WO2019130771A1 - アンテナアレイおよびアンテナモジュール - Google Patents

アンテナアレイおよびアンテナモジュール Download PDF

Info

Publication number
WO2019130771A1
WO2019130771A1 PCT/JP2018/039630 JP2018039630W WO2019130771A1 WO 2019130771 A1 WO2019130771 A1 WO 2019130771A1 JP 2018039630 W JP2018039630 W JP 2018039630W WO 2019130771 A1 WO2019130771 A1 WO 2019130771A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ground electrode
antenna element
isolation
distance
Prior art date
Application number
PCT/JP2018/039630
Other languages
English (en)
French (fr)
Inventor
尾仲 健吾
直志 菅原
良樹 山田
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880084467.5A priority Critical patent/CN111527646B/zh
Priority to JP2019562791A priority patent/JP6954376B2/ja
Publication of WO2019130771A1 publication Critical patent/WO2019130771A1/ja
Priority to US16/912,803 priority patent/US11283191B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to an antenna array and an antenna module.
  • WO 2016/067969 discloses an antenna module including an antenna formed of a conductor pattern and a high frequency semiconductor element for supplying a high frequency signal to the antenna.
  • the present invention has been made to solve the problems as described above, and its object is to improve the isolation characteristics of the antenna array.
  • An antenna array includes a dielectric substrate, a first antenna element, a second antenna element, an isolation element, and a first ground electrode.
  • the first antenna element is flat.
  • the first antenna element is formed on a dielectric substrate.
  • the second antenna element is flat.
  • the second antenna element is formed on a dielectric substrate.
  • the isolation element is formed on a dielectric substrate.
  • the first ground electrode is formed on the dielectric substrate. The first ground electrode faces each of the first antenna element, the second antenna element, and the isolation element via at least a part of the dielectric substrate. When viewed in plan from a first normal direction of the isolation element, the isolation element is formed between the first antenna element and the second antenna element.
  • the distance between the first antenna element and the first ground electrode is different from the distance between the isolation element and the first ground electrode.
  • the distance between the second antenna element and the first ground electrode is different from the distance between the isolation element and the first ground electrode.
  • the electromagnetic coupling between the first antenna element and the second antenna element is weakened by the isolation element, so that the isolation characteristic of the antenna array can be improved.
  • FIG. 1 is a block diagram of a communication device comprising an antenna array. It is the figure which planarly viewed the antenna module provided with the antenna array which concerns on Embodiment 1 from Z-axis direction. It is the figure which planarly viewed the antenna module of FIG. 2 from the Y-axis direction.
  • FIG. 6 is a table showing simulation results of reflection loss of antenna elements and simulation results of isolation between antenna elements when the width of the isolation element shown in FIG. 3 is changed. It is a figure which shows collectively each isolation characteristic in case the width W of the isolation element of FIG. 3 is 0 mm, 1.2 mm, 1.4 mm, and 2.2 mm.
  • FIG. 9 is a table showing simulation results of reflection loss of antenna elements and simulation results of isolation between antenna elements when the width of the isolation element shown in FIG. 8 is changed. It is a figure which shows collectively each isolation characteristic in case the width
  • FIG. 8 is 0 mm, 1.2 mm, and 1.4 mm. It is a figure which shows collectively each reflection characteristic of an antenna element in case the width
  • FIG. 16 is an external perspective view of an antenna module according to Embodiment 4; It is the figure which planarly viewed the antenna module of FIG. 13 from the Y-axis direction.
  • FIG. 24 is a plan view of an antenna module according to a modification of the fourth embodiment, viewed from the Y-axis direction.
  • FIG. 21 is an external perspective view of an antenna module according to Embodiment 5; It is the figure which planarly viewed the antenna module of FIG. 16 from the Y-axis direction.
  • FIG. 31 is a plan view of an antenna module according to a modification of the fifth embodiment, viewed from the Y-axis direction.
  • FIG. 1 is a block diagram of a communication device 3000 comprising an antenna array 10.
  • Communication device 3000 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, or a personal computer provided with a communication function.
  • the communication device 3000 includes an antenna module 1000 and a BBIC (Baseband Integrated Circuit) 2000 that configures a baseband signal processing circuit.
  • the antenna module 1000 includes an RFIC (Radio Frequency Integrated Circuit) 900 which is an example of a high frequency element, and the antenna array 10.
  • RFIC Radio Frequency Integrated Circuit
  • the communication device 3000 up-converts the signal transmitted from the BBIC 2000 to the antenna module 1000 into a high frequency signal and radiates it from the antenna array 10.
  • the communication device 3000 down-converts the high frequency signal received by the antenna array 10 and performs signal processing by the BBIC 2000.
  • FIG. 1 shows the configuration of the RFIC 900 corresponding to the antenna elements 10A to 10D among the plurality of antenna elements constituting the antenna array 10.
  • the RFIC 900 includes switches 31A to 31D, 33A to 33D, 37, power amplifiers 32AT to 32DT, low noise amplifiers 32AR to 32DR, attenuators 34A to 34D, phase shifters 35A to 35D, and signal combining / dividing. 36, a mixer 38 and an amplification circuit 39.
  • the RFIC 900 is formed as a one-chip integrated circuit component including circuit elements (switches, power amplifiers, low noise amplifiers, attenuators, and phase shifters) corresponding to a plurality of antenna elements included in the antenna array 10, for example.
  • the circuit element may be formed as an integrated circuit component of one chip for each antenna element separately from the RFIC 900.
  • the switches 31A to 31D and 33A to 33D are switched to the low noise amplifiers 32AR to 32DR, and the switch 37 is connected to the reception amplifier of the amplification circuit 39.
  • the high frequency signals received by the antenna elements 10A to 10D pass through the signal paths from the switches 31A to 31D to the phase shifters 35A to 35D, are multiplexed by the signal synthesis / demultiplexer 36, and down-converted by the mixer 38. And amplified by the amplifier circuit 39 and transmitted to the BBIC 2000.
  • the switches 31 A to 31 D and 33 A to 33 D are switched to the power amplifiers 32 AT to 32 DT, and the switch 37 is connected to the transmission amplifier of the amplifier circuit 39.
  • the signal transmitted from BBIC 2000 is amplified by amplifier circuit 39 and up-converted by mixer 38.
  • the up-converted high-frequency signal is divided into four by the signal combination / demultiplexer 36, passes through the signal paths from the phase shifters 35A to 35D to the switches 31A to 31D, and is fed to the antenna elements 10A to 10D. .
  • the directivity of the antenna array 10 can be adjusted by individually adjusting the phase shift of the phase shifters 35A to 35D disposed in each signal path.
  • a part of the high frequency signal output from the BBIC 2000 and radiated from any of the antenna elements 10A to 10D may be received by another antenna element and returned to the BBIC 2000.
  • the high frequency signals radiated from the antenna elements 10B to 10D may be received by the antenna element 10A and returned to the BBIC 2000.
  • the reflection characteristic of the single antenna element 10A is degraded.
  • Such deterioration of the reflection characteristic becomes remarkable because the influence of the other antenna element on one arbitrary antenna element becomes larger as the number of antenna elements included in the antenna array 10 increases.
  • the deterioration of the reflection characteristics affects the performance of the power amplifiers 32AT to 32DT such as distortion or power consumption, for example. Therefore, particularly in the configuration in which the number of antenna elements included in the antenna array 10 is large, improvement in isolation characteristics is important.
  • an isolation element is disposed between the antenna elements to weaken the electromagnetic coupling between the antenna elements. As a result, the isolation characteristics of the antenna array can be improved.
  • FIG. 2 is a plan view of an antenna module 1100 including the antenna array 100 according to the first embodiment in the Z-axis direction.
  • FIG. 3 is a plan view of the antenna module 1100 of FIG. 2 from the Y-axis direction.
  • the X axis, the Y axis, and the Z axis are orthogonal to one another. The same applies to FIGS. 7, 8 and 12 to 18.
  • the antenna module 1100 transmits and receives high frequency signals mainly using 30 GHz as a use frequency and using 26 GHz to 30 GHz as a use frequency band.
  • the use frequency band of the antenna module provided with the antenna array according to the embodiment is not limited to 26 GHz to 30 GHz, and may be, for example, 26.5 GHz to 29.5 GHz.
  • the wavelength of the used frequency is also referred to as a specific wavelength.
  • the specific wavelength is about 10 (9.9930 ...) mm.
  • antenna module 1100 includes antenna array 100 and RFIC 910.
  • the antenna array 100 includes flat antenna elements 111 and 112, a flat isolation element 113, a dielectric substrate 150, and a ground electrode 190.
  • the width W represents the width of the isolation element 113 in the X-axis direction.
  • the gap Gap represents the distance between the isolation element 113 and the antenna element 111 in the X-axis direction, and also represents the distance between the isolation element 113 and the antenna element 112 in the X-axis direction.
  • the value of W + 2 ⁇ Gap is equal to 2.2 mm.
  • the antenna element 111 is opposed to the ground electrode 190 via the dielectric substrate 150.
  • the antenna element 112 is opposed to the ground electrode 190 via the dielectric substrate 150.
  • the isolation element 113 is formed between the antenna element 111 and the antenna element 112 when planarly viewed from the normal direction (Z-axis direction) of the isolation element 113.
  • the isolation element 113 is opposed to the ground electrode 190 via at least a part of the dielectric substrate 150.
  • the distance between the antenna element 111 and the ground electrode 190 is larger than the distance between the isolation element 113 and the ground electrode 190.
  • the distance between the antenna element 112 and the ground electrode 190 is larger than the distance between the isolation element 113 and the ground electrode 190.
  • the relationship between the distance between the antenna element and the ground electrode and the distance between the isolation element and the ground electrode is not limited to the above.
  • the distance between the isolation element 113 and the ground electrode 190 may be larger than the distance between the antenna element 111 and the ground electrode 190 and the distance between the antenna element 112 and the ground electrode 190.
  • the isolation element 113 is separated from the antenna element 111 when viewed in plan from the normal direction (Z-axis direction) of the antenna element 111. When viewed in plan from the normal direction (Z-axis direction) of the antenna element 112, the isolation element 113 is separated from the antenna element 112.
  • the ground electrode 190 is formed between the dielectric substrate 150 and the RFIC 910. Both the antenna element 111 and the antenna element 112 overlap the RFIC 910 when viewed in plan from the Z-axis direction.
  • the via conductor 131 penetrates the ground electrode 190 and connects the antenna element 111 and the RFIC 910. Via conductor 131 is insulated from ground electrode 190.
  • the via conductor 132 penetrates the ground electrode 190 and connects the antenna element 112 and the RFIC 910. Via conductor 132 is insulated from ground electrode 190.
  • the RFIC 910 supplies high frequency signals to the antenna elements 111 and 112 via the via conductors 131 and 132, respectively.
  • FIG. 4 shows simulation results of reflection loss (RL: Return Loss) of the antenna element 111 and the antenna element 112 when the width W of the isolation element 113 shown in FIG. 3 is changed, and the antenna element 111 and the antenna element It is a table showing simulation results of isolation (Iso) with 112 together.
  • FIG. 5 is a diagram collectively showing isolation characteristics when the width W of the isolation element 113 of FIG. 3 is 0 mm, 1.2 mm, 1.4 mm, and 2.2 mm.
  • 6 shows the reflection characteristics (solid line) of the antenna element 111 and the reflection of the antenna element 112 when the width W of the isolation element 113 of FIG. 3 is 0 mm, 1.2 mm, 1.4 mm, and 2.2 mm. It is a figure which shows a characteristic (dotted line) collectively.
  • the reflection loss is large means that the amount of signal radiated from the antenna element is large. That is, the larger the reflection loss, the better the reflection characteristics of the antenna element. Also, as the isolation value is larger, electromagnetic coupling between the antenna element 111 and the antenna element 112 is weaker, and signal transmission between the antenna element 111 and the antenna element 112 is suppressed. That is, the larger the isolation, the better the isolation characteristics of the antenna array 100.
  • the smallest value among the reflection loss of the antenna element 111 in the used frequency band of the antenna module 1100 and the reflection loss of the antenna element 112 is shown in FIG. 4 as the value of the reflection loss.
  • the smallest value in the operating frequency band of the antenna module 1100 is shown as the value of isolation.
  • FIG. 4 in the first row having a width W of 2.2 mm, when the antenna module 1100 is viewed in plan from the Z-axis direction, the antenna element 111 and the isolation element 113 are not separated and Data are shown when the isolation element 113 is not separated (the gap Gap is 0 mm). Further, in the final row where the width W is 0 mm, data of a comparative example in which the isolation element 113 is not disposed is shown.
  • each isolation with a gap Gap of 0.2 mm to 1.0 mm is equal to or greater than the isolation of the comparative example with a gap Gap of 1.1 mm.
  • the difference between the reflection loss of the comparative example and the reflection loss of the comparative example is about 0.1 dB at maximum in each of the reflection losses of the gap Gap of 0.5 mm to 1.0 mm.
  • the gap Gap is desirably equal to or more than one-twentieth (0.4996%) Of the specific wavelength.
  • the isolation characteristic can be improved.
  • FIG. 7 is a plan view of an antenna module 1200 including the antenna array 200 according to the second embodiment in the Z-axis direction.
  • FIG. 8 is a plan view of the antenna module 1200 of FIG. 7 from the Y-axis direction.
  • the antenna module 1200 transmits and receives high frequency signals mainly using 30 GHz as a use frequency and using 26 GHz to 30 GHz as a use frequency band.
  • antenna module 1200 includes antenna array 200 and RFIC 920.
  • the antenna array 200 includes flat antenna elements 211 and 212, a flat isolation element 213, a dielectric substrate 250, and a ground electrode 290.
  • the width W represents the width in the X-axis direction of the isolation element 213.
  • the gap Gap represents the distance between the isolation element 213 and the antenna element 211 in the X-axis direction, and also represents the distance between the isolation element 213 and the antenna element 212 in the X-axis direction.
  • the value of W + 2 ⁇ Gap is equal to 2.2 mm.
  • the antenna element 211 faces the ground electrode 290 via the dielectric substrate 250.
  • the antenna element 212 is opposed to the ground electrode 290 through the dielectric substrate 250.
  • the isolation element 213 is formed between the antenna element 211 and the antenna element 212.
  • the isolation element 213 is opposed to the ground electrode 290 via the dielectric substrate 250.
  • the distance between the antenna element 211 and the ground electrode 290 is equal to the distance between the isolation element 213 and the ground electrode 290. Further, the distance between the antenna element 212 and the ground electrode 290 is equal to the distance between the isolation element 213 and the ground electrode 290. That is, the antenna element 211, the antenna element 212, and the isolation element 213 are formed on the same plane (the surface of the dielectric substrate 250).
  • the isolation element 213 when viewed in a plan view from the normal direction (Z-axis direction) of the antenna element 211, the isolation element 213 is separated from the antenna element 211 by at least 1/20 of the specific wavelength.
  • the isolation element 213 is separated from the antenna element 212 by at least one-twentieth of a specific wavelength.
  • the ground electrode 290 is formed between the dielectric substrate 250 and the RFIC 920.
  • the antenna element 211 and the antenna element 212 both overlap the RFIC 920.
  • the via conductor 231 penetrates the ground electrode 290, and connects the antenna element 211 and the RFIC 920. Via conductor 231 is isolated from ground electrode 290.
  • the via conductor 232 penetrates the ground electrode 290 and connects the antenna element 212 and the RFIC 920. Via conductor 232 is insulated from ground electrode 290.
  • the RFIC 920 supplies high frequency signals to the antenna elements 211 and 212 via the via conductors 231 and 232, respectively.
  • FIG. 9 shows the simulation result of the reflection loss of the antenna element 212 and the simulation result of the isolation between the antenna element 211 and the antenna element 212 when the width W of the isolation element 213 shown in FIG. 8 is changed.
