WO2019129083A1 - 一种红外灯控制方法、装置及四目可调节摄像机 - Google Patents

一种红外灯控制方法、装置及四目可调节摄像机 Download PDF

Info

Publication number
WO2019129083A1
WO2019129083A1 PCT/CN2018/123954 CN2018123954W WO2019129083A1 WO 2019129083 A1 WO2019129083 A1 WO 2019129083A1 CN 2018123954 W CN2018123954 W CN 2018123954W WO 2019129083 A1 WO2019129083 A1 WO 2019129083A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
infrared light
brightness
lenses
turned
Prior art date
Application number
PCT/CN2018/123954
Other languages
English (en)
French (fr)
Inventor
邓贵涛
高海龙
颜财盛
吴燕
叶展
徐鹏
李杨
容志强
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721872513.7U external-priority patent/CN207906750U/zh
Priority claimed from CN201820481642.1U external-priority patent/CN208128384U/zh
Priority claimed from CN201810501412.1A external-priority patent/CN110536070B/zh
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Priority to EP18895808.6A priority Critical patent/EP3734956B1/en
Priority to US16/767,447 priority patent/US10992875B2/en
Publication of WO2019129083A1 publication Critical patent/WO2019129083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the present application relates to the field of network camera technologies, and in particular, to an infrared light control method and device, and a four-eye adjustable camera.
  • the multi-camera is equipped with multiple lenses. In actual work, you can use infrared light to monitor these scenes in low-light scenes such as cloudy, dark, or low-light areas. In order to obtain a clearer image, the infrared light can be filled with infrared light.
  • the infrared light is supplemented for the infrared light lens on the multi-eye camera, and a set of infrared light groups may be pre-configured for each infrared light lens.
  • a set of infrared light groups may be pre-configured for each infrared light lens.
  • the lens corresponds to a pre-configured infrared light group that emits infrared light, so that the intensity of the infrared light increases in a scene that the infrared light group can illuminate, and thus the obtained image is more clear.
  • the positions of the plurality of infrared lenses may be adjusted according to actual needs, and the scene monitored by the infrared lens also changes with the adjustment.
  • the infrared light group cannot follow the infrared lens for optical and heat dissipation. Therefore, after the adjustment, the scene monitored by the infrared lens overlaps with the scene that the pre-configured infrared light group can illuminate, resulting in pre-configuration.
  • the infrared light group has a poor complement effect on the infrared lens.
  • the purpose of the embodiment of the present application is to provide an infrared light control method for improving the light filling effect of the infrared light group in the four-eye adjustable camera.
  • the specific technical solutions are as follows:
  • the purpose of the embodiment of the present application is to provide an infrared light control method for improving the light filling effect of the infrared light group in the four-eye adjustable camera.
  • the specific technical solutions are as follows:
  • a first aspect of the embodiments of the present application provides an infrared light control method, the method comprising:
  • a lens having the highest luminance change rate among the plurality of lenses is determined as a lens bound to the first infrared light group.
  • the determining, for each of the plurality of lenses of the four-eye adjustable camera, respectively, that the lens is captured when the first infrared light group is not turned on includes:
  • a rate of change of the fill luminance of the lens with respect to the unfilled luminance of the lens is calculated as a luminance change rate of the lens.
  • the method further includes:
  • the step of turning on the first infrared light group is continued.
  • determining that the first infrared light group is turned on in each of the plurality of shots further includes:
  • the method further includes:
  • the maximum value is greater than a sum of the minimum value and the second small value, initializing the plurality of shots, and performing each of the plurality of shots respectively for the four-eye adjustable camera, determining a step of detecting a brightness change rate between a picture taken when the first infrared light group is not turned on, and a picture taken when the first infrared light group is turned on;
  • the maximum value is not greater than the sum of the minimum value and the second small value, continue to perform the lens that maximizes the brightness change rate among the plurality of lenses, and determine the first infrared light group The steps of the bound lens.
  • the initializing the multiple shots includes:
  • the determining, for each of the plurality of shots, that the all of the infrared light groups are not turned on, The brightness of the picture taken by the lens, as the unfilled brightness of the lens, includes:
  • Determining, in each of the plurality of lenses, the brightness in the picture captured by the lens when the first infrared light group is turned on, as the fill light brightness of the lens, comprising:
  • an infrared light control apparatus comprising:
  • a brightness calculation module configured to respectively determine, for each of the plurality of lenses of the four-eye adjustable camera, a picture captured by the lens when the first infrared light group is not turned on, and the first infrared light The rate of change of brightness between the images taken when the group is turned on, the first infrared light group being one of the four-eye adjustable cameras;
  • a binding module configured to determine a lens having the highest brightness change rate among the plurality of lenses as a lens bound to the first infrared light group.
  • the brightness calculation module is specifically configured to:
  • a rate of change of the fill luminance of the lens with respect to the unfilled luminance of the lens is calculated as a luminance change rate of the lens.
  • the brightness calculation module determines, in each of the plurality of shots, the all When the infrared light group is not turned on, the brightness of the picture taken by the lens is used as the unfilled brightness of the lens, and is also used for:
  • the step of turning on the first infrared light group is continued.
  • the brightness calculation module determines, in the When the first infrared light group is turned on, the brightness in the picture captured by the lens is used as the fill light brightness of the lens, and is further used for:
  • the brightness calculation module in each of the plurality of lenses respectively for the four-eye adjustable camera And determining, after the first infrared light group is not turned on, the brightness change rate between the picture taken when the first infrared light group is turned on, and the following:
  • the maximum value is greater than a sum of the minimum value and the second small value, initializing the plurality of shots, and performing each of the plurality of shots respectively for the four-eye adjustable camera, determining a step of detecting a brightness change rate between a picture taken when the first infrared light group is not turned on, and a picture taken when the first infrared light group is turned on;
  • the maximum value is not greater than the sum of the minimum value and the second small value, continue to perform the lens that maximizes the brightness change rate among the plurality of lenses, and determine the first infrared light group The steps of the bound lens.
  • the brightness calculation module is specifically configured to:
  • the brightness calculation module is specifically configured to:
  • a four-eye adjustable camera is provided, and the four-eye adjustable camera includes:
  • the four lenses are movably mounted to the four-eye adjustable camera; two of the four lenses are electrically connected to the main processor, and the other two lenses are apart from the two lenses Said slave processor electrical connection;
  • Two infrared light groups of the four infrared light groups are electrically connected to the main processor, and two other infrared light groups other than the two infrared light groups are electrically connected to the slave processor;
  • the switching module is electrically connected to the main processor and the slave processor for implementing information interaction between the main processor and the slave processor;
  • the main processor is configured to control two lenses and two infrared light groups electrically connected to the main processor, and send a control instruction to the slave processor;
  • the slave processor is configured to use according to the control instruction Controlling two lenses and two infrared light groups electrically connected to the slave processor;
  • the main processor is further configured to control the four-eye adjustable camera to implement the following steps:
  • the minute hand determines, for each of the four lenses, the brightness of the picture captured by the lens when the four infrared light groups are not turned on, as the unfilled brightness of the lens;
  • a lens having the highest luminance change rate among the four lenses is determined as a lens bound to the first infrared light group.
  • a four-eye adjustable camera is provided, and the four-eye adjustable camera includes:
  • the plurality of lenses are movably mounted in the four-eye adjustable camera;
  • the plurality of infrared light groups are configured to perform infrared light filling for the plurality of lenses;
  • the control device includes at least one processor for controlling the four-eye adjustable camera to implement the method steps of any of the above first aspects; and according to the operating modes of the plurality of lenses, and the plurality of Determining whether the plurality of infrared light groups need to be turned on to obtain the determination result of the plurality of infrared light groups; and controlling the plurality of infrared lights according to the determination result Groups are turned on and off.
  • a computer readable storage medium having stored therein a computer program, the computer program being executed by a processor to implement any of the methods described above step.
  • the infrared light control method and device and the four-eye adjustable camera provided by the embodiment of the present application can automatically add light to multiple lenses according to the first infrared light group after the lens adjustment for the four-eye adjustable camera is completed.
  • the lens with the best fill light effect is selected as the lens bound by the first infrared light group, and the light filling effect of the first infrared light group is improved under the premise that the position of the first infrared light group is fixed.
  • any of the products or methods of the present application does not necessarily require all of the advantages described above to be achieved at the same time.
  • FIG. 1 is a schematic flow chart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 2 is another schematic flowchart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 3 is another schematic flowchart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 4 is another schematic flowchart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 5 is another schematic flowchart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 6 is another schematic flowchart of an infrared light control method applied to a four-eye adjustable camera according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an infrared light control device applied to a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a lens adjusting device with a lens mounted in a four-eye adjustable camera according to an embodiment of the present disclosure.
  • FIG. 10 is a partial structural diagram of a lens adjusting device in a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first bracket in a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a partial exploded structure of a lens holder and a lens in a four-eye adjustable camera according to an embodiment of the present application;
  • FIG. 13 is a schematic diagram showing a partial exploded structure of a second bracket and a lens in a four-eye adjustable camera according to an embodiment of the present application;
  • FIG. 14 is a partial structural diagram of a second bracket in a four-eye adjustable camera according to an embodiment of the present application.
  • 15 is a schematic diagram of an explosion structure of a four-eye adjustable camera according to an embodiment of the present application.
  • 16 is a cross-sectional view of a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an explosion of a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 18 and FIG. 19 are schematic diagrams showing the explosion of the first bracket and the second bracket in different viewing angles in the four-eye adjustable camera according to the embodiment of the present application;
  • 20 is a schematic exploded view of a second bracket and a lens in a four-eye adjustable camera according to an embodiment of the present application;
  • 21 is a schematic exploded view of a third bracket and a lens in a four-eye adjustable camera according to an embodiment of the present application;
  • FIG. 22 is a schematic structural diagram of a third bracket in a four-eye adjustable camera according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of a connection between a fuselage and a first bracket in a four-eye adjustable camera according to an embodiment of the present disclosure
  • FIG. 24 is a schematic structural diagram of a transparent cover in a four-eye adjustable camera according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for controlling an infrared lamp according to an embodiment of the present disclosure.
  • S101 Determine, for each of the plurality of lenses of the four-eye adjustable camera, a picture captured by the lens when the first infrared light group is not turned on, and a picture taken when the first infrared light group is turned on.
  • the brightness change rate between the first infrared light groups is one of the four-eye adjustable cameras.
  • the four-eye adjustable camera has a plurality of infrared light groups, and each of the infrared light groups may include one or more infrared lights.
  • the picture taken when the first infrared light group is not turned on, and the picture taken when the first infrared light group is turned on can be regarded as a set of comparisons.
  • the brightness change rate reflect the fill light effect of the first infrared light group for each lens as accurately as possible, it should be as far as possible to make the two pictures except whether the first infrared light group is turned on. There are no other variables.
  • the step may be performed after the adjustment of the plurality of lenses in the four-eye adjustable camera ends, wherein the adjustment may refer to adjusting the direction of the optical axis of the lens, or may be adjusting the position of the lens. It is also possible to simultaneously adjust the direction of the lens optical axis and the position of the lens. It can be understood that when the lens in the four-eye adjustable camera is adjusted, the first infrared light group may change the light filling effect of the originally bound lens, and the first infrared light group may be bound to the original. The fill light effect of the lens is lower than that of the other lenses.
  • the lens of the first infrared light group needs to be re-bundled to improve the light filling effect of the first infrared light group, for example, the first infrared light group originally and the first A lens is bound, after the position of the first lens is adjusted, the first infrared light group may have a light filling effect on the first lens lower than the second lens, and the first infrared light is raised at this time.
  • the first infrared light group can be bound to the second lens in consideration of the light filling effect of the group.
  • the binding of one lens to the first infrared light group means that when the lens needs to be filled with the infrared light, the first infrared light group is turned on to fill the infrared light of the lens, in this embodiment, a lens Multiple infrared light groups can be bound at the same time. In this case, when the lens needs to be filled with infrared light, a plurality of infrared light groups bound to the lens are simultaneously turned on.
  • the first infrared light group has a light filling effect on the lens, which is superior to other lenses in the four-eye adjustable camera.
  • the lens is determined to be a lens that is bound to the first infrared light group, and the light filling effect of the first infrared light group can be maximized.
  • FIG. 2 is a schematic flowchart of another method for controlling an infrared light group according to an embodiment of the present disclosure, which may include:
  • the signal source of the infrared light group may be controlled to output a low level to each of the infrared light groups, or the signal source of the infrared light group may be terminated to output signals to each of the infrared light groups. No current flows through the lamp and is off.
  • S202 Determine, for each of the plurality of lenses, a brightness of a picture captured by the lens when all the infrared light groups are not turned on, as the unfilled brightness of the lens.
  • the unfilled brightness of one lens may be the brightness of the image frame captured by the lens at a certain moment. In an optional embodiment, all the bayer obtained by the lens per unit time may also be used. The average brightness of the image frame.
  • the four lenses in the four-eye adjustable camera are the first lens, the second lens, the third lens, and the fourth lens, respectively, and may be each bayer image frame within 1 s according to the first lens (hypothesis Calculate the brightness of the 60 bayer image frames to obtain the average brightness of the 60 bayer image frames, and obtain the unfilled brightness X 1 of the first lens.
  • the second lens is not compensated.
  • the order of calculating the four unfilled brightnesses can be set according to actual needs, or in the case where the computing power of the device permits, the four unfilled brightnesses can be calculated in parallel. It can be understood that the brightness of the picture taken by the lens may fluctuate. If the brightness in an image frame obtained by the lens is taken as the unfilled brightness, the error may be generated due to the fluctuation, and the brightness in the plurality of image frames is selected. The average value can effectively reduce the error caused by the brightness fluctuation.
  • control signal source may output a high-level signal of a preset duty ratio to the first infrared light group, and the first infrared light group senses that the high-level signal is illuminated.
  • S204 Determine, for each of the plurality of lenses, a brightness of a picture captured by the lens when the first infrared light group is turned on, as a fill light brightness of the lens.
  • the fill light brightness of one lens may be the brightness of the image frame captured by the lens at a certain moment. In an optional embodiment, all the bayer image frames captured by the lens in a unit time may also be used. Average brightness.
  • each bayer image frame in 1s (assuming a total of 60 frames), the average value of the brightness in the 60 bayer image frames is calculated, and the fill light brightness Y 1 of the first lens is obtained.
  • the step of calculating Y1 the complementary light brightness Y 2 of the second lens, the fill light brightness Y 3 of the third lens, and the fill light brightness Y 4 of the fourth lens are calculated in the same manner. It can be understood that the order of calculating the four unfilled brightnesses can be set according to actual needs, or in the case where the computing power of the device permits, the four fill brightnesses can be calculated in parallel.
  • the brightness change rate of the lens is larger, and if the ratio of the fill light brightness of a lens to the non-fill light brightness is smaller, the brightness of the lens is The rate of change is smaller.
  • the brightness change rate of a lens is calculated as:
  • Z is the brightness change rate of the lens
  • Y is the fill light brightness of the lens
  • X is the unfilled brightness of the lens.
  • the brightness change rate of the lens should be calculated according to the same calculation formula.
  • the unfilled brightness is determined when all the infrared light groups in the four-eye adjustable camera are not turned on, and the fill light brightness is determined when only the first infrared light group is turned on, based on the two brightnesses.
  • the calculated brightness change rate can avoid the interference of the non-first infrared light group, and accurately reflect the light-filling effect of the plurality of lenses when the first infrared light group works alone.
  • the method may include:
  • S302. Determine, for each of the plurality of lenses, a brightness of a picture captured by the lens when all the infrared light groups are not turned on, as the unfilled brightness of the lens.
  • each of the plurality of lenses may be for each of the plurality of lenses, according to the bayer image frame (assumed to be 60 frames) captured in 1s after all the infrared light groups are turned on, and the 60 bayer image frames are calculated.
  • the variance of the brightness may be for each of the plurality of lenses, according to the bayer image frame (assumed to be 60 frames) captured in 1s after all the infrared light groups are turned on, and the 60 bayer image frames are calculated.
  • the variance of the brightness may be for each of the plurality of lenses, according to the bayer image frame (assumed to be 60 frames) captured in 1s after all the infrared light groups are turned on, and the 60 bayer image frames are calculated. The variance of the brightness.
  • S304 Determine whether the variance of the unfilled light brightness is greater than a preset first variance threshold. If the variance of the unfilled light luminance is greater than a preset first variance threshold, perform S305, if the variance of the unfilled light luminance is not greater than the first variance threshold, Execute 306.
  • Initialization refers to restoring multiple shots in a four-eye adjustable camera to a preset default state.
  • initializing the plurality of lenses may be an infrared filter that retracts the plurality of lenses and initializing the gain and shutter speed of the plurality of lenses.
  • the infrared light filter is a filter for cutting off the infrared light, and the infrared light filter has no or almost no cut-off effect on the light in the visible light band.
  • the infrared light filter When the infrared light filter is put away, the infrared light can pass normally, so the lens belongs to
  • the sensor in the image acquisition unit can sense infrared light.
  • Gain is the magnification at which the signal sensed by the sensor is amplified.
  • the shutter speed refers to the effective length of time when the shutter is opened. The faster the shutter speed, the shorter the exposure time of each video frame taken by the lens.
  • the infrared filter of the lens when the infrared filter of the lens is not closed, since the infrared filter can cut off the infrared light, the sensor in the image acquisition unit to which the lens belongs cannot normally sense the infrared light, so the image obtained by the lens is captured.
  • the brightness may be abnormal.
  • the size of the lens gain and the speed of the shutter speed directly affect the brightness of the picture taken by the lens. When these two parameters are set too large or too small, the brightness of the picture taken by the lens may be abnormal.
  • S307. Determine, for each of the plurality of lenses, the brightness of the picture captured by the lens when the first infrared light group is turned on, as the fill light brightness of the lens.
  • the variance of the brightness in the picture taken by one lens in the unit time can indicate the stability of the brightness of the picture taken by the lens in unit time.
  • the larger the variance the more the lens is in the picture taken in unit time.
  • the variance of the unfilled light brightness is greater than the preset first variance threshold, it can be considered that the brightness of the picture obtained by the lens shooting is relatively poor at this time, and the brightness of the picture taken by the lens may be abnormal at this time, so The brightness of the unfilled light is low.
  • the variance is not greater than the preset first variance threshold, it can be considered that the brightness of the picture taken during the unit time is relatively stable, and the brightness of the picture obtained by the lens is normal, and the brightness of the unfilled light obtained at this time is accurate. Higher sex. Therefore, by selecting this embodiment, the accuracy of the unfilled brightness can be improved.
