WO2019128902A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019128902A1
WO2019128902A1 PCT/CN2018/122986 CN2018122986W WO2019128902A1 WO 2019128902 A1 WO2019128902 A1 WO 2019128902A1 CN 2018122986 W CN2018122986 W CN 2018122986W WO 2019128902 A1 WO2019128902 A1 WO 2019128902A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
sub
type
pool
Prior art date
Application number
PCT/CN2018/122986
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019128902A1 publication Critical patent/WO2019128902A1/zh
Priority to US16/830,300 priority Critical patent/US11523371B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a transmission method and apparatus for supporting a wireless signal periodically transmitted on an unlicensed spectrum.
  • LTE Long-term Evolution
  • LAA Licensed Assisted Access
  • 5G NR New Radio Access Technology
  • SA Stand-Alone, independently deployed
  • the above system information, broadcast, and paging information need to be transmitted on the unlicensed spectrum.
  • a simple implementation of the above problem is that system information, broadcast, and paging information are sent periodically according to the case where the LBT determines that the corresponding frequency domain resource is not occupied; however, due to the uncertainty of the LBT, the information sent in the above cycle It may not be sent in multiple time domain locations that need to be sent in advance, which will bring huge monitoring complexity to the user equipment, and will also seriously degrade the performance of the system.
  • the present application discloses a solution.
  • the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station and vice versa.
  • the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method for use in a user equipment for wireless communication, comprising:
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, and the first time-frequency resource pool and the second time-frequency resource pool are in time
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools correspond to Q1 second time-frequency resource sub-pools. Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool;
  • the Q1 is a positive integer.
  • the foregoing method has the following advantages: the first type of wireless signal is sent on the first sub-band and the second sub-band, and the candidate time-domain sending positions respectively correspond to the Q1 first time-frequency resources.
  • the pool and the Q1 second time-frequency resource sub-pools thereby increasing the transmission opportunity of the first type of wireless signals per unit time; when the transmission on one sub-band cannot be performed because the LBT fails to pass, the user equipment to another Monitoring is performed on the sub-bands, thereby increasing the transmission opportunities of the first type of wireless signals and reducing the transmission delay of the first type of wireless signals.
  • another advantage of the foregoing method is: whether any of the first time-frequency resource sub-pools are occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool. Determining whether the user equipment determines whether the first type of wireless signal is not monitored by whether the first time-frequency resource sub-pool is occupied because the LBT is not passed or because the base station itself does not send the first type of wireless signal; Further, the user equipment is not determined that the base station does not send the first type of wireless signal, and the base station does not send the first type of wireless signal because the LBT has not passed, so as to prevent the user equipment from blindly switching to another sub-band to search.
  • the first type of wireless signal the mechanism ensures that the user equipment searches for stability and robustness of the first type of wireless signal over multiple sub-bands.
  • the above method is characterized by comprising:
  • the monitoring of the first type of signaling is used to determine whether a given first time-frequency resource sub-pool is occupied, and the given first time-frequency resource sub-pool is the Q1 first time-frequency resources. a first time-frequency resource sub-pool corresponding to the first type of signaling in the sub-pool.
  • the foregoing method has the following advantages: the user equipment determines, by using the monitoring of the first type of signaling, which of the Q1 first time-frequency resource sub-pools are occupied, and thus is occupied but not monitored. The user equipment does not subsequently monitor the first time-frequency resource sub-pool corresponding to the given first time-frequency resource sub-pool to the given first time-frequency resource sub-pool of the first type of wireless signal. A type of wireless signal.
  • the above method improves the transmission efficiency of the first type of wireless signal, and prevents the user equipment from frequently jumping back and forth over the plurality of sub-bands to receive the first type of wireless signal.
  • the above method is characterized by comprising:
  • the third time-frequency resource pool is located in the third sub-band; the Q1 second time-frequency resource sub-pools are corresponding to the Q1 third time-frequency resource sub-pools, and the Q1 second time-frequency resources are respectively Whether any of the second time-frequency resource sub-pools in the sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the above method has the following advantages: the third sub-band is added again on the basis of the first sub-band and the second sub-band, and the impact of the LBT on the transmission of the first-type wireless signal is further reduced.
  • the above method is characterized by comprising:
  • the monitoring of the second type of signaling is used to determine whether a given second time-frequency resource sub-pool is occupied, and the given second time-frequency resource sub-pool is the Q1 second time-frequency resources.
  • the foregoing method has the following advantages: the user equipment determines, by using the monitoring of the second type of signaling, which of the Q1 second time-frequency resource sub-pools are occupied, and thus is occupied but not monitored. The user equipment does not subsequently monitor the third time-frequency resource sub-pool corresponding to the given second time-frequency resource sub-pool to the given second time-frequency resource sub-pool of the first type of wireless signal. A type of wireless signal.
  • the above method improves the transmission efficiency of the first type of wireless signal, and prevents the user equipment from frequently jumping back and forth over the plurality of sub-bands to receive the first type of wireless signal.
  • the above method is characterized by comprising:
  • the first type of wireless signal includes first configuration information, and the first configuration information is applicable to the second wireless signal, where the first configuration information includes an occupied frequency domain resource and a modulation and coding state (Modulation and At least one of a Coding Status and a Hybrid Automatic Repeat ReQuest process number; the first type of radio signal is physical layer signaling.
  • the first configuration information includes an occupied frequency domain resource and a modulation and coding state (Modulation and At least one of a Coding Status and a Hybrid Automatic Repeat ReQuest process number; the first type of radio signal is physical layer signaling.
  • the above method is characterized by comprising:
  • the first type of wireless signal includes second configuration information, the second configuration information is applicable to the third wireless signal, and the second configuration information includes occupied frequency domain resources, modulation and coding status, and hybrid automatic Retransmitting at least one of the request process numbers; the second type of wireless signal is physical layer signaling.
  • the above method is characterized in that said first type of wireless signal comprises paging related information.
  • the above method is characterized by comprising:
  • the first information is used to determine a first subband set, the first subband set includes the first subband and the second subband; and the first information is transmitted over an air interface.
  • the foregoing method has the following advantages: by configuring the first sub-band set, the user equipment monitors the first type of radio signal in the first sub-band set, further improving the first type Transmission opportunities for wireless signals.
  • the present application discloses a method in a base station used for wireless communication, comprising:
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, and the first time-frequency resource pool and the second time-frequency resource pool are in time
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools correspond to Q1 second time-frequency resource sub-pools. Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool;
  • the receiver of the first type of wireless signal includes a first terminal; the Q1 is a positive integer.
  • the above method is characterized by comprising:
  • the R1 first-time time units respectively correspond to R1 first time-frequency resource sub-pools in the Q1 first time-frequency resource sub-pools; the first terminal is in the Q1 first-time time
  • the monitoring of the R1 first type signaling in the unit is used by the first terminal to determine whether the Q1 first time-frequency resource sub-pools are occupied; the R1 is a positive integer not greater than the Q1 .
  • the above method is characterized by comprising:
  • the third time-frequency resource pool is located in the third sub-band; the Q1 second time-frequency resource sub-pools are corresponding to the Q1 third time-frequency resource sub-pools, and the Q1 second time-frequency resources are respectively Whether any of the second time-frequency resource sub-pools in the sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the above method is characterized by comprising:
  • the P1 second type time units respectively correspond to P1 second time frequency resource sub-pools in the Q1 second time-frequency resource sub-pools; the first terminal is in the Q1 second-class time
  • the monitoring of the P1 second type signaling in the unit is used by the first terminal to determine whether the Q1 second time frequency resource subpools are occupied; the P1 is a positive integer not greater than the Q1 .
  • the above method is characterized by comprising:
  • the first type of wireless signal includes first configuration information, and the first configuration information is applicable to the second wireless signal, where the first configuration information includes occupied frequency domain resources, modulation and coding status, and hybrid automatic Retransmitting at least one of the request process numbers; the first type of wireless signal is physical layer signaling.
  • the above method is characterized by comprising:
  • the first type of wireless signal includes second configuration information, the second configuration information is applicable to the third wireless signal, and the second configuration information includes occupied frequency domain resources, modulation and coding status, and hybrid automatic Retransmitting at least one of the request process numbers; the second type of wireless signal is physical layer signaling.
  • the above method is characterized in that said first type of wireless signal comprises paging related information.