  • FIG. 10 is a diagram collectively showing the isolation characteristics when the width W of the isolation element 213 of FIG. 8 is 0 mm, 1.2 mm, and 1.4 mm.
  • FIG. 11 shows reflection characteristics (solid line) of the antenna element 211 and reflection characteristics (dotted line) of the antenna element 212 when the width W of the isolation element 213 in FIG. 8 is 0 mm, 1.2 mm, and 1.4 mm. It is a figure shown collectively.
  • the minimum value of the reflection loss of the antenna element 211 in the used frequency band of the antenna module 1200 and the reflection loss of the antenna element 212 is shown as the value of the reflection loss.
  • the minimum value in the used frequency band of the antenna module 1100 is shown in FIG. 9 as the value of isolation.
  • the reflection loss and the isolation are not shown.
  • the antenna module 1200 since the antenna element 211, the antenna element 212, and the isolation element 213 are on the same plane, when the width W of the isolation element 213 is 2.2 mm, the antenna element 211 becomes the isolation element 213. At the same time, the antenna element 212 contacts the isolation element 213. Therefore, when the width W is 2.2 mm, it is excluded from the simulation. Further, in the final row where the width W is 0 mm, data of a comparative example in which the isolation element 213 is not disposed is shown.
  • each isolation with a gap of 0.5 mm to 1.0 mm is larger than the isolation of the comparative example with a gap of 1.1 mm.
  • Each reflection loss with a gap of 0.5 mm to 1.0 mm has a difference of about 0.3 dB at maximum with the reflection loss of the comparative example.
  • the isolation characteristic of the antenna array 200 can be improved by setting the gap Gap to be 1/20 or more of the specific wavelength. Further, by setting the gap Gap to be equal to or more than one-twentieth of the specific wavelength, the reflection characteristics of the antenna array 200 can be maintained in comparison with the comparative example in which the gap Gap is 1.1 mm.
  • isolation characteristics can be improved.
  • the first embodiment has described the case where the isolation element is formed inside the dielectric substrate.
  • the third embodiment the case where the isolation element is disposed on the surface of the dielectric substrate by forming the isolation element at the bottom of the slit formed in the dielectric substrate will be described.
  • FIG. 12 is a plan view of the antenna module 1300 according to the third embodiment from the Y-axis direction. As shown in FIG. 12, the antenna module 1300 includes an antenna array 300 and an RFIC 930.
  • the antenna array 300 includes flat antenna elements 311 and 312, a flat isolation element 313, a dielectric substrate 350, and a ground electrode 390.
  • the antenna element 311 faces the ground electrode 390 via the dielectric substrate 350.
  • the antenna element 312 is opposed to the ground electrode 390 through the dielectric substrate 350.
  • the isolation element 313 is formed between the antenna element 311 and the antenna element 312 when viewed in plan from the normal direction (Z-axis direction) of the isolation element 313.
  • the isolation element 313 is opposed to the ground electrode 190 via the dielectric substrate 350.
  • Dielectric substrate 350 includes a portion P31, a portion P32, and a portion P33.
  • the part P33 connects the part P31 and the part P32.
  • the thickness of the portion P31 in the Z-axis direction (the normal direction of the antenna element 311) is larger than the thickness of the portion P33 in the Z-axis direction.
  • the thickness of the portion P32 in the Z-axis direction (the normal direction of the antenna element 312) is larger than the thickness of the portion P33 in the Z-axis direction.
  • a slit Slt3 is formed between the portion P31 and the portion P32 along the Y-axis direction.
  • An antenna element 311 is formed on the surface of the portion P31.
  • An antenna element 312 is formed on the surface of the portion P32.
  • An isolation element 313 is formed on the surface of the portion P33.
  • the width (the size in the X-axis direction) of the slit Slt3 and the width (the size in the X-axis direction) of the isolation element 313 are not limited to the same but may be different. That is, the isolation element 313 may be formed in part of the bottom of the slit Slt3, or part of the isolation element 313 may be exposed from the bottom surface of the slit Slt3.
  • the effective dielectric constant of the dielectric substrate 350 in which the slit Slt3 is formed is smaller than the effective dielectric constant in the case where the slit Slt3 is not formed.
  • the high frequency signal is less likely to pass through the slit Slt3 not filled with the dielectric than the dielectric substrate 350.
  • the distance between the antenna element 311 and the ground electrode 390 is larger than the distance between the isolation element 313 and the ground electrode 390.
  • the distance between the antenna element 312 and the ground electrode 390 is larger than the distance between the isolation element 313 and the ground electrode 390.
  • the isolation element 313 When viewed in plan in the Z-axis direction, the isolation element 313 is separated from the antenna element 311. When viewed in plan in the Z-axis direction, the isolation element 313 is separated from the antenna element 312.
  • the ground electrode 390 is formed between the dielectric substrate 350 and the RFIC 930. When viewed in plan from the Z-axis direction, both the antenna element 311 and the antenna element 312 overlap the RFIC 930.
  • the via conductor 331 penetrates the ground electrode 390 and connects the antenna element 311 and the RFIC 930. Via conductor 331 is insulated from ground electrode 390.
  • the via conductor 332 penetrates the ground electrode 390 and connects the antenna element 312 and the RFIC 930. Via conductor 332 is isolated from ground electrode 390.
  • the RFIC 930 supplies high frequency signals to the antenna elements 311 and 312 through the via conductors 331 and 332, respectively.
  • isolation characteristics can be improved.
  • Embodiments 1 to 3 when viewed in plan from the normal direction of the first antenna element, when viewed in plan from the normal direction of the second antenna element, the first antenna element overlaps the high frequency element.
  • the second antenna element overlaps the high frequency element has been described.
  • the first antenna element overlaps the high-frequency element when viewed in plan from the normal direction of the second antenna element, and the plan view when viewed in the normal direction of the first antenna element. The case where the antenna element does not overlap with the high frequency element will be described.
  • FIG. 13 is an external perspective view of an antenna module 1400 according to the fourth embodiment.
  • FIG. 14 is a plan view of the antenna module 1400 of FIG. 13 from the Y-axis direction.
  • the antenna module 1400 includes an antenna array 400 and RFICs 941 and 942 with reference to FIGS. 13 and 14.
  • the antenna array 400 includes flat antenna elements 411 to 418, flat isolation elements 419 to 422, a dielectric substrate 450, and a ground electrode 491. Each of the antenna elements 411 to 418 is opposed to the ground electrode 491 through the dielectric substrate 450.
  • the dielectric substrate 450 may be formed of a plurality of dielectric layers, or may be formed integrally.
  • Dielectric substrate 450 includes a portion P41, a portion P42, and a portion P43.
  • the part P43 connects the part P41 and the part P42.
  • the thickness of the portion P41 in the Z-axis direction (normal direction of the antenna elements 411, 413, 415, and 417) is larger than the thickness of the portion P43 in the Z-axis direction (normal direction of the isolation elements 419 to 422).
  • the thickness in the Z-axis direction (the normal direction of the antenna elements 412, 414, 416, and 418) of the portion P42 is larger than the thickness in the Z-axis direction of the portion P43.
  • a slit Slt4 is formed between the portion P41 and the portion P42 along the Y-axis direction.
  • the effective dielectric constant of the dielectric substrate 450 in which the slit Slt4 is formed is smaller than the effective dielectric constant in the case where the slit Slt4 is not formed.
  • the high frequency signal is less likely to pass through the slit Slt 4 which is not filled with the dielectric than the dielectric substrate 450.
  • Antenna elements 411, 413, 415, and 417 are formed on the surface of the portion P41.
  • Antenna elements 412, 414, 416 and 418 are formed on the surface of the portion P42.
  • Isolation elements 419 to 422 are formed on the surface of the portion P43. The isolation elements 419 to 422 are juxtaposed at intervals in the Y-axis direction.
  • the isolation element 419 When viewed in plan from the Z-axis direction, the isolation element 419 is formed between the antenna element 411 and the antenna element 412. The isolation element 419 is opposed to the ground electrode 491 through the dielectric substrate 450.
  • the isolation element 419 When viewed in plan in the Z-axis direction, the isolation element 419 is separated from the antenna element 411. When viewed in plan from the Z-axis direction, the isolation element 419 is separated from the antenna element 412.
  • the distance between the antenna element 411 and the ground electrode 491 is larger than the distance between the isolation element 419 and the ground electrode 491.
  • the distance between the antenna element 412 and the ground electrode 491 is larger than the distance between the isolation element 419 and the ground electrode 491.
  • the isolation element 420 When viewed in plan in the Z-axis direction, the isolation element 420 is formed between the antenna element 413 and the antenna element 414. The isolation element 420 is opposed to the ground electrode 491 via the dielectric substrate 450.
  • the isolation element 420 When viewed in plan from the Z-axis direction, the isolation element 420 is separated from the antenna element 413. When viewed in plan in the Z-axis direction, the isolation element 420 is separated from the antenna element 414.
  • the distance between the antenna element 413 and the ground electrode 491 is larger than the distance between the isolation element 420 and the ground electrode 491.
  • the distance between the antenna element 414 and the ground electrode 491 is larger than the distance between the isolation element 420 and the ground electrode 491.
  • the isolation element 421 When viewed in plan from the Z-axis direction, the isolation element 421 is formed between the antenna element 415 and the antenna element 416. The isolation element 421 is opposed to the ground electrode 491 via the dielectric substrate 450.
  • the isolation element 421 When viewed in plan in the Z-axis direction, the isolation element 421 is separated from the antenna element 415. When viewed in plan in the Z-axis direction, the isolation element 421 is separated from the antenna element 416.
  • the distance between the antenna element 415 and the ground electrode 491 is larger than the distance between the isolation element 421 and the ground electrode 491.
  • the distance between the antenna element 416 and the ground electrode 491 is larger than the distance between the isolation element 421 and the ground electrode 491.
  • the isolation element 422 When viewed in plan from the Z-axis direction, the isolation element 422 is formed between the antenna element 417 and the antenna element 418. The isolation element 422 is opposed to the ground electrode 491 via the dielectric substrate 450.
  • the isolation element 422 When viewed in plan in the Z-axis direction, the isolation element 422 is separated from the antenna element 417. When viewed in plan from the Z-axis direction, the isolation element 422 is separated from the antenna element 418.
  • the distance between the antenna element 417 and the ground electrode 491 is larger than the distance between the isolation element 422 and the ground electrode 491.
  • the distance between the antenna element 418 and the ground electrode 491 is larger than the distance between the isolation element 422 and the ground electrode 491.
  • the ground electrode 491 is formed between the dielectric substrate 450 and the RFIC 941 and between the dielectric substrate 450 and the RFIC 942.
  • the antenna element 412 and the antenna element 414 overlap the RFIC 941.
  • the antenna element 416 and the antenna element 418 overlap with the RFIC 942.
  • the antenna element 411 and the antenna element 413 do not overlap the RFIC 941. Further, when viewed in plan in the Z-axis direction, the antenna element 415 and the antenna element 417 do not overlap the RFIC 942.
  • the via conductor 431 connects the antenna element 411 and the line conductor pattern 443.
  • the line conductor pattern 443 is formed between the isolation element 419 and the ground electrode 491.
  • the via conductor 432 penetrates the ground electrode 491 and connects the line conductor pattern 443 and the RFIC 941. Via conductor 432 is isolated from ground electrode 491.
  • the via conductor 431, the line conductor pattern 443 and the via conductor 432 form a feed line connecting the antenna element 411 and the RFIC 941.
  • the RFIC 941 supplies a high frequency signal to the antenna element 411 via the feed wiring.
  • the via conductor 433 penetrates the ground electrode 491 and connects the antenna element 412 and the RFIC 941. Via conductor 433 is insulated from ground electrode 491. The RFIC 941 supplies a high frequency signal to the antenna element 412 through the via conductor 433.
  • the via conductor 434 connects the antenna element 413 and the line conductor pattern 444.
  • the line conductor pattern 444 is formed between the isolation element 420 and the ground electrode 491.
  • the via conductor 435 penetrates the ground electrode 491 and connects the line conductor pattern 444 and the RFIC 941. Via conductor 435 is insulated from ground electrode 491.
  • the via conductor 434, the line conductor pattern 444, and the via conductor 435 form a feed line connecting the antenna element 413 and the RFIC 941.
  • the feed wiring passes between the isolation element 420 and the ground electrode 491.
  • the via conductor 436 penetrates the ground electrode 491 and connects the antenna element 414 and the RFIC 941. Via conductor 436 is insulated from ground electrode 491. The RFIC 941 supplies a high frequency signal to the antenna element 414 through the via conductor 436.
  • the via conductor 437 connects the antenna element 415 and the line conductor pattern 445.
  • the line conductor pattern 445 is formed between the isolation element 421 and the ground electrode 491.
  • the via conductor 438 penetrates the ground electrode 491 and connects the line conductor pattern 445 and the RFIC 942. Via conductor 438 is insulated from ground electrode 491.
  • the via conductor 437, the line conductor pattern 445, and the via conductor 438 form a feed line connecting the antenna element 415 and the RFIC 942.
  • the feed wiring passes between the isolation element 421 and the ground electrode 491.
  • the via conductor 439 penetrates the ground electrode 491 and connects the antenna element 416 and the RFIC 942. Via conductor 439 is insulated from ground electrode 491.
  • the RFIC 942 supplies a high frequency signal to the antenna element 416 via the via conductor 436.
  • the via conductor 440 connects the antenna element 417 and the line conductor pattern 446.
  • the line conductor pattern 446 is formed between the isolation element 422 and the ground electrode 491.
  • the via conductor 441 penetrates the ground electrode 491 and connects the line conductor pattern 446 and the RFIC 942. Via conductor 441 is insulated from ground electrode 491.
  • the via conductor 440, the line conductor pattern 446, and the via conductor 441 form a feed line connecting the antenna element 417 and the RFIC 942.
  • the feed wiring passes between the isolation element 422 and the ground electrode 491.
  • the via conductor 442 penetrates the ground electrode 491 and connects the antenna element 418 and the RFIC 942. Via conductor 442 is insulated from ground electrode 491. The RFIC 942 supplies a high frequency signal to the antenna element 418 via the via conductor 442.
  • Feeding wirings connecting the antenna elements 411 and 413 to the RFIC 941 and feeding wirings connecting the antenna elements 415 and 417 to the RFIC 942 are formed to pass between the isolation elements 419 to 422 and the ground electrode 491.
  • the slit Slt4 can be formed to a depth at which the isolation elements 419 to 422 are exposed to the outside.
  • the effective dielectric constant of the dielectric substrate 450 can be smaller than in the case where the feed wiring passes over the isolation elements 419 to 422. As a result, the isolation characteristics of the antenna array 400 can be further improved.
  • isolation elements 419 to 422 may be integrally formed. However, in the case of such a configuration, unnecessary resonance may occur depending on the length of the isolation element (the size in the Y-axis direction). Therefore, it is desirable that the plurality of isolation elements 419 to 422 be formed separately.
  • line conductor patterns 443 and 444 forming a feed line connecting antenna elements 411 and 413 to RFIC 941 and a line conductor pattern forming a feed line connecting antenna elements 415 and 417 to RFIC 942 respectively.
  • the feed wiring may be a strip line passing between opposing ground electrodes.
  • FIG. 15 is a plan view of an antenna module 1410 according to a modification of the fourth embodiment as viewed in the Y-axis direction.
  • the configuration of the antenna module 1410 is a configuration in which the line conductor patterns 443 to 446 of the antenna module 1400 of FIGS. 13 and 14 are respectively sandwiched by the ground electrode 491 and the ground electrodes 492 to 495.