  • FIG. 4 is another schematic flowchart of a method for determining a luminance change rate according to an embodiment of the present disclosure, which may include:
  • S402. Determine, for each of the plurality of lenses, the brightness of the picture captured by the lens when all the infrared light groups are not turned on, as the unfilled brightness of the lens.
  • S404 Determine, for each of the plurality of lenses, a brightness of a picture captured by the lens when the first infrared light group is turned on, as a fill light brightness of the lens.
  • the variance of the brightness of the picture captured by the lens when the first infrared light group is turned on is measured as the variance of the fill light brightness of the lens.
  • S406. Determine whether the variance of the fill luminance is greater than a preset second variance threshold. If the variance of the fill luminance is greater than the preset second variance threshold, perform S407. If the variance of the fill luminance is not greater than the preset second threshold, perform S408.
  • the preset second variance threshold may be set according to actual requirements, and may be equal to the first variance threshold or may not be equal to the first variance threshold.
  • the variance of the fill light brightness is greater than the preset second variance threshold, it can be considered that the fill light brightness obtained in S404 and the unfilled light brightness obtained in S402 are lower, and when the fill light brightness variance is not greater than the preset second When the variance threshold is used, it can be considered that the brightness of the fill light obtained in S404 and the brightness of the unfilled light obtained in S402 are high. Therefore, the selection of this embodiment can improve the accuracy of the fill light brightness and the non-fill light brightness.
  • FIG. 5 is another schematic flowchart of a method for determining a luminance change rate according to the embodiment, which may include:
  • S501 determining, for each of the plurality of lenses of the four-eye adjustable camera, a picture captured by the lens when the first infrared light group is not turned on, and a picture taken when the first infrared light group is turned on. The rate of change in brightness between.
  • S502 Determine whether a maximum value of the brightness change rates of the plurality of lenses is greater than a sum of a minimum value of the brightness change rates and a minor value of the brightness change rate. If the maximum value is greater than a sum of the minimum value and the second smallest value, perform S503. If the maximum value is not greater than the sum of the minimum value and the second smallest value, S504 is performed.
  • the calculated luminance change rate of the first lens is Z 1
  • the luminance change rate of the second lens is Z 2
  • the luminance change rate of the third lens is Z 3
  • the luminance change rate of the fourth lens is Z. 4
  • the order of the four brightness changes from large to small is Z 1 >Z 2 >Z 3 >Z 4
  • the maximum value of the brightness change rate is Z 1
  • the minimum of the brightness change rate For Z 4 the second smallest value in the rate of change of brightness is Z 3
  • the distance between the multiple lenses is limited, and the difference between the complementary light effects of the first infrared light group and the plurality of lenses is often not large.
  • the maximum value of the brightness change rate is greater than the sum of the minimum value of the brightness change rate and the second smallest value of the brightness change rate, it can be considered that the light-retaining effect of the first infrared light group determined for each lens exists. Anomalies, such as multiple lenses, have a lens with too high gain. Therefore, the brightness change rate of the plurality of lenses obtained this time is not accurate enough.
  • the lens bound to the first infrared light group is determined according to the brightness change rate of the plurality of lenses obtained this time, the light filling effect of the first infrared light group may not be maximized. With this embodiment, the probability of occurrence of the problem can be effectively reduced.
  • the method may include:
  • S601 puts up the infrared filter of multiple lenses, and initializes the gain and shutter speed of the multiple lenses.
  • the infrared filters of some of the lenses may have been folded, and the infrared filters of some lenses have not been folded. And the gain and shutter speed of the lens may also be different.
  • the subsequent steps may not accurately determine the fill effect of the first infrared light group on the plurality of lenses. Therefore, in this step, the infrared light filters of the plurality of lenses are uniformly collected, and the gains of the multiple lenses are initialized. Shutter speed.
  • S603. Determine, for each of the plurality of lenses, the brightness of the picture captured by the lens when all the infrared light groups are not turned on, as the unfilled brightness of the lens.
  • the variance of the brightness of the picture captured by the lens when all the infrared light groups are not turned on is measured as the variance of the unfilled brightness of the lens.
  • the unit time represents a time length equal to the unit time in S603, and exemplary, the unit time in S603, and the unit time in S604 may each represent 1 second.
  • the variance of the unfilled luminance of the plurality of lenses is counted based on the video frame used in determining the unfilled luminance in S603. Exemplarily, if it is determined in S603 that the unfilled brightness of the first lens in the four-eye adjustable camera is used, the first lens is used, and 60 videos captured within 1 s when all the infrared light groups are not turned on are used. Frame, in this step, when counting the variance of the unfilled luminance of the first shot, it is also based on the 60 video frames.
  • the average brightness of the 60 video frames needs to be obtained. Since the average brightness of the 60 video frames has been determined in S603, it is not necessary in this step. Calculating the average brightness of these 60 video frames can save a certain amount of computation.
  • S605 Determine whether the variance of the unfilled light brightness is greater than a preset first variance threshold. If the variance of the unfilled light brightness is greater than the preset first variance threshold, return to perform S601, if the variance of the unfilled light brightness is not greater than the preset first party The difference threshold is executed at S606.
  • S607. Determine, for each of the plurality of lenses, the brightness of the picture captured by the lens when the first infrared light group is turned on, as the fill light brightness of the lens.
  • the variance of the brightness of the picture captured by the lens when the first infrared light group is turned on is measured as the variance of the fill light brightness of the lens.
  • S609 determining whether the variance of the fill light brightness is greater than a preset second variance threshold. If the variance of the unfilled light brightness is greater than the preset second variance threshold, returning to S601, if the variance of the fill light brightness is not greater than the preset second variance threshold, performing S610.
  • the light filling effect of the first infrared light group on the plurality of lenses is re-determined, and the determined first infrared light group is applied to the plurality of lenses.
  • the accuracy of the fill light effect is a simple one or more of the light filling effect.
  • FIG. 7 is a schematic structural diagram of an infrared lamp control apparatus according to an embodiment of the present application, which may include:
  • the brightness calculation module 701 is configured to determine, for each of the plurality of lenses of the four-eye adjustable camera, a picture captured by the lens when the first infrared light group is not turned on, and when the first infrared light group is turned on. The rate of change of brightness between the captured images, the first infrared light group being an infrared light group in the four-eye adjustable camera;
  • the binding module 702 is configured to determine a lens with a maximum luminance change rate among the plurality of lenses as a lens bound to the first infrared light group.
  • the brightness calculation module 701 is specifically configured to:
  • a rate of change of the fill brightness of the lens with respect to the unfilled brightness of the lens is calculated as the brightness change rate of the lens.
  • the brightness calculation module 701 determines, for each of the plurality of lenses, the brightness of the picture captured by the lens when all the infrared light groups are not turned on, as the unfilled brightness of the lens, Also used for:
  • the variance of the brightness of the picture taken by the lens when all the infrared light groups are not turned on is measured as the variance of the unfilled brightness of the lens
  • the plurality of lenses are initialized, and the steps of turning off all the infrared light groups in the four-eye adjustable camera are performed;
  • the step of turning on the first infrared lamp group is continued.
  • the brightness calculation module 701 determines, for each of the plurality of lenses, the brightness in the picture captured by the lens when the first infrared light group is turned on, as the fill light brightness of the lens, Also used for:
  • the variance of the brightness of the picture captured by the lens when the first infrared light group is turned on is measured as the variance of the fill light brightness of the lens
  • the plurality of lenses are initialized, and the step of turning off all the infrared light groups in the four-eye adjustable camera is performed;
  • the brightness calculation module 701 determines, for each of the plurality of lenses of the four-eye adjustable camera, the picture captured by the lens when the first infrared light group is not turned on, and the first infrared light group. After turning on the brightness change rate between the pictures taken, it is also used to:
  • the plurality of lenses are initialized, and each of the plurality of lenses respectively for the four-eye adjustable camera is performed, and it is determined that the lens is shot when the first infrared light group is not turned on. a step of obtaining a brightness change rate between the picture and the picture taken when the first infrared light group is turned on;
  • the step of determining the lens having the highest luminance change rate among the plurality of lenses as the lens bound to the first infrared light group is performed.
  • the brightness calculation module 701 is specifically configured to:
  • the brightness calculation module 701 is specifically configured to:
  • the average brightness of all the bayer image frames captured by the lens per unit time is determined as the fill light brightness of the lens when the first infrared light group is turned on.
  • FIG. 8 is a schematic structural diagram of a four-eye adjustable camera according to an embodiment of the present disclosure, which may include:
  • the four lenses 810 are movably mounted to a four-eye adjustable camera.
  • the four-eye adjustable camera may include a top plate and a track that is snapped to the top plate by a plurality of fasteners
  • the four lens holders are movably disposed on the track shoe, and each lens holder is mounted with a lens 810 that can be moved on the track shoe and can be rotated on the plane of the track shoe.
  • the scheme can be referred to US20170299949A1.
  • the four-eye adjustable camera may be provided with a mounting rail, and the four lenses 810 are respectively mounted on four lens brackets, the four lens brackets are disposed on the mounting rail, and this
  • Each of the four lens holders includes a locking device that is fixed to the mounting rail when the locking device is in the locked state, and the lens holder is movable on the mounting rail when the locking device is in the released state.
  • One of the locking device and the mounting rail includes a magnet and the other includes a ferromagnetic material.
  • the locking device may include a ferromagnetic material and the mounting rail includes a magnet, which may rely on a magnet and a ferromagnetic material. The attractiveness of the lens mounts the lens mount on the mounting rail. Refer to US20170031234A1 for the solution.
  • Two of the four lenses 810 are electrically connected to the main processor 830, and the other two lenses 810 other than the two lenses 810 are electrically connected to the slave processor 840.
  • the two infrared light groups 820 of the four infrared light groups 820 are electrically connected to the main processor 830, and the other two infrared light groups 820 except the two infrared light groups 820 are electrically connected to the slave processor 840.
  • the main processor 830 and the slave processor 840 can each have two PWM (Pulse Width Modulation) interfaces, and the main processor 830 and the slave processor 840 respectively pass the respective two PWM interfaces.
  • the two infrared light groups 820 are electrically connected, and the PWM interface can send a PWM signal with a specific duty ratio to the infrared light group 820 connected to the PWM interface.
  • the duty ratio of the PWM signal is 0, the entire signal is When the level is low, the infrared light group 820 connected to the PWM interface is in a closed state.
  • the duty ratio of the PWM signal is not 0, the infrared light group 820 connected to the PWM interface is turned on, and the brightness depends on
  • the duty ratio of the PWM signal when the duty ratio of the PWM signal reaches 1, that is, when the entire signal is at a high level, the infrared lamp group 820 connected to the PWM interface reaches the maximum brightness.
  • the switch module 850 is electrically connected to the main processor 830 and the slave processor 840 for implementing information exchange between the master processor and the slave processor.
  • the switch module 850 can be a network switch chip or a bus.
  • the main processor 830 is configured to control two lenses 810 and two infrared light groups 820 electrically connected to the main processor 830, and send control instructions to the slave processor 840.
  • the slave processor 840 is configured to control and control according to the control instructions.
  • the two lenses 810 and the two infrared light groups 820 electrically connected from the processor 840 are sent by the main processor 830 to the slave processor 840 through the switch module, and the main processor 830 can be indirectly controlled by the control command.
  • Two lenses 810 and two infrared light groups 820 are electrically coupled to the slave processor 840.
  • the main processor 830 is further configured to control the four-eye adjustable camera to implement the following steps:
  • the minute hand determines the brightness of the picture taken by the lens 810 in the case where none of the four infrared light groups 820 are turned on, as the unfilled brightness of the lens 810, wherein the lens 810 is not filled with light.
  • the brightness may be the brightness of the image frame captured by the lens 810 at a certain time.
  • the average brightness of all the bayer image frames obtained by the lens 810 per unit time may also be used.
  • the fill light brightness of the lens 810 may be the brightness of the image frame captured by the lens 810 at a certain time. In an optional embodiment, the brightness may be The average brightness of all bayer image frames captured by the lens 810 unit time.
  • a rate of change of the fill light brightness of the lens 810 with respect to the unfilled brightness of the lens is calculated as the brightness change rate of the lens 810;
  • the lens having the highest luminance change rate among the four lenses 810 is determined as the lens bound to the first infrared light group.
  • the four-eye adjustable may also include: four lenses, four infrared light groups, and a control device;
  • the four lenses are movably mounted in a four-eye adjustable camera, and the lens is mounted in a four-eye adjustable camera. See one of the three ways of the aforementioned four-eye adjustable camera embodiment.
  • the control device includes at least one processor for controlling the four-eye adjustable camera to implement any of the above-described infrared lamp control methods; and according to the operation modes of the plurality of lenses 910, and the binding of the plurality of lenses 910 to the infrared light group 920
  • the relationship determines whether it is necessary to turn on the plurality of infrared light groups 920 to obtain the determination result of the plurality of infrared light groups 920; and according to the determination result, control the opening and closing of the plurality of infrared light groups.
  • the control device 930 may include only one processor that is electrically coupled to each of the four-eye adjustable cameras and to each of the four-beam adjustable cameras.
  • the control device 930 may also include a plurality of processors, each of which is electrically connected to a portion of the lens 910 of the four-eye adjustable camera, and is electrically connected to a portion of the infrared light group 920, each lens 910 and only one processing
  • the devices are electrically connected and each infrared light group 920 is electrically coupled to and only one processor.
  • the number of processors included in control device 930 may depend on the number of interfaces per processor and the number of lenses 910, infrared light groups 920 included in the quad target adjustable camera.
  • the embodiment of the present application discloses a lens adjusting device applied to a four-eye adjustable camera.
  • the disclosed lens adjusting device includes a fixed disk 900 and at least two.
  • the lens holder 1000, the fixed disk 900 is included in the camera host of the four-eye adjustable camera, the fixed disk 900 is the mounting base of the lens holder 1100 and the lens 810, and the lens 810 is disposed on the fixed disk 900 through the lens holder 1100.
  • the lens holder 1000 includes a first holder 1010 for mounting a lens 810, and the first holder 1010 is movably disposed on the fixed tray 900 so as to be movable relative to the fixed tray 900.
  • the movement of the first bracket 1010 will drive the lens 810 to follow the movement, thereby adjusting the position of the lens 810 on the fixed disk 900.
  • One of the first bracket 1010 and the fixed disk 900 is provided with a first tooth groove, and the other is provided with a first meshing tooth, and the first tooth groove is engaged with the first meshing tooth.
  • the first bracket 1010 and the fixed disk 900 are connected by the engagement of the first tooth groove with the first meshing teeth.
  • the lens 810 is mounted on the first bracket 1010, so that the first bracket 1010 can be moved on the fixed disk 900, thereby adjusting the position of the lens 810 on the fixed disk 900.
  • the first bracket 1010 and the fixed disc 900 are connected by the engagement between the first tooth groove and the first meshing tooth.
  • the operator can drive the first bracket 1010 to move by applying a certain force, in the first bracket.
  • the first tooth groove and the first meshing tooth are relatively moved. After the end of the adjustment (external force is removed), the meshing between the first tooth groove and the first meshing tooth can ensure the positioning of the first bracket 1010.
  • the adjustment of the lens 810 is finally completed.
  • the lens adjusting device disclosed in the present application does not need to adopt a large-sized magnet. Therefore, the lens adjusting device disclosed in the present application can solve the current four-eye adjustable camera. The way the magnet locks the lens has the problem of high quality and high cost.
  • the circular edge of the fixed disk 900 is partially or entirely provided with a first tooth groove 910.
  • the first bracket 1010 is provided with a first meshing tooth 1011a.
  • the first bracket 1010 is movable around the circumferential direction of the fixed disk 900 so as to be rotatable about the circumferential direction of the fixed disk 900.
  • the rotation of the first bracket 1010 will drive the lens 810 to follow the rotation, thereby adjusting the position of the lens 810 on the fixed disk 900.
  • This position adjustment is performed in parallel with the disk surface of the fixed disk 900 to adjust the P direction of the lens 810.
  • the first tooth groove 910 may be disposed on the first bracket 1010, and correspondingly, the first meshing tooth 1011a is disposed on the fixed plate 900.
  • the first bracket 1010 may include an elastic connecting portion 1011, and the elastic connecting portion 1011 may be provided with a first engaging tooth 1011a, and the first engaging tooth 1011a is engaged with the first slot 910.
  • the engagement between the first tooth groove and the first meshing tooth means that the two are in a positioning state when the external tooth is not subjected to an external force, and the first tooth groove and the second meshing tooth cannot move relative to each other.
  • the positioning cooperation between the two teeth is released, so that the first tooth groove and the second meshing tooth can be relatively moved, thereby realizing the first bracket 1010.
  • the first holder 1010 is rotated in the circumferential direction of the fixed disk 900, that is, the first holder 1010 is rotated in the circumferential direction of the fixed disk 900.
  • the elastic connecting portion 1011 ensures that the engagement between the first tooth groove 910 and the first meshing tooth 1011a is better by its own elasticity, and the elastic connecting portion 1011 is elastically deformed by the external force, thereby making the first meshing. The positioning between the teeth 1011a and the first slots 910 is released, thereby enabling relative rotation of the two.
  • the first bracket 1010 can rotate around the circumferential direction of the fixed disc 900.
  • the first bracket 1010 can roll along the circumferential direction of the fixed disc 900 to realize its rotation, and the first bracket 1010 can also follow the fixed disc 900.
  • the circumferential direction slides to achieve its rotation.
  • the fixed disk 900 can be provided with an annular slide.
  • the first bracket 1010 and the annular slide are positioned and aligned in a direction perpendicular to the disk surface of the fixed disk 900.
  • the first bracket 1010 is at the circumference of the fixed disk 900.
  • the direction is slidably engaged with the fixed disk 900.
  • the first bracket 1010 is in a positional alignment with the annular slide in a direction perpendicular to the disk surface of the fixed disk, meaning that the first bracket 1010 cannot move relative to the fixed disk 900 in a direction perpendicular to the disk surface, and only along the circumference of the fixed disk 900 The direction moves to achieve rotation.
  • the first bracket 1010 is positioned and engaged with the annular slide in a direction perpendicular to the disk surface of the fixed disk 900 such that the first bracket 1010 cannot move relative to the fixed disk 900 in a direction perpendicular to the disk surface of the fixed disk 900.
  • the annular slide is opened on the disk surface of the fixed disk 900.
  • the center of the fixed disk 900 is provided with a escaping hole 920.
  • the escaping hole 920 can penetrate the fixed disk 900.
  • the opening of the escape hole 920 causes the entire fixed disk 900 to become an annular structural member, and the first bracket 1010 moves along the annular structural member, so that the first bracket 1010 can be rotated in the circumferential direction of the fixed disk 900.
  • the first bracket 1010 may include a connecting base 1012 and a first buckle 1013.
  • the connecting base 1012 is attached to a surface of one side of the fixing plate 900, and the first buckle 1013 is fixed to the connecting seat 1012. They are connected and pass through the escape hole 920 to be engaged with the fixed disk 900.
  • the connecting seat 1012 and the first buckle 1013 respectively engage with the surfaces on both sides of the fixing plate 900, so that the assembly of the first bracket 1010 on the fixed plate 900 can be realized.
  • the connecting seat 1012 can slide relative to the surface of one side of the fixed disk 900.
  • the first buckle 1013 can be opposite to the other side of the fixed disk 900. The surface slides.
  • the elastic connecting portion 1011 may be a part of the connecting seat 1012 or the first buckle 1013, or may be independent of the connecting seat 1012 and the first buckle 1013.
  • the first bracket 1010 can include a connecting base 1012 and an elastic connecting portion 1011.
  • the elastic connecting portion 1011 is a first elastic arm.