  • the above method is characterized by comprising:
  • the first information is used to determine a first subband set, the first subband set includes the first subband and the second subband; and the first information is transmitted over an air interface.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • the first receiver module monitors the first type of wireless signals in the first time-frequency resource pool and the second time-frequency resource pool respectively;
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, and the first time-frequency resource pool and the second time-frequency resource pool are in time
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools correspond to Q1 second time-frequency resource sub-pools. Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool;
  • the Q1 is a positive integer.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver module further monitors the first type of signaling in the Q1 first type of time units; The monitoring of the command is used to determine whether a given first time-frequency resource sub-pool is occupied, and the given first time-frequency resource sub-pool is in the Q1 first time-frequency resource sub-pool and the first class The first time-frequency resource sub-pool corresponding to the signaling.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver module further monitors the first type of wireless signal in a third time-frequency resource pool; the third time-frequency resource The pool is located in the third sub-band; the Q1 second time-frequency resource sub-pools are corresponding to the Q1 third time-frequency resource sub-pools, and any one of the Q1 second time-frequency resource sub-pools Whether the frequency resource sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver module further monitors the second type of signaling in the Q1 second type of time units respectively; The monitoring of the command is used to determine whether a given second time-frequency resource sub-pool is occupied, and the given second time-frequency resource sub-pool is the Q1 second time-frequency resource sub-pool and the second class The second time-frequency resource sub-pool corresponding to the signaling.
  • the foregoing user equipment used for wireless communication is characterized in that the user equipment further includes a first transceiver module, the first transceiver module receives a second wireless signal; and the first type of wireless signal
  • the first configuration information is applicable to the second wireless signal, and the first configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number.
  • the first type of wireless signal is physical layer signaling.
  • the foregoing user equipment used for wireless communication is characterized in that the user equipment further includes a first transceiver module, the first transceiver module sends a third wireless signal; the first type of wireless signal The second configuration information is applied, where the second configuration information is applicable to the third wireless signal, and the second configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number.
  • the second type of wireless signal is physical layer signaling.
  • the user equipment used for wireless communication is characterized in that the first type of wireless signal includes paging related information.
  • the user equipment used for wireless communication is characterized in that the first receiver module further receives first information; the first information is used to determine a first sub-band set, the first The set of subbands includes the first subband and the second subband; the first information is transmitted over an air interface.
  • the present application discloses a base station device used for wireless communication, which includes:
  • the first transmitter module sends the first type of wireless signal in one of the first time-frequency resource pool and the second time-frequency resource pool;
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, and the first time-frequency resource pool and the second time-frequency resource pool are in time
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools correspond to Q1 second time-frequency resource sub-pools. Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool;
  • the receiver of the first type of wireless signal includes a first terminal; the Q1 is a positive integer.
  • the foregoing base station device used for wireless communication is characterized in that the first transmitter module further transmits R1 firsts in R1 first type time units in Q1 first type time units, respectively. And the R1 first-time time units respectively correspond to R1 first time-frequency resource sub-pools in the Q1 first time-frequency resource sub-pools; the first terminal is first in the Q1 The monitoring of the R1 first type signaling in the class time unit is used by the first terminal to determine whether the Q1 first time frequency resource subpools are occupied; the R1 is not greater than the Q1. A positive integer.
  • the foregoing base station device used for wireless communication is characterized in that the first transmitter module further sends the first type of wireless signal in a third time-frequency resource pool; the third time-frequency resource The pool is located in the third sub-band; the Q1 second time-frequency resource sub-pools are corresponding to the Q1 third time-frequency resource sub-pools, and any one of the Q1 second time-frequency resource sub-pools Whether the frequency resource sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the foregoing base station device used for wireless communication is characterized in that the first transmitter module further transmits P1 seconds in P1 second type time units in Q1 second type time units, respectively.
  • the monitoring of the P1 second type signaling in the time-like unit is used by the first terminal to determine whether the Q1 second time-frequency resource sub-pools are occupied; the P1 is not greater than the Q1.
  • the base station device used for wireless communication is characterized in that the base station device further includes a second transceiver module, the second transceiver module sends a second wireless signal; the first type of wireless signal
  • the first configuration information is applicable to the second wireless signal, and the first configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number.
  • One; the first type of wireless signal is physical layer signaling.
  • the base station device used for wireless communication is characterized in that the base station device further includes a second transceiver module, the second transceiver module receives a third wireless signal; the first type of wireless signal The second configuration information is applied, where the second configuration information is applicable to the third wireless signal, and the second configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number.
  • the second type of wireless signal is physical layer signaling.
  • the above-described base station apparatus used for wireless communication is characterized in that the first type of wireless signal includes paging related information.
  • the base station device used for wireless communication is characterized in that the first transmitter module further transmits first information; the first information is used to determine a first sub-band set, the first The set of subbands includes the first subband and the second subband; the first information is transmitted over an air interface.
  • the present application has the following advantages compared with the conventional solution:
  • the first type of wireless signal is transmitted on the first sub-band and the second sub-band, and the candidate time-domain transmission positions respectively correspond to the Q1 first time-frequency resource sub-pool and the Q1 second time-frequency resource sub-pool.
  • the first time-frequency resource sub-pool is occupied or not is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool, and the user equipment passes the first time-frequency resource.
  • the pool is occupied to determine whether the first type of wireless signal is not detected because the LBT is not passed or because the base station itself does not transmit the first type of wireless signal; to ensure that the user equipment does not send the base station without transmitting the first
  • a type of wireless signal is erroneously determined that the base station does not transmit the first type of wireless signal because the LBT has not passed, thereby preventing the user equipment from blindly switching to another sub-band to search for the first type of wireless signal;
  • the user equipment searches for stability and robustness of the first type of wireless signal over a plurality of sub-bands.
  • the user equipment determines, by the monitoring of the first type of signaling, which of the Q1 first time-frequency resource sub-pools are occupied, and thus for those that are occupied but do not detect the first type of wireless signal
  • the first time-frequency resource sub-pool the user equipment does not subsequently monitor the first type of wireless signal in the second time-frequency resource sub-pool corresponding to the given first time-frequency resource sub-pool.
  • the above method improves the transmission efficiency of the first type of wireless signal, and prevents the user equipment from frequently jumping back and forth over the plurality of sub-bands to receive the first type of wireless signal.
  • the user equipment monitors the first type of radio signal in the first subband set to further improve a transmission opportunity of the first type of radio signal.
  • FIG. 1 shows a flow chart of a first type of wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • Figure 5 shows a flow diagram of a first type of signaling in accordance with one embodiment of the present application
  • FIG. 6 shows a flow diagram of a third wireless signal in accordance with one embodiment of the present application.
  • FIG. 7 shows a step diagram of target first type signaling and target second type signaling in accordance with one embodiment of the present application
  • FIG. 8 is a schematic diagram showing a Q1 given time-frequency resource sub-pool according to the present application.
  • FIG. 9 is a schematic diagram showing a first time-frequency resource pool and a second time-frequency resource pool according to the present application.
  • FIG. 10 is a schematic diagram showing another first time-frequency resource pool and a second time-frequency resource pool according to the present application.
  • FIG. 11 is a schematic diagram showing a second time-frequency resource pool and a third time-frequency resource pool according to the present application.
  • FIG. 12 is a schematic diagram showing another second time-frequency resource pool and a third time-frequency resource pool according to the present application.
  • FIG. 13 is a schematic diagram showing a target time unit and a target time-frequency resource sub-pool according to the present application.
  • Figure 14 shows a schematic diagram of a first subband set in accordance with the present application.
  • FIG. 15 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • Figure 16 shows a block diagram of a structure for a processing device in a base station in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first type of wireless signal, as shown in FIG.
  • the user equipment in the application detects the first type of wireless signal in the first time-frequency resource pool and the second time-frequency resource pool respectively; the first time-frequency resource pool and the first The second time-frequency resource pool is located in the first sub-band and the second sub-band, respectively, and the first time-frequency resource pool and the second time-frequency resource pool are orthogonal in the time domain; the first time-frequency resource The pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools correspond to Q1 second time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools Whether any of the first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool; the Q1 is a positive integer.
  • the first sub-band and the second sub-band are orthogonal in the frequency domain.
  • the first sub-band and the second sub-band are orthogonal in the frequency domain, and the frequency domain resources occupied by the first sub-band are The frequency domain resources occupied by the second sub-band are not overlapping.
  • the first sub-band and the second sub-band are orthogonal in the frequency domain, meaning that there is no sub-carrier and belongs to the first sub-band. And the second sub-band.
  • the first sub-band and the second sub-band are partially orthogonal in the frequency domain.
  • the first sub-band and the second sub-band are partially orthogonal in the frequency domain, and the frequency domain resources occupied by the first sub-band are: The frequency domain resources occupied by the second sub-band are partially overlapped.
  • the first sub-band and the second sub-band are partially orthogonal in the frequency domain, that is, at least one sub-carrier belongs to the first sub- The frequency band and the second sub-band belong to the first sub-band and the second sub-band when at least another sub-carrier is different.
  • the second time-frequency resource pool does not include the corresponding second time-frequency resource sub- The pool, otherwise the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool.