  • the other configuration is the same, so the description will not be repeated.
  • the ground electrode 492 is formed between the isolation element 419 and the ground electrode 491.
  • the ground electrode 492 is connected to the ground electrode 491 by a plurality of via conductors.
  • the line conductor pattern 443 is formed between the ground electrode 491 and the ground electrode 492.
  • a line conductor pattern 443 forming a feed line connecting the antenna element 411 and the RFIC 941 is a strip line passing between the ground electrode 491 and the ground electrode 492.
  • the ground electrode 493 is formed between the isolation element 420 and the ground electrode 491.
  • the ground electrode 493 is connected to the ground electrode 491 by a plurality of via conductors.
  • the line conductor pattern 444 is formed between the ground electrode 491 and the ground electrode 493.
  • a line conductor pattern 444 forming a feed line connecting the antenna element 413 and the RFIC 941 is a strip line passing between the ground electrode 491 and the ground electrode 493.
  • the ground electrode 494 is formed between the isolation element 421 and the ground electrode 491.
  • the ground electrode 494 is connected to the ground electrode 491 by a plurality of via conductors.
  • the line conductor pattern 445 is formed between the ground electrode 491 and the ground electrode 494.
  • the line conductor pattern 445 forming a feed line connecting the antenna element 415 and the RFIC 942 is a strip line passing between the ground electrode 491 and the ground electrode 494.
  • the ground electrode 495 is formed between the isolation element 422 and the ground electrode 491.
  • the ground electrode 495 is connected to the ground electrode 491 by a plurality of via conductors.
  • the line conductor pattern 446 is formed between the ground electrode 491 and the ground electrode 495.
  • the line conductor pattern 446 which forms a feed line connecting the antenna element 417 and the RFIC 942 is a strip line passing between the ground electrode 491 and the ground electrode 495.
  • the line conductor pattern forming the feed line By making the line conductor pattern forming the feed line into a strip line, the loss in the feed line can be reduced and the influence of the electromagnetic wave from the outside can be reduced as compared to the case of the microstrip line.
  • the isolation characteristic can be improved.
  • FIG. 16 is an external perspective view of an antenna module 1500 according to the fifth embodiment.
  • FIG. 17 is a plan view of the antenna module 1500 of FIG. 16 from the Y-axis direction.
  • antenna module 1500 includes antenna array 500 and RFICs 951 and 952.
  • the antenna array 500 includes flat antenna elements 511 to 518, flat isolation elements 519 to 522, a dielectric substrate 550, and a ground electrode 591. Each of the antenna elements 511 to 518 is opposed to the ground electrode 591 via the dielectric substrate 550.
  • the dielectric substrate 550 may be formed of a plurality of dielectric layers or may be formed integrally.
  • Dielectric substrate 550 includes a portion P51, a portion P52, and a portion P53.
  • the part P53 connects the part P51 and the part P52.
  • Dielectric substrate 550 is bent at portion P53.
  • Antenna elements 511, 513, 515, 517 are formed on the surface of the portion P51.
  • Antenna elements 512, 514, 516, and 518 are formed on the surface of the portion P52.
  • Isolation elements 519 to 522 are formed on the surface of the portion P53.
  • the isolation elements 519 to 522 are juxtaposed at intervals in the Y-axis direction. Isolation elements 519 to 522 may be integrally formed.
  • antenna module 1500 Since dielectric substrate 550 is bent at part P53, the normal direction (X axis direction) of antenna elements 511, 513, 515, 517 and the normal direction (Z axis of antenna elements 512, 514, 516, 518) Direction) is different.
  • antenna module 1500 transmission and reception of high-frequency signals having polarizations different in excitation direction are facilitated as compared with the case where the normal directions of the plurality of antenna elements included in the antenna array are parallel.
  • the thickness of the portion P51 in the X-axis direction (normal direction of the antenna elements 511, 513, 515, 517) is larger than the thickness of the portion P53 in the specific axis A1 direction (normal direction of the isolation elements 519 to 522).
  • the thickness of the portion P52 in the Z-axis direction (the normal direction of the antenna elements 512, 514, 516, 518) is larger than the thickness of the portion P53 in the specific axis A1 direction.
  • a slit Slt5 is formed between the portion P51 and the portion P52 along the Y-axis direction.
  • the effective dielectric constant of the dielectric substrate 550 in which the slit Slt5 is formed is smaller than the effective dielectric constant in the case where the slit Slt5 is not formed.
  • the high frequency signal is less likely to pass through the slit Slt5 not filled with the dielectric than the dielectric substrate 550.
  • the isolation element 519 When viewed in plan from the specific axis A1 direction, the isolation element 519 is formed between the antenna element 511 and the antenna element 512. The isolation element 519 is opposed to the ground electrode 591 via the dielectric substrate 550.
  • the isolation element 519 When viewed in plan in the X-axis direction, the isolation element 519 is separated from the antenna element 511. When viewed in plan from the Z-axis direction, the isolation element 519 is separated from the antenna element 512.
  • the distance between the antenna element 511 and the ground electrode 591 is larger than the distance between the isolation element 519 and the ground electrode 591.
  • the distance between the antenna element 512 and the ground electrode 591 is larger than the distance between the isolation element 519 and the ground electrode 591.
  • the isolation element 520 When viewed in plan from the specific axis A1 direction, the isolation element 520 is formed between the antenna element 513 and the antenna element 514. The isolation element 520 is opposed to the ground electrode 591 via the dielectric substrate 550.
  • the isolation element 420 When viewed in plan from the X-axis direction, the isolation element 420 is separated from the antenna element 513. When viewed in plan in the Z-axis direction, the isolation element 520 is separated from the antenna element 514.
  • the distance between the antenna element 513 and the ground electrode 591 is larger than the distance between the isolation element 520 and the ground electrode 591.
  • the distance between the antenna element 514 and the ground electrode 591 is larger than the distance between the isolation element 520 and the ground electrode 591.
  • the isolation element 521 When viewed in plan from the specific axis A1 direction, the isolation element 521 is formed between the antenna element 515 and the antenna element 516. The isolation element 521 is opposed to the ground electrode 591 via the dielectric substrate 550.
  • the isolation element 521 When viewed in plan in the X-axis direction, the isolation element 521 is separated from the antenna element 515. When viewed in plan in the Z-axis direction, the isolation element 521 is separated from the antenna element 516.
  • the distance between the antenna element 515 and the ground electrode 591 is larger than the distance between the isolation element 521 and the ground electrode 591.
  • the distance between the antenna element 516 and the ground electrode 591 is larger than the distance between the isolation element 521 and the ground electrode 591.
  • the isolation element 522 When viewed in plan from the specific axis A1 direction, the isolation element 522 is formed between the antenna element 517 and the antenna element 518. The isolation element 522 is opposed to the ground electrode 591 via the dielectric substrate 550.
  • the isolation element 522 When viewed in plan in the X-axis direction, the isolation element 522 is separated from the antenna element 517. When viewed in plan in the Z-axis direction, the isolation element 522 is separated from the antenna element 518.
  • the distance between the antenna element 517 and the ground electrode 591 is larger than the distance between the isolation element 522 and the ground electrode 591.
  • the distance between the antenna element 518 and the ground electrode 591 is larger than the distance between the isolation element 522 and the ground electrode 591.
  • the ground electrode 591 is formed between the dielectric substrate 550 and the RFIC 951 and between the dielectric substrate 550 and the RFIC 952.
  • the antenna element 512 and the antenna element 514 overlap the RFIC 951.
  • the antenna element 516 and the antenna element 518 overlap with the RFIC 952.
  • the antenna element 511 and the antenna element 513 do not overlap the RFIC 951.
  • the antenna element 515 and the antenna element 517 do not overlap with the RFIC 952.
  • the via conductor 531 connects the antenna element 511 and the line conductor pattern 543.
  • the line conductor pattern 543 is formed between the isolation element 519 and the ground electrode 591.
  • the via conductor 532 penetrates the ground electrode 591 and connects the line conductor pattern 543 and the RFIC 951. Via conductor 532 is isolated from ground electrode 591.
  • the via conductor 531, the line conductor pattern 543, and the via conductor 532 form a feed line connecting the antenna element 511 and the RFIC 951.
  • the RFIC 951 supplies a high frequency signal to the antenna element 511 through the feed wiring.
  • the via conductor 533 penetrates the ground electrode 591 and connects the antenna element 512 and the RFIC 951. Via conductor 533 is insulated from ground electrode 591.
  • the RFIC 951 supplies a high frequency signal to the antenna element 512 via the via conductor 533.
  • the via conductor 534 connects the antenna element 513 and the line conductor pattern 544.
  • the line conductor pattern 544 is formed between the isolation element 520 and the ground electrode 591.
  • the via conductor 535 penetrates the ground electrode 591 and connects the line conductor pattern 544 and the RFIC 951. Via conductor 535 is isolated from ground electrode 591.
  • the via conductor 534, the line conductor pattern 544, and the via conductor 535 form a feed line connecting the antenna element 513 and the RFIC 951.
  • the feed wiring passes between the isolation element 520 and the ground electrode 591.
  • the via conductor 536 penetrates the ground electrode 591 and connects the antenna element 514 and the RFIC 951. Via conductor 536 is isolated from ground electrode 591.
  • the RFIC 951 supplies a high frequency signal to the antenna element 514 via the via conductor 536.
  • the via conductor 537 connects the antenna element 515 and the line conductor pattern 545.
  • the line conductor pattern 545 is formed between the isolation element 521 and the ground electrode 591.
  • the via conductor 538 penetrates the ground electrode 591 and connects the line conductor pattern 545 and the RFIC 952. Via conductor 538 is isolated from ground electrode 591.
  • the via conductor 537, the line conductor pattern 545, and the via conductor 538 form a feed line connecting the antenna element 515 and the RFIC 952.
  • the feed wiring passes between the isolation element 521 and the ground electrode 591.
  • the via conductor 539 penetrates the ground electrode 591 and connects the antenna element 516 and the RFIC 952. Via conductor 539 is isolated from ground electrode 591.
  • the RFIC 952 supplies a high frequency signal to the antenna element 516 via the via conductor 539.
  • the via conductor 540 connects the antenna element 517 and the line conductor pattern 546.
  • the line conductor pattern 546 is formed between the isolation element 522 and the ground electrode 591.
  • the via conductor 541 penetrates the ground electrode 591 and connects the line conductor pattern 546 and the RFIC 952. Via conductor 541 is insulated from ground electrode 591.
  • the via conductor 540, the line conductor pattern 546, and the via conductor 541 form a feed line connecting the antenna element 517 and the RFIC 952.
  • the feed wiring passes between the isolation element 522 and the ground electrode 591.
  • the via conductor 542 penetrates the ground electrode 591 and connects the antenna element 518 and the RFIC 952. Via conductor 542 is insulated from ground electrode 591.
  • the RFIC 952 supplies a high frequency signal to the antenna element 518 via the via conductor 542.
  • Feed lines connecting antenna elements 511 and 513 to RFIC 951 and feed lines connecting antenna elements 515 and 517 to RFIC 952 are formed to pass between isolation elements 519 to 522 and ground electrode 591 respectively.
  • the slits Slt5 can be formed to the depth at which the isolation elements 519 to 522 are exposed to the outside.
  • the effective dielectric constant of the dielectric substrate 550 can be smaller than in the case where the feed wiring passes over the isolation elements 519 to 522. As a result, the isolation characteristics of the antenna array 500 can be further improved.
  • line conductor patterns 543 and 544 forming feed lines connecting antenna elements 511 and 513 to RFIC 951 and line conductors forming feed lines connecting antenna elements 515 and 517 to RFIC 952 respectively.
  • the line conductor pattern forming the feed wiring may be a strip line passing between opposing ground electrodes.
  • FIG. 18 is a plan view of an antenna module 1510 according to a modification of the fifth embodiment, viewed from the Y-axis direction.
  • the configuration of the antenna module 1510 is a configuration in which the line conductor patterns 543 to 546 of the antenna module 1500 of FIGS. 16 and 17 are respectively sandwiched by the ground electrode 591 and the ground electrodes 592 to 595.
  • the other configuration is the same, so the description will not be repeated.
  • the ground electrode 592 is connected to the ground electrode 591 by a plurality of via conductors.
  • the line conductor pattern 443 is formed between the ground electrode 591 and the ground electrode 592.
  • a line conductor pattern 543 forming a feed line connecting the antenna element 511 and the RFIC 951 is a strip line passing between the ground electrode 591 and the ground electrode 592.
  • the ground electrode 593 is formed between the isolation element 520 and the ground electrode 591.
  • the ground electrode 593 is connected to the ground electrode 591 by a plurality of via conductors.
  • the line conductor pattern 544 is formed between the ground electrode 591 and the ground electrode 593.
  • a line conductor pattern 544 forming a feed line connecting the antenna element 513 and the RFIC 951 is a strip line passing between the ground electrode 591 and the ground electrode 593.
  • the ground electrode 594 is formed between the isolation element 521 and the ground electrode 591.
  • the ground electrode 594 is connected to the ground electrode 591 by a plurality of via conductors.
  • the line conductor pattern 545 is formed between the ground electrode 591 and the ground electrode 594.
  • a line conductor pattern 545 forming a feed line connecting the antenna element 515 and the RFIC 952 is a strip line passing between the ground electrode 591 and the ground electrode 594.
  • the ground electrode 595 is formed between the isolation element 522 and the ground electrode 591.
  • the ground electrode 595 is connected to the ground electrode 591 by a plurality of via conductors.
  • the line conductor pattern 546 is formed between the ground electrode 591 and the ground electrode 595.
  • a line conductor pattern 546 which forms a feed line connecting the antenna element 517 and the RFIC 952 is a strip line passing between the ground electrode 591 and the ground electrode 595.
  • the line conductor pattern forming the feed line By making the line conductor pattern forming the feed line into a strip line, the loss in the feed line can be reduced and the influence of the electromagnetic wave from the outside can be reduced as compared to the case of the microstrip line.
  • a plurality of antenna elements are arranged in the Y-axis direction (the first direction) on each of the surface of portion P51 (first portion) and the surface of portion P52 (second portion) having different normal directions.
  • the arrangement of the plurality of antenna elements on the surface of the first portion and the surface of the second portion is not limited to the arrangement along the first direction.
  • the plurality of antenna elements may be disposed along a second direction different from the first direction, and along each of the first direction and the second direction It may be arranged in a matrix.
  • isolation elements may be disposed between adjacent antenna elements on the surface of the first portion and the surface of the second portion.
  • the isolation characteristic can be improved.
  • the isolation element in which the isolation element is disposed between flat plate antenna elements (patch antennas) has been described.
  • the isolation element may be disposed between at least one of the patch antenna and two different antenna elements.
  • the isolation element may be disposed between the patch antenna and the dipole antenna, or may be disposed between the dipole antennas.
  • the isolation characteristic can be improved as in the first to fifth embodiments also by an antenna array in which an isolation element is disposed between two antenna elements at least one of which is different from the patch antenna.
  • the first antenna element and the second antenna element may not be formed on the surface of the dielectric substrate, and may be formed inside the dielectric substrate.
  • the first ground electrode may not be formed on the back surface of the dielectric substrate, and may be formed inside the dielectric substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