  • One end of the first elastic arm is fixed on the connecting seat 1012, and the other end is a free end.
  • the free end of the first elastic arm may be located outside the circular edge of the fixing plate 900.
  • the free end of the first resilient arm is elastically deformable relative to the connecting seat 1012, thereby releasing the relative rotation between the first bracket 1010 and the fixed disk 900.
  • the tensioning portion may include a first tensioning projection 1012a and/or a second resilient arm 1012b.
  • the first bracket 1010 includes a connecting base 1012.
  • the connecting base 1012 is attached to the disk surface of the fixed disk 900.
  • the connecting base 1012 has a bottom surface that is matched with the fixed disk 900.
  • the bottom surface may be provided with a first surface.
  • the lens holder 1000 may be multiple, and the plurality of lens holders 1000 may be distributed along the circumferential direction of the fixed disk 900. Specifically, the plurality of lens holders 1000 may be dispersedly arranged along the circumferential direction of the fixed disk 900.
  • the lens holder 1000 includes a second bracket 1020 , and the second bracket 1020 is disposed on the first bracket 1010 .
  • the second bracket 1020 can be rotatably engaged with the lens 810 to rotate the lens about its own axis to achieve the purpose of adjusting the lens 810, that is, to achieve the R-direction adjustment of the lens 810.
  • the second bracket 1020 is rotatably disposed on the first bracket 1010 and can be moved in a direction perpendicular to the disc surface of the fixed disc 900, so that the second bracket 1020 drives the lens 810 to perform a pitch rotation, and finally the lens 810 is perpendicular to the fixed disc.
  • the direction of rotation of the disk surface of 900 is adjusted, that is, the T direction is adjusted.
  • the first bracket 1010 can include a support arm 1014 that is in rotational engagement with the second bracket 1020.
  • the second bracket 1020 includes a tensioning disc 1021 that is movably engageable with the support arm 1014.
  • the tensioning disc 1021 includes a tensioning region, a tensioning region and a support arm 1014, one of which is provided with a second tensioning projection, and the other
  • a plurality of tensioning grooves 1021a extending along the radial direction of the tensioning disk 1021 are provided, and the tensioning groove 1021a is engaged with the second tensioning projection.
  • the tensioning disk 1021 is provided with a tensioning groove 1021a
  • the supporting arm 1014 is provided with a second tensioning protrusion 1014a
  • the second tensioning protrusion 1014a and the tensioning groove 1021a can follow the second The carriage 1020 rotates relative to each other.
  • the engagement between the tensioning groove 1021a and the second tensioning protrusion refers to the positioning of the second tensioning protrusion 1014a and the tensioning groove 1021a when the second bracket 1020 is not subjected to an external force to ensure The lens 810 is held at a certain position; when the second bracket 1020 is subjected to an external force, the external tension can be released due to the elastic deformation between the second tensioning projection 1014a and the tensioning groove 1021a, thereby enabling the two to Relative rotation.
  • the lens 810 only needs to rotate relative to the second bracket 1020 within a set angle range.
  • the support arm 1014 may be provided with a first limiting portion 1014b.
  • the tight disk 1021 is provided with a second limiting portion 1021b, and the second limiting portion 1021b can be engaged with the first limiting portion 1014b in the rotating direction of the tension disk 1021.
  • the support arm 1014 may include a support arm main body 214c and a fixing block 214d fixed on the support arm main body 214c.
  • the fixed block 214d is movably engaged with the tension disk 1021.
  • the relative rotation between the fixed block 214d and the tension disk 1021 can be fixed to the support arm main body 214c by screws 214e.
  • the support arms 1014 may be two, and the two support arms 1014 are respectively disposed on both sides of the second bracket 1020.
  • the second bracket 1020 can include an annular structural member 1022 that is movably mated with the lens 810 to enable the lens 810 to rotate about its own axis.
  • the tension disk 1021 can be disposed on the annular structural member 1022.
  • One of the annular structural member 1022 and the lens 810 may be provided with a second tooth groove, and the other may be provided with a second meshing tooth that meshes with the second tooth groove, and the second meshing tooth is opposite to the circumferential direction of the lens 810.
  • the second cogging rotates.
  • a second tooth groove 1110 may be disposed on the lens 810.
  • the second meshing tooth 1022a may be disposed in the annular structure member 1022.
  • the inner wall of the annular structural member 1022 may be provided with a second buckle 1022b and a boss 1022c.
  • the boss 1022c is positioned and engaged with the second slot 1110 or the second meshing tooth 1022a of the lens 810 in a set direction, thereby The annular structural member 1022 cannot move relative to the lens 810 in the setting direction, and the second buckle 1022b is engaged with the other end of the second tooth groove 1110 or the second meshing tooth 1022a on the lens 810, thereby realizing the lens 810 and the ring shape.
  • the structural member 1022 is positioned in the axial direction of the annular structural member 1022. It should be noted that the above-mentioned setting direction is the axial direction of the lens 810.
  • the boss 1022c may be a third elastic arm perpendicular to the inner wall of the second bracket 1020, and the third elastic arm is tightly fitted with one end of the second slot 1110 or the second meshing tooth 1022a.
  • the lens 810 typically rotates about its own axis over a range of angles without the need to rotate within 360° of its own axis. Based on this, please refer to FIG. 4-6 again.
  • the annular structural member 1022 is provided with a third limiting portion 1022d, and the lens 810 can be provided with a fourth limiting portion 1120.
  • the position portion 1022d and the fourth limiting portion 1120 are in a limited fit in the direction of rotation of the lens 810 about its own axis.
  • the third limiting portion 1022d is engaged with the limit of the fourth limiting portion 1120, so that the lens 810 can be rotated within a required angular range.
  • the embodiment of the present application further discloses a four-eye adjustable camera.
  • the disclosed four-eye adjustable camera includes a lens 810 and the lens adjusting device described in the above embodiments.
  • the four-eye adjustable camera disclosed in the embodiment of the present application includes a main body casing assembly 1200 and a transparent cover 1300 .
  • the main housing assembly 1200 typically includes a plurality of components.
  • the main housing assembly 1200 provides a mounting base or accommodation space for other components of the four-eye adjustable camera.
  • the transparent cover 1300 and the lens adjustment device are mounted on the main body casing assembly 1200.
  • the transparent cover 200 is fixed to the main casing assembly 900 in a fixed manner.
  • the transparent cover 1300 includes a flat portion 1310 and a curved portion 1320 surrounding the flat portion 1310.
  • the flat portion 1310 may be located at the center of the transparent cover 1300, and the curved portion 1320 may be distributed around the flat portion 1310.
  • the four-eye adjustable camera further includes a support mechanism 1400 having one end in support contact with the main housing assembly 1200 and the other end in supporting contact with the planar portion 1310.
  • the support mechanism 1400 and the curved surface portion 1320 and the main body casing assembly 1200 constitute a lens accommodation space 1500, and the lens 810 is located in the lens accommodation space 1500.
  • one end of the support mechanism 1400 is in supporting contact with the main casing assembly 900, and the other end is in supporting contact with the planar portion 520, so that the support of the transparent cover 1300 can be realized, and the structure is transparent.
  • the deformation of the cover 1300 when subjected to an external force is small, thereby improving the deformation resistance of the transparent cover 1300, and finally improving the explosion-proof performance of the four-eye adjustable camera.
  • the support mechanism 1400 has a plurality of structures.
  • the support mechanism 1400 can include a support body 1410 and an elastic pad 1420.
  • One end of the support body 1410 can be fixed on the main body casing assembly 900, and the elastic pad 1420 is supported on the support.
  • the other end of the body 1410 is between the flat portion 1310.
  • the support body 1410 is a main support member, and the support body 1410 is supported on the flat portion 1310 by the elastic pad 1420.
  • the elastic pad 1420 can ensure that the contact between the support mechanism 1400 and the transparent cover 1300 is elastic contact, and the transparent cover 1300 is prevented from being impacted.
  • the rigid contact with the support body 1410 can further reduce the probability of the transparent cover 1300 being broken.
  • the main housing assembly 1200 generally includes a plurality of components, and one end of the support main body 1410 can be fixedly coupled to at least one of the plurality of components included in the main housing assembly 1200 to achieve a fixed connection with the main housing assembly 1200. .
  • the embodiment of the present application discloses a lens adjusting device in a four-eye adjustable camera, and the disclosed lens adjusting device includes a third bracket 1700 and a fourth Bracket 1800.
  • the third bracket 1700 is fixed to the body 2100 of the four-eye adjustable camera.
  • the third bracket 1700 can be fixed to the body 2100 by the second screw 1750.
  • the fourth bracket 1800 is disposed on the third bracket 1700 and is used to mount the lens 810, and the lens 810 can follow the fourth bracket 1800 to operate.
  • the fourth bracket 1800 is rotatably engaged with the third bracket 1700, and the fourth bracket 1800 is rotatable in a direction parallel to the support surface 1710 of the third bracket 1700 in the driven state. That is to say, the rotational fit between the fourth bracket 1800 and the third bracket 1700 is a tight fit, and it is required to be driven by an external force to achieve relative rotation between the two.
  • the plurality of lenses 810 of the four-eye adjustable camera are disposed in a plane in which the support surface 1710 is located, and the lens 810 is rotated in a direction parallel to the support surface 1710, which is referred to as a P-direction adjustment of the lens 810.
  • one of the supporting surface 1710 of the third bracket 1700 and the surface opposite to the fourth bracket 1800 may be provided with a third tooth groove, and the other may be provided with a third meshing tooth, a third meshing tooth and a third
  • the three-toothed groove is elastically engaged in the rotational direction of the fourth bracket 1800.
  • a third meshing tooth 1720 may be disposed on the supporting surface 1710, and a third tooth groove 1810 may be disposed on the fourth bracket 1800.
  • the third meshing teeth 1720 can also be disposed on the fourth bracket 1800.
  • the third slot 1810 is disposed on the support surface 1710 of the third bracket 1700.
  • the elastic engagement refers to a state in which the meshing teeth and the tooth grooves can be maintained in a positional engagement without being subjected to an external force, and under the action of an external force, the meshing teeth and the tooth grooves overcome the positioning fit due to deformation, and further The relative rotation can occur, and after the external force is cancelled, the meshing teeth and the tooth grooves are restored to the positioning cooperation state.
  • the third bracket 1700 and the fourth bracket 1800 are elastically engaged with the third slot 1810 through the third meshing teeth 1720.
  • the operator can drive the third bracket 1700 to rotate by applying a certain force.
  • the third slot 1810 and the third meshing tooth 1720 are relatively moved.
  • the end of the adjustment external force is removed
  • the engagement can ensure that the third bracket 1700 is positioned in the adjusted position, and finally the P-direction adjustment of the lens 810 is completed.
  • the third bracket 1700 and the fourth bracket 1800 are elastically engaged with the third slot 1810 through the third meshing teeth 1720.
  • the operator only needs to rotate the fourth bracket. 1800, no need to perform the loosening and screwing operation as described in the background art, which undoubtedly makes the P-direction operation of the lens 810 simple, and the operator needs to operate in one step.
  • the lens of the above structure is realized.
  • the adjustment device can improve the adjustment efficiency of the lens 810.
  • a plurality of third brackets 1700 may be provided, and each of the fourth brackets 1800 may be mounted to the corresponding third bracket 1700.
  • a fourth bracket 1800 is mounted on each of the third brackets 1700.
  • the third bracket 1700 can be one, and all the fourth brackets 1800 can be mounted on the third bracket 1700.
  • a plurality of lightening holes 1760 may be opened in the third bracket 1700.
  • the fourth bracket 1800 may include two support arms 1820 and a connecting plate 1830.
  • the connecting plate 1830 connects the two supporting arms 1820, and the two supporting arms 1820 are used to support the lens 810.
  • the connecting plate 1830 can be integrated with the two supporting arms 1820.
  • the connecting plate 1813 can be provided with a latching hole 1813a.
  • the third bracket 1700 can be provided with a plurality of first latches 1730.
  • the plurality of first latches 1730 pass through the latching holes 1831 and are engaged with the connecting plate 1813. .
  • the plurality of first buckles 1730 can realize the connection between the third bracket 1700 and the fourth bracket 1800, and also provide a rotating foundation for the rotation of the fourth bracket 1800.
  • the two support arms 1820 are rotated relative to the third bracket 1700 by the connecting plate 1830, so that the two supporting arms 1820 rotate the lens 810 relative to the third bracket 1700.
  • the third bracket 1700 and the fourth bracket 1800 can also achieve a rotational connection under tight fit by other means.
  • a surface of the connecting plate 1830 opposite to the third bracket 1700 is provided with a plurality of third slots 1810, and the plurality of third slots 1810 are distributed around the circumference centered on the axis of the engaging holes 1831. on.
  • the tensioning portion may include a first tensioning protrusion and/or a third elastic arm 1740.
  • the tensioning portion acts to tighten, so that the force for driving the fourth bracket 1800 to rotate during the adjustment is greater. In this case, the fourth bracket 1800 does not rotate freely when subjected to a small interference force.
  • the third meshing teeth 1720 are disposed on the third elastic arms 1740. The third engaging teeth 1720 are relatively stably engaged with the third slots 1810 by the elastic force applied by the third resilient arms 1740.
  • the fourth bracket 1800 may be provided with a fifth bracket 1900 for rotatingly engaging with the lens 810 and rotating the lens 810 about its own axis to reach the adjusting lens 810.
  • the purpose is to achieve the R-direction adjustment of the lens 810.
  • the fifth bracket 1900 is rotatably disposed on the fourth bracket 1800 and can be rotated in a direction perpendicular to the supporting surface 1710 of the third bracket 1700, so that the fifth bracket 1900 drives the lens 810 to perform a pitching motion with respect to the supporting surface 1710. Finally, the lens 810 is rotationally adjusted in a direction perpendicular to the support surface 1710, that is, T-direction adjustment.
  • the fourth bracket 1800 can include a support arm 1820.
  • the fifth bracket 1900 can include a tension disk 1910 that can be movably mated with the support arm 1820, the tension disk 1910 including tensioning The region, the tensioning region and the support arm 1820, one of which is provided with a second tensioning projection, and the other is provided with a plurality of tensioning grooves 1911 extending along the radial direction of the tensioning disk 1910, the tensioning groove 1911 and the The two tensioning projections engage.
  • the tensioning disk 1910 is provided with a tensioning groove 1911
  • the supporting arm 1820 is provided with a fourth tensioning protrusion 1821
  • the fourth tensioning protrusion 1821 and the tensioning groove 1911 can follow the fourth The carriage 1800 rotates relative to each other.
  • the engagement between the tensioning groove 1911 and the fourth tensioning projection 1821 is also elastic engagement.
  • the fourth tensioning projection 1821 is positioned with the tensioning groove 1911.
  • the external tension can be released by the elastic deformation between the fourth tensioning projection 1821 and the tensioning groove 1911, thereby causing two The person can rotate relative to each other.
  • the lens 810 only needs to rotate relative to the fourth bracket 1800 within a set angle range.
  • the support arm 1820 may be provided with a third limiting portion 1822, the tensioning disc.
  • the 1910 is provided with a fourth limiting portion 1912.
  • the fourth limiting portion 1912 can be engaged with the third limiting portion 1822 in the rotating direction of the tensioning disk 1910.
  • the support arm 1820 may include a support arm main body 1823 and a fixing block 1824 fixed on the support arm main body 1823.
  • the fixing block 1824 is movably engaged with the tension plate 1910, thereby implementing both.
  • the relative rotation between the fixed block 1824 and the tension disk 1910 can be secured to the support arm body 1823 by the first screw 1825.
  • the above solution achieves rotation of the lens 810 relative to the support arm 1820 by the rotational fit of the fixed block 1824 with the tensioning disk 1910.
  • the support arms 1820 may be two, and the two support arms 1820 are respectively disposed on both sides of the fifth bracket 1900.
  • the fifth bracket 1900 can include an annular structural member 1920 that is movably mated with the lens 810 to enable the lens 810 to rotate about its own axis.
  • the tension disk 1910 can be disposed on the annular structure 1920.
  • One of the annular structural member 1920 and the lens 810 may be provided with a fourth tooth groove, and the other may be provided with a fourth meshing tooth that meshes with the fourth tooth groove, and the fourth meshing tooth is opposite to the circumferential direction of the lens 810.
  • the fourth cogging rotates.
  • a fourth slot 410 may be disposed on the lens 810.
  • a fourth meshing tooth 1921 may be disposed in the annular structure 1920.
  • the inner wall of the annular structural member 1920 may be provided with a second buckle 1922 and a boss 1923.
  • the boss 1923 is positioned and engaged with the fourth tooth groove 2010 or the fourth meshing tooth 1921 on the lens 810 in the setting direction, thereby
  • the annular structure member 1920 cannot move relative to the lens 810 in the setting direction, and the second buckle 1922 is engaged with the other end of the fourth tooth groove 2010 or the fourth meshing tooth 1921 on the lens 810, thereby realizing the lens 810 and the ring shape.
  • the structural member 1920 is positioned in the axial direction of the annular structural member 1920. It should be noted that the above-mentioned setting direction is the axial direction of the lens 810.
  • the boss 1923 may be a third elastic arm perpendicular to the inner wall of the fifth bracket 1900, and the third elastic arm is in tight engagement with one end of the fourth tooth groove 2010 or the fourth meshing tooth 1921.
  • the lens 810 typically rotates about its own axis over a range of angles without the need to rotate within 360° of its own axis. Based on this, please refer to FIG. 21-22 again.
  • the annular structure 1920 may be provided with a third limiting portion 1924, and the lens 810 may be provided with a fourth limiting portion 2020, and a third The limiting portion 1924 and the fourth limiting portion 2020 are in a limited engagement with the lens 810 in the direction of rotation about its own axis.
  • the third limiting portion 1924 cooperates with the limit of the fourth limiting portion 2020 to enable the lens 810 to rotate within a required angular range.
  • the embodiment of the present application discloses a four-eye adjustable camera, and the disclosed four-eye adjustable camera includes a lens 810 and the lens adjustment device described in the above embodiment, and the lens 810 is mounted. On the lens adjustment device.
  • the four-eye adjustable camera disclosed in the embodiment of the present application includes a body 2100 and a transparent cover 2200.
  • the lens adjusting device is installed in a cavity formed by the transparent cover 2200 and the body 2100.
  • the lens adjustment device is fixedly coupled to the body 2100.
  • the transparent cover provides better protection.
  • the transparent cover 2200 may include a curved surface portion 2210, and each curved surface portion 2210 is covered on one lens 810.
  • the curved surface portion 2210 can improve the impact deformation resistance of the entire transparent cover, thereby improving the explosion-proof performance of the four-eye adjustable camera.
  • the transparent cover 2200 can be fixedly connected to the body 2100 through the third screw 2220.
  • the connecting rod 2110 can be disposed in the body 2100, and the connecting rod 2110 is provided with a threaded hole 2111.
  • the third screw 2220 is fixedly connected to the threaded hole through the transparent cover 2200, thereby realizing the transparent cover 2200 and the body 2100.
  • the body 2100 may include an accommodation space 2130 in which the connection post 2110 is located. In order to achieve a better fit, one end of the connecting post 2110 with a threaded hole may be flush with the top opening of the receiving space 2130.
  • the bottom wall of the accommodating space 2130 may be provided with a mounting seat 2120, and the third bracket 1700 is installed in the mounting seat 2120 in a one-to-one correspondence.
  • the mounting base 2120 can be multiple, and the plurality of mounting bases 2120 are fixedly connected to form an annular base. This structure can facilitate the installation of the plurality of mounting bases 2120. However, this will increase the weight of the fuselage 2100.
  • a plurality of mounts 2120 are arranged in a distributed manner, and each mount 2120 is arranged opposite to a third bracket 1700, which undoubtedly ensures the first Under the premise of the installation of the three brackets 1700, the cost of the smaller materials can be reduced.
  • the third bracket 1700 may be provided with a connecting hole 1770.
  • the mounting base 2120 may be provided with a threaded hole 2121.
  • the connecting hole 1770 may be fixedly connected to the threaded hole 2112 by the second screw 1750.
  • one end of the connecting hole 1770 facing away from the threaded hole 2121. 1 may include a receiving groove 1780. As shown in FIG. 18, the receiving groove 1780 is for receiving the screw of the second screw 1750. cap. This arrangement can better locate the nut, thereby avoiding the possible impact of the nut on the rotation.
  • one of the third bracket 1700 and the mount 2120 may be provided with a positioning protrusion 1790, and the other may be provided with a positioning groove 2122.
  • the positioning protrusion 1790 is in a positional engagement with the positioning groove 2122.
  • the third bracket 1700 is provided with a positioning protrusion 1790
  • the mounting seat 2120 is provided with a positioning groove 2122 .
  • the number of the positioning protrusions 1790 and the positioning grooves 2122 may be one or plural. In the case of a plurality of numbers, better positioning can be achieved.
  • the number of the positioning protrusions 1790 is two, and the number of the positioning grooves 2122 is two.
  • the attachment aperture 1770 can pass through the third bracket 1700 and extend through the positioning projection 1790.
  • the bottom end of the positioning groove 2122 may be provided with a threaded hole 2121.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the infrared light control method of any of the above embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供了一种红外灯控制方法、装置及四目可调节摄像机。方法包括:分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,所述第一红外灯组为所述四目可调节摄像机中的一个红外灯组;将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。本发明实施例,实现了在第一红外灯组位置固定的前提下,提高第一红外灯组的补光效果。