  • the user equipment determines, by means of energy detection, whether each of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools is occupied.
  • the first time-frequency resource pool is composed of Q2 first time-frequency resource sub-pools, and the Q2 first time-frequency resource sub-pools include the Q1 first time-frequency resource sub-pools.
  • (Q2-Q1) of the first time-frequency resource sub-pools and the Q1 second time-frequencys of the Q1 first time-frequency resource sub-pools and the Q1 first time-frequency resource sub-pools The resource subpool is irrelevant; the Q2 is a positive integer not less than Q1.
  • the location of the Q1 first time-frequency resource sub-pools in the time domain is related to the identifier of the user equipment.
  • the user identifier is at least one of ⁇ S-TMSI (SAE Temporary Mobile Subscriber Identity), IMSI ⁇ ; wherein SAE (System Architecture Evolution) It is the evolution of the system architecture.
  • S-TMSI SAE Temporary Mobile Subscriber Identity
  • IMSI IMSI
  • the user identifier is an IMSI (International Mobile Subscriber Identification Number).
  • the Q1 first time-frequency resource sub-pools are periodically divided in the time domain.
  • the location of the Q1 first time-frequency resource sub-pools in the time domain is for the PO (Paging Occasion) of the user equipment on the first sub-band.
  • the location of the Q1 first time-frequency resource sub-pools in the time domain is related to a time domain location of the target wireless signal detected by the user equipment on the first sub-band.
  • the target wireless signal comprises a synchronization signal.
  • the synchronization signal is for the first sub-band.
  • the target radio signal includes a PBCH (Physical Broadcasting Channel).
  • PBCH Physical Broadcasting Channel
  • the PBCH is for the first sub-band.
  • the first time-frequency resource sub-pool #i corresponds to the second time-frequency resource sub-pool #i
  • the first time-frequency resource sub-pool #i is the Q1 first time-frequency resource sub-pools.
  • the i is a positive integer greater than 0 and not greater than Q1; the location of the first time-frequency resource sub-pool #i in the time domain is related to the location of the second time-frequency resource sub-pool #i in the time domain .
  • the location of the first time-frequency resource sub-pool #i in the time domain is related to the location of the second time-frequency resource sub-pool #i in the time domain:
  • the first time-frequency resource sub-pool #i is located in the slot #K1
  • the second time-frequency resource sub-pool #i is located in the slot #K2
  • the K1 is a positive integer
  • the K2 is greater than the positive of the K1
  • An integer the difference between the K2 and the K1 is fixed, or the difference between the K2 and the K1 is configured by RRC signaling.
  • the first type of wireless signal comprises a PBCH.
  • the first type of wireless signal is used to schedule system broadcast information.
  • At least one unoccupied multi-carrier symbol exists between any two of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools.
  • At least one unoccupied multi-carrier symbol exists between any two of the second time-frequency resource sub-pools of the Q1 second time-frequency resource sub-pools.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports multiple frequency domain resource aggregation wireless communications.
  • the gNB 203 supports wireless communication of multiple frequency domain resource aggregations.
  • the polymerization in the present application refers to Aggregation.
  • the frequency domain resource in the present application is a carrier.
  • the frequency domain resource in the present application is a BWP (Bandwidth Part).
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the radio protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first type of wireless signal in the present application is generated in the RRC sublayer 306.
  • the first type of wireless signal in the present application includes NAS (Non-access Stratum) information.
  • NAS Non-access Stratum
  • the first type of wireless signal in the present application is generated by the PHY 301, and the second wireless signal includes NAS information.
  • the third wireless signal in the present application is generated in the MAC sublayer 302.
  • the first type of signaling in the present application is generated by the PHY 301.
  • the second type of signaling in the present application is generated by the PHY 301.
  • the first information in the present application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • Receiver 416 receiving a radio frequency signal through its corresponding antenna 420, converting the received radio frequency signal into a baseband signal, and providing the baseband signal to the receiving processor 412;
  • Receiving processor 412 implementing various signal receiving processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • controller/processor 440 that implements L2 layer functions and is associated with a memory 430 that stores program codes and data;
  • Controller/processor 440 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from UE 450; from controller/processor 440 Upper layer packets can be provided to the core network;
  • a controller/processor 440 determining to transmit the first type of wireless signal in one of the first time-frequency resource pool and the second time-frequency resource pool;
  • the processing related to the user equipment (450) includes:
  • Data source 467 which provides the upper layer data packet to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • Transmitter 456 transmitting a radio frequency signal through its corresponding antenna 460, converting the baseband signal into a radio frequency signal, and providing the radio frequency signal to the corresponding antenna 460;
  • a transmit processor 455, implementing various signal reception processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • Controller/Processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation of gNB 410, implementing L2 for user plane and control plane Layer function
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410;
  • controller/processor 490 configured to separately monitor the first type of wireless signals in the first time-frequency resource pool and the second time-frequency resource pool;
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling air interface resources corresponding to the transmission requirements;
  • a controller/processor 440 determining to transmit the first type of wireless signal in one of the first time-frequency resource pool and the second time-frequency resource pool;
  • a transmit processor 415 that receives the output bitstream of the controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • each transmitter 416 samples the respective input symbol streams to obtain a respective sampled signal stream.
  • Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • the processing related to the user equipment (450) may include:
  • a receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • Receive processor 452 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • controller/processor 490 that receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane;
  • controller/processor 490 configured to separately monitor the first type of wireless signals in the first time-frequency resource pool and the second time-frequency resource pool;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be
  • the UE 450 device is configured to: at least: monitor the first type of wireless signal in the first time-frequency resource pool and the second time-frequency resource pool; the first time-frequency resource pool and the second time-frequency The resource pools are located in the first sub-band and the second sub-band, respectively, and the first time-frequency resource pool and the second time-frequency resource pool are orthogonal in the time domain; the first time-frequency resource pool includes Q1 a first time-frequency resource sub-pool, wherein the Q1 first time-frequency resource sub-pools are in one-to-one correspondence with the Q1 second time-frequency resource sub-pools, and any one of the Q1 first time-frequency resource sub-pools Whether a time-frequency resource sub-pool is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: at a first time frequency
  • the first type of wireless signal is respectively monitored in the resource pool and the second time-frequency resource pool; the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, The first time-frequency resource pool and the second time-frequency resource pool are orthogonal in the time domain; the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time
  • the frequency resource sub-pool is in one-to-one correspondence with the Q1 second time-frequency resource sub-pools, and whether any of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools is occupied is used to determine the Whether the second time frequency resource pool includes a corresponding second time frequency resource subpool; the Q1 is a positive integer.
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device sends at least one of the first time-frequency resource pool and the second time-frequency resource pool to send the first type of wireless signal; the first time-frequency resource pool and the second time-frequency resource pool are respectively located a first sub-band and a second sub-band, wherein the first time-frequency resource pool and the second time-frequency resource pool are orthogonal in a time domain; and the first time-frequency resource pool includes a Q1 first-time The frequency resource sub-pool, the Q1 first time-frequency resource sub-pools are corresponding to the Q1 second time-frequency resource sub-pools, and any one of the Q1 first time-frequency resource sub-pools Whether the sub-pool is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: at a first time frequency One of the resource pool and the second time-frequency resource pool sends a first type of wireless signal; the first time-frequency resource pool and the second time-frequency resource pool are respectively located in the first sub-band and the second sub-band, The first time-frequency resource pool is orthogonal to the second time-frequency resource pool in the time domain; the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first The time-frequency resource sub-pool is in one-to-one correspondence with the Q1 second time-frequency resource sub-pools, and whether any of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools is occupied is used to determine the Whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool; the receiver of the first type of
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • the controller/processor 490 is configured to determine to monitor the first type of wireless signal in a third time-frequency resource pool.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the first in the first time-frequency resource pool and the second time-frequency resource pool, respectively.
  • Class wireless signal As a sub-embodiment, at least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the first in the first time-frequency resource pool and the second time-frequency resource pool, respectively.
  • Class wireless signal As a sub-embodiment, at least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the first in the first time-frequency resource pool and the second time-frequency resource pool, respectively. Class wireless signal.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the first type of signaling in the Q1 first type of time units, respectively.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the first type of wireless signal in a third time-frequency resource pool.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to monitor the second type of signaling in the Q1 second type of time units, respectively.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the second wireless signal.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit a third wireless signal.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first information.
  • the controller/processor 440 is configured to determine to transmit a first type of wireless signal in one of a first time-frequency resource pool and a second time-frequency resource pool.
  • the controller/processor 440 is configured to determine to transmit the first type of wireless signal in a third time-frequency resource pool.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first one of the first time-frequency resource pool and the second time-frequency resource pool.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit in the R1 first-class time units of the Q1 first-type time units, respectively.