アンテナアレイのアイソレーション特性を改善する。本発明の一実施形態に係るアンテナアレイ(100)において、アイソレーション素子(113)の第1法線方向から平面視したとき、アイソレーション素子(113)は、第1アンテナ素子(111)と第2アンテナ素子(112)との間に形成されている。第1アンテナ素子(111)と第1グランド電極(190)との第1距離は、アイソレーション素子(113)と第1グランド電極(190)との第2距離と異なる。第2アンテナ素子(112)と第1グランド電極(190)との第3距離は、第2距離と異なる。第1アンテナ素子(111)の第2法線方向から平面視したとき、アイソレーション素子(113)は、第1アンテナ素子(111)から離間している。第2アンテナ素子(112)の第3法線方向から平面視したとき、アイソレーション素子(113)は、第2アンテナ素子(112)から離間している。

Description

アンテナアレイおよびアンテナモジュール
 本発明は、アンテナアレイおよびアンテナモジュールに関する。
 従来、アンテナ素子が規則的に配置されたアンテナアレイおよび当該アンテナアレイを備えるアンテナモジュールが知られている。たとえば、国際公開第2016/067969号(特許文献1)には、導体パターンからなるアンテナと、当該アンテナに高周波信号を供給する高周波半導体素子とを備えるアンテナモジュールが開示されている。
国際公開第2016/067969号
 しかしながら、特許文献1に記載のアンテナアレイにあっては、限られた実装空間に複数のアンテナ素子が配置されることになり、アンテナ素子同士が近接して電磁気的な結合が強まる。その結果、アンテナアレイのアイソレーション特性が劣化し得る。
 本発明は上記のような課題を解決するためになされたものであり、その目的は、アンテナアレイのアイソレーション特性を改善することである。
 本発明の一実施形態に係るアンテナアレイは、誘電体基板と、第1アンテナ素子と、第2アンテナ素子と、アイソレーション素子と、第1グランド電極とを備える。第1アンテナ素子は、平板状である。第1アンテナ素子は、誘電体基板に形成されている。第2アンテナ素子は、平板状である。第2アンテナ素子は、誘電体基板に形成されている。アイソレーション素子は、誘電体基板に形成されている。第1グランド電極は、誘電体基板に形成されている。第1グランド電極は、第1アンテナ素子、第2アンテナ素子、およびアイソレーション素子の各々と、前記誘電体基板の少なくとも一部を介して対向している。アイソレーション素子の第1法線方向から平面視したとき、アイソレーション素子は、第1アンテナ素子と第2アンテナ素子との間に形成されている。第1アンテナ素子と第1グランド電極との距離は、アイソレーション素子と第1グランド電極との距離と異なる。第2アンテナ素子と第1グランド電極との距離は、アイソレーション素子と第1グランド電極との距離と異なる。第1アンテナ素子の第2法線方向から平面視したとき、アイソレーション素子は、第1アンテナ素子から離間している。第2アンテナ素子の第3法線方向から平面視したとき、アイソレーション素子は、第2アンテナ素子から離間している。
 本発明の一実施形態に係るアンテナアレイによれば、アイソレーション素子によって第1アンテナ素子と第2アンテナ素子との電磁気的な結合が弱められるため、アンテナアレイのアイソレーション特性を改善することができる。
アンテナアレイを備える通信装置のブロック図である。 実施の形態1に係るアンテナアレイを備えるアンテナモジュールをZ軸方向から平面視した図である。 図2のアンテナモジュールをY軸方向から平面視した図である。 図3に示されるアイソレーション素子の幅を変化させた場合の、アンテナ素子の反射損失のシミュレーション結果、ならびにアンテナ素子間のアイソレーションのシミュレーション結果を併せて示す図表である。 図3のアイソレーション素子の幅Wが0mm、1.2mm、1.4mm、および2.2mmである場合の各アイソレーション特性を併せて示す図である。 図3のアイソレーション素子の幅が0mm、1.2mm、1.4mm、および2.2mmである場合のアンテナ素子の各反射特性を併せて示す図である。 実施の形態2に係るアンテナアレイを備えるアンテナモジュールをZ軸方向から平面視した図である。 図7のアンテナモジュールをY軸方向から平面視した図である。 図8に示されるアイソレーション素子の幅を変化させた場合の、アンテナ素子の反射損失のシミュレーション結果、およびアンテナ素子間のアイソレーションのシミュレーション結果を併せて示す図表である。 図8のアイソレーション素子の幅が0mm、1.2mm、および1.4mmである場合の各アイソレーション特性を併せて示す図である。 図8のアイソレーション素子の幅が0mm、1.2mm、1.4mmである場合のアンテナ素子の各反射特性を併せて示す図である。 実施の形態3に係るアンテナモジュールをY軸方向から平面視した図である。 実施の形態4に係るアンテナモジュールの外観斜視図である。 図13のアンテナモジュールをY軸方向から平面視した図である。 実施の形態4の変形例に係るアンテナモジュールをY軸方向から平面視した図である。 実施の形態5に係るアンテナモジュールの外観斜視図である。 図16のアンテナモジュールをY軸方向から平面視した図である。 実施の形態5の変形例に係るアンテナモジュールをY軸方向から平面視した図である。
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 図1は、アンテナアレイ10を備える通信装置3000のブロック図である。通信装置3000は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。
 図1に示されるように、通信装置3000は、アンテナモジュール1000と、ベースバンド信号処理回路を構成するBBIC(Baseband Integrated Circuit)2000とを備える。アンテナモジュール1000は、高周波素子の一例であるRFIC(Radio Frequency Integrated Circuit)900と、アンテナアレイ10とを備える。
 通信装置3000は、BBIC2000からアンテナモジュール1000へ伝達された信号を高周波信号にアップコンバートしてアンテナアレイ10から放射する。通信装置3000は、アンテナアレイ10で受信した高周波信号をダウンコンバートしてBBIC2000にて信号処理する。
 アンテナアレイ10は、複数の平板状のアンテナ素子(放射導体)が、規則的に配置されている。図1においては、アンテナアレイ10を構成する複数のアンテナ素子のうち、アンテナ素子10A~10Dに対応するRFIC900の構成が示されている。
 RFIC900は、スイッチ31A~31D,33A~33D,37と、パワーアンプ32AT~32DTと、ローノイズアンプ32AR~32DRと、減衰器34A~34Dと、移相器35A~35Dと、信号合成/分波器36と、ミキサ38と、増幅回路39とを備える。
 RFIC900は、たとえば、アンテナアレイ10に含まれる複数のアンテナ素子に対応する回路要素(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、および移相器)を含む1チップの集積回路部品として形成される。あるいは、当該回路要素については、RFIC900とは別に、アンテナ素子毎に1チップの集積回路部品として形成されてもよい。
 高周波信号を受信する場合、スイッチ31A~31D,33A~33Dがローノイズアンプ32AR~32DR側へ切換えられるとともに、スイッチ37が増幅回路39の受信側アンプに接続される。
 アンテナ素子10A~10Dで受信された高周波信号は、スイッチ31A~31Dから移相器35A~35Dまでの各信号経路を経由し、信号合成/分波器36で合波され、ミキサ38でダウンコンバートされ、増幅回路39で増幅されてBBIC2000へ伝達される。
 高周波信号をアンテナアレイ10から送信する場合には、スイッチ31A~31D,33A~33Dがパワーアンプ32AT~32DT側へ切換えられるとともに、スイッチ37が増幅回路39の送信側アンプに接続される。
 BBIC2000から伝達された信号は、増幅回路39で増幅され、ミキサ38でアップコンバートされる。アップコンバートされた高周波信号は、信号合成/分波器36で4分波され、移相器35A~35Dからスイッチ31A~31Dまでの各信号経路を通過してアンテナ素子10A~10Dに給電される。各信号経路に配置された移相器35A~35Dの移相度が個別に調整されることにより、アンテナアレイ10の指向性を調整することが可能となる。
 BBIC2000から出力され、アンテナ素子10A~10Dのいずれかから放射された高周波数信号の一部が、他のアンテナ素子に受信されて、BBIC2000に戻る場合がある。たとえば、アンテナ素子10B~10Dから放射された高周波信号が、アンテナ素子10Aに受信されて、BBIC2000に戻る場合がある。このような場合、BBIC2000からアンテナ素子10Aに向けて出力した高周波信号がBBIC2000に戻っているように見えるため、アンテナ素子10A単体の反射特性が悪化する。
 アンテナ素子10A~10Dの各々についてインピーダンスマッチングを行ない、アンテナ素子単体での反射特性を向上させたとしても、他のアンテナ素子から放射された高周波信号を受信してしまうと、インピーダンスマッチングの効果が減殺され、アンテナ素子の反射特性が悪化する。インピーダンスマッチングされたアンテナ素子の反射特性の悪化を抑制するためには、アンテナアレイ10のアイソレーション特性を向上させる必要がある。
 このような反射特性の悪化は、アンテナアレイ10に含まれるアンテナ素子の個数が多いほど、任意の1つのアンテナ素子に及ぼす他のアンテナ素子の影響が大きくなるため、顕著となる。また、反射特性の悪化は、例えばパワーアンプ32AT~32DTの歪あるいは消費電力等の性能に影響を及ぼす。したがって、特に、アンテナアレイ10に含まれるアンテナ素子の個数が多い構成では、アイソレーション特性の向上が重要である。
 そこで、実施の形態においては、アンテナ素子間にアイソレーション素子を配置してアンテナ素子同士の電磁気的な結合を弱める。その結果、アンテナアレイのアイソレーション特性を向上させることができる。
 [実施の形態1]
 図2は、実施の形態1に係るアンテナアレイ100を備えるアンテナモジュール1100をZ軸方向から平面視した図である。図3は、図2のアンテナモジュール1100をY軸方向から平面視した図である。なお、図2および図3において、X軸、Y軸、およびZ軸は互いに直交している。図7、図8、図12~図18においても同様である。
 アンテナモジュール1100は、26GHz~30GHzを使用周波数帯として、主に30GHzを使用周波数として高周波信号の送信および受信を行なう。実施の形態に係るアンテナアレイを備えるアンテナモジュールの使用周波数帯は、26GHz~30GHzに限定されるものではなく、たとえば、26.5GHz~29.5GHzであってもよい。以下では、使用周波数の波長を特定波長とも呼ぶ。使用周波数が30GHzである場合、特定波長は、約10(9.9930…)mmである。
 図2および図3を参照しながら、アンテナモジュール1100は、アンテナアレイ100と、RFIC910とを備える。アンテナアレイ100は、平板状のアンテナ素子111,112と、平板状のアイソレーション素子113と、誘電体基板150と、グランド電極190とを含む。
 図3において、幅Wは、アイソレーション素子113のX軸方向の幅を表している。間隔Gapは、アイソレーション素子113とアンテナ素子111とのX軸方向の間隔を表しているとともに、アイソレーション素子113とアンテナ素子112とのX軸方向の間隔を表している。W+2・Gapの値は、2.2mmに等しい。
 アンテナ素子111は、誘電体基板150を介してグランド電極190と対向している。アンテナ素子112は、誘電体基板150を介してグランド電極190と対向している。アイソレーション素子113の法線方向(Z軸方向)から平面したとき、アイソレーション素子113は、アンテナ素子111とアンテナ素子112との間に形成されている。アイソレーション素子113は、誘電体基板150の少なくとも一部を介してグランド電極190と対向している。
 アンテナ素子111とグランド電極190との距離は、アイソレーション素子113とグランド電極190との距離よりも大きい。アンテナ素子112とグランド電極190との距離は、アイソレーション素子113とグランド電極190との距離よりも大きい。ただし、アンテナ素子とグランド電極との距離と、アイソレーション素子とグランド電極との距離の関係は、上記に限ったものではない。例えば、アイソレーション素子113とグランド電極190との距離は、アンテナ素子111とグランド電極190との距離およびアンテナ素子112とグランド電極190との距離より大きくてもよい。
 そして、アンテナ素子111の法線方向(Z軸方向)から平面視したとき、アイソレーション素子113は、アンテナ素子111から離間している。また、アンテナ素子112の法線方向(Z軸方向)から平面視したとき、アイソレーション素子113は、アンテナ素子112から離間している。
 グランド電極190は、誘電体基板150とRFIC910との間に形成されている。Z軸方向から平面視したとき、アンテナ素子111およびアンテナ素子112は、いずれもRFIC910に重なっている。
 ビア導体131は、グランド電極190を貫通し、アンテナ素子111とRFIC910とを接続している。ビア導体131は、グランド電極190から絶縁されている。ビア導体132は、グランド電極190を貫通し、アンテナ素子112とRFIC910とを接続している。ビア導体132は、グランド電極190から絶縁されている。RFIC910は、ビア導体131,132を介してそれぞれアンテナ素子111,112に高周波信号を供給する。
 図4は、図3に示されるアイソレーション素子113の幅Wを変化させた場合の、アンテナ素子111およびアンテナ素子112の反射損失(RL:Return Loss)のシミュレーション結果、ならびにアンテナ素子111とアンテナ素子112とのアイソレーション(Iso)のシミュレーション結果を併せて示す図表である。図5は、図3のアイソレーション素子113の幅Wが0mm、1.2mm、1.4mm、および2.2mmである場合の各アイソレーション特性を併せて示す図である。図6は、図3のアイソレーション素子113の幅Wが0mm、1.2mm、1.4mm、および2.2mmである場合のアンテナ素子111の各反射特性(実線)、およびアンテナ素子112の反射特性(点線)を併せて示す図である。