Description

一种红外灯控制方法、装置及四目可调节摄像机
本申请要求于2018年5月23日提交中国专利局、申请号为201810501412.1申请名称为“一种红外灯控制方法、装置及四目可调节摄像机”的中国专利申请的优先权,要求于2018年4月4日提交中国专利局、申请号为201820481642.1申请名称为“多目摄像机及多目摄像机的镜头调节装置”,要求于2017年12月27日提交中国专利局、申请号为201721872513.7申请名称为“多目摄像机及多目摄像机的镜头调节装置”,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及网络摄像机技术领域,特别是涉及一种红外灯控制方法、装置及四目可调节摄像机。
背景技术
多目摄像机上搭载有多个镜头,在实际工作中,对于光线较暗的场景,如阴天、黑夜或者光线不足的场所,可以使用红外光镜头对这些场景进行监控。为了获得更加清晰的图像,可以对红外光镜头进行红外灯补光。
现有技术中,为多目摄像机上的红外光镜头进行红外灯补光,可以是为每个红外光镜头预先配置一组红外灯组,当一个镜头需要进行红外灯补光时,开启与该镜头对应的预先配置的红外灯组,这些红外灯组发射出红外光,使得在红外灯组能够照射到的场景中红外光的光强增加,因此得到的图像更加清晰。
但是,在多个红外镜头的位置可以手动调整的多目可调节摄像机中,多个红外镜头的位置可能会根据实际需求进行调整,而红外镜头所监控的场景,也随着该调整而改变。而红外灯组出于光学以及散热的原因,无法跟随红外镜头移动,因此在调整之后,红外镜头所监控的场景与预先配置的红外灯组能够照射到的场景重叠的区域较小,导致预先配置的红外灯组对红外镜头的补光效果较差。
发明内容
本申请实施例的目的在于提供一种红外灯控制方法,以提高四目可调节 摄像机中红外灯组的补光效果。具体技术方案如下:
本申请实施例的目的在于提供一种红外灯控制方法,以提高四目可调节摄像机中红外灯组的补光效果。具体技术方案如下:
本申请实施例的第一方面,提供了一种红外灯控制方法,所述方法包括:
分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,所述第一红外灯组为所述四目可调节摄像机中的一个红外灯组;
将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
结合第一方面,在第一种可能的实现方式中,所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,包括:
关闭所述四目可调节摄像机中所有红外灯组;
分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
开启第一红外灯组;
分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度;
分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,在所述分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度之后,所述方法还包括:
分别针对所述多个镜头中的每个镜头,统计该镜头在所述所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差;
如果所述多个镜头中存在未补光亮度方差大于预设第一方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
如果所述多个镜头中不存在未补光亮度方差大于所述第一方差阈值的镜头,继续执行所述开启第一红外灯组的步骤。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,在所述分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度之后,所述方法还包括:
分别针对所述多个镜头中的每个镜头,统计该镜头在所述第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差;
如果所述多个镜头中存在补光亮度方差大于预设第二方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
如果所述多个镜头中不存在补光亮度方差大于所述第二方差阈值的镜头,继续执行所述分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率的步骤。
结合第一方面,在第四种可能的实现方式中,在所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率之后,所述方法还包括:
确定所述多个镜头的所述亮度变化率中的最大值是否大于所述亮度变化率中的最小值与所述亮度变化率中的次小值之和;
如果所述最大值大于所述最小值与所述次小值之和,初始化所述多个镜头,并执行所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率的步骤;
如果所述最大值不大于所述最小值与所述次小值之和,继续执行所述将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头的步骤。
结合第一方面的第二至第四中可能实现方式中的任一可能的实现方式,在第五种可能的实现方式中,所述初始化所述多个镜头,包括:
收起所述多个镜头的红外光滤镜;
初始化所述多个镜头的增益和快门速度。
结合第一方面的第一种的实现方式,在第六种可能的实现方式中,所述分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度,包括:
分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的未补光亮度;
所述分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度,包括:
分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的补光亮度。
在本申请实施例的第二方面,提供了一种红外灯控制装置,所述装置包括:
亮度计算模块,用于分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第 一红外灯组开启时拍摄得到的画面之间的亮度变化率,所述第一红外灯组为所述四目可调节摄像机中的一个红外灯组;
绑定模块,用于将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
结合第二方面,在第一种可能的实现方式中,所述亮度计算模块,具体用于:
关闭所述四目可调节摄像机中所有红外灯组;
分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
开启第一红外灯组;
分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度;
分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述亮度计算模块,在所述分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度之后,还用于:
分别针对所述多个镜头中的每个镜头,统计该镜头在所述所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差;
如果所述多个镜头中存在未补光亮度方差大于预设第一方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
如果所述多个镜头中不存在未补光亮度方差大于所述第一方差阈值的镜头,继续执行所述开启第一红外灯组的步骤。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述亮度计算模块在所述分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度之后,还用于:
统计所述多个镜头,在所述第一红外灯组已开启情况下拍摄得到的画面中的亮度在单位时间内的方差,作为补光亮度方差;
分别针对所述多个镜头中的每个镜头,统计该镜头在所述第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差;
如果所述多个镜头中存在补光亮度方差大于预设第二方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
如果所述多个镜头中不存在补光亮度方差大于所述第二方差阈值的镜头,继续执行所述分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率的步骤。
结合第二方面的第一种可能的实现方式,在第四种可能的实现方式中,所述亮度计算模块,在所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率之后,还用于:
确定所述多个镜头的所述亮度变化率中的最大值是否大于所述亮度变化率中的最小值与所述亮度变化率中的次小值之和;
如果所述最大值大于所述最小值与所述次小值之和,初始化所述多个镜头,并执行所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率的步骤;
如果所述最大值不大于所述最小值与所述次小值之和,继续执行所述将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头的步骤。
结合第二方面的第二至第四种可能的实现方式中的任一可能的实现方式,在第五种可能的实现方式中,所述亮度计算模块,具体用于:
收起所述多个镜头的红外光滤镜;
初始化所述多个镜头的增益和快门速度。
结合第二方面的第一种可能的实现方式,在第六种可能的实现方式中,所述亮度计算模块,具体用于:
分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的未补光亮度;
分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的补光亮度。
在本申请实施例的第三方面,提供了一种四目可调节摄像机,所述四目可调节摄像机包括:
四个镜头,四个红外灯组,主处理器,从处理器,交换模块;
所述四个镜头可移动的安装于所述四目可调节摄像机;所述四个镜头中的两个镜头与所述主处理器电连接,除这两个镜头以外的另外两个镜头与所述从处理器电连接;
所述四个红外灯组中的两个红外灯组与所述主处理器电连接,除这两个红外灯组以外的另外两个红外灯组与所述从处理器电连接;
所述交换模块,和所述主处理器以及所述从处理器电连接,用于实现所述主处理器和从处理器之间的信息交互;
所述主处理器用于控制与所述主处理器电连接的两个镜头和两个红外灯组,并向所述从处理器发送控制指令;所述从处理器,用于根据所述控制指令,控制与所述从处理器电连接的两个镜头和两个红外灯组;
所述主处理器,还用于控制所述四目可调节摄像机,实现以下步骤:
分针针对所述四个镜头中的每个镜头,确定在所述四个红外灯组均未开启的情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
分别针对所述四个镜头中的每个镜头,确定在所述四个红外灯组中仅有第一红外灯组开启的情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度,所述第一红外灯组为所述四个红外灯组中的一个红外灯组;
分别针对所述的哥镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率;
将所述四个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
在本申请实施例的第四方面,提供了一种四目可调节摄像机,所述四目可调节摄像机包括:
多个镜头,多个红外灯组,控制装置;
所述多个镜头可移动的安装于所述四目可调节摄像机中;
所述多个红外灯组,用于为所述多个镜头进行红外灯补光;
所述控制装置,包括至少一个处理器,用于控制所述四目可调节摄像机,实现上述第一方面中任一所述方法步骤;并且根据所述多个镜头的工作模式,以及所述多个镜头与所述红外灯组的绑定关系,确定是否需要开启所述多个红外灯组,得到所述多个红外灯组的确定结果;根据所述确定结果,控制所述多个红外灯组的开启和关闭。
在本申请实施例的第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一所述的方法步骤。
本申请实施例提供的红外灯控制方法、装置及四目可调节摄像机,可以在针对四目可调节摄像机中的镜头调整结束后,根据第一红外灯组对多个镜头的补光效果,自动选择补光效果最好的镜头,作为第一红外灯组所绑定的镜头,实现了在第一红外灯组位置固定的前提下,提高第一红外灯组的补光效果。当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述 的所有优点。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的一种流程示意图;
图2为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的另一种流程示意图;
图3为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的另一种流程示意图;
图4为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的另一种流程示意图;
图5为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的另一种流程示意图;
图6为本申请实施例提供的应用于四目可调节摄像机的红外灯控制方法的另一种流程示意图;
图7为本申请实施例提供的应用于四目可调节摄像机的红外灯控制装置的一种结构示意图;
图8为本申请实施例提供的四目可调节摄像机的一种结构示意图;
图9为本申请实施例提供的四目可调节摄像机中安装有镜头的镜头调节装置的结构示意图;
图10为本申请实施例提供的四目可调节摄像机中镜头调节装置的部分结构图;
图11为本申请实施例提供的四目可调节摄像机中第一支架的结构示意图;
图12为本申请实施例提供的四目可调节摄像机中镜头支架与镜头的部分爆炸结构示意图;
图13为本申请实施例提供的四目可调节摄像机中第二支架与镜头的部分爆炸结构示意图;
图14为本申请实施例提供的四目可调节摄像机中第二支架的部分结构示意图;
图15为本申请实施例提供的四目可调节摄像机的爆炸结构示意图;
图16为本申请实施例提供的四目可调节摄像机的剖视图;
图17为本申请实施例提供的四目可调节摄像机的爆炸示意图;
图18和图19分别为本申请实施例提供的四目可调节摄像机中第一支架与第二支架在不同视角下的爆炸示意图;
图20为本申请实施例提供的四目可调节摄像机中第二支架与镜头的爆炸示意图;
图21为本申请实施例提供的四目可调节摄像机中第三支架与镜头的爆炸示意图;
图22为本申请实施例提供的四目可调节摄像机中第三支架的结构示意图;
图23为本申请实施例提供的四目可调节摄像机中机身与第一支架的连接示意图;
图24为本申请实施例提供的四目可调节摄像机中透明罩的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1所示为本申请实施例提供的红外灯控制方法的一种流程示意图,应用于四目可调节摄像机的,可以包括:
S101,分别针对四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在第一红外灯组开启时拍摄得到的画面之间的亮度变化率,第一红外灯组为四目可调节摄像机中的一个红外灯组。
其中,四目可调节摄像上有多个红外灯组,每个红外灯组可以包括一个或者多个红外灯。对于四目可调节摄像机的多个镜头中的每个镜头,在第一红外灯组未开启时拍摄得到的画面,和在第一红外灯组开启时拍摄得到的画面,可以视作一组对照画面,为了使得亮度变化率能够尽可能准确地反映出第一红外灯组对每个镜头的补光效果,应当尽量使得拍摄这两个画面时,除了第一红外灯组是否开启这一个变量外,不存在其他变量。
进一步,在本实施例中,该步骤可以是在针对四目可调节摄像机中多个镜头的调整结束后执行,其中,调整可以是指调整镜头光轴的方向,也可以是指调整镜头的位置,还可以是同时调整镜头光轴的方向和镜头的位置。可以理解的是,当四目可调节摄像机中的镜头被调整后,第一红外灯组对原先相绑定的镜头的补光效果可能发生改变,第一红外灯组可能对原先相绑定的镜头的补光效果低于对其他镜头的补光效果,此时需要为第一红外灯组重新绑定镜头,以提高第一红外灯组的补光效果,例如第一红外灯组原先与第一镜头相绑定,在第一镜头的位置被调整后,第一红外灯组对第一镜头的补光效果可能低于对第二镜头的补光效果,此时出于提升第一红外灯组的补光效果的考虑,可以将第一红外灯组与第二镜头相绑定。
S102,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
其中,一个镜头与第一红外灯组相绑定是指,当该镜头需要进行红外灯补光时,开启第一红外灯组为该镜头进行红外灯补光,在本实施例中,一个镜头可以同时绑定多个红外灯组,在这种情况下,当该镜头需要进行红外灯补光时,同时开启与该镜头相绑定的多个红外灯组。
如果一个镜头的亮度变化率最大,可以理解为第一红外灯组对该镜头的补光效果,优于四目可调节摄像机中的其他镜头。将该镜头确定为与第一红外灯组相绑定的镜头,可以最大化第一红外灯组的补光效果。
参见图2,图2所示为本申请实施例提供的红外灯组控制方法的另一种流程示意图,可以包括:
S201,关闭四目可调节摄像机中所有红外灯组。
可以是控制红外灯组的信号源向所有红外灯组中的各个红外灯输出低电平,或者控制红外灯组的信号源终止向所有红外灯组中的各个红外灯输出信号,此时各个红外灯中没有电流流通,处于关闭状态。
S202,分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度。
其中,一个镜头的未补光亮度可以是该镜头在某一时刻拍摄得到的图像帧的亮度,在一种可选的实施例中,也可以是该镜头单位时间内得到的所有bayer(拜耳)图像帧的平均亮度。
示例性的,假设四目可调节摄像机中的四个镜头分别为第一镜头、第二镜头、第三镜头、以及第四镜头,可以是根据第一镜头在1s内每个bayer图像帧(假设共60帧)的亮度,计算这60个bayer图像帧的亮度的平均值,得到第一镜头的未补光亮度X 1,按照计算X 1的步骤,同理分别计算得到第二镜头的未补光亮度X 2、第三镜头的未补光亮度X 3以及第四镜头的未补光亮度X 4。可以理解的是,计算这四个未补光亮度的先后顺序可以根据实际需求进行设置,或者,在设备运算能力许可的情况下,也可以是并行计算得到这四个未补光亮度。可以理解的是,镜头拍摄得到的画面的亮度可能存在波动,如果以镜头拍摄得到的一个图像帧中的亮度作为未补光亮度,可能会因为该波动产生误差,选用多个图像帧中的亮度的平均值,可以有效减少因亮度波动造成的 误差。
S203,开启第一红外灯组。
具体的,可以是控制信号源向第一红外灯组输出一个预设占空比的高电平信号,此时第一红外灯组感应于高电平信号亮起。
S204,分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度。
此时,四目可调节摄像机的多个红外灯组中,只有第一红外灯组处于开启状态,第一红外灯组以外的其他红外灯组处于关闭状态。其中,一个镜头的补光亮度可以是该镜头在某一时刻拍摄得到的图像帧的亮度,在一种可选的实施例中,也可以是该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度。
示例性的,可以是根据第一镜头在1s内每个bayer图像帧(假设共60帧),计算这60个bayer图像帧内的亮度的平均值,得到第一镜头的补光亮度Y 1,按照计算Y1的步骤,同理分别计算得到第二镜头的补光亮度Y 2、第三镜头的补光亮度Y 3以及第四镜头的补光亮度Y 4。可以理解的是,计算这四个未补光亮度的先后顺序可以根据实际需求进行设置,或者,在设备运算能力许可的情况下,也可以是并行计算得到这四个补光亮度。
S205,分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
其中,如果一个镜头的补光亮度与未补光亮度的比值越大,则该镜头的亮度变化率越大,如果一个镜头补光亮度与未补光亮度的比值越小,则该镜头的亮度变化率越小。在一种可选的实施例中,一个镜头的亮度变化率的计算公式为下式:
Figure PCTCN2018123954-appb-000001
其中Z为该镜头的亮度变化率,Y为该镜头的补光亮度,X为该镜头未补光亮度。对于四目可调节摄像机中的每个镜头,应当按照同一个计算公式计算该镜头的亮度变化率。
S206,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。
理想状况下,四目可调节摄像机上可以有四个红外灯组,并且分别与四目可调节摄像机中的四个镜头绑定,在这种情况下可以最大化的利用每个红外灯组。选用该实施例,未补光亮度是在四目可调节摄像机中所有红外灯组未开启时确定的,而补光亮度是在仅有第一红外灯组开启时确定的,基于这两个亮度,计算得到的亮度变化率,可以避免非第一红外灯组的干扰,准确地反映出第一红外灯组单独工作时,对多个镜头的补光效果。
在一种可选的实施例中,如图3所示,可以包括:
S301,关闭四目可调节摄像机中所有红外灯组。
该步骤与S201相同,可以参见前述关于S201的描述,在此不再赘述。
S302,分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度。
该步骤与S202相同,可以参见前述关于S202的描述,在此不再赘述。