  • R1 first type of signaling is used to transmit in the R1 first-class time units of the Q1 first-type time units, respectively.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first type of wireless signal in a third time-frequency resource pool.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit in the P1 second-class time units of the Q1 second-type time units, respectively.
  • P1 second type of signaling is used to transmit in the P1 second-class time units of the Q1 second-type time units, respectively.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the second wireless signal.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the third wireless signal.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information.
  • Embodiment 5 illustrates a flow chart of a first signaling, as shown in FIG.
  • base station N1 is a maintenance base station of a serving cell of user equipment U2.
  • the blocks identified as F0, the boxes identified as F1, the boxes identified as F2, and the steps identified in the box labeled F3 are optional.
  • each R1 unit of first type time Q1 of first type time unit transmits a first type of signaling R1 in step S11; step S12, respectively, Transmitting P1 second type signaling in P1 second type time units in Q1 second type time units; transmitting in one of first time frequency resource pool and second time frequency resource pool in step S13
  • the first type of wireless signal; the first type of wireless signal is transmitted in the third time-frequency resource pool in step S14; and the second wireless signal is transmitted in step S15.
  • step S20 For user equipment U2, received in step S20, the first information, respectively; a first type monitoring signaling Q1 of first type time unit in step S21; step S22, Q1, respectively, monitoring time unit second category a second type of signaling; monitoring the first type of wireless signal in the first time-frequency resource pool and the second time-frequency resource pool in step S23; monitoring the first time in the third time-frequency resource pool in step S24 A type of wireless signal; the second wireless signal is received in step S25.
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in a first sub-band and a second sub-band, and the first time-frequency resource pool and the second time-frequency resource are The pool is orthogonal in the time domain; the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools and Q1 second time-frequency resource sub-pools a one-to-one correspondence, whether any of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools are occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource a sub-pool; the Q1 is a positive integer; the monitoring of the first type of signaling by the user equipment U2 is used to determine whether a given first time-frequency resource sub-pool is occupied by the base station N1, the given The first time-frequency resource sub-pool is the first time-frequency resource sub-pool corresponding to the first-type signaling in
  • the first type of time unit is a first type of time unit corresponding to the given first time-frequency resource sub-pool in the Q1 first-type time units, where the user equipment U2 is Given the first type of signaling being monitored in a first type of time unit, the user equipment U2 determines that the given first time-frequency resource sub-pool is occupied.
  • the first type of time unit is a first type of time unit corresponding to the given first time-frequency resource sub-pool in the Q1 first-type time units, where the user equipment U2 is Given that the first type of signaling is not detected in the first type of time unit, the user equipment U2 determines that the given first time-frequency resource sub-pool is not occupied.
  • the base station N1 sends R1 first-type signalings in the R1 first-type time units of the Q1 first-type time units, respectively, and the user equipment U2 is in the Q1.
  • the R1 first type signaling is detected in the first type of time unit; the user equipment U2 confirms the R1 corresponding to the R1 first type time units in the Q1 first time frequency resource subpools
  • the first time-frequency resource sub-pool is occupied, and the R1 is a positive integer not greater than the Q1.
  • monitoring for the first type of signaling is performed on the first sub-band.
  • the monitoring in the present application refers to energy detection; the received energy is greater than a given threshold, and the user equipment U2 considers that the received energy is less than a given threshold, and the user equipment U2 considers that it is not monitored. To.
  • the monitoring is directed to the first type of signaling in the present application.
  • the monitoring is directed to the second type of signaling in the present application.
  • the monitoring in the present application refers to a CRC check; the CRC included in the received wireless signal passes the check, and the user equipment U2 considers that the wireless signal is monitored, and the received wireless signal is The included CRC does not pass the check, and the user equipment U2 considers that the wireless signal is not monitored.
  • the monitoring is directed to the first type of signaling in the present application.
  • the monitoring is directed to the second type of signaling in the present application.
  • the monitoring is directed to the first type of wireless signal in the present application.
  • the user equipment U2 determines, by means of energy detection, whether each second time-frequency resource sub-pool of the Q1 second time-frequency resource sub-pools is occupied.
  • the second sub-band and the third sub-band are orthogonal in the frequency domain.
  • the first sub-band and the third sub-band are orthogonal in the frequency domain.
  • the second time-frequency resource sub-pool #i corresponds to the third time-frequency resource sub-pool #i
  • the second time-frequency resource sub-pool #i is the Q1 second time-frequency resource sub-pools.
  • the third time-frequency resource sub-pool #i is the ith of the Q1 third time-frequency resource sub-pools; the i is a positive integer greater than 0 and not greater than Q1;
  • the location of the second time-frequency resource sub-pool #i in the time domain is related to the location of the third time-frequency resource sub-pool #i in the time domain.
  • the location of the second time-frequency resource sub-pool #i in the time domain is related to the location of the third time-frequency resource sub-pool #i in the time domain:
  • the second time-frequency resource sub-pool #i is located in slot #K2
  • the third time-frequency resource sub-pool #i is located in slot #K3
  • the K2 is a positive integer
  • the K3 is greater than the positive of the K2
  • the difference between the K3 and the K2 is fixed, or the difference between the K3 and the K2 is configured by RRC signaling.
  • At least one unoccupied multi-carrier symbol exists between any two of the Q1 third time-frequency resource sub-pools.
  • the multi-carrier symbol in the present application is an OFDM (Orthogonal Frequency Division Multiplexing) symbol, and an SC-FDMA (Single-Carrier Frequency Division Multiple Access). Access) symbol, FBMC (Filter Bank MultiCarrier) symbol, OFDM symbol including CP (Cyclic Prefix), and DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing) including CP One of the symbols of the discrete Fourier transform spread spectrum orthogonal frequency division multiplexing).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • FBMC Breast Bank MultiCarrier
  • OFDM symbol including CP Cyclic Prefix
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing
  • the second type of time unit is a second type of time unit corresponding to the given second time-frequency resource sub-pool in the Q1 second-type time units, where the user equipment U2 is Given the second type of signaling being monitored in the second type of time unit, the user equipment U2 determines that the given second time-frequency resource sub-pool is occupied.
  • the second type of time unit is a second type of time unit corresponding to the given second time-frequency resource sub-pool in the Q1 second-type time units, where the user equipment U2 is Given that the second type of signaling is not detected in the second type of time unit, the user equipment U2 determines that the given second time-frequency resource sub-pool is not occupied.
  • the base station N1 sends P1 second type signaling in the P1 second type time units of the Q1 second type time units, respectively, and the user equipment U2 is in the Q1.
  • the P1 second type signaling is detected in the second type of time unit; the user equipment U2 confirms the P1 corresponding to the P1 second type time units in the Q1 second time frequency resource subpools
  • the second time-frequency resource sub-pool is occupied, and the P1 is a positive integer not greater than the Q1.
  • monitoring for the second type of signaling is performed on the second sub-band.
  • the first type of signaling is dynamic signaling.
  • the second type of signaling is dynamic signaling.
  • the dynamic signaling is DCI (Downlink Control Information).
  • the dynamic signaling is given an identity.
  • the given identity is used to generate an RS (Reference Signal) sequence of a DMRS (Demodulation Reference Signal) corresponding to the dynamic signaling.
  • RS Reference Signal
  • DMRS Demodulation Reference Signal
  • the dynamic signaling is a given identity identifier, where the target dynamic signaling is any one of the Q1 dynamic signaling, and the target dynamic signaling includes The CRC (Cyclic Redundancy Check) is scrambled by the given identity.
  • CRC Cyclic Redundancy Check
  • the given identity is 16 binary bits.
  • the given identity is used for the scrambling code of the dynamic signaling.
  • the given identity is a CC-RNTI (Common Control Radio Network Temporary Identifier).
  • CC-RNTI Common Control Radio Network Temporary Identifier
  • the given identity is used to identify dynamic signaling corresponding to the given identity, and the corresponding dynamic signaling is used to indicate that a positive integer multi-carrier symbol is being used.
  • the base station N1 is occupied.
  • the given identity is used to identify dynamic signaling corresponding to the given identity
  • the corresponding dynamic signaling is used to indicate that a positive integer number of time slots are The base station N1 is occupied.
  • the given identity is used to determine a search space corresponding to the dynamic signaling, where the search space includes a plurality of RE (Resource Element) groups, corresponding The RE occupied by the indication information is one of the plurality of RE groups, and the RE group includes a plurality of REs.
  • RE Resource Element
  • the given identity is common to the cell.
  • the given identity is terminal group specific, and the user equipment U2 is one of the terminal groups.
  • the first type of signaling is Cell-Specific.
  • the second type of signaling is common to the cell.
  • the first type of wireless signal is a downlink grant.
  • the first type of wireless signal is scheduling signaling for the second wireless signal.
  • the first type of wireless signal includes paging related information.