 ここで、反射損失が大きい、とは、アンテナ素子から放射された信号量が大きいことを意味する。すなわち、反射損失が大きい程、アンテナ素子の反射特性が良好であることを意味する。また、アイソレーションの値が大きい程、アンテナ素子111とアンテナ素子112との電磁気的な結合が弱く、アンテナ素子111とアンテナ素子112との間の信号伝達が抑制される。すなわち、アイソレーションが大きい程、アンテナアレイ100のアイソレーション特性が良好であることを意味する。
 図4には、反射損失の値として、アンテナモジュール1100の使用周波数帯におけるアンテナ素子111の反射損失、およびアンテナ素子112の反射損失のうち、最も小さい値が示されている。図4には、アイソレーションの値として、アンテナモジュール1100の使用周波数帯における最も小さい値が示されている。
 図4において、幅Wが2.2mmである第1行では、Z軸方向からアンテナモジュール1100を平面視したとき、アンテナ素子111とアイソレーション素子113とが離間していないとともに、アンテナ素子112とアイソレーション素子113とが離間していない場合(間隔Gapが0mm)のデータが示されている。また、幅Wが0mmである最終行では、アイソレーション素子113が配置されていない比較例のデータが示されている。
 図4に示されるように、間隔Gapが0.2mmから1.0mmの各アイソレーションは、間隔Gapが1.1mmの比較例のアイソレーション以上である。また、間隔Gapが0.5mmから1.0mmの各反射損失は、比較例の反射損失との差が最大で0.1dB程度である。間隔Gapが1.1mmである比較例との比較において、反射特性の維持という観点では、間隔Gapは特定波長の20分の1(0.4996…)以上であることが望ましい。
 以上、実施の形態1に係るアンテナアレイによれば、アイソレーション特性を改善することができる。
 [実施の形態2]
 実施の形態1では、第1アンテナ素子、第2アンテナ素子、およびアイソレーション素子が同一平面上に形成されていない場合について説明した。実施の形態2では、第1アンテナ素子、第2アンテナ素子、およびアイソレーション素子が同一平面上に形成されている場合について説明する。
 図7は、実施の形態2に係るアンテナアレイ200を備えるアンテナモジュール1200をZ軸方向から平面視した図である。図8は、図7のアンテナモジュール1200をY軸方向から平面視した図である。アンテナモジュール1200は、26GHz~30GHzを使用周波数帯として、主に30GHzを使用周波数として高周波信号の送信および受信を行なう。
 図7および図8を参照しながら、アンテナモジュール1200は、アンテナアレイ200と、RFIC920とを備える。アンテナアレイ200は、平板状のアンテナ素子211,212と、平板状のアイソレーション素子213と、誘電体基板250と、グランド電極290とを含む。
 図8において、幅Wは、アイソレーション素子213のX軸方向の幅を表している。間隔Gapは、アイソレーション素子213とアンテナ素子211とのX軸方向の間隔を表しているとともに、アイソレーション素子213とアンテナ素子212とのX軸方向の間隔を表している。W+2・Gapの値は、2.2mmに等しい。
 アンテナ素子211は、誘電体基板250を介してグランド電極290と対向している。アンテナ素子212は、誘電体基板250を介してグランド電極290と対向している。アイソレーション素子213の法線方向(Z軸方向)から平面視したとき、アイソレーション素子213は、アンテナ素子211とアンテナ素子212との間に形成されている。アイソレーション素子213は、誘電体基板250を介してグランド電極290と対向している。
 そして、アンテナ素子211とグランド電極290との距離は、アイソレーション素子213とグランド電極290との距離に等しい。また、アンテナ素子212とグランド電極290との距離は、アイソレーション素子213とグランド電極290との距離に等しい。すなわち、アンテナ素子211、アンテナ素子212、アイソレーション素子213は、同一平面(誘電体基板250の表面)上に形成されている。
 さらに、アンテナ素子211の法線方向(Z軸方向)から平面視したとき、アイソレーション素子213は、アンテナ素子211から特定波長の20分の1以上離間している。また、アンテナ素子212の法線方向(Z軸方向)から平面視したとき、アイソレーション素子213は、アンテナ素子212から特定波長の20分の1以上離間している。
 グランド電極290は、誘電体基板250とRFIC920との間に形成されている。Z軸方向から平面視したとき、アンテナ素子211およびアンテナ素子212は、いずれもRFIC920に重なっている。
 ビア導体231は、グランド電極290を貫通し、アンテナ素子211とRFIC920とを接続している。ビア導体231は、グランド電極290から絶縁されている。ビア導体232は、グランド電極290を貫通し、アンテナ素子212とRFIC920とを接続している。ビア導体232は、グランド電極290から絶縁されている。RFIC920は、ビア導体231,232を介してそれぞれアンテナ素子211,212に高周波信号を供給する。
 図9は、図8に示されるアイソレーション素子213の幅Wを変化させた場合の、アンテナ素子212の反射損失のシミュレーション結果、およびアンテナ素子211とアンテナ素子212とのアイソレーションのシミュレーション結果を併せて示す図表である。図10は、図8のアイソレーション素子213の幅Wが0mm、1.2mm、および1.4mmである場合の各アイソレーション特性を併せて示す図である。図11は、図8のアイソレーション素子213の幅Wが0mm、1.2mm、1.4mmである場合のアンテナ素子211の各反射特性(実線)、およびアンテナ素子212の反射特性(点線)を併せて示す図である。
 図9には、反射損失の値として、アンテナモジュール1200の使用周波数帯におけるアンテナ素子211の反射損失、およびアンテナ素子212の反射損失のうち、最小値が示されている。図9には、アイソレーションの値として、アンテナモジュール1100の使用周波数帯における最小値が示されている。
 図9において、アイソレーション素子213の幅Wが2.2mmである第1行には、反射損失およびアイソレーションが示されていない。アンテナモジュール1200においては、アンテナ素子211、アンテナ素子212、およびアイソレーション素子213が同一平面にあるため、アイソレーション素子213の幅Wが2.2mmである場合、アンテナ素子211がアイソレーション素子213に接触するとともに、アンテナ素子212がアイソレーション素子213に接触する。そのため、幅Wが2.2mmである場合は、シミュレーションから除外されている。また、幅Wが0mmである最終行には、アイソレーション素子213が配置されていない比較例のデータが示されている。
 図9に示されるように、間隔Gapが0.5mmから1.0mmの各アイソレーションは、間隔Gapが1.1mmの比較例のアイソレーションより大きい。間隔Gapが0.5mmから1.0mmの各反射損失は、比較例の反射損失との差が最大で0.3dB程度である。
 すなわち、アイソレーション素子を、アンテナ素子と同じ平面に形成されたときは、間隔Gapを特定波長の20分の1以上とすることにより、アンテナアレイ200のアイソレーション特性を改善することができる。また、間隔Gapを特定波長の20分の1以上とすることにより、間隔Gapが1.1mmである比較例との比較において、アンテナアレイ200の反射特性を維持することができる。
 以上、実施の形態2に係るアンテナアレイによれば、アイソレーション特性を改善することができる。
 [実施の形態3]
 実施の形態1においては、アイソレーション素子が誘電体基板の内部に形成されている場合について説明した。実施の形態3においては、誘電体基板に形成されたスリットの底部にアイソレーション素子が形成されることにより、アイソレーション素子が誘電体基板の表面に配置される場合について説明する。
 図12は、実施の形態3に係るアンテナモジュール1300をY軸方向から平面視した図である。図12に示されるように、アンテナモジュール1300は、アンテナアレイ300と、RFIC930とを備える。
 アンテナアレイ300は、平板状のアンテナ素子311,312と、平板状のアイソレーション素子313と、誘電体基板350と、グランド電極390とを含む。
 アンテナ素子311は、誘電体基板350を介してグランド電極390と対向している。アンテナ素子312は、誘電体基板350を介してグランド電極390と対向している。アイソレーション素子313の法線方向(Z軸方向)から平面視したとき、アイソレーション素子313は、アンテナ素子311とアンテナ素子312との間に形成されている。アイソレーション素子313は、誘電体基板350を介してグランド電極190と対向している。
 誘電体基板350は、部分P31と、部分P32と、部分P33とを含む。部分P33は、部分P31と部分P32とを接続する。Z軸方向(アンテナ素子311の法線方向)の部分P31の厚みは、Z軸方向の部分P33の厚みよりも大きい。Z軸方向(アンテナ素子312の法線方向)の部分P32の厚みは、Z軸方向の部分P33の厚みよりも大きい。誘電体基板350には、部分P31と部分P32との間にY軸方向に沿ってスリットSlt3が形成されている。
 部分P31の表面には、アンテナ素子311が形成されている。部分P32の表面には、アンテナ素子312が形成されている。部分P33の表面には、アイソレーション素子313が形成されている。なお、スリットSlt3の幅(X軸方向の大きさ)とアイソレーション素子313の幅(X軸方向の大きさ)とは、同一に限らず、異なっていてもよい。つまり、スリットSlt3の底部の一部にアイソレーション素子313が形成されていてもよいし、アイソレーション素子313の一部がスリットSlt3の底面から露出していてもよい。
 スリットSlt3が形成されている誘電体基板350の実効誘電率は、スリットSlt3が形成されていない場合の実効誘電率よりも小さい。高周波信号は、誘電体基板350よりも誘電体が充填されていないスリットSlt3の方が通過し難い。誘電体基板350にスリットSlt3が形成されていることにより、アンテナ素子311とアンテナ素子312とのアイソレーションをさらに改善することができる。
 アンテナ素子311とグランド電極390との距離は、アイソレーション素子313とグランド電極390との距離よりも大きい。アンテナ素子312とグランド電極390との距離は、アイソレーション素子313とグランド電極390との距離よりも大きい。
 Z軸方向から平面視したとき、アイソレーション素子313は、アンテナ素子311から離間している。Z軸方向から平面視したとき、アイソレーション素子313は、アンテナ素子312から離間している。
 グランド電極390は、誘電体基板350とRFIC930との間に形成されている。Z軸方向から平面視したとき、アンテナ素子311およびアンテナ素子312は、いずれもRFIC930に重なっている。
 ビア導体331は、グランド電極390を貫通し、アンテナ素子311とRFIC930とを接続している。ビア導体331は、グランド電極390から絶縁されている。ビア導体332は、グランド電極390を貫通し、アンテナ素子312とRFIC930とを接続している。ビア導体332は、グランド電極390から絶縁されている。RFIC930は、ビア導体331,332を介してそれぞれアンテナ素子311,312に高周波信号を供給する。
 以上、実施の形態3に係るアンテナアレイによれば、アイソレーション特性を改善することができる。
 [実施の形態4]
 実施の形態1~3においては、第1アンテナ素子の法線方向から平面視したとき、第1アンテナ素子が高周波素子と重なっているとともに、第2アンテナ素子の法線方向から平面視したとき、第2アンテナ素子が高周波素子と重なっている場合について説明した。実施の形態4においては、第2アンテナ素子の法線方向から平面視したとき、第2アンテナ素子が高周波素子と重なっている一方、第1アンテナ素子の法線方向から平面視したとき、第1アンテナ素子が高周波素子と重なっていない場合について説明する。
 図13は、実施の形態4に係るアンテナモジュール1400の外観斜視図である。図14は、図13のアンテナモジュール1400をY軸方向から平面視した図である。図13および図14を参照しながら、アンテナモジュール1400は、アンテナアレイ400と、RFIC941,942とを備える。
 アンテナアレイ400は、平板状のアンテナ素子411~418と、平板状のアイソレーション素子419~422と、誘電体基板450と、グランド電極491とを備える。アンテナ素子411~418の各々は、誘電体基板450を介してグランド電極491と対向している。誘電体基板450は、複数の誘電体層から形成されていてもよいし、一体として形成されていてもよい。
 誘電体基板450は、部分P41と、部分P42と、部分P43とを含む。部分P43は、部分P41と部分P42とを接続する。部分P41のZ軸方向(アンテナ素子411,413,415,417の法線方向)の厚みは、部分P43のZ軸方向(アイソレーション素子419~422の法線方向)の厚みよりも大きい。部分P42のZ軸方向(アンテナ素子412,414,416,418の法線方向)の厚みは、部分P43のZ軸方向の厚みよりも大きい。誘電体基板450には、部分P41と部分P42との間にY軸方向に沿ってスリットSlt4が形成されている。
 スリットSlt4が形成されている誘電体基板450の実効誘電率は、スリットSlt4が形成されていない場合の実効誘電率よりも小さい。高周波信号は、誘電体基板450よりも誘電体が充填されていないスリットSlt4の方が通過し難い。誘電体基板450にスリットSlt4が形成されていることにより、アンテナ素子411,413,415,417およびアンテナ素子412、414,416,418の間のアイソレーションをさらに改善することができる。