S303,分别针对多个镜头中的每个镜头,统计该镜头在所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差。
可以是针对多个镜头中的每个镜头,根据该镜头在所有红外灯组均为开启情况下,在1s内拍摄得到的bayer图像帧(假设为60帧),计算这60个bayer图像帧的亮度的方差。
S304,确定未补光亮度方差是否大于预设第一方差阈值,如果未补光亮度方差大于预设第一方差阈值,执行S305,如果未补光亮度方差不大于第一方差阈值,执行306。
S305,初始化多个镜头,执行S301。
初始化是指将四目可调节摄像机中的多个镜头恢复至一个预设的缺省状 态。在一种可选的实施例中,初始化多个镜头可以是收起多个镜头的红外光滤镜,并初始化多个镜头的增益和快门速度。
其中,红外光滤镜为用于截止红外光的滤镜,红外光滤镜对可见光波段的光线没有或者几乎没有截止效果,当红外光滤镜收起时,红外光可以正常通过,因此镜头所属的图像采集单元中的传感器可以感应到红外光。增益,是指对传感器感应到的信号进行信号放大的倍率。快门速度,是指快门开启的有效时间长度,快门速度越快则镜头拍摄得到的每个视频帧画面的曝光时间越短。
可以理解的是,当镜头的红外光滤镜未收起时,由于红外光滤镜可以截止红外光,镜头所属的图像采集单元中的传感器无法正常感应到红外光,因此镜头拍摄得到的画面的亮度可能出现异常。镜头增益的大小,和快门速度的快慢均直接影响到镜头拍摄得到的画面的亮度,当这两个参数被设置为过大或者过小时,均可能导致镜头拍摄的到的画面的亮度异常。
S306,开启第一红外灯组。
该步骤与S203相同,可以参见前述S203的描述,在此不再赘述。
S307,分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度。
该步骤与S204相同,可以参见前述S204的描述,在此不再赘述。
S308,分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
该步骤与S205相同,可以参见前述S205的描述,在此不再赘述。
S309,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。
一个镜头拍摄得到的画面中的亮度在单位时间内的方差,可以表示该镜头在单位时间内拍摄得到的画面的亮度的稳定程度,方差越大说明该镜头在单位时间内拍摄得到的画面中的亮度越不稳定。当未补光亮度方差大于预设 第一方差阈值时,可以认为此时镜头拍摄得到的画面的亮度的稳定程度较差,此时镜头拍摄得到的画面的亮度可能存在异常,因此此时得到的未补光亮度准确性较低。相反,当方差不大于预设第一方差阈值时,可以认为镜头单位时间内拍摄得到的画面的亮度较为稳定,镜头拍摄得到的画面的亮度是正常的,此时得到的未补光亮度准确性较高。因此选用该实施例,可以提高未补光亮度的准确性。
参见图4,图4所示为本申请实施例提供的亮度变化率确定方法的另一种流程示意图,可以是包括:
S401,关闭四目可调节摄像中所有红外灯组。
该步骤与S201相同,可以参见前述S201的描述,在此不再赘述。
S402,分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度。
该步骤与S202相同,可以参见前述关于S202的描述,在此不再赘述。
S403,开启第一红外灯组。
该步骤与S203相同,可以参见前述关于S203的描述,在此不再赘述。
S404,分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度。
该步骤与S204相同,可以参见前述S204的描述,在此不再赘述。
S405,分别针对多个镜头中的每个镜头,统计该镜头在第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差。
S406,确定补光亮度方差是否大于预设第二方差阈值,如果补光亮度方差大于预设第二方差阈值,执行S407,如果补光亮度方差不大于预设第二阈值,执行S408。
其中,预设第二方差阈值可以根据实际需求进行设置,并且可以等于第一方差阈值,也可以不等于第一方差阈值。
S407,初始化多个镜头,并执行S401。
具体的可以参见S307中关于初始化多个镜头的描述,在此不再赘述。
S408,分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
该步骤与S308相同,可以参见前述S308的描述,在此不再赘述。
S409,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。
当补光亮度方差大于预设第二方差阈值时,可以认为S404中得到的补光亮度以及S402中得到的未补光亮度的准确性较低,而当补光亮度方差不大于预设第二方差阈值时,可以认为S404中得到的补光亮度以及S402中得到的未补光亮度准确性较高。因此,选用该实施例可以提高,补光亮度和未补光亮度的准确性。
参见图5,图5所示为本实施例提供的亮度变化率确定方法的另一种流程示意图,可以包括:
S501,分别针对四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在第一红外灯组开启时拍摄得到的画面之间的亮度变化率。
该步骤与S101相同,可以参见前述S101的描述,在此不再赘述。
S502,确定多个镜头的亮度变化率中的最大值是否大于亮度变化率中的最小值与亮度变化率中的次小值之和,如果最大值大于最小值与次小值之和,执行S503,如果最大值不大于最小值与次小值之和,执行S504。
假设在S505中,计算得到的第一镜头的亮度变化率为Z 1,第二镜头的亮度变化率为Z 2,第三镜头的亮度变化率为Z 3,第四镜头的亮度变化率为Z 4,并且这四个亮度变化率由大到小的顺序为Z 1>Z 2>Z 3>Z 4,可见,此时亮度变化率中的最大值为Z 1,亮度变化率中的最小值为Z 4,亮度变化率中的次小值为Z 3,确定Z 1是否大于Z 3与Z 4之和。
S503,初始化多个镜头,返回执行S501。
具体的,可以参见S305中关于初始化多个镜头的描述,在此不再赘述。
S504,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。
可以理解的是,四目可调节摄像机中,多个镜头之间的距离有限,第一红外灯组,对多个镜头的补光效果差距往往不会很大。当亮度变化率中的最大值,大于亮度变化率中的最小值与亮度变化率中的次小值之和时,可以认为本次确定出来的第一红外灯组对各个镜头的补光效果存在异常,例如多个镜头中,存在增益过高的镜头。因此,本次得到的多个镜头的亮度变化率不够准确。如果根据本次得到的多个镜头的亮度变化率,确定第一红外灯组相绑定的镜头,可能无法最大化第一红外灯组的补光效果。而选用该实施例,可以有效降低该问题的发生概率。
在一种可选的实施例中,如图6所示,可以包括:
S601,收起多个镜头的红外光滤镜,并初始化这多个镜头的增益和快门速度。
具体的,可以参见S307中关于初始化多个镜头的描述,在此不再赘述。四目可调节摄像机中的多个镜头,根据各自所监控的监控场景的不同,在本步骤之前,可能部分镜头的红外光滤镜已经收起,而部分镜头的红外光滤镜尚未收起,并且镜头的增益和快门速度也可能不同。可能导致后续步骤中无法准确确定出第一红外灯组对多个镜头的补光效果,因此在本步骤中,统一收起多个镜头的红外光滤镜,并初始化这多个镜头的增益和快门速度。
S602,关闭四目可调节摄像机中所有的红外灯组。
该步骤与S201相同,可以参见前述S201的描述,在此不再赘述。
S603,分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度。
具体的,可以参见S202中关于确定平均亮度的描述,在此不再赘述。
S604,分别针对多个镜头中的每个镜头,统计该镜头在所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差。
其中,单位时间与S603中的单位时间代表相等的时间长度,示例性的,S603中的单位时间,和S604中的单位时间可以均代表1秒。在本实施例中,统计多个镜头的未补光亮度方差,基于的是S603中确定未补光亮度时所使用的视频帧。示例性的,假设S603中,确定四目可调节摄像机中的第一镜头的未补光亮度时,使用的是第一镜头,在所有红外灯组未开启情况下1s内拍摄得到的60个视频帧,则本步骤中,统计第一镜头的未补光亮度方差时,同样是基于这60个视频帧。可以理解的是,在统计这60个视频帧的亮度方差时,需要获取到这60个视频帧的平均亮度,由于S603中已经确定出了这60个视频帧的平均亮度,因此本步骤中无需计算这60个视频帧的平均亮度,可以省去一定的计算量。
S605,确定未补光亮度方差是否大于预设第一方差阈值,如果未补光亮度方差大于预设第一方差阈值,返回执行S601,如果未补光亮度方差不大于预设第一方差阈值,执行S606。
该步骤与S304相同,可以参见前述S304的描述,在此不再赘述。
S606,开启第一红外灯组。
该步骤与S203相同,可以参见前述S203的描述,在此不再赘述。
S607,分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度。
该步骤与S204相同,可以参见前述S204的描述,在此不再赘述。
S608,分别针对多个镜头中的每个镜头,统计该镜头在第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差。
S609,确定补光亮度方差是否大于预设的第二方差阈值,如果未补光亮度方差大于预设第二方差阈值,返回执行S601,如果补光亮度方差不大于预 设第二方差阈值,执行S610。
该步骤与S406相同,可以参见前述S406的描述,在此不再赘述。
S610,分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
该步骤与S308相同,可以参见前述关于S308的描述,在此不再赘述。
S611,确定多个镜头的亮度变化率中的最大值是否大于亮度变化率中的最小值与亮度变化率中的次小值之和,如果最大值大于最小值与次小值之和,返回执行S601,如果最大值不大于最小值与次小值之和,执行S612。
S612,将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
该步骤与S102相同,可以参见前述关于S102的描述,在此不再赘述。
选用本实施例,可以在确定镜头拍摄得到的画面的亮度存在异常时,重新确定第一红外灯组对多个镜头的补光效果,提高了确定得到的第一红外灯组对多个镜头的补光效果的准确性。
参见图7,图7所示为本申请实施例提供的红外灯控制装置的一种结构示意图,可以包括:
亮度计算模块701,用于分别针对四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在第一红外灯组开启时拍摄得到的画面之间的亮度变化率,第一红外灯组为四目可调节摄像机中的一个红外灯组;
绑定模块702,用于将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
进一步的,亮度计算模块701,具体用于:
关闭四目可调节摄像机中所有红外灯组;
分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
开启第一红外灯组;
分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度;
分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
进一步的,亮度计算模块701,在分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度之后,还用于:
分别针对多个镜头中的每个镜头,统计该镜头在所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差;
如果多个镜头中存在未补光亮度方差大于预设第一方差阈值的镜头,初始化多个镜头,并执行关闭四目可调节摄像机中所有红外灯组的步骤;
如果多个镜头中不存在未补光亮度方差大于第一方差阈值的镜头,继续执行开启第一红外灯组的步骤。
进一步的,亮度计算模块701在分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度之后,还用于:
统计多个镜头,在第一红外灯组已开启情况下拍摄得到的画面中的亮度在单位时间内的方差,作为补光亮度方差;
分别针对多个镜头中的每个镜头,统计该镜头在第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差;
如果多个镜头中存在补光亮度方差大于预设第二方差阈值的镜头,初始化多个镜头,并执行关闭四目可调节摄像机中所有红外灯组的步骤;
如果多个镜头中不存在补光亮度方差大于第二方差阈值的镜头,继续执行分别针对多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的 未补光亮度的变化率,作为该镜头的亮度变化率的步骤。
进一步的,亮度计算模块701,在分别针对四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在第一红外灯组开启时拍摄得到的画面之间的亮度变化率之后,还用于:
确定多个镜头的亮度变化率中的最大值是否大于亮度变化率中的最小值与亮度变化率中的次小值之和;
如果最大值大于最小值与次小值之和,初始化多个镜头,并执行分别针对四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在第一红外灯组开启时拍摄得到的画面之间的亮度变化率的步骤;
如果最大值不大于最小值与次小值之和,继续执行将多个镜头中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头的步骤。
进一步的,亮度计算模块701,具体用于:
收起多个镜头的红外光滤镜;
初始化多个镜头的增益和快门速度。
进一步的,亮度计算模块701,具体用于:
分别针对多个镜头中的每个镜头,确定在所有红外灯组未开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的未补光亮度;
分别针对多个镜头中的每个镜头,确定在第一红外灯组已开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的补光亮度。
参见图8,图8所示为本申请实施例提供的四目可调节摄像机的一种结构示意图,可以包括:
四个镜头810,四个红外灯组820,主处理器830,从处理器840,交换模块850;
四个镜头810可移动的安装于四目可调节摄像机,示例性的,在一种可选的实施例中,四目可调节摄像机可以包括顶板,以及通过多个扣件扣合于顶板的履带板,四个镜头支架可移动地设置于履带板上,每个镜头支架上安装有一个镜头810,这四个镜头支架可以在履带板上移动,并且能够在履带板所在的平面上进行转动。方案可参考US20170299949A1。
在另一种可选的实施例中,四目可调节摄像机可以设置有安装轨,四个镜头810分别被安装于四个镜头支架上,这四个镜头支架被设置于安装轨上,并且这四个镜头支架中的每个镜头支架包括有锁定装置,锁定装置处于锁定状态时镜头支架被固定于安装轨上,当锁定装置处于松脱状态时,镜头支架可以在安装轨上移动。锁定装置和安装轨中的一个包括有磁体,另一个包括有铁磁材料,示例性的,可以是锁定装置中包括有铁磁材料而安装轨中包括有磁铁,可以依靠磁铁与铁磁材料之间的吸引力将镜头支架固定于安装轨上,方案可参考US20170031234A1。
四个镜头810中的两个镜头810与主处理器830电连接,除这两个镜头810以外的另外两个镜头810与从处理器840电连接。四个红外灯组820中的两个红外灯组820与主处理器830电连接,除这两个红外灯组820以外的另外两个红外灯组820与从处理器840电连接。在本实施例中,主处理器830和从处理器840可以各有两个PWM(Pulse Width Modulation,脉冲宽度调制)接口,主处理器830和从处理器840分别通过各自的两个PWM接口与两个红外灯组820电连接,PWM接口可以向接在该PWM接口上的红外灯组820发送特定占空比的PWM信号,当该PWM信号的占空比为0时,即整个信号均为低电平时,接在该PWM接口上的红外灯组820处于关闭状态,当该PWM信号的占空比不为0时,接在该PWM接口上的红外灯组820处于开启状态,并且亮度取决于该PWM信号的占空比,当该PWM信号的占空比达到1时,即整个信号均为高电平时,接在PWM接口上的红外灯组820达到最大亮度。
交换模块850,和主处理器830以及从处理器840电连接,用于实现主处理器和从处理器之间的信息交互,其中,交换模块850可以是网络交换芯片,也可以是总线。
主处理器830用于控制与主处理器830电连接的两个镜头810和两个红外 灯组820,并向从处理器840发送控制指令;从处理器840,用于根据控制指令,控制与从处理器840电连接的两个镜头810和两个红外灯组820,该控制指令是主处理器830通过交换模块发送至从处理器840的,主处理器830可以用过该控制指令间接控制与从处理器840电连接的两个镜头810和两个红外灯组820。
主处理器830,还用于控制四目可调节摄像机,实现以下步骤:
分针针对每个镜头810,确定在四个红外灯组820均未开启的情况下,该镜头810拍摄得到的画面的亮度,作为该镜头810的未补光亮度,其中,镜头810的未补光亮度可以是该镜头810在某一时刻拍摄得到的图像帧的亮度,在一种可选的实施例中,也可以是该镜头810单位时间内得到的所有bayer图像帧的平均亮度。
分别针对每个镜头810,确定在四个红外灯组820中仅有一个红外灯组820开启的情况下,将该红外灯组820记为第一红外灯组,该镜头810拍摄得到的画面的亮度,作为该镜头810的补光亮度,其中,镜头810的补光亮度可以是该镜头810在某一时刻拍摄得到的图像帧的亮度,在一种可选的实施例中,也可以是该镜头810单位时间内拍摄得到的所有bayer图像帧的平均亮度。
分别针对每个镜头810,计算该镜头810的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头810的亮度变化率;
将四个镜头810中亮度变化率最大的镜头,确定为与第一红外灯组相绑定的镜头。
在一种可选的实施例中,四目可调节也可以包括:四个镜头,四个红外灯组以及控制装置;
四个镜头可移动的安装于四目可调节摄像机中,镜头安装于四目可调节摄像机中的方式,可以参见前述四目可调节摄像机实施例中的三种方式中的任一方式。
四个红外灯组,用于为四个镜头进行红外灯补光;
控制装置,包括至少一个处理器,用于控制四目可调节摄像机,实现上述任一红外灯控制方法;并且根据多个镜头910的工作模式,以及多个镜头910 与红外灯组920的绑定关系,确定是否需要开启多个红外灯组920,得到多个红外灯组920的确定结果;根据确定结果,控制多个红外灯组的开启和关闭。
控制装置930中可以只包括一个处理器,该处理器与四目可调节摄像机中的每个镜头910电连接,并且与四目可调节摄像机中的每个红外灯组920电连接。控制装置930中也可以包括多个处理器,每个处理器与四目可调节摄像机中的部分镜头910电连接,并且与部分红外灯组920电连接,每个镜头910与且仅与一个处理器电连接,并且每个红外灯组920与且仅与一个处理器电连接。控制装置930中所包括的处理器数目,可以取决于每个处理器的接口数量,以及四目可调节摄像机所包括的镜头910、红外灯组920的数目。下面将对本申请实施例提供的四目可调节摄像机的结构,以及镜头安装于四目可调节摄像机的方式进行说明。在一种可选的实施例中,可以参见图9-11,本申请实施例公开一种应用于四目可调节摄像机的镜头调节装置,所公开的镜头调节装置包括固定盘900和至少两个镜头支架1000,固定盘900包含于四目可调节摄像机的摄像主机,固定盘900为镜头支架1100和镜头810的安装基础,镜头810通过镜头支架1100设置在固定盘900上。
镜头支架1000包括第一支架1010,第一支架1010用于安装镜头810,第一支架1010可移动地设置在固定盘900上,进而能相对于固定盘900移动。第一支架1010的移动会带动镜头810跟随移动,进而能调节镜头810在固定盘900上的位置。
第一支架1010与固定盘900中,一者设置有第一齿槽,另一者设置有第一啮合齿,第一齿槽与第一啮合齿啮合。第一支架1010与固定盘900通过第一齿槽与第一啮合齿的啮合实现相连。
本申请实施例公开的镜头调节装置中,镜头810安装在第一支架1010上,进而能跟随第一支架1010在固定盘900上移动,进而实现镜头810的位置在固定盘900上的调整。第一支架1010与固定盘900通过第一齿槽和第一啮合齿之间的啮合实现相连,在调整的过程中,操作人员施加一定的力就能够驱动第一支架1010移动,在第一支架1010移动的过程中,第一齿槽与第一啮 合齿则发生相对移动,待调整结束(外力撤掉)后,第一齿槽与第一啮合齿之间的啮合能够确保第一支架1010定位在调整后的位置,最终完成镜头810的调整。
相比于现有技术中通过磁铁实现镜头固定的方式而言,本申请公开的镜头调节装置无需采用体积较大的磁铁,因此,本申请公开的镜头调节装置能解决目前四目可调节摄像机采用磁铁锁止镜头的方式存在质量较大及成本较高的问题。
一种具体的实施方式中,固定盘900的圆形边缘部分或全部设置有第一齿槽910,相对应地,第一支架1010则设置有第一啮合齿1011a。第一支架1010可绕固定盘900的圆周方向移动,进而能绕固定盘900的圆周方向转动。第一支架1010的转动会带动镜头810跟随转动,进而能调节镜头810在固定盘900上的位置。该位置调整在平行于固定盘900的盘面内进行,为镜头810的P向调整。当然,第一齿槽910可以设置在第一支架1010上,相对应地,第一啮合齿1011a则设置在固定盘900上。