  • the first type of radio signal is used to schedule a given PDSCH (Physical Downlink Shared Channel), and the given PDSCH is used to transmit paging related information.
  • PDSCH Physical Downlink Shared Channel
  • the paging related information is used to send a paging request to the user equipment U2.
  • the user equipment U2 is an RRC idle state (Idle).
  • the user equipment U2 is in a RRC Inactive state.
  • the paging related information is used to notify the user equipment U2 of a system information change.
  • the paging related information is used to notify the user equipment U2 of receiving an ETWS (Earthquake and Tsunami Warning System) related information.
  • ETWS Earthquake and Tsunami Warning System
  • the paging related information is used to notify the user equipment U2 of receiving a CMAS (Commercial Mobile Alert Service) related information.
  • CMAS Common Mobile Alert Service
  • the first sub-band set includes a third sub-band.
  • the first sub-band set includes a positive integer sub-band, and the first sub-band and the second sub-band all belong to the positive integer sub-band.
  • the user equipment U2 monitors the first type of wireless signal on the positive integer number of sub-bands.
  • the Air Interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface is an interface between the base station device N1 and the user equipment U2.
  • the air interface is a Uu interface.
  • the air interface corresponds to the wireless channel between the UE 201 and the NR Node B 203 in FIG.
  • the base station N1 sends the first type of radio signal in a given third time-frequency resource sub-pool in the third time-frequency resource pool, where the given third time-frequency resource sub-pool and Given a second time-frequency resource sub-pool, the given second time-frequency resource sub-pool corresponds to a given first time-frequency resource sub-pool; the base station N1 is in the given second time-frequency resource sub-pool
  • the first type of wireless signal is not transmitted, and the base station N1 does not transmit the first type of wireless signal in the given first time-frequency resource sub-pool.
  • the base station N1 does not occupy the given second time-frequency resource sub-pool.
  • the base station N1 does not occupy the given first time-frequency resource sub-pool.
  • the base station N1 does not send the first type of signaling in the first type of time unit corresponding to the given first time-frequency resource sub-pool.
  • the base station N1 does not send the second type of signaling in the second type of time unit corresponding to the given second time-frequency resource sub-pool.
  • the second time-frequency resource pool and the third time-frequency resource pool are orthogonal in the time domain.
  • the first type of time unit in the present application occupies a positive integer number of multi-carrier symbols.
  • the second type of time unit in the present application occupies a positive integer number of multi-carrier symbols.
  • the first type of time unit in the present application occupies one time slot.
  • the second type of time unit in the present application occupies one time slot.
  • Embodiment 6 illustrates a flow chart of a third wireless signal, as shown in FIG.
  • base station N3 is the maintenance base station of the serving cell of user equipment U4.
  • the base station N3, the third radio signal received in step S30 is.
  • the first type of wireless signal includes second configuration information
  • the second configuration information is applicable to the third wireless signal
  • the second configuration information includes occupied frequency domain resources and modulation and coding states.
  • at least one of the HARQ process numbers; the second type of wireless signal is physical layer signaling.
  • the first type of wireless signal is an uplink grant.
  • the first type of wireless signal is scheduling signaling for the third wireless signal.
  • Embodiment 7 illustrates a step diagram of a target first type signaling and a target second type signaling, as shown in FIG. 7; in FIG. 7, base station N5 is a maintenance base station of a serving cell of user equipment U6. This embodiment is a refinement of the base station N1 steps S11 to S14 and the UE U2 steps S21 to S24 in the fifth embodiment.
  • the target first type signaling is monitored in the target first type of time unit in step S60; the target first type signaling indicates whether the target first time frequency resource subpool is occupied; if the UE U6 detects the target For one type of signaling, the UE U6 performs step S601; if the UE U6 does not detect the target first type of signaling, the UE U6 performs step S602.
  • the base station N5 sends the target first type signaling in the target first type time unit; corresponding to step S602, the base station N5 is not in the target first type time unit. Sending the target first type of signaling.
  • step S601 the UE U6 detects the first type of wireless signal in the target first time-frequency resource sub-pool.
  • step S602 the UE U6 monitors the target second type signaling in the target second type time unit, the target second type signaling indicates whether the target second time frequency resource subpool is occupied, and the target second time The frequency resource sub-pool corresponds to the target first time-frequency resource sub-pool; if the UE U6 detects the target second-type signaling, the UE U6 performs step S6021; if the UE U6 does not detect the target second-class Signaling, the UE U6 performs step S6022.
  • the base station N5 transmits the target second type of signaling in the target second type of time unit; corresponding to step S6022, the base station N5 is not in the target second type of time unit. Sending the target second type of signaling.
  • step S6021 the UE U6 detects the first type of wireless signal in the target second time-frequency resource sub-pool.
  • step S6022 the UE U6 monitors the first type of radio signal in the target third time-frequency resource sub-pool, where the target third time-frequency resource sub-pool corresponds to the target second time-frequency resource sub-pool.
  • the UE U6 needs to detect the target third type signaling in the target third time unit before performing step S6022, and the third type signaling is used to determine the target third time frequency.
  • the resource subpool is occupied by the base station N5.
  • the target first time-frequency resource sub-pool is not used to determine that the target second time-frequency resource sub-pool belongs to the second time-frequency resource pool in the application.
  • the target second time-frequency resource sub-pool is not used to determine that the target third time-frequency resource sub-pool belongs to the third time-frequency resource pool in the application.
  • the target first time-frequency resource sub-pool is any one of the Q1 first time-frequency resource sub-pools in the present application.
  • the target second-type time unit is a second type of time unit occupied by the target second-type signaling in the Q1 second-type time units in the present application.
  • the step S6022 occurs only when the third sub-band in the present application exists.
  • Embodiment 6 As a sub-embodiment, the steps in Embodiment 6 are repeatedly performed Q1 times in Embodiment 5.
  • Embodiment 8 illustrates a schematic diagram of a Q1 given timing resource sub-pool, as shown in FIG. 8; the Q1 given timing resource sub-pools correspond to the Q1 first time-frequency resource sub-pools in this application. Or the Q1 given time-frequency resource sub-pools correspond to the Q1 second time-frequency resource sub-pools in the present application, or the Q1 given-time-frequency resource sub-pools correspond to the Q1 first in the present application. Three time-frequency resource subpool.
  • the Q1 given time-frequency resource sub-pools are periodically distributed in the time domain.
  • the given second time-frequency resource sub-pool is located between two adjacent first time-frequency resource sub-pools in the time domain, and the given second time-frequency resource sub-pool is the Q1 Any one of the second time-frequency resource sub-pools.
  • the given second time-frequency resource sub-pool belongs to the second time-frequency resource pool in the application, and the two adjacent first time-frequency resources are The first time-frequency resource sub-pool in the sub-pool that is located in the time domain before the given second time-frequency resource sub-pool is not occupied.
  • the given third time-frequency resource sub-pool is located between the two adjacent second time-frequency resource sub-pools in the time domain, and the given third time-frequency resource sub-pool is the Q1. Any one of the second time-frequency resource sub-pools.
  • the given third time-frequency resource sub-pool belongs to the third time-frequency resource pool in the application, and the two adjacent second time-frequency resources are The second time-frequency resource sub-pool in the sub-pool before the given third time-frequency resource sub-pool in the time domain is not occupied.
  • the Q1 first time-frequency resource sub-pools, the Q1 second time-frequency resource sub-pools, and the Q1 third time-frequency resource sub-pools are sequentially distributed in the time domain.
  • the second time resource of the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is in the time domain resource between the first time-frequency resource sub-pools adjacent in the time domain. Two time-frequency resource subpool.
  • the second time resource of the second time-frequency resource sub-pool is in the time domain resource between the second time-frequency resource sub-pools adjacent in the time domain.
  • Embodiment 9 illustrates a schematic diagram of a first time-frequency resource pool and a second time-frequency resource pool, as shown in FIG.
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools and Q1 second time-frequency resource sub-pools are in one-to-one correspondence; Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool.
  • the first time-frequency resource sub-pool corresponding to the thick solid line frame in the figure is not occupied, and the second time-frequency resource sub-pool corresponding to the thick dotted frame in the figure belongs to the second time-frequency resource pool; the two-way arrow indicates one-to-one correspondence relationship.
  • the time interval of the two first time-frequency resource sub-pools adjacent in the time domain is a DRX (Discontinuous Reception) period of the user equipment in the present application.
  • the two first time-frequency resource sub-pools adjacent in the time domain respectively correspond to two adjacent POs (Paging Opportunities) of the user equipment.
  • the time interval of two first time-frequency resource sub-pools adjacent in the time domain is equal to the time interval of two second time-frequency resource sub-pools adjacent in the time domain.