 部分P41の表面には、アンテナ素子411,413,415,417が形成されている。部分P42の表面には、アンテナ素子412,414,416,418が形成されている。部分P43の表面には、アイソレーション素子419~422が形成されている。アイソレーション素子419~422は、Y軸方向に間隔を空けて並置されている。
 Z軸方向から平面視したとき、アイソレーション素子419は、アンテナ素子411とアンテナ素子412との間に形成されている。アイソレーション素子419は、誘電体基板450を介してグランド電極491と対向している。
 Z軸方向から平面視したとき、アイソレーション素子419は、アンテナ素子411から離間している。Z軸方向から平面視したとき、アイソレーション素子419は、アンテナ素子412から離間している。
 アンテナ素子411とグランド電極491との距離は、アイソレーション素子419とグランド電極491との距離よりも大きい。アンテナ素子412とグランド電極491との距離は、アイソレーション素子419とグランド電極491との距離よりも大きい。
 Z軸方向から平面視したとき、アイソレーション素子420は、アンテナ素子413とアンテナ素子414との間に形成されている。アイソレーション素子420は、誘電体基板450を介してグランド電極491と対向している。
 Z軸方向から平面視したとき、アイソレーション素子420は、アンテナ素子413から離間している。Z軸方向から平面視したとき、アイソレーション素子420は、アンテナ素子414から離間している。
 アンテナ素子413とグランド電極491との距離は、アイソレーション素子420とグランド電極491との距離よりも大きい。アンテナ素子414とグランド電極491との距離は、アイソレーション素子420とグランド電極491との距離よりも大きい。
 Z軸方向から平面視したとき、アイソレーション素子421は、アンテナ素子415とアンテナ素子416との間に形成されている。アイソレーション素子421は、誘電体基板450を介してグランド電極491と対向している。
 Z軸方向から平面視したとき、アイソレーション素子421は、アンテナ素子415から離間している。Z軸方向から平面視したとき、アイソレーション素子421は、アンテナ素子416から離間している。
 アンテナ素子415とグランド電極491との距離は、アイソレーション素子421とグランド電極491との距離よりも大きい。アンテナ素子416とグランド電極491との距離は、アイソレーション素子421とグランド電極491との距離よりも大きい。
 Z軸方向から平面視したとき、アイソレーション素子422は、アンテナ素子417とアンテナ素子418との間に形成されている。アイソレーション素子422は、誘電体基板450を介してグランド電極491と対向している。
 Z軸方向から平面視したとき、アイソレーション素子422は、アンテナ素子417から離間している。Z軸方向から平面視したとき、アイソレーション素子422は、アンテナ素子418から離間している。
 アンテナ素子417とグランド電極491との距離は、アイソレーション素子422とグランド電極491との距離よりも大きい。アンテナ素子418とグランド電極491との距離は、アイソレーション素子422とグランド電極491との距離よりも大きい。
 グランド電極491は、誘電体基板450とRFIC941との間および誘電体基板450とRFIC942との間に形成されている。Z軸方向から平面視したとき、アンテナ素子412およびアンテナ素子414は、RFIC941に重なっている。また、アンテナ素子416およびアンテナ素子418は、RFIC942に重なっている。
 一方、Z軸方向から平面視したとき、アンテナ素子411およびアンテナ素子413は、RFIC941に重なっていない。また、Z軸方向から平面視したとき、アンテナ素子415およびアンテナ素子417は、RFIC942に重なっていない。
 ビア導体431は、アンテナ素子411と線路導体パターン443とを接続する。線路導体パターン443は、アイソレーション素子419とグランド電極491との間に形成されている。ビア導体432は、グランド電極491を貫通し、線路導体パターン443とRFIC941とを接続する。ビア導体432は、グランド電極491から絶縁されている。
 ビア導体431、線路導体パターン443、およびビア導体432は、アンテナ素子411とRFIC941とを接続する給電配線を形成している。RFIC941は、当該給電配線を介してアンテナ素子411に高周波信号を供給する。
 ビア導体433は、グランド電極491を貫通し、アンテナ素子412とRFIC941とを接続している。ビア導体433は、グランド電極491から絶縁されている。RFIC941は、ビア導体433を介してアンテナ素子412に高周波信号を供給する。
 ビア導体434は、アンテナ素子413と線路導体パターン444とを接続する。線路導体パターン444は、アイソレーション素子420とグランド電極491との間に形成されている。ビア導体435は、グランド電極491を貫通し、線路導体パターン444とRFIC941とを接続する。ビア導体435は、グランド電極491から絶縁されている。
 ビア導体434、線路導体パターン444、およびビア導体435は、アンテナ素子413とRFIC941とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子420とグランド電極491との間を通過している。
 ビア導体436は、グランド電極491を貫通し、アンテナ素子414とRFIC941とを接続している。ビア導体436は、グランド電極491から絶縁されている。RFIC941は、ビア導体436を介してアンテナ素子414に高周波信号を供給する。
 ビア導体437は、アンテナ素子415と線路導体パターン445とを接続する。線路導体パターン445は、アイソレーション素子421とグランド電極491との間に形成されている。ビア導体438は、グランド電極491を貫通し、線路導体パターン445とRFIC942とを接続する。ビア導体438は、グランド電極491から絶縁されている。
 ビア導体437、線路導体パターン445、およびビア導体438は、アンテナ素子415とRFIC942とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子421とグランド電極491との間を通過している。
 ビア導体439は、グランド電極491を貫通し、アンテナ素子416とRFIC942とを接続している。ビア導体439は、グランド電極491から絶縁されている。RFIC942は、ビア導体436を介してアンテナ素子416に高周波信号を供給する。
 ビア導体440は、アンテナ素子417と線路導体パターン446とを接続する。線路導体パターン446は、アイソレーション素子422とグランド電極491との間に形成されている。ビア導体441は、グランド電極491を貫通し、線路導体パターン446とRFIC942とを接続する。ビア導体441は、グランド電極491から絶縁されている。
 ビア導体440、線路導体パターン446、およびビア導体441は、アンテナ素子417とRFIC942とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子422とグランド電極491との間を通過している。
 ビア導体442は、グランド電極491を貫通し、アンテナ素子418とRFIC942とを接続している。ビア導体442は、グランド電極491から絶縁されている。RFIC942は、ビア導体442を介してアンテナ素子418に高周波信号を供給する。
 アンテナ素子411,413とRFIC941とを接続する給電配線、およびアンテナ素子415,417とRFIC942とを接続する給電配線をアイソレーション素子419~422とグランド電極491との間を通過するように形成することにより、アイソレーション素子419~422が外部に露出する深さまでスリットSlt4を形成することができる。
 Z軸方向から平面視したとき、当該給電配線がアイソレーション素子419~422上を通過する場合よりも誘電体基板450の実効誘電率を小さくすることができる。その結果、アンテナアレイ400のアイソレーション特性をさらに改善することができる。
 なお、アイソレーション素子419~422のうち隣り合う2以上のアイソレーション素子は、一体として形成されていてもよい。ただし、このような構成の場合、アイソレーション素子の長さ(Y軸方向の大きさ)に依存して不要共振が発生することがある。このため、複数のアイソレーション素子419~422は、分離して形成されていることが望ましい。
 実施の形態4においては、アンテナ素子411,413とRFIC941とを接続する給電配線を形成する線路導体パターン443,444およびアンテナ素子415,417とRFIC942とをそれぞれ接続する給電配線を形成する線路導体パターン445,446が、グランド電極491に対向するマイクロストリップラインである場合について説明した。当該給電配線は、対向するグランド電極の間を通過するストリップラインであってもよい。
 図15は、実施の形態4の変形例に係るアンテナモジュール1410をY軸方向から平面視した図である。アンテナモジュール1410の構成は、図13および図14のアンテナモジュール1400の線路導体パターン443~446が、グランド電極491とグランド電極492~495とによってそれぞれ挟まれている構成である。それ以外の構成は同様であるため、説明を繰り返さない。
 図15に示されるように、グランド電極492は、アイソレーション素子419とグランド電極491との間に形成されている。グランド電極492は、複数のビア導体によってグランド電極491に接続されている。線路導体パターン443は、グランド電極491とグランド電極492との間に形成されている。アンテナ素子411とRFIC941とを接続する給電配線を形成する線路導体パターン443は、グランド電極491とグランド電極492との間を通過するストリップラインである。
 グランド電極493は、アイソレーション素子420とグランド電極491との間に形成されている。グランド電極493は、複数のビア導体によってグランド電極491に接続されている。線路導体パターン444は、グランド電極491とグランド電極493との間に形成されている。アンテナ素子413とRFIC941とを接続する給電配線を形成する線路導体パターン444は、グランド電極491とグランド電極493との間を通過するストリップラインである。
 グランド電極494は、アイソレーション素子421とグランド電極491との間に形成されている。グランド電極494は、複数のビア導体によってグランド電極491に接続されている。線路導体パターン445は、グランド電極491とグランド電極494との間に形成されている。アンテナ素子415とRFIC942とを接続する給電配線を形成する線路導体パターン445は、グランド電極491とグランド電極494との間を通過するストリップラインである。
 グランド電極495は、アイソレーション素子422とグランド電極491との間に形成されている。グランド電極495は、複数のビア導体によってグランド電極491に接続されている。線路導体パターン446は、グランド電極491とグランド電極495との間に形成されている。アンテナ素子417とRFIC942とを接続する給電配線を形成する線路導体パターン446は、グランド電極491とグランド電極495との間を通過するストリップラインである。
 給電配線を形成する線路導体パターンをストリップラインとすることにより、マイクロストリップラインである場合よりも、給電配線における損失を低減することができるとともに、外部からの電磁波の影響を低減することができる。
 以上、実施の形態4および変形例に係るアンテナアレイによれば、アイソレーション特性を改善することができる。
 [実施の形態5]
 実施の形態1~4においては、アンテナアレイに含まれるアンテナ素子の法線方向が平行である場合について説明した。実施の形態5においては、アンテナアレイに含まれるアンテナ素子の法線方向が平行ではない場合について説明する。
 図16は、実施の形態5に係るアンテナモジュール1500の外観斜視図である。図17は、図16のアンテナモジュール1500をY軸方向から平面視した図である。
 図16および図17を参照しながら、アンテナモジュール1500は、アンテナアレイ500と、RFIC951,952とを備える。
 アンテナアレイ500は、平板状のアンテナ素子511~518と、平板状のアイソレーション素子519~522と、誘電体基板550と、グランド電極591とを備える。アンテナ素子511~518の各々は、誘電体基板550を介してグランド電極591と対向している。誘電体基板550は、複数の誘電体層から形成されていてもよいし、一体として形成されていてもよい。
 誘電体基板550は、部分P51と、部分P52と、部分P53とを含む。部分P53は、部分P51と部分P52とを接続する。誘電体基板550は、部分P53において屈曲している。部分P51の表面には、アンテナ素子511,513,515,517が形成されている。部分P52の表面には、アンテナ素子512,514,516,518が形成されている。部分P53の表面には、アイソレーション素子519~522が形成されている。アイソレーション素子519~522は、Y軸方向に間隔を空けて並置されている。アイソレーション素子519~522は、一体として形成されてもよい。
 誘電体基板550が部分P53において屈曲しているため、アンテナ素子511,513,515,517の法線方向(X軸方向)と、アンテナ素子512,514,516,518の法線方向(Z軸方向)とが異なる。アンテナモジュール1500においては、アンテナアレイに含まれる複数のアンテナ素子の法線方向が平行である場合に比べて、励振方向が異なる偏波を有する高周波信号の送信および受信が容易になる。
 X軸方向(アンテナ素子511,513,515,517の法線方向)の部分P51の厚みは、特定軸A1方向(アイソレーション素子519~522の法線方向)の部分P53の厚みよりも大きい。Z軸方向(アンテナ素子512,514,516,518の法線方向)の部分P52の厚みは、特定軸A1方向の部分P53の厚みよりも大きい。誘電体基板550には、部分P51と部分P52との間にY軸方向に沿ってスリットSlt5が形成されている。