第一支架1010可以包括弹性连接部1011,弹性连接部1011可以设置第一啮合齿1011a,第一啮合齿1011a与第一齿槽910啮合。需要说明的是,本申请中,第一齿槽与第一啮合齿之间的啮合指的是两者在不受外力时,处于定位状态,第一齿槽和第二啮合齿无法相对发生移动;在第一齿槽或第一啮合齿受外力发生弹性形变时,两者之间的定位配合解除,进而使得第一齿槽与第二啮合齿能发生相对移动,进而实现第一支架1010可绕固定盘900的圆周方向移动,也就是,第一支架1010沿固定盘900的圆周方向转动。
弹性连接部1011通过自身的弹性确保第一齿槽910与第一啮合齿1011a之间的啮合具有较好的弹性,在外力的作用下,弹性连接部1011会发生弹性形变,进而使得第一啮合齿1011a与第一齿槽910之间的定位解除,进而使得两者能够发生相对转动。
实现第一支架1010绕固定盘900的圆周方向转动的方式有多种,第一支架1010可以沿着固定盘900的圆周方向滚动,进而实现其转动,第一支架1010还可以沿着固定盘900的圆周方向滑动,进而实现其转动。
一种具体的实施方式中,固定盘900上可以设置有环形滑道,第一支架1010与环形滑道在垂直于固定盘900的盘面的方向定位配合,第一支架1010在固定盘900的圆周方向与固定盘900滑动配合。第一支架1010与环形滑道在垂直于固定盘的盘面的方向定位配合,指的是第一支架1010无法相对于固定盘900在垂直于盘面的方向移动,只能沿着固定盘900的圆周方向移动,进而实现转动。本文中,第一支架1010与环形滑道在垂直于固定盘900的盘面的方向定位配合,使得第一支架1010无法在垂直于固定盘900的盘面的方向相对于固定盘900发生相对移动。
固定盘900上开设环形滑道的方式有多种,例如,环形滑道开设在固定盘900的盘面上。请再次参考图9,固定盘900的中心设置有避让孔920,具体的,避让孔920可以贯通固定盘900。避让孔920的开设使得整个固定盘900成为一个环形结构件,第一支架1010沿该环形结构件移动,则能够实现第一支架1010在固定盘900的圆周方向转动。
请再次参考图9-11,第一支架1010可以包括连接座1012和第一卡扣1013,连接座1012贴设在固定盘900的一侧的表面上,第一卡扣1013与连接座1012固定相连,且穿过避让孔920以与固定盘900卡接。连接座1012和第一卡扣1013分别与固定盘900两侧的表面配合,能够实现第一支架1010在固定盘900上的装配。第一支架1010在固定盘900的圆周方向转动的过程中,连接座1012能相对于固定盘900的一侧的表面滑动,同样,第一卡扣1013能相对于固定盘900的另一侧的表面滑动。
弹性连接部1011可以作为连接座1012或第一卡扣1013的一部分,也可以独立于连接座1012和第一卡扣1013。
一种具体的实施方式中,第一支架1010可以包括连接座1012和弹性连接部1011。弹性连接部1011为第一弹性臂,第一弹性臂的一端固定在连接座1012上,另一端为自由端,第一弹性臂的自由端可以位于固定盘900的圆形边缘的外侧。第一弹性臂的自由端能相对于连接座1012发生弹性变形,进而解除配合而实现第一支架1010与固定盘900之间的相对转动。
为了确保第一支架1010在不受外力或受到较小的干扰力时不发生转动,在一种可选的方案中,第一支架1010与固定盘900中,至少一者设置有能与另一者涨紧贴合的涨紧部。请参考图3,涨紧部可以包括第一涨紧凸起1012a和/或第二弹性臂1012b。一种可选的方案中,第一支架1010包括连接座1012,连接座1012与固定盘900的盘面贴合,连接座1012具有与固定盘900相贴合的底面,该底面可以设置有第一涨紧凸起1012a和第二弹性臂1012b,第一涨紧凸起1012a与第二弹性臂1012b共同实现第一支架1010与固定盘900之间的涨紧贴合。
请再次参考图2,本申请实施例中,镜头支架1000可以为多个,多个镜头支架1000可以沿着固定盘900的圆周方向分布。具体的,多个镜头支架1000可以沿着固定盘900的圆周方向分散布置。
请参考图9、12、13和14,本申请实施例公开的镜头调节装置中,镜头支架1000包括第二支架1020,第二支架1020设置在第一支架1010上。第二支架1020能与镜头810转动配合,以使得镜头绕自身轴线转动,达到调节镜头810的目的,即实现镜头810的R向调节。
第二支架1020可以转动地设置在第一支架1010上,且能在垂直于固定盘900的盘面方向移动,进而实现第二支架1020带动镜头810作俯仰转动,最终实现镜头810在垂直于固定盘900的盘面的方向转动调节,即T向调节。
为了实现更加灵活地调节,第一支架1010可以包括与第二支架1020转动配合的支撑臂1014。第二支架1020包括能与支撑臂1014可移动配合的涨 紧盘1021,涨紧盘1021包括涨紧区域,涨紧区域和支撑臂1014中,一者设置有第二涨紧凸起,另一者设置有多条沿涨紧盘1021的径向延伸的涨紧槽1021a,涨紧槽1021a与第二涨紧凸起啮合。一种具体的实施方式中,涨紧盘1021上设置有涨紧槽1021a,支撑臂1014上设置有第二涨紧凸起1014a,第二涨紧凸起1014a与涨紧槽1021a能随第二支架1020的转动而发生相对移动。需要说明的是,涨紧槽1021a与第二涨紧凸起之间的啮合,指的是在第二支架1020不受外力时,第二涨紧凸起1014a与涨紧槽1021a定位,以确保镜头810保持在某一位置;当第二支架1020受到外力时,在外力的作用下能够使得第二涨紧凸起1014a与涨紧槽1021a之间由于弹性变形而解除定位,进而使得两者能够相对转动。
在实际的应用过程中,镜头810只需要在设定的角度范围内相对于第二支架1020转动,基于此,请参考图10和12,支撑臂1014可以设置有第一限位部1014b,涨紧盘1021设置有第二限位部1021b,第二限位部1021b能在涨紧盘1021的转动方向上与第一限位部1014b限位配合。
请参考图4,一种具体的实施方式中,支撑臂1014可以包括支撑臂主体214c及固定在支撑臂主体214c上的固定块214d,固定块214d与涨紧盘1021移动配合,进而实现两者之间的相对转动,固定块214d与涨紧盘1021可以通过螺钉214e固定在支撑臂主体214c上。上述方案通过固定块214d与涨紧盘1021转动配合,实现镜头810相对于支撑臂1014的转动。
为了提高镜头810转动的稳定性,在一种可选的方案中,支撑臂1014可以为两个,两个支撑臂1014分别布置在第二支架1020的两侧。
请再次参考图9、12、13和14,第二支架1020可以包括环状结构件1022,环状结构件1022与镜头810移动配合,进而能使得镜头810绕自身的轴线转动。涨紧盘1021可以设置在环状结构件1022上。
环状结构件1022与镜头810中,一者可以设置有第二齿槽,另一者可以 设置有与第二齿槽啮合的第二啮合齿,第二啮合齿在镜头810的圆周方向相对于第二齿槽转动。具体的,镜头810上可以设置第二齿槽1110,相对应地,环状结构件1022中可以设置第二啮合齿1022a。
环状结构件1022的内壁可以设置有第二卡扣1022b和凸台1022c,凸台1022c与镜头810上的第二齿槽1110或第二啮合齿1022a的一端在设定方向定位配合,进而使得环状结构件1022在设定方向无法相对于镜头810移动,第二卡扣1022b与镜头810上的第二齿槽1110或第二啮合齿1022a的另一端卡接,进而实现镜头810与环状结构件1022在环状结构件1022的轴向定位,需要说明的是,上述设定方向为镜头810的轴线方向。
具体的,凸台1022c可以为垂直于第二支架1020的内壁的第三弹性臂,第三弹性臂与第二齿槽1110或第二啮合齿1022a的一端涨紧配合。
在实际的使用过程中,镜头810通常在一定的角度范围内绕自身的轴线转动,无需绕自身轴线在360°的范围内转动。基于此,请再次参考图4-6,在一种可选的方案中,环状结构件1022设置有第三限位部1022d,镜头810上可以设置有第四限位部1120,第三限位部1022d与第四限位部1120在镜头810绕自身轴线的转动方向限位配合。第三限位部1022d与第四限位部1120的限位配合,能够使得镜头810在要求的角度范围内转动即可。
基于本申请实施例公开的镜头调节装置,本申请实施例还公开一种四目可调节摄像机,所公开的四目可调节摄像机包括镜头810和上文实施例所述的镜头调节装置。
请参考图15和图16,本申请实施例公开的四目可调节摄像机包括主机壳组件1200和透明罩1300。主机壳组件1200通常包括多个零部件。主机壳组件1200为四目可调节摄像机的其它零部件提供安装基础或容纳空间。
透明罩1300和镜头调节装置安装在主机壳组件1200上,通常,透明罩200采用固定的方式固定在主机壳组件900上。透明罩1300包括平面部1310 和围绕平面部1310的曲面部1320。一种具体的实施方式中,平面部1310可以位于透明罩1300的中心,曲面部1320环绕平面部1310分布。
四目可调节摄像机还包括支撑机构1400,支撑机构1400的一端与主机壳组件1200支撑接触,另一端与平面部1310支撑接触。支撑机构1400与曲面部1320和主机壳组件1200构成镜头容纳空间1500,镜头810位于镜头容纳空间1500内。
本申请实施例公开的四目可调节摄像机中,支撑机构1400的一端与主机壳组件900支撑接触,另一端与平面部520支撑接触,从而能实现地透明罩1300的支撑,此种结构使得透明罩1300在受到外力时的变形会较小,进而能提高透明罩1300的抗变形能力,最终能提高四目可调节摄像机的防爆性能。
支撑机构1400的结构有多种,一种具体的实施方式中,支撑机构1400可以包括支撑主体1410和弹性垫1420,支撑主体1410的一端可以固定在主机壳组件900上,弹性垫1420支撑于支撑主体1410的另一端与平面部1310之间。
支撑主体1410为主要支撑构件,支撑主体1410通过弹性垫1420支撑在平面部1310上,弹性垫1420能够确保支撑机构1400与透明罩1300之间的接触为弹性接触,避免透明罩1300在受到撞击时与支撑主体1410之间的刚性接触,也就能进一步降低透明罩1300发生破碎的概率。如上文所述,主机壳组件1200通常包括多个零部件,支撑主体1410的一端可以与主机壳组件1200所包含的多个零部件中至少一个固定相连,进而实现与主机壳组件1200的固定相连。
在另一种可选的实施例中,请参考图17-24,本申请实施例公开一种四目可调节摄像机中的镜头调节装置,所公开的镜头调节装置包括第三支架1700和第四支架1800。第三支架1700固定在四目可调节摄像机的机身2100上。具体的,第三支架1700可以通过第二螺钉1750固定在机身2100上。第四支 架1800设置在第三支架1700上、且用于安装镜头810,镜头810能够跟随第四支架1800进行动作。
第四支架1800与第三支架1700转动配合,第四支架1800在被驱动状态下能在平行于第三支架1700的支撑面1710的方向转动。也就是说,第四支架1800与第三支架1700之间的转动配合为紧配合,需要在外力驱动下才能实现两者之间的相对转动。四目可调节摄像机的多个镜头810均布置在支撑面1710所在的平面内,镜头810在平行于支撑面1710的方向转动,则称之为镜头810的P向调节。
具体的,第三支架1700的支撑面1710与第四支架1800上与其相对的表面中,一者可以设置有第三齿槽,另一者可以设置有第三啮合齿,第三啮合齿与第三齿槽在第四支架1800的转动方向上弹性啮合。具体的,支撑面1710上可以设置第三啮合齿1720,第四支架1800上可以设置第三齿槽1810。当然,第三啮合齿1720也可以设置在第四支架1800上,相应地,第三齿槽1810则设置在第三支架1700的支撑面1710上。
本文中,弹性啮合指的是啮合齿与齿槽在不受外力的情况下能够保持在定位配合的状态,在受到外力的作用下,啮合齿与齿槽之间由于变形而克服定位配合,进而能发生相对转动,待外力撤销后,啮合齿和齿槽恢复定位配合状态。
本申请实施例中,第三支架1700与第四支架1800通过第三啮合齿1720与第三齿槽1810弹性啮合,在调整的过程中,操作人员施加一定的力就能够驱动第三支架1700转动,在第三支架1700转动的过程中,第三齿槽1810与第三啮合齿1720则发生相对移动,待调整结束(外力撤掉)后,第三齿槽1810与第三啮合齿1720之间的啮合能够确保第三支架1700定位在调整后的位置,最终完成镜头810的P向调整。
通过上述调整过程可知,第三支架1700与第四支架1800通过第三啮合 齿1720与第三齿槽1810弹性啮合,在对镜头810进行P向调节的过程中,操作人员只需要转动第四支架1800即可,无需进行如背景技术中所述的旋松和旋紧操作,这无疑使得对镜头810的P向操作变得简单,操作人员需要一步操作即可实现,很显然,上述结构的镜头调节装置能提高对镜头810的调节效率。
请再次参考图17和图23,第三支架1700可以为多个,每个第四支架1800均可以安装在对应的第三支架1700。一种具体的实施方式中,每个第三支架1700上均安装一个第四支架1800。当然,第三支架1700可以为一个,所有的第四支架1800均可以安装在该第三支架1700上。为了减小重量,第三支架1700上可以开设有多个减重孔1760。
本实施例中,第四支架1800可以包括两个支撑臂1820和连接板1830,连接板1830连接两个支撑臂1820,两个支撑臂1820用于支撑镜头810。一种具体的实施方式中,连接板1830可以与两个支撑臂1820为一体式结构。连接板1813上可以设置有卡接孔1813a,第三支架1700上可以设置有多个第一卡扣1730,多个第一卡扣1730穿过卡接孔1831、且与连接板1813卡接配合。上述多个第一卡扣1730能够实现第三支架1700与第四支架1800之间的连接,同时也为第四支架1800的转动提供转动基础。此种情况下,两个支撑臂1820通过连接板1830相对于第三支架1700转动,从而实现两个支撑臂1820带动镜头810相对于第三支架1700转动。当然,第三支架1700与第四支架1800还可以通过其它方式实现紧配合下的转动连接。
一种具体的实施方式中,连接板1830上与第三支架1700相对的表面设置有多个第三齿槽1810,多个第三齿槽1810分布在以卡接孔1831的轴线为中心的圆周上。
为了避免第四支架1800在受到较小的干扰力时发生误动作,在一种可选的方案中,第四支架1800与第三支架1700相对的表面中,至少一者设置有 能与另一者涨紧贴合的涨紧部。具体的,涨紧部可以包括第一涨紧凸起和/或第三弹性臂1740。涨紧部起到涨紧的作用,使得在调节的过程中,驱动第四支架1800转动的力更大,此种情况下,第四支架1800受到较小的干扰力时,不会随意转动。为了提高配合效果,第三啮合齿1720设置在第三弹性臂1740上。第三啮合齿1720借助第三弹性臂1740施加的弹力与第三齿槽1810较为稳定地啮合。
本申请实施例公开的镜头调节装置中,第四支架1800上可以设置有第五支架1900,第五支架1900用于与镜头810转动配合、且能使镜头810绕自身轴线转动,达到调节镜头810的目的,即实现镜头810的R向调节。
第五支架1900可以转动地设置在第四支架1800上,且能在垂直于第三支架1700的支撑面1710的方向转动,进而实现第五支架1900带动镜头810相对于支撑面1710作俯仰运动,最终实现镜头810在垂直于支撑面1710的方向转动调节,即T向调节。
如上文所述,第四支架1800可以包括支撑臂1820,为了进一步提高调节的灵活性,第五支架1900可以包括能与支撑臂1820可移动配合的涨紧盘1910,涨紧盘1910包括涨紧区域,涨紧区域和支撑臂1820中,一者设置有第二涨紧凸起,另一者设置有多条沿涨紧盘1910的径向延伸的涨紧槽1911,涨紧槽1911与第二涨紧凸起啮合。
一种具体的实施方式中,涨紧盘1910上设置有涨紧槽1911,支撑臂1820上设置有第四涨紧凸起1821,第四涨紧凸起1821与涨紧槽1911能随第四支架1800的转动而发生相对移动。需要说明的是,涨紧槽1911与第四涨紧凸起1821之间的啮合也为弹性啮合,在第五支架1900不受外力时,第四涨紧凸起1821与涨紧槽1911定位,以确保镜头810保持在某一位置;当第五支架1900受到外力时,在外力的作用下能够使得第四涨紧凸起1821与涨紧槽1911之间由于弹性变形而解除定位,进而使得两者能够相对转动。
在实际的应用过程中,镜头810只需要在设定的角度范围内相对于第四支架1800转动,基于此,请参考图20,支撑臂1820可以设置有第三限位部1822,涨紧盘1910设置有第四限位部1912,第四限位部1912能在涨紧盘1910的转动方向上与第三限位部1822限位配合。
请参考图20,一种具体的实施方式中,支撑臂1820可以包括支撑臂主体1823及固定在支撑臂主体1823上的固定块1824,固定块1824与涨紧盘1910移动配合,进而实现两者之间的相对转动,固定块1824与涨紧盘1910可以通过第一螺钉1825固定在支撑臂主体1823上。上述方案通过固定块1824与涨紧盘1910转动配合,实现镜头810相对于支撑臂1820的转动。
为了提高镜头810转动的稳定性,在一种可选的方案中,支撑臂1820可以为两个,两个支撑臂1820分别布置在第五支架1900的两侧。
请再次参考图17、21和22,第五支架1900可以包括环状结构件1920,环状结构件1920与镜头810移动配合,进而能使得镜头810绕自身的轴线转动。涨紧盘1910可以设置在环状结构件1920上。
环状结构件1920与镜头810中,一者可以设置有第四齿槽,另一者可以设置有与第四齿槽啮合的第四啮合齿,第四啮合齿在镜头810的圆周方向相对于第四齿槽转动。具体的,镜头810上可以设置第四齿槽410,相对应地,环状结构件1920中可以设置第四啮合齿1921。
环状结构件1920的内壁可以设置有第二卡扣1922和凸台1923,凸台1923与镜头810上的第四齿槽2010或第四啮合齿1921的一端在设定方向定位配合,进而使得环状结构件1920在设定方向无法相对于镜头810移动,第二卡扣1922与镜头810上的第四齿槽2010或第四啮合齿1921的另一端卡接,进而实现镜头810与环状结构件1920在环状结构件1920的轴向定位,需要说明的是,上述设定方向为镜头810的轴线方向。
具体的,凸台1923可以为垂直于第五支架1900的内壁的第三弹性臂, 第三弹性臂与第四齿槽2010或第四啮合齿1921的一端涨紧配合。
在实际的使用过程中,镜头810通常在一定的角度范围内绕自身的轴线转动,无需绕自身轴线在360°的范围内转动。基于此,请再次参考图21-22,在一种可选的方案中,环状结构件1920可以设置有第三限位部1924,镜头810上可以设置有第四限位部2020,第三限位部1924与第四限位部2020在镜头810绕自身轴线的转动方向限位配合。第三限位部1924与第四限位部2020的限位配合,能够使得镜头810在要求的角度范围内转动即可。
基于本申请实施例公开的镜头调节装置,本申请实施例公开一种四目可调节摄像机,所公开的四目可调节摄像机包括镜头810和上文实施例所述的镜头调节装置,镜头810安装在镜头调节装置上。
本申请实施例公开的四目可调节摄像机包括机身2100和透明罩2200,镜头调节装置安装在透明罩2200与机身2100所形成的内腔中。镜头调节装置与机身2100固定相连。透明罩起到较好的防护作用。具体的,透明罩2200可以包括曲面部2210,每个曲面部2210均罩设在一个镜头810上。曲面部2210可以提升整个透明罩的抗冲击变形能力,进而能提升四目可调节摄像机的防爆性能。
本申请实施例中,透明罩2200可以通过第三螺钉2220与机身2100固定相连。具体的,机身2100内可以设置有连接柱2110,连接柱2110上开设有螺纹孔2111,第三螺钉2220穿过透明罩2200后与螺纹孔固定连接,进而实现透明罩2200与机身2100之间的固定连接。如图7所示,机身2100可以包括容纳空间2130,连接柱2110位于容纳空间2130中。为了实现较好的配合,连接柱2110上开设螺纹孔的一端可以与容纳空间2130的顶部开口平齐。
容纳空间2130的底壁可以设置有安装座2120,第三支架1700一一对应地安装在安装座2120中。具体的,安装座2120可以为多个,多个安装座2120固定相连形成一个环形基座,此种结构能够方便多个安装座2120的安装。但 是,这会增加机身2100的重量,基于此,在一种可选的方案中,多个安装座2120分散布置,每个安装座2120与一个第三支架1700相对布置,这无疑能确保第三支架1700安装的前提下,能够较小材料的耗费。
第三支架1700上可以设置有连接孔1770,安装座2120上可以设置有螺纹孔2121,连接孔1770可以通过第二螺钉1750与螺纹孔2121固定相连。为了提高装配的紧凑度,在一种可选的方案中,连接孔1770上背离螺纹孔2121的一端可以包括容纳槽1780,如图18所示,容纳槽1780用于容纳第二螺钉1750的螺帽。此种布置结构能够较好地归置螺帽,进而能避免螺帽对转动可能造成的影响。
为了方便组装,第三支架1700与安装座2120中,一者可以设置有定位凸起1790,另一者可以设置有定位槽2122。定位凸起1790与定位槽2122定位配合。一种具体的实施方式中,如图3和图7所示,第三支架1700上设置有定位凸起1790,安装座2120上设置有定位槽2122。定位凸起1790和定位槽2122的数量可以为一个,也可以为多个。在数量为多个的情况下,能够实现更好的定位。一种具体的实施方式中,定位凸起1790的数量为两个,定位槽2122的数量为两个。
在一种可选的实施例中,连接孔1770可以穿过第三支架1700,且贯穿定位凸起1790。定位槽2122的底端可以设置有螺纹孔2121。此种结构能够方便第三支架1700与安装座2120的定位及连接操作。
在本申请提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一的红外灯控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的 流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、四目可调节摄像机以及计算机程序产品实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (11)

