにしたがって、回収率が高くなっていることが確認できた。また、逆洗時におけるシリカ粒子溶液の流速が0.006m/secを境にグラフの傾きが大きく変わっていることがわかる。このことから、逆洗時のシリカ粒子溶液の流速0.006[m/sec]以上であることが好ましいことがわかった。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明の分離回収システム及び分離回収方法は、細胞選別、細胞調製、細胞スクリーニングなど用途、又は細菌・ウィルスのその場診断・迅速診断などの用途に有用である。
 1 分離回収システム
 10、10a 金属製多孔膜
 11、11a 膜部
 12 枠部
 13、13a 貫通孔
 14、14a フィルター基体部
 PS1 第1主面
 PS2 第2主面
 20 保持具
 21 第1保持部材
 22 第2保持部材
 23 第1凹部
 24 第1流路
 24a 第1流路口
 25 第2凹部
 26 第2流路
 26a 第2流路口
 30 供給装置
 40 逆洗装置
 50、50a、50b、50c、50d 分離対象物
 51 流体
 60 方向
 61 方向
 70 粒子
 71 流体
 80 圧力

Claims (14)

  1.  流体中の分離対象物を分離して回収するシステムであって、
     第1主面及び前記第1主面に対向する第2主面を有すると共に、複数の貫通孔を有する金属製多孔膜と、
     前記金属製多孔膜の前記第1主面から前記第2主面に向かって前記分離対象物を含む流体を供給する供給装置と、
     前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給する逆洗装置と、
    を備える、分離回収システム。
  2.  前記逆洗装置は、前記金属製多孔膜の前記第2主面側の圧力を前記第1主面側の圧力よりも大きくすることによって、前記金属製多孔膜の前記第2主面から前記第1主面に向かう方向に前記複数の粒子を含む流体を供給する、請求項1に記載の分離回収システム。
  3.  前記複数の粒子は、前記金属製多孔膜の前記複数の貫通孔の孔ピッチより小さい、請求項1又は2に記載の分離回収システム。
  4.  前記複数の粒子の数は、前記金属製多孔膜の前記複数の貫通孔の数よりも多い、請求項1~3のいずれか一項に記載の分離回収システム。
  5.  前記複数の粒子のそれぞれの形状は、球状である、請求項1~4のいずれか一項に記載の分離回収システム。
  6.  前記金属製多孔膜の前記複数の貫通孔のそれぞれの形状は、前記金属製多孔膜の厚み方向から見て円形である、請求項1~5のいずれか一項に記載の分離回収システム。
  7.  前記複数の粒子のそれぞれの断面形状は、前記金属製多孔膜の貫通孔の形状と異なる、請求項1~5のいずれか一項に記載の分離回収システム。
  8.  流体中の分離対象物を分離して回収する方法であって、
     複数の貫通孔を有する金属製多孔膜の第1主面から前記第1主面に対向する第2主面に向かって前記分離対象物を含む流体を供給することによって、前記金属製多孔膜の第1主面に前記分離対象物を捕捉するステップ、
     前記分離対象物を捕捉した前記金属製多孔膜に対して、前記金属製多孔膜の前記第2主面から前記第1主面に向かって、前記金属製多孔膜の貫通孔の寸法より大きい複数の粒子を含む流体を供給するステップ、
     前記金属製多孔膜の前記第2主面に前記複数の粒子を捕捉するステップ、
    を含む、分離回収方法。
  9.  前記複数の粒子を含む流体を供給するステップは、前記金属製多孔膜の前記第2主面側の圧力を前記第1主面側の圧力よりも大きくすることによって、前記金属製多孔膜の前記第2主面から前記第1主面に向かう方向に前記複数の粒子を含む流体を供給すること、を含む、請求項8に記載の分離回収方法。
  10.  前記複数の粒子は、前記金属製多孔膜の前記複数の貫通孔の孔ピッチより小さい、請求項8又は9に記載の分離回収方法。
  11.  前記複数の粒子の数は、前記金属製多孔膜の前記複数の貫通孔の数よりも多い、請求項8~10のいずれか一項に記載の分離回収方法。
  12.  前記複数の粒子のそれぞれの形状は、球状である、請求項8~11のいずれか一項に記載の分離回収方法。
  13.  前記金属製多孔膜の前記複数の貫通孔のそれぞれの形状は、前記金属製多孔膜の厚み方向から見て円形である、請求項8~12のいずれか一項に記載の分離回収方法。
  14.  前記複数の粒子のそれぞれの断面形状は、前記金属製多孔膜の貫通孔の形状と異なる、請求項8~12のいずれか一項に記載の分離回収方法。
PCT/JP2018/045863 2017-12-28 2018-12-13 分離回収システム及び分離回収方法 WO2019131173A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880084610.0A CN111526932B (zh) 2017-12-28 2018-12-13 分离回收系统以及分离回收方法
JP2019562975A JP6863484B2 (ja) 2017-12-28 2018-12-13 分離回収システム及び分離回収方法
US16/895,357 US20200298150A1 (en) 2017-12-28 2020-06-08 Separation recovery system and separation recovery method
US18/065,418 US11833455B2 (en) 2017-12-28 2022-12-13 Separation recovery system and separation recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253052 2017-12-28
JP2017-253052 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/895,357 Continuation US20200298150A1 (en) 2017-12-28 2020-06-08 Separation recovery system and separation recovery method