 スリットSlt5が形成されている誘電体基板550の実効誘電率は、スリットSlt5が形成されていない場合の実効誘電率よりも小さい。高周波信号は、誘電体基板550よりも誘電体が充填されていないスリットSlt5の方が通過し難い。誘電体基板550にスリットSlt5が形成されていることにより、アンテナ素子511,513,515,517およびアンテナ素子512、514,516,518のそれぞれの間のアイソレーションをさらに改善することができる。
 特定軸A1方向から平面視したとき、アイソレーション素子519は、アンテナ素子511とアンテナ素子512との間に形成されている。アイソレーション素子519は、誘電体基板550を介してグランド電極591と対向している。
 X軸方向から平面視したとき、アイソレーション素子519は、アンテナ素子511から離間している。Z軸方向から平面視したとき、アイソレーション素子519は、アンテナ素子512から離間している。
 アンテナ素子511とグランド電極591との距離は、アイソレーション素子519とグランド電極591との距離よりも大きい。アンテナ素子512とグランド電極591との距離は、アイソレーション素子519とグランド電極591との距離よりも大きい。
 特定軸A1方向から平面視したとき、アイソレーション素子520は、アンテナ素子513とアンテナ素子514との間に形成されている。アイソレーション素子520は、誘電体基板550を介してグランド電極591と対向している。
 X軸方向から平面視したとき、アイソレーション素子420は、アンテナ素子513から離間している。Z軸方向から平面視したとき、アイソレーション素子520は、アンテナ素子514から離間している。
 アンテナ素子513とグランド電極591との距離は、アイソレーション素子520とグランド電極591との距離よりも大きい。アンテナ素子514とグランド電極591との距離は、アイソレーション素子520とグランド電極591との距離よりも大きい。
 特定軸A1方向から平面視したとき、アイソレーション素子521は、アンテナ素子515とアンテナ素子516との間に形成されている。アイソレーション素子521は、誘電体基板550を介してグランド電極591と対向している。
 X軸方向から平面視したとき、アイソレーション素子521は、アンテナ素子515から離間している。Z軸方向から平面視したとき、アイソレーション素子521は、アンテナ素子516から離間している。
 アンテナ素子515とグランド電極591との距離は、アイソレーション素子521とグランド電極591との距離よりも大きい。アンテナ素子516とグランド電極591との距離は、アイソレーション素子521とグランド電極591との距離よりも大きい。
 特定軸A1方向から平面視したとき、アイソレーション素子522は、アンテナ素子517とアンテナ素子518との間に形成されている。アイソレーション素子522は、誘電体基板550を介してグランド電極591と対向している。
 X軸方向から平面視したとき、アイソレーション素子522は、アンテナ素子517から離間している。Z軸方向から平面視したとき、アイソレーション素子522は、アンテナ素子518から離間している。
 アンテナ素子517とグランド電極591との距離は、アイソレーション素子522とグランド電極591との距離よりも大きい。アンテナ素子518とグランド電極591との距離は、アイソレーション素子522とグランド電極591との距離よりも大きい。
 グランド電極591は、誘電体基板550とRFIC951との間および誘電体基板550とRFIC952との間に形成されている。Z軸方向から平面視したとき、アンテナ素子512およびアンテナ素子514は、RFIC951に重なっている。また、アンテナ素子516およびアンテナ素子518は、RFIC952に重なっている。
 一方、X軸方向から平面視したとき、アンテナ素子511およびアンテナ素子513は、RFIC951に重なっていない。また、アンテナ素子515およびアンテナ素子517は、RFIC952に重なっていない。
 ビア導体531は、アンテナ素子511と線路導体パターン543とを接続する。線路導体パターン543は、アイソレーション素子519とグランド電極591との間に形成されている。ビア導体532は、グランド電極591を貫通し、線路導体パターン543とRFIC951とを接続する。ビア導体532は、グランド電極591から絶縁されている。
 ビア導体531、線路導体パターン543、およびビア導体532は、アンテナ素子511とRFIC951とを接続する給電配線を形成している。RFIC951は、当該給電配線を介してアンテナ素子511に高周波信号を供給する。
 ビア導体533は、グランド電極591を貫通し、アンテナ素子512とRFIC951とを接続している。ビア導体533は、グランド電極591から絶縁されている。RFIC951は、ビア導体533を介してアンテナ素子512に高周波信号を供給する。
 ビア導体534は、アンテナ素子513と線路導体パターン544とを接続する。線路導体パターン544は、アイソレーション素子520とグランド電極591との間に形成されている。ビア導体535は、グランド電極591を貫通し、線路導体パターン544とRFIC951とを接続する。ビア導体535は、グランド電極591から絶縁されている。
 ビア導体534、線路導体パターン544、およびビア導体535は、アンテナ素子513とRFIC951とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子520とグランド電極591との間を通過している。
 ビア導体536は、グランド電極591を貫通し、アンテナ素子514とRFIC951とを接続している。ビア導体536は、グランド電極591から絶縁されている。RFIC951は、ビア導体536を介してアンテナ素子514に高周波信号を供給する。
 ビア導体537は、アンテナ素子515と線路導体パターン545とを接続する。線路導体パターン545は、アイソレーション素子521とグランド電極591との間に形成されている。ビア導体538は、グランド電極591を貫通し、線路導体パターン545とRFIC952とを接続する。ビア導体538は、グランド電極591から絶縁されている。
 ビア導体537、線路導体パターン545、およびビア導体538は、アンテナ素子515とRFIC952とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子521とグランド電極591との間を通過している。
 ビア導体539は、グランド電極591を貫通し、アンテナ素子516とRFIC952とを接続している。ビア導体539は、グランド電極591から絶縁されている。RFIC952は、ビア導体539を介してアンテナ素子516に高周波信号を供給する。
 ビア導体540は、アンテナ素子517と線路導体パターン546とを接続する。線路導体パターン546は、アイソレーション素子522とグランド電極591との間に形成されている。ビア導体541は、グランド電極591を貫通し、線路導体パターン546とRFIC952とを接続する。ビア導体541は、グランド電極591から絶縁されている。
 ビア導体540、線路導体パターン546、およびビア導体541は、アンテナ素子517とRFIC952とを接続する給電配線を形成している。当該給電配線は、アイソレーション素子522とグランド電極591との間を通過している。
 ビア導体542は、グランド電極591を貫通し、アンテナ素子518とRFIC952とを接続している。ビア導体542は、グランド電極591から絶縁されている。RFIC952は、ビア導体542を介してアンテナ素子518に高周波信号を供給する。
 アンテナ素子511,513とRFIC951とを接続する給電配線、およびアンテナ素子515,517とRFIC952とを接続する給電配線をアイソレーション素子519~522とグランド電極591とのそれぞれの間を通過するように形成することにより、アイソレーション素子519~522が外部に露出する深さまでスリットSlt5を形成することができる。特定軸A1方向から平面視したとき、当該給電配線がアイソレーション素子519~522上を通過する場合よりも誘電体基板550の実効誘電率を小さくすることができる。その結果、アンテナアレイ500のアイソレーション特性をさらに改善することができる。
 実施の形態5においては、アンテナ素子511,513とRFIC951とを接続する給電配線を形成する線路導体パターン543,544、およびアンテナ素子515,517とRFIC952とをそれぞれ接続する給電配線を形成する線路導体パターン545,546が、グランド電極591に対向するマイクロストリップラインである場合について説明した。当該給電配線を形成する線路導体パターンは、対向するグランド電極の間を通過するストリップラインであってもよい。
 図18は、実施の形態5の変形例に係るアンテナモジュール1510をY軸方向から平面視した図である。アンテナモジュール1510の構成は、図16および図17のアンテナモジュール1500の線路導体パターン543~546が、グランド電極591とグランド電極592~595とによってそれぞれ挟まれている構成である。それ以外の構成は同様であるため、説明を繰り返さない。
 図18に示されるように、グランド電極592は、複数のビア導体によってグランド電極591に接続されている。線路導体パターン443は、グランド電極591とグランド電極592との間に形成されている。アンテナ素子511とRFIC951とを接続する給電配線を形成する線路導体パターン543は、グランド電極591とグランド電極592との間を通過するストリップラインである。
 グランド電極593は、アイソレーション素子520とグランド電極591との間に形成されている。グランド電極593は、複数のビア導体によってグランド電極591に接続されている。線路導体パターン544は、グランド電極591とグランド電極593との間に形成されている。アンテナ素子513とRFIC951とを接続する給電配線を形成する線路導体パターン544は、グランド電極591とグランド電極593との間を通過するストリップラインである。
 グランド電極594は、アイソレーション素子521とグランド電極591との間に形成されている。グランド電極594は、複数のビア導体によってグランド電極591に接続されている。線路導体パターン545は、グランド電極591とグランド電極594との間に形成されている。アンテナ素子515とRFIC952とを接続する給電配線を形成する線路導体パターン545は、グランド電極591とグランド電極594との間を通過するストリップラインである。
 グランド電極595は、アイソレーション素子522とグランド電極591との間に形成されている。グランド電極595は、複数のビア導体によってグランド電極591に接続されている。線路導体パターン546は、グランド電極591とグランド電極595との間に形成されている。アンテナ素子517とRFIC952とを接続する給電配線を形成する線路導体パターン546は、グランド電極591とグランド電極595との間を通過するストリップラインである。
 給電配線を形成する線路導体パターンをストリップラインとすることにより、マイクロストリップラインである場合よりも、給電配線における損失を低減することができるとともに、外部からの電磁波の影響を低減することができる。
 なお、実施の形態5および変形例では、法線方向が互いに異なる部分P51(第1部分)の表面および部分P52(第2部分)の表面の各々において、複数のアンテナ素子がY軸方向(第1方向)に沿って配置されている場合について説明した。第1部分の表面および第2部分の表面における複数のアンテナ素子の配置は、第1方向に沿った配置に限定されない。第1部分の表面および第2部分の表面において、複数のアンテナ素子は、第1方向と異なる第2方向に沿って配置されていてもよいし、第1方向および第2方向の各々に沿って行列状に配置されてもよい。また、第1部分の表面および第2部分の表面において、隣接するアンテナ素子間にアイソレーション素子が配置されてもよい。
 以上、実施の形態5および変形例に係るアンテナアレイによれば、アイソレーション特性を改善することができる。
 なお、実施の形態1~5においては、平板状のアンテナ素子(パッチアンテナ)間にアイソレーション素子が配置されたアンテナアレイについて説明した。実施の形態に係るアンテナアレイにおいてアイソレーション素子は、少なくとも一方がパッチアンテナと異なる2つのアンテナ素子の間に配置されていてもよい。たとえば、実施の形態に係るアンテナアレイにおいてアイソレーション素子は、パッチアンテナとダイポールアンテナとの間に配置されてもよいし、ダイポールアンテナ間に配置されてもよい。少なくとも一方がパッチアンテナと異なる2つのアンテナ素子の間にアイソレーション素子が配置されたアンテナアレイによっても、実施の形態1~5と同様にアイソレーション特性を改善することができる。
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わされて実施されることも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 なお、第1アンテナ素子および第2アンテナ素子は、誘電体基板の表面に形成されていなくてもよく、誘電体基板の内部に形成されていてもよい。また、第1グランド電極は、誘電体基板の裏面に形成されていなくてもよく、誘電体基板の内部に形成されていてもよい。
 10,100,200,300,400,500 アンテナアレイ、10A~10D,111,112,211,212,311,312,411,412,413~418,511~518 アンテナ素子、31A~31D,33A~33D,37 スイッチ、32AR,32BR,32CR,32DR ローノイズアンプ、32AT,32BT,32CT,32DT パワーアンプ、34A~34D 減衰器、35A~35D 信号合成/分波器、36 分波器、38 ミキサ、39 増幅回路、113,213,313,419~422,519~522 アイソレーション素子、131,132,231,232,331,332,431~442,531~542 ビア導体、150,250,350,450,550 誘電体基板、190,290,390,491~495,591~595 グランド電極、443~446,543~546 線路導体パターン、900,910,920,930,941,942,951,952 RFIC、1000,1100,1200,1300,1400,1410,1500,1510 アンテナモジュール、3000 通信装置。