  • Embodiment 10 illustrates a schematic diagram of another first time-frequency resource pool and a second time-frequency resource pool, as shown in FIG.
  • the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools and Q1 second time-frequency resource sub-pools are in one-to-one correspondence; Whether the first time-frequency resource sub-pool of the Q1 first time-frequency resource sub-pools is occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource sub-pool.
  • the first time-frequency resource sub-pool corresponding to the thick solid line frame in the figure is not occupied, and the second time-frequency resource sub-pool corresponding to the thick dotted frame in the figure belongs to the second time-frequency resource pool; the two-way arrow indicates one-to-one correspondence relationship.
  • the time interval of the two first time-frequency resource sub-pools adjacent in the time domain is one DRX cycle of the user equipment in the present application.
  • two of the first time-frequency resource sub-pools adjacent in the time domain respectively correspond to two adjacent POs of the user equipment.
  • the two adjacent POs refer to timing synchronization and SFN (System Frame Number) on the first sub-band.
  • the time interval of two first time-frequency resource sub-pools adjacent in the time domain is equal to the time interval of two second time-frequency resource sub-pools adjacent in the time domain.
  • any one of the second time-frequency resource sub-pools does not exist in the time domain resources between the two first time-frequency resource sub-pools adjacent in the time domain.
  • Embodiment 11 illustrates a schematic diagram of a second time-frequency resource pool and a third time-frequency resource pool, as shown in FIG.
  • the Q1 second time-frequency resource sub-pools and the Q1 third time-frequency resource sub-pools are in one-to-one correspondence; and any second time-frequency in the Q1 second time-frequency resource sub-pools Whether the resource sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the second time-frequency resource sub-pool corresponding to the thick solid line frame in the figure is not occupied, and the third time-frequency resource sub-pool corresponding to the thick dotted frame in the figure belongs to the third time-frequency resource pool; the two-way arrow indicates one-to-one correspondence relationship.
  • the time interval of two second time-frequency resource sub-pools adjacent in the time domain is one DRX cycle of the user equipment in the present application.
  • two of the second time-frequency resource sub-pools adjacent in the time domain respectively correspond to two adjacent POs of the user equipment that have translated Y time slots in the time domain.
  • Y is a positive integer.
  • the two adjacent POs reference timing synchronization and SFN on the first sub-band.
  • the time interval of two of the second time-frequency resource sub-pools adjacent in the time domain is equal to the time interval of two of the third time-frequency resource sub-pools adjacent in the time domain.
  • Embodiment 12 illustrates a schematic diagram of another second time-frequency resource pool and a third time-frequency resource pool, as shown in FIG.
  • the Q1 second time-frequency resource sub-pools and the Q1 third time-frequency resource sub-pools are in one-to-one correspondence; and any second time-frequency in the Q1 second time-frequency resource sub-pools Whether the resource sub-pool is occupied is used to determine whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the second time-frequency resource sub-pool corresponding to the thick solid line frame in the figure is not occupied, and the third time-frequency resource sub-pool corresponding to the thick dotted frame in the figure belongs to the third time-frequency resource pool; the two-way arrow indicates one-to-one correspondence relationship.
  • the time interval of two second time-frequency resource sub-pools adjacent in the time domain is one DRX cycle of the user equipment in the present application.
  • two of the second time-frequency resource sub-pools adjacent in the time domain respectively correspond to two adjacent POs of the user equipment.
  • the two adjacent POs reference timing synchronization and SFN on the second sub-band.
  • the time interval of two of the second time-frequency resource sub-pools adjacent in the time domain is equal to the time interval of two of the third time-frequency resource sub-pools adjacent in the time domain.
  • any one of the third time-frequency resource sub-pools does not exist in the two time-frequency resource sub-pools adjacent to each other in the time domain.
  • Embodiment 13 illustrates a schematic diagram of a target time unit and a target time-frequency resource sub-pool, as shown in FIG.
  • the user equipment in the present application monitors target signaling in the target time unit, and monitoring for the target signaling is used to determine whether the target time-frequency resource sub-pool is occupied.
  • the target time unit is a given first type of time unit
  • the target signaling is a given first type of signaling monitored by the user equipment in the given first type of time unit.
  • the target time resource sub-pool is a first time-frequency resource sub-pool corresponding to the given first-type signaling in the Q1 first time-frequency resource sub-pools; the given first-type time unit It is any one of the Q1 first type time units described in this application.
  • the target time unit is a given second type of time unit
  • the target signaling is a given second type of signaling monitored by the user equipment in the given second type of time unit.
  • the target time resource sub-pool is a second time-frequency resource sub-pool corresponding to the given second-type signaling in the Q1 second time-frequency resource sub-pools; the given second-type time unit It is any one of the Q1 second type time units described in this application.
  • the target time unit is a given third type of time unit
  • the target signaling is a given third type of signaling monitored by the user equipment in the given third type of time unit.
  • the target time resource sub-pool is a third time-frequency resource sub-pool corresponding to the given third-type signaling in the Q1 third time-frequency resource sub-pools; the given third-type time unit It is any one of the Q1 third-class time units described in this application.
  • the base station in the present application performs channel monitoring for a target sub-band before transmitting the target signaling.
  • the channel monitoring is an LBT.
  • the channel monitoring is a CCA (Clear Channel Assessment).
  • the target signaling belongs to the first type of signaling in the present application, and the target sub-band is the first sub-band in the present application.
  • the target signaling belongs to the second type of signaling in the present application, and the target sub-band is the second sub-band in the present application.
  • the target signaling belongs to the third type of signaling in the present application, and the target sub-band is the third sub-band in the present application.
  • Embodiment 14 illustrates a schematic diagram of a first set of subbands, as shown in FIG.
  • the first sub-band set includes at least two of the first sub-band, the second sub-band, and the third sub-band in the present application.
  • the first sub-band corresponds to one CC (Component Carrier).
  • the first sub-band corresponds to one BWP.
  • the second sub-band corresponds to one CC.
  • the second sub-band corresponds to one BWP.
  • the third sub-band corresponds to one CC.
  • the third sub-band corresponds to one BWP.
  • the first sub-band and the second sub-band are contiguous in the frequency domain.
  • the second sub-band and the third sub-band are contiguous in the frequency domain.
  • the first sub-band and the second sub-band are discrete in the frequency domain.
  • the second sub-band and the third sub-band are discrete in the frequency domain.
  • the center frequency point corresponding to the first sub-band, the center frequency point corresponding to the second sub-band, and the center frequency point corresponding to the third sub-band are sequentially increased in the frequency domain.
  • the center frequency point corresponding to the first sub-band, the center frequency point corresponding to the second sub-band, and the center frequency point corresponding to the third sub-band are sequentially decreased in the frequency domain.
  • the first sub-band set further includes other sub-bands in addition to the first sub-band, the second sub-band, and the third sub-band.
  • Embodiment 15 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 1500 is mainly composed of a first receiver module 1501 and a first transceiver module 1502.
  • the first transceiver module 1502 is optional.
  • the first receiver module 1501 monitors the first type of wireless signals in the first time-frequency resource pool and the second time-frequency resource pool respectively;
  • the first transceiver module 1502 receives the second wireless signal
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in a first sub-band and a second sub-band, and the first time-frequency resource pool and the second time-frequency resource are The pool is orthogonal in the time domain; the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools and Q1 second time-frequency resource sub-pools a one-to-one correspondence, whether any of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools are occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource a sub-pool; the Q1 is a positive integer; the first type of wireless signal includes first configuration information, the first configuration information is applicable to the second wireless signal, and the first configuration information includes occupied frequency domain resources At least one of a modulation coding state and a hybrid automatic repeat request process number; the first type of wireless signal is physical layer signaling.
  • the first receiver module 1501 also monitors first type signaling in Q1 first type of time units; monitoring for the first type of signaling is used to determine a given first Whether the time-frequency resource sub-pool is occupied, the given first time-frequency resource sub-pool is the first time-frequency resource sub-pool corresponding to the first type of signaling in the Q1 first time-frequency resource sub-pools .
  • the first receiver module 1501 also monitors the first type of radio signal in a third time-frequency resource pool; the third time-frequency resource pool is located in a third sub-band; the Q1 The second time-frequency resource sub-pool is in one-to-one correspondence with the Q1 third time-frequency resource sub-pools, and whether any of the second time-frequency resource sub-pools of the Q1 second time-frequency resource sub-pools are occupied is used for determining Whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the first receiver module 1501 also monitors the second type of signaling in the Q1 second type of time units; the monitoring for the second type of signaling is used to determine the given second Whether the time-frequency resource sub-pool is occupied, the given second time-frequency resource sub-pool is the second time-frequency resource sub-pool corresponding to the second type of signaling in the Q1 second time-frequency resource sub-pools .