Publications (1)

Publication Number Publication Date
WO2019131173A1 true WO2019131173A1 (ja) 2019-07-04

Family

ID=67067151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045863 WO2019131173A1 (ja) 2017-12-28 2018-12-13 分離回収システム及び分離回収方法

Country Status (4)

Country Link
US (2) US20200298150A1 (ja)
JP (1) JP6863484B2 (ja)
CN (1) CN111526932B (ja)
WO (1) WO2019131173A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200239828A1 (en) * 2019-01-26 2020-07-30 Riam SHAMMAA Apparatus and method for isolating stem cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007179A (ja) * 2004-06-29 2006-01-12 Mitsubishi Electric Corp 膜ろ過装置および膜ろ過方法
WO2010130303A1 (en) * 2009-05-15 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automated separation of particles from a suspension
US20110233148A1 (en) * 2008-12-19 2011-09-29 Stemcell Technologies Inc. Filter apparatus and filter plate system
WO2012057495A2 (ko) * 2010-10-25 2012-05-03 주식회사 싸이토젠 금속 스크린필터
WO2017159367A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 金属製多孔膜、それを用いた分級方法、および分級装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006010293U1 (de) * 2005-07-22 2006-08-31 Tecan Trading Ag Pipettiergerät mit Computerprogrammprodukt zum Akzeptieren oder Verwerfen von pipettierten Flüssigkeitsproben
JP4900221B2 (ja) * 2007-12-10 2012-03-21 株式会社日立プラントテクノロジー 細胞分離装置、培養装置及び細胞分離方法
CN101524625A (zh) * 2009-03-31 2009-09-09 大连理工大学 一种多孔分离膜的清洗方法
CN201596396U (zh) * 2009-09-27 2010-10-06 陈家鹏 一种新型滤板
DE11718963T1 (de) * 2010-08-05 2015-10-01 Vibod Gmbh Neue Säulen zur Inkubation und Isolation chemischer und/oder biologischer Proben
CN102125807A (zh) * 2011-02-22 2011-07-20 大连欧科膜技术工程有限公司 膜污染控制方法
DE102011001262B4 (de) * 2011-03-14 2012-11-15 Kreyenborg Verwaltungen Und Beteiligungen Gmbh & Co. Kg Filtriervorrichtung für hochviskose Fluide
CN107654358B (zh) * 2012-04-19 2020-02-21 株式会社村田制作所 流体控制装置
WO2014050328A1 (ja) * 2012-09-27 2014-04-03 株式会社村田製作所 空隙配置構造体及びその製造方法、並びに測定装置及び測定方法
US9631179B2 (en) * 2013-03-15 2017-04-25 Angle North America, Inc. Methods for segregating particles using an apparatus with a size-discriminating separation element having an elongate leading edge
JP6453592B2 (ja) * 2013-09-25 2019-01-16 アークレイ株式会社 血液検体の処理方法
JPWO2016031971A1 (ja) 2014-08-29 2017-06-08 日立化成株式会社 細胞捕捉方法、特定細胞捕捉済デバイスの製造方法、及び特定細胞含有溶液の製造方法
EP3088158B1 (en) * 2015-04-29 2020-03-18 Nordson PPS GmbH Filtering device for high-visous fluids
JP6519312B2 (ja) * 2015-05-20 2019-05-29 株式会社Ihi 藻類分離装置、および、乾燥藻類の製造方法
CN104998453A (zh) * 2015-06-30 2015-10-28 蓝天鹏(厦门)科技有限公司 自动排污反冲洗的立式中空不锈钢滤芯组件及其使用方法
CN105126406A (zh) * 2015-10-09 2015-12-09 胡小弟 管道型滤料收集装置
CN105536330B (zh) * 2016-01-29 2018-01-23 象山金鑫轻工机械厂 可再生废碱液过滤装置及其使用方法
US20170218330A1 (en) * 2016-02-01 2017-08-03 Fenwal, Inc. Systems and methods for the separation of cells from microcarriers using a spinning membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007179A (ja) * 2004-06-29 2006-01-12 Mitsubishi Electric Corp 膜ろ過装置および膜ろ過方法
US20110233148A1 (en) * 2008-12-19 2011-09-29 Stemcell Technologies Inc. Filter apparatus and filter plate system
WO2010130303A1 (en) * 2009-05-15 2010-11-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Automated separation of particles from a suspension
WO2012057495A2 (ko) * 2010-10-25 2012-05-03 주식회사 싸이토젠 금속 스크린필터
WO2017159367A1 (ja) * 2016-03-18 2017-09-21 株式会社村田製作所 金属製多孔膜、それを用いた分級方法、および分級装置