Claims (8)

  1.  誘電体基板と、
     前記誘電体基板に形成された平板状の第1アンテナ素子と、
     前記誘電体基板に形成された平板状の第2アンテナ素子と、
     前記誘電体基板に形成されたアイソレーション素子と、
     前記誘電体基板に形成され、前記第1アンテナ素子、前記第2アンテナ素子、および前記アイソレーション素子の各々と、前記誘電体基板の少なくとも一部を介して対向する第1グランド電極とを備え、
     前記アイソレーション素子の第1法線方向から平面視したとき、前記アイソレーション素子は、前記第1アンテナ素子と前記第2アンテナ素子との間に形成され、
     前記第1アンテナ素子と前記第1グランド電極との第1距離は、前記アイソレーション素子と前記第1グランド電極との第2距離と異なり、
     前記第2アンテナ素子と前記第1グランド電極との第3距離は、前記第2距離と異なり、
     前記第1アンテナ素子の第2法線方向から平面視したとき、前記アイソレーション素子は、前記第1アンテナ素子から離間しており、
     前記第2アンテナ素子の第3法線方向から平面視したとき、前記アイソレーション素子は、前記第2アンテナ素子から離間している、アンテナアレイ。
  2.  前記第1距離および前記第3距離は、前記第2距離よりも大きい、請求項1に記載のアンテナアレイ。
  3.  前記アイソレーション素子は、前記誘電体基板に設けられた凹部の底部に形成されており、かつ、当該凹部の底面から露出している、請求項2に記載のアンテナアレイ。
  4.  特定波長の高周波信号を送信または受信するためのアンテナアレイであって、
     誘電体基板と、
     前記誘電体基板に形成された平板状の第1アンテナ素子と、
     前記誘電体基板に形成された平板状の第2アンテナ素子と、
     前記誘電体基板に形成されたアイソレーション素子と、
     前記誘電体基板に形成され、前記第1アンテナ素子、前記第2アンテナ素子、および前記アイソレーション素子の各々と、前記誘電体基板の少なくとも一部を介して対向する第1グランド電極とを備え、
     前記アイソレーション素子の第1法線方向から平面視したとき、前記アイソレーション素子は、前記第1アンテナ素子と前記第2アンテナ素子との間に形成され、
     前記第1アンテナ素子と前記第1グランド電極との第1距離は、前記アイソレーション素子と前記第1グランド電極との第2距離に等しく、
     前記第2アンテナ素子と前記第1グランド電極との第3距離は、前記第2距離に等しく、
     前記第1アンテナ素子の第2法線方向から平面視したとき、前記アイソレーション素子は、前記第1アンテナ素子から前記特定波長の20分の1以上離間しており、
     前記第2アンテナ素子の第3法線方向から平面視したとき、前記アイソレーション素子は、前記第2アンテナ素子から前記特定波長の20分の1以上離間している、アンテナアレイ。
  5.  前記第2法線方向と前記第3法線方向とは平行ではない、請求項1~4のいずれか1項に記載のアンテナアレイ。
  6.  請求項1~5のいずれかに記載のアンテナアレイと、
     前記アンテナアレイに高周波信号を供給する高周波素子とを備え、
     前記第1グランド電極は、前記第1アンテナ素子、前記第2アンテナ素子、および前記アイソレーション素子の各々と、前記高周波素子との間に形成されている、アンテナモジュール。
  7.  前記第2法線方向から平面視したとき、前記高周波素子と前記第1アンテナ素子は重なっておらず、
     前記第3法線方向から平面視したとき、前記高周波素子と前記第2アンテナ素子は重なっており、
     前記第1アンテナ素子と前記高周波素子とを接続する給電配線は、前記アイソレーション素子と前記第1グランド電極との間を通過している、請求項6に記載のアンテナモジュール。
  8.  前記アイソレーション素子と前記第1グランド電極との間に形成された第2グランド電極をさらに備え、
     前記第2グランド電極と前記第1グランド電極との第4距離は、前記第1距離および前記第3距離よりも小さく、
     前記給電配線は、前記第1グランド電極と前記第2グランド電極との間を通過している、請求項7に記載のアンテナモジュール。
PCT/JP2018/039630 2017-12-28 2018-10-25 アンテナアレイおよびアンテナモジュール WO2019130771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880084467.5A CN111527646B (zh) 2017-12-28 2018-10-25 天线阵列和天线模块
JP2019562791A JP6954376B2 (ja) 2017-12-28 2018-10-25 アンテナアレイおよびアンテナモジュール
US16/912,803 US11283191B2 (en) 2017-12-28 2020-06-26 Antenna array and antenna module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-252770 2017-12-28
JP2017252770 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/912,803 Continuation US11283191B2 (en) 2017-12-28 2020-06-26 Antenna array and antenna module

Publications (1)

Publication Number Publication Date
WO2019130771A1 true WO2019130771A1 (ja) 2019-07-04

Family

ID=67066857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039630 WO2019130771A1 (ja) 2017-12-28 2018-10-25 アンテナアレイおよびアンテナモジュール

Country Status (4)

Country Link
US (1) US11283191B2 (ja)
JP (1) JP6954376B2 (ja)
CN (1) CN111527646B (ja)
WO (1) WO2019130771A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599971A (zh) * 2019-10-01 2021-04-02 辉创电子股份有限公司 雷达天线装置
JPWO2021153034A1 (ja) * 2020-01-27 2021-08-05
WO2021211186A1 (en) * 2020-04-16 2021-10-21 Viasat, Inc. Antenna array with independent rfic chip and antenna element lattice geometries
WO2022038925A1 (ja) * 2020-08-21 2022-02-24 株式会社村田製作所 多層基板、アンテナモジュール、フィルタ、通信装置、伝送線路、および多層基板の製造方法
US12003012B2 (en) 2020-01-27 2024-06-04 Murata Manufacturing Co., Ltd. Antenna module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235593A1 (ja) * 2017-06-23 2018-12-27 株式会社ソシオネクスト アンテナ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037162A (ja) * 2004-09-30 2007-02-08 Toto Ltd マイクロストリップアンテナ
JP2012065371A (ja) * 2006-06-09 2012-03-29 Intel Corp 電磁バンドギャップ構造を用いた多帯域アンテナアレイ
JP2013046291A (ja) * 2011-08-25 2013-03-04 Kyocera Corp アンテナ基板およびアンテナモジュール
US20170264012A1 (en) * 2016-03-08 2017-09-14 Cambium Networks Limited Antenna array assembly
JP2018186482A (ja) * 2017-04-24 2018-11-22 株式会社Soken アンテナ装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079079B2 (en) * 2004-06-30 2006-07-18 Skycross, Inc. Low profile compact multi-band meanderline loaded antenna
CN101032054B (zh) * 2004-09-30 2011-11-30 Toto株式会社 微带天线及使用微带天线的高频感测器
JP4650302B2 (ja) * 2006-03-07 2011-03-16 三菱電機株式会社 アレーアンテナ
JP4571988B2 (ja) 2007-01-19 2010-10-27 パナソニック株式会社 アレーアンテナ装置及び無線通信装置
US7864117B2 (en) * 2008-05-07 2011-01-04 Nokia Siemens Networks Oy Wideband or multiband various polarized antenna
JP2011055419A (ja) * 2009-09-04 2011-03-17 Japan Radio Co Ltd 強結合素子アレーアンテナ
KR101367959B1 (ko) * 2012-05-24 2014-02-26 숭실대학교산학협력단 메타구조 기반의 흡수체를 이용한 안테나
CN204156084U (zh) * 2014-10-13 2015-02-11 美磊科技股份有限公司 双极化天线
WO2016067969A1 (ja) 2014-10-31 2016-05-06 株式会社村田製作所 アンテナモジュール及び回路モジュール
CN105789888A (zh) * 2014-12-18 2016-07-20 哈尔滨飞羽科技有限公司 一种具有高隔离度的四端口mimo天线
JP6486734B2 (ja) 2015-03-17 2019-03-20 株式会社豊田中央研究所 アレーアンテナ装置
JP6512402B2 (ja) * 2015-05-20 2019-05-15 パナソニックIpマネジメント株式会社 アンテナ装置、無線通信装置、及びレーダ装置
US10355347B2 (en) 2015-08-26 2019-07-16 Sharp Kabushiki Kaisha High frequency device
JP6704169B2 (ja) * 2016-05-31 2020-06-03 パナソニックIpマネジメント株式会社 誘電体基板及びアンテナ装置
TWM529948U (zh) * 2016-06-01 2016-10-01 啟碁科技股份有限公司 通訊裝置
CN206059645U (zh) * 2016-06-16 2017-03-29 山东科技大学 一种减小耦合的寄生贴片天线
CN106532235B (zh) * 2016-11-03 2019-09-17 云南大学 4×4超宽带mimo天线
CN106532248B (zh) * 2016-12-09 2023-03-31 桂林电子科技大学 一种超紧凑的微带贴片阵列天线
CN106992361A (zh) * 2017-01-12 2017-07-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 天线阵元间隔离度优化方法
CN106848583B (zh) * 2017-01-20 2019-09-27 哈尔滨工程大学 一种用于微带阵列天线的三维超材料去耦结构
CN110785893B (zh) * 2017-06-14 2021-06-11 株式会社村田制作所 天线模块和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037162A (ja) * 2004-09-30 2007-02-08 Toto Ltd マイクロストリップアンテナ
JP2012065371A (ja) * 2006-06-09 2012-03-29 Intel Corp 電磁バンドギャップ構造を用いた多帯域アンテナアレイ
JP2013046291A (ja) * 2011-08-25 2013-03-04 Kyocera Corp アンテナ基板およびアンテナモジュール
US20170264012A1 (en) * 2016-03-08 2017-09-14 Cambium Networks Limited Antenna array assembly
JP2018186482A (ja) * 2017-04-24 2018-11-22 株式会社Soken アンテナ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599971A (zh) * 2019-10-01 2021-04-02 辉创电子股份有限公司 雷达天线装置
JP2021057868A (ja) * 2019-10-01 2021-04-08 輝創電子股▲分▼有限公司 レーダーアンテナ装置
JPWO2021153034A1 (ja) * 2020-01-27 2021-08-05
WO2021153034A1 (ja) * 2020-01-27 2021-08-05 株式会社村田製作所 アンテナモジュール
JP7283585B2 (ja) 2020-01-27 2023-05-30 株式会社村田製作所 アンテナモジュール
US12003012B2 (en) 2020-01-27 2024-06-04 Murata Manufacturing Co., Ltd. Antenna module
WO2021211186A1 (en) * 2020-04-16 2021-10-21 Viasat, Inc. Antenna array with independent rfic chip and antenna element lattice geometries
WO2022038925A1 (ja) * 2020-08-21 2022-02-24 株式会社村田製作所 多層基板、アンテナモジュール、フィルタ、通信装置、伝送線路、および多層基板の製造方法

Also Published As

Publication number Publication date
US11283191B2 (en) 2022-03-22
CN111527646A (zh) 2020-08-11
CN111527646B (zh) 2021-08-03
JP6954376B2 (ja) 2021-10-27
US20200328531A1 (en) 2020-10-15
JPWO2019130771A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
US11011843B2 (en) Antenna element, antenna module, and communication apparatus
JP6930591B2 (ja) アンテナモジュールおよび通信装置
US10950945B2 (en) Antenna element, antenna module, and communication apparatus
US10374309B2 (en) Switched beam antenna system and hand held electronic device
WO2018230475A1 (ja) アンテナモジュールおよび通信装置
WO2019130771A1 (ja) アンテナアレイおよびアンテナモジュール
JP6888667B2 (ja) アンテナモジュール及び通信装置
CN112514164B (zh) 天线元件、天线模块以及通信装置
JP6881675B2 (ja) アンテナモジュール
CN111566873B (zh) 天线元件、天线模块以及通信装置
WO2019008913A1 (ja) アンテナモジュール
WO2020027058A1 (ja) アンテナ装置
WO2019188471A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
WO2022224650A1 (ja) アンテナモジュール
US11527816B2 (en) Antenna element, antenna module, and communication device
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
US20240195079A1 (en) Antenna device, antenna module, and communication device
WO2022230427A1 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893346

Country of ref document: EP

Kind code of ref document: A1