  • the first transceiver module 1502 transmits a third wireless signal; the first type of wireless signal includes second configuration information, and the second configuration information is applicable to the third wireless signal,
  • the second configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number; the second type of wireless signal is physical layer signaling.
  • the first type of wireless signal includes paging related information.
  • the first receiver module 1501 further receives first information; the first information is used to determine a first sub-band set, the first sub-band set includes the first sub-band and The second sub-band; the first information is transmitted over an air interface.
  • the first receiver module 1501 includes at least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the second transceiver module 1502 includes at least the first three of the receiver/transmitter 456, the receive processor 452, the transmit processor 455, and the controller/processor 490 in Embodiment 4.
  • Embodiment 16 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 1600 is mainly composed of a first transmitter module 1601 and a second transceiver module 1602.
  • the second transceiver module 1602 is optional.
  • the first transmitter module 1601 sends a first type of wireless signal in one of the first time-frequency resource pool and the second time-frequency resource pool;
  • the second transceiver module 1602 transmits a second wireless signal
  • the first time-frequency resource pool and the second time-frequency resource pool are respectively located in a first sub-band and a second sub-band, and the first time-frequency resource pool and the second time-frequency resource are The pool is orthogonal in the time domain; the first time-frequency resource pool includes Q1 first time-frequency resource sub-pools, and the Q1 first time-frequency resource sub-pools and Q1 second time-frequency resource sub-pools a one-to-one correspondence, whether any of the first time-frequency resource sub-pools of the Q1 first time-frequency resource sub-pools are occupied is used to determine whether the second time-frequency resource pool includes a corresponding second time-frequency resource a sub-pool; the receiver of the first type of wireless signal includes a first terminal; the Q1 is a positive integer; the first type of wireless signal includes first configuration information, and the first configuration information is applicable to the second wireless And the first configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process
  • the first transmitter module 1601 further sends R1 first type signalings in R1 first type time units in the Q1 first type of time units; the R1 first class The time units respectively correspond to R1 first time-frequency resource sub-pools in the Q1 first time-frequency resource sub-pools; the first terminal is in the Q1 first-type time units for the R1 first
  • the monitoring of the class signaling is used by the first terminal to determine whether the Q1 first time-frequency resource sub-pools are occupied; the R1 is a positive integer not greater than the Q1.
  • the first transmitter module 1601 further sends the first type of radio signal in a third time-frequency resource pool; the third time-frequency resource pool is located in a third sub-band; the Q1 The second time-frequency resource sub-pool is in one-to-one correspondence with the Q1 third time-frequency resource sub-pools, and whether any of the second time-frequency resource sub-pools of the Q1 second time-frequency resource sub-pools are occupied is used for determining Whether the third time-frequency resource pool includes a corresponding third time-frequency resource sub-pool.
  • the first transmitter module 1601 further sends P1 second type signalings in P1 second type time units in the Q1 second type of time units; the P1 second type The time units respectively correspond to P1 second time-frequency resource sub-pools in the Q1 second time-frequency resource sub-pools; the first terminal is in the Q1 second-type time units for the P1 second
  • the monitoring of the class signaling is used by the first terminal to determine whether the Q1 second time-frequency resource sub-pools are occupied; the P1 is a positive integer not greater than the Q1.
  • the second transceiver module 1602 receives a third wireless signal; the first type of wireless signal includes second configuration information, and the second configuration information is applicable to the third wireless signal,
  • the second configuration information includes at least one of an occupied frequency domain resource, a modulation and coding state, and a hybrid automatic repeat request process number; the second type of wireless signal is physical layer signaling.
  • the first type of wireless signal includes paging related information.
  • the first transmitter module 1601 further transmits first information; the first information is used to determine a first sub-band set, the first sub-band set includes the first sub-band and The second sub-band; the first information is transmitted over an air interface.
  • the first transmitter module 1601 includes at least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second transceiver module 1602 includes at least the first three of the transmitter/receiver 416, the transmit processor 415, the receive processor 412, and the controller/processor 440 in Embodiment 4.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost equipment such as tablets.
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;所述第一时间资源池与所述第二时间资源池分别位于第一子频带和第二子频带;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池。本申请通过设计用户设备在多个子频带上监测所述第一类无线信号,并根据资源是否被占用确定监测的方式,进而提高非授权频谱上周期性发送的信号性能。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持非授权频谱(Unlicensed Spectrum)上周期性传输的无线信号的传输方法和装置。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。Release 13及Release 14中,非授权频谱上的通信的一个重要特点之一在于需要获得授权频谱的协助,而大量周期性传输的信息,例如系统信息、广播及寻呼信息均在授权频谱上传输,以避免因为LBT的不确定性而导致无法发送的问题。
目前,5G NR(New Radio Access Technology,新无线接入技术)的技术讨论正在进行中,其中一个重要特点就是SA(Stand-Alone,独立部署的)的非授权频谱服务,即没有授权频谱的协助,而SA场景下,上述系统信息、广播及寻呼信息均需要在非授权频谱上传输。
发明内容
针对上述问题的一个简单实现,就是系统信息、广播及寻呼信息均在LBT确定对应频域资源没有被占用的情况下,按周期发送;然而,由于LBT的不确定性,上述周期发送的信息可能在多个预先需要发送的时域位置均未能发送,进而将会给用户设备带来巨大的监测的复杂度,且也会严重降低系统的性能。
针对上述问题,本申请公开了一种解决方案。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于包括:
在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;
其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
作为一个实施例,上述方法的好处在于:所述第一类无线信号在第一子频带和第二子频带上发送,且候选的时域发送位置分别对应所述Q1个第一时频资源子池与Q1个第二时频资源子池,进而提高单位时间内所述第一类无线信号的传输机会;当在一个子频带上的发送因为LBT没有通过而无法执行时,用户设备到另一个子频带上进行监测,进而提高所述第一类无线信号的传输机会和降低所述第一类无线信号的传输延迟。