Also Published As

Publication number Publication date
CN111526932A (zh) 2020-08-11
US20230116829A1 (en) 2023-04-13
JPWO2019131173A1 (ja) 2020-11-19
US11833455B2 (en) 2023-12-05
US20200298150A1 (en) 2020-09-24
CN111526932B (zh) 2022-02-11
JP6863484B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
JP6841294B2 (ja) 金属製多孔膜、それを用いた分級方法、および分級装置
JP2019093385A (ja) 濾過フィルター、濾過装置およびそれを用いた濾過方法
EP3395939B1 (en) Cell sorting, culture, and growth vessel; and cell sorting, culture, and growth method
WO2019131173A1 (ja) 分離回収システム及び分離回収方法
US10926229B2 (en) Filtration filter
US20220162539A1 (en) Filtration and collection device
CN109415674B (zh) 细胞过滤滤除器
JP2019162624A (ja) 濾過装置及び濾過方法
Choi et al. Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping
JP6515675B2 (ja) 濾過容器、濾過装置、及び濾過方法
CN115990365A (zh) 过滤装置以及过滤方法
JP6669230B2 (ja) 濾過装置及び濾過方法
CN110272823B (zh) 一种基于微通道阵列的多细胞表面部分区域磁化装置及方法
CN108148750B (zh) 一种原位形成拟胚体的多功能微流控芯片的制备方法
US20190118120A1 (en) Sampling filter, sampling device, and sampling method using the same
US11498032B2 (en) Concentration apparatus
JP7202639B2 (ja) 細胞の分離回収装置及び方法
Zhao et al. Capillary number effect on the depletion of leucocytes of blood in microfiltration chips for the isolation of circulating tumor cells
CN111801150B (zh) 过滤滤除器以及过滤装置
WO2015146405A1 (ja) 血小板産生装置および血小板産生方法
Park et al. Individually addressable multi-chamber electroporation platform with dielectrophoresis-assisted cell positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895429

Country of ref document: EP

Kind code of ref document: A1