  1. 一种红外灯控制方法,应用于四目可调节摄像机,其特征在于,所述方法包括:
    分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,所述第一红外灯组为所述四目可调节摄像机中的一个红外灯组;
    将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
  2. 根据权利要求1所述的方法,其特征在于,所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,包括:
    关闭所述四目可调节摄像机中所有红外灯组;
    分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
    开启第一红外灯组;
    分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度;
    分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率。
  3. 根据权利要求2所述的方法,其特征在于,在所述分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度之后,所述方法还包括:
    分别针对所述多个镜头中的每个镜头,统计该镜头在所述所有红外灯组未开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的未补光亮度方差;
    如果所述多个镜头中存在未补光亮度方差大于预设第一方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
    如果所述多个镜头中不存在未补光亮度方差大于所述第一方差阈值的镜头,继续执行所述开启第一红外灯组的步骤。
  4. 根据权利要求2所述的方法,其特征在于,在所述分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度之后,所述方法还包括:
    分别针对所述多个镜头中的每个镜头,统计该镜头在所述第一红外灯组已开启情况下拍摄得到的画面的亮度在单位时间内的方差,作为该镜头的补光亮度方差;
    如果所述多个镜头中存在补光亮度方差大于预设第二方差阈值的镜头,初始化所述多个镜头,并执行所述关闭所述四目可调节摄像机中所有红外灯组的步骤;
    如果所述多个镜头中不存在补光亮度方差大于所述第二方差阈值的镜头,继续执行所述分别针对所述多个镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率的步骤。
  5. 根据权利要求1所述的方法,其特征在于,在所述分别针对所述四目目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率之后,所述方法还包括:
    确定所述多个镜头的所述亮度变化率中的最大值是否大于所述亮度变化率中的最小值与所述亮度变化率中的次小值之和;
    如果所述最大值大于所述最小值与所述次小值之和,初始化所述多个镜头,并执行所述分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率的步骤;
    如果所述最大值不大于所述最小值与所述次小值之和,继续执行所述将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头的步骤。
  6. 根据权利要求3-5中任一所述方法,其特征在于,所述初始化所述多个镜头,包括:
    收起所述多个镜头的红外光滤镜;
    初始化所述多个镜头的增益和快门速度。
  7. 根据权利要求2所述的方法,其特征在于,所述分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度,包括:
    分别针对所述多个镜头中的每个镜头,确定在所述所有红外灯组未开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的未补光亮度;
    所述分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头拍摄得到的画面中的亮度,作为该镜头的补光亮度,包括:
    分别针对所述多个镜头中的每个镜头,确定在所述第一红外灯组已开启情况下,该镜头单位时间内拍摄得到的所有bayer图像帧的平均亮度,作为该镜头的补光亮度。
  8. 一种红外灯控制装置,应用于四目可调节摄像机,其特征在于,包括:
    亮度计算模块,用于分别针对所述四目可调节摄像机的多个镜头中的每个镜头,确定该镜头在第一红外灯组未开启时拍摄得到的画面,与在所述第一红外灯组开启时拍摄得到的画面之间的亮度变化率,所述第一红外灯组为所述四目可调节摄像机中的一个红外灯组;
    绑定模块,用于将所述多个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
  9. 一种四目可调节摄像机,其特征在于,所述四目可调节摄像机包括:
    四个镜头,四个红外灯组,主处理器,从处理器,交换模块;
    所述四个镜头可移动的安装于所述四目可调节摄像机;所述四个镜头中的两个镜头与所述主处理器电连接,除这两个镜头以外的另外两个镜头与所述从处理器电连接;
    所述四个红外灯组中的两个红外灯组与所述主处理器电连接,除这两个红外灯组以外的另外两个镜头与所述从处理器电连接;
    所述交换模块,和所述主处理器以及所述从处理器电连接,用于实现所述主处理器和从处理器之间的信息交互;
    所述主处理器用于控制与所述主处理器电连接的两个镜头和两个红外灯组,并向所述从处理器发送控制指令;所述从处理器,用于根据所述控制指令,控制与所述从处理器电连接的两个镜头和两个红外灯组;
    所述主处理器,还用于控制所述四目可调节摄像机,实现以下步骤:
    分针针对所述四个镜头中的每个镜头,确定在所述四个红外灯组均未开启的情况下,该镜头拍摄得到的画面的亮度,作为该镜头的未补光亮度;
    分别针对所述四个镜头中的每个镜头,确定在所述四个红外灯组中仅有第一红外灯组开启的情况下,该镜头拍摄得到的画面的亮度,作为该镜头的补光亮度,所述第一红外灯组为所述四个红外灯组中的一个红外灯组;
    分别针对所述的哥镜头中的每个镜头,计算该镜头的补光亮度相对于该镜头的未补光亮度的变化率,作为该镜头的亮度变化率;
    将所述四个镜头中所述亮度变化率最大的镜头,确定为与所述第一红外灯组相绑定的镜头。
  10. 一种四目可调节摄像机,其特征在于,所述四目可调节摄像机包括:
    四个镜头,四个红外灯组,控制装置;
    所述四个镜头可移动的安装于所述四目可调节摄像机中;
    所述四个红外灯组,用于为所述多个镜头进行红外灯补光;
    所述控制装置,包括至少一个处理器,用于控制所述四目可调节摄像机, 实现权利要求1-7中任一所述方法步骤;并且根据所述四个镜头的工作模式,以及所述四个镜头与所述红外灯组的绑定关系,确定是否需要开启所述四个红外灯组,得到所述四个红外灯组的确定结果;根据所述确定结果,控制所述四个红外灯组的开启和关闭。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7任一所述的方法步骤。
PCT/CN2018/123954 2017-12-27 2018-12-26 一种红外灯控制方法、装置及四目可调节摄像机 WO2019129083A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18895808.6A EP3734956B1 (en) 2017-12-27 2018-12-26 Infrared light control method and device and four-eye adjustable camera
US16/767,447 US10992875B2 (en) 2017-12-27 2018-12-26 Method and apparatus for controlling infrared lamp, and four-lens adjustable camera

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201721872513.7 2017-12-27
CN201721872513.7U CN207906750U (zh) 2017-12-27 2017-12-27 多目摄像机及多目摄像机的镜头调节装置
CN201820481642.1U CN208128384U (zh) 2018-04-04 2018-04-04 多目摄像机及多目摄像机的镜头调节装置
CN201820481642.1 2018-04-04
CN201810501412.1 2018-05-23
CN201810501412.1A CN110536070B (zh) 2018-05-23 2018-05-23 一种红外灯控制方法、装置及四目可调节摄像机

Publications (1)

Publication Number Publication Date
WO2019129083A1 true WO2019129083A1 (zh) 2019-07-04

Family

ID=67066626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123954 WO2019129083A1 (zh) 2017-12-27 2018-12-26 一种红外灯控制方法、装置及四目可调节摄像机

Country Status (3)

Country Link
US (1) US10992875B2 (zh)
EP (1) EP3734956B1 (zh)
WO (1) WO2019129083A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973168B (zh) * 2021-12-01 2024-07-26 深圳云亿通数字技术有限公司 一种防爆摄像机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201464696U (zh) * 2009-07-21 2010-05-12 天视永道(北京)科技有限公司 一种双目镜头和一种双目摄像机
US20170031234A1 (en) 2013-12-19 2017-02-02 Axis Ab Monitoring device arrangement
CN206181179U (zh) * 2016-09-26 2017-05-17 杭州海康威视数字技术股份有限公司 一种全景摄像机及其补光装置
CN206481397U (zh) * 2016-12-23 2017-09-08 北京汉邦高科数字技术股份有限公司 一种万向调节的双目全景摄像机
US20170299949A1 (en) 2014-06-09 2017-10-19 Arecont Vision, Llc Omnidirectional user configurable multi-camera housing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098358A (ja) 2008-10-14 2010-04-30 Panasonic Corp 撮像素子および撮像装置
CN101923402B (zh) 2009-06-11 2012-03-21 鼎亿数码科技(上海)有限公司 基于红外光点定位方法
CN101846528A (zh) 2010-04-13 2010-09-29 中国科学院长春光学精密机械与物理研究所 光电跟踪设备对低对比度目标捕获能力的检验方法
JP5485004B2 (ja) * 2010-04-23 2014-05-07 パナソニック株式会社 撮像装置
CN101872106B (zh) 2010-05-21 2012-07-11 深圳市艾威视数码科技有限公司 智能红外摄像机及其智能调节红外光强度的方法
JP5702751B2 (ja) 2012-05-18 2015-04-15 株式会社ユニバーサルエンターテインメント 遊技用装置
CN103118232B (zh) 2013-02-20 2016-07-13 浙江宇视科技有限公司 一种补光控制装置及方法
CN104702849B (zh) * 2014-01-10 2018-03-30 杭州海康威视数字技术股份有限公司 一种红外摄像机及其红外灯亮度调整方法
US9554063B2 (en) * 2015-06-12 2017-01-24 Google Inc. Using infrared images of a monitored scene to identify windows
JP6109457B1 (ja) * 2015-10-01 2017-04-05 オリンパス株式会社 撮像システムおよび処理装置
CN105306796A (zh) * 2015-10-10 2016-02-03 安霸半导体技术(上海)有限公司 具有定期红外照明和全局快门cmos传感器的夜视设备
US10785418B2 (en) * 2016-07-12 2020-09-22 Bossa Nova Robotics Ip, Inc. Glare reduction method and system
CN106331519A (zh) 2016-10-31 2017-01-11 维沃移动通信有限公司 一种补光灯调节方法及移动终端
EP3477548B1 (en) * 2017-10-24 2020-02-19 Axis AB Method and image capturing device for detecting fog in a scene
US10609298B2 (en) * 2018-02-06 2020-03-31 Google Llc Adaptive infrared illumination for exposure correction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201464696U (zh) * 2009-07-21 2010-05-12 天视永道(北京)科技有限公司 一种双目镜头和一种双目摄像机
US20170031234A1 (en) 2013-12-19 2017-02-02 Axis Ab Monitoring device arrangement
US20170299949A1 (en) 2014-06-09 2017-10-19 Arecont Vision, Llc Omnidirectional user configurable multi-camera housing
CN206181179U (zh) * 2016-09-26 2017-05-17 杭州海康威视数字技术股份有限公司 一种全景摄像机及其补光装置
CN206481397U (zh) * 2016-12-23 2017-09-08 北京汉邦高科数字技术股份有限公司 一种万向调节的双目全景摄像机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734956A4

Also Published As

Publication number Publication date
EP3734956A4 (en) 2021-01-13
EP3734956A1 (en) 2020-11-04
US20200389584A1 (en) 2020-12-10
EP3734956B1 (en) 2022-10-26
US10992875B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
EP2485474B1 (en) Digital camera with adjustable sensor
US7798731B2 (en) Diaphragm driving device of a digital camera system using an interchangeable lens
US10859843B1 (en) Backplate for head-mounted displays
US20210103150A1 (en) Inter-pupillary distance adjustment mechanisms for head-mounted displays
WO2022257989A1 (zh) 可变光圈、摄像模组以及电子设备
US8654216B2 (en) Camera system, camera body, and lens unit
US11153486B2 (en) Imaging apparatus and camera system
WO2023246556A1 (zh) 光圈控制方法、光圈控制器、摄像头模组及电子设备
JP5899509B2 (ja) 撮像装置
WO2019129083A1 (zh) 一种红外灯控制方法、装置及四目可调节摄像机
JP2012215796A (ja) 撮像ユニット
US20230314832A1 (en) Anti-vibration device and camera device
US11445113B2 (en) Stabilization control apparatus, image capture apparatus, and stabilization control method
JP6124607B2 (ja) 撮像装置
CN110381256B (zh) 终端设备及其控制方法和控制装置、计算机可读存储介质
WO2023030261A1 (zh) 一种摄像头模组和电子设备
CN109995979B (zh) 一种单通道快速旋转式偏振图像信息获取装置
JP2012215797A (ja) シャッタ駆動装置、シャッタ装置および撮像装置
JP5879540B2 (ja) 撮像装置
JP2019009578A (ja) 携帯機器
US8170410B2 (en) Imaging apparatus
CN209943885U (zh) 一种相机固定云台
WO2022021150A1 (zh) 电子取景器和拍摄装置
TWM472212U (zh) 可追蹤景物的影像擷取裝置
CN112097027A (zh) 微型防抖云台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895808

Country of ref document: EP

Effective date: 20200727