作为一个实施例,上述方法的另一个好处在于:任一所述第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池,实现用户设备 通过所述第一时频资源子池是否被占用来确定所述第一类无线信号没有被监测到是因为LBT没过还是因为基站本身就没有发送所述第一类无线信号;进而保证用户设备不会将基站没有发送所述第一类无线信号错误判断为基站因为LBT没过而没有发送所述第一类无线信号,以避免用户设备盲目的切换到另一个子频带上去搜索所述第一类无线信号;上述机制保证了所述用户设备在多个子频带上搜索所述第一类无线信号的稳定性和鲁棒性。
根据本申请的一个方面,上述方法的特征在于包括:
分别在Q1个第一类时间单元中监测第一类信令;
其中,针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池。
作为一个实施例,上述方法的好处是:通过所述第一类信令的监测使用户设备确定所述Q1个第一时频资源子池中的哪些被占用,进而对于那些被占用但没有监测到所述第一类无线信号的给定第一时频资源子池,用户设备不会随后到所述给定第一时频资源子池对应的第二时频资源子池中监测所述第一类无线信号。上述方法提高了所述第一类无线信号的传输效率,避免用户设备频繁的在多个子频带上来回跳跃接收所述第一类无线信号。
根据本申请的一个方面,上述方法的特征在于包括:
在第三时频资源池中监测所述第一类无线信号;
其中,所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
作为一个实施例,上述方法的好处是:在第一子频带和第二子频带的基础上再次增加第三子频带,进一步降低LBT对应所述第一类无线信号的传输造成的影响。
根据本申请的一个方面,上述方法的特征在于包括:
分别在Q1个第二类时间单元中监测第二类信令;
其中,针对所述第二类信令的监测被用于确定给定第二时频资源子池是否被占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池。
作为一个实施例,上述方法的好处是:通过所述第二类信令的监测使用户设备确定所述Q1个第二时频资源子池中的哪些被占用,进而对于那些被占用但没有监测到所述第一类无线信号的给定第二时频资源子池,用户设备不会随后到所述给定第二时频资源子池对应的第三时频资源子池中监测所述第一类无线信号。上述方法提高了所述第一类无线信号的传输效率,避免用户设备频繁的在多个子频带上来回跳跃接收所述第一类无线信号。
根据本申请的一个方面,上述方法的特征在于包括:
接收第二无线信号;
其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态(Modulation and Coding Status,调制编码状态)和混合自动重传请求(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号中的至少之一;所述第一类无线信号是物理层信令。
根据本申请的一个方面,上述方法的特征在于包括:
发送第三无线信号;
其中,所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
根据本申请的一个方面,上述方法的特征在于,所述第一类无线信号包括寻呼相关信息。
根据本申请的一个方面,上述方法的特征在于包括:
接收第一信息;
其中,所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
作为一个实施例,上述方法的好处是:通过配置所述第一子频带集合,所述用户设备在所述第一子频带集合中监测所述第一类无线信号,进一步提高所述第一类无线信号的传输机会。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于包括:
在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
根据本申请的一个方面,上述方法的特征在于包括:
分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;
其中,所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述第一终端在所述Q1个第一类时间单元中针对所述R1个第一类信令的监测被所述第一终端用于确定所述Q1个第一时频资源子池是否被占用;所述R1是不大于所述Q1的正整数。
根据本申请的一个方面,上述方法的特征在于包括:
在第三时频资源池中发送所述第一类无线信号;
其中,所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
根据本申请的一个方面,上述方法的特征在于包括:
分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;
其中,所述P1个第二类时间单元分别对应所述Q1个第二时频资源子池中的P1个第二时频资源子池;所述第一终端在所述Q1个第二类时间单元中针对所述P1个第二类信令的监测被所述第一终端用于确定所述Q1个第二时频资源子池是否被占用;所述P1是不大于所述Q1的正整数。
根据本申请的一个方面,上述方法的特征在于包括:
发送第二无线信号;
其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。
根据本申请的一个方面,上述方法的特征在于包括:
接收第三无线信号;
其中,所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
根据本申请的一个方面,上述方法的特征在于,所述第一类无线信号包括寻呼相关 信息。
根据本申请的一个方面,上述方法的特征在于包括:
发送第一信息;
其中,所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
本申请公开了一种被用于无线通信的用户设备,其特征在于包括:
第一接收机模块,在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;
其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还分别在Q1个第一类时间单元中监测第一类信令;针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还在第三时频资源池中监测所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还分别在Q1个第二类时间单元中监测第二类信令;针对所述第二类信令的监测被用于确定给定第二时频资源子池是否被占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述用户设备还包括第一收发机模块,所述第一收发机模块接收第二无线信号;所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述用户设备还包括第一收发机模块,所述第一收发机模块发送第三无线信号;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一类无线信号包括寻呼相关信息。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收第一信息;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
本申请公开了一种被用于无线通信的基站设备,其特征在于包括:
第一发射机模块,在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发射机模块还分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述第一终端在所述Q1个第一类时间单元中针对所述R1个第一类信令的监测被所述第一终端用于确定所述Q1个第一时频资源子池是否被占用;所述R1是不大于所述Q1的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发射机模块还在第三时频资源池中发送所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发射机模块还分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;所述P1个第二类时间单元分别对应所述Q1个第二时频资源子池中的P1个第二时频资源子池;所述第一终端在所述Q1个第二类时间单元中针对所述P1个第二类信令的监测被所述第一终端用于确定所述Q1个第二时频资源子池是否被占用;所述P1是不大于所述Q1的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述基站设备还包括第二收发机模块,所述第二收发机模块发送第二无线信号;所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述基站设备还包括第二收发机模块,所述第二收发机模块接收第三无线信号;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一类无线信号包括寻呼相关信息。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一发射机模块还发送第一信息;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
作为一个实施例,和传统方案相比,本申请具备如下优势:
所述第一类无线信号在第一子频带和第二子频带上发送,且候选的时域发送位置分别对应所述Q1个第一时频资源子池与Q1个第二时频资源子池,上述方案提高单位时间内所述第一类无线信号的传输机会;当在一个子频带上的发送因为LBT没有通过而无法执行时,用户设备到另一个子频带上进行监测,进而提高所述第一类无线信号的传输机会和降低所述第一类无线信号的传输延迟。
任一所述第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相 应的第二时频资源子池,实现用户设备通过所述第一时频资源子池是否被占用来确定所述第一类无线信号没有被监测到是因为LBT没过还是因为基站本身就没有发送所述第一类无线信号;以保证用户设备不会将基站没有发送所述第一类无线信号错误判断为基站因为LBT没过而没有发送所述第一类无线信号,进而避免用户设备盲目的切换到另一个子频带上去搜索所述第一类无线信号;上述机制保证了所述用户设备在多个子频带上搜索所述第一类无线信号的稳定性和鲁棒性。
通过所述第一类信令的监测使用户设备确定所述Q1个第一时频资源子池中的哪些被占用,进而对于那些被占用但没有监测到所述第一类无线信号的给定第一时频资源子池,用户设备不会随后到所述给定第一时频资源子池对应的第二时频资源子池中监测所述第一类无线信号。上述方法提高了所述第一类无线信号的传输效率,避免用户设备频繁的在多个子频带上来回跳跃接收所述第一类无线信号。
通过配置所述第一子频带集合,所述用户设备在所述第一子频带集合中监测所述第一类无线信号,进一步提高所述第一类无线信号的传输机会。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一类无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的第一类信令的流程图;
图6示出了根据本申请的一个实施例的第三无线信号的流程图;
图7示出了根据本申请的一个实施例的目标第一类信令和目标第二类信令的步骤图;
图8示出了根据本申请的一个Q1个给定时频资源子池的示意图;
图9示出了根据本申请的一个第一时频资源池和第二时频资源池的示意图;
图10示出了根据本申请的另一个第一时频资源池和第二时频资源池的示意图;
图11示出了根据本申请的一个第二时频资源池和第三时频资源池的示意图;
图12示出了根据本申请的另一个第二时频资源池和第三时频资源池的示意图;
图13示出了根据本申请的一个目标时间单元和目标时频资源子池的示意图;
图14示出了根据本申请的一个第一子频带集合的示意图;
图15示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图16示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一类无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
作为一个子实施例,所述第一子频带和所述第二子频带在频域上是正交的。
作为该子实施例的一个附属实施例,所述所述第一子频带和所述第二子频带在频域上是正交的是指:所述第一子频带所占用的频域资源与所述第二子频带所占用的频域资源是不交叠的。
作为该子实施例的一个附属实施例,所述所述第一子频带和所述第二子频带在频域上是正交的是指:不存在一个子载波同时属于所述第一子频带和所述第二子频带。
作为一个子实施例,所述第一子频带和所述第二子频带在频域上是部分正交的。
作为该子实施例的一个附属实施例,所述所述第一子频带和所述第二子频带在频域上是部分正交的是指:所述第一子频带所占用的频域资源与所述第二子频带所占用的频域资源是部分交叠的。
作为该子实施例的一个附属实施例,所述所述第一子频带和所述第二子频带在频域上是部分正交的是指:至少存在一个子载波同时属于所述第一子频带和所述第二子频带,且至少存在另一个子载波不同时属于所述第一子频带和所述第二子频带。
作为一个子实施例,所述Q1个第一时频资源子池中的任一第一时频资源子池如果被占用,所述第二时频资源池不包括相应的第二时频资源子池,否则所述第二时频资源池包括相应的第二时频资源子池。
作为一个子实施例,所述用户设备通过能量检测的方式确定所述Q1个第一时频资源子池中的每个第一时频资源子池是否被占用。
作为一个子实施例,所述第一时频资源池由Q2个第一时频资源子池组成,所述Q2个第一时频资源子池包括所述Q1个第一时频资源子池,所述Q2个第一时频资源子池中且所述Q1个第一时频资源子池之外的(Q2-Q1)个所述第一时频资源子池与所述Q1个第二时频资源子池无关;所述Q2是不小于Q1的正整数。
作为一个子实施例,所述Q1个第一时频资源子池在时域的位置与所述用户设备的标识有关。
作为该子实施例的一个附属实施例,所述用户标识是{S-TMSI(SAE Temporary Mobile Subscriber Identity,SAE临时移动用户识别码)、IMSI}中的至少之一;其中SAE(System Architecture Evolution)是系统架构演进。
作为该子实施例的一个附属实施例,所述用户标识是IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)。
作为一个子实施例,所述Q1个第一时频资源子池在时域是周期分部的。
作为一个子实施例,所述Q1个第一时频资源子池在时域的位置均针对所述用户设备在所述第一子频带上的PO(Paging Occasion,寻呼机会)。
作为一个子实施例,所述Q1个第一时频资源子池在时域的位置与所述用户设备在所述第一子频带上检测到的目标无线信号的时域位置有关。
作为该子实施例的一个附属实施例,所述目标无线信号包括同步信号。
作为该附属实施例的一个范例,所述同步信号针对所述第一子频带。
作为该子实施例的一个附属实施例,所述目标无线信号包括PBCH(Physical Broadcasting Channel,物理广播信道)。
作为该附属实施例的一个范例,所述PBCH针对所述第一子频带。
作为一个子实施例,第一时频资源子池#i与第二时频资源子池#i对应,所述第一时频资源子池#i是所述Q1个第一时频资源子池中与所述第二时频资源子池#i对应的第一时频资源子池,所述第二时频资源子池#i是所述Q1个第二时频资源子池中的第i个;所述i是大于0且不大于Q1的正整数;所述第一时频资源子池#i在时域的位置与所述第二时频资源子池#i在时域的位置有关。
作为该子实施例的一个附属实施例,所述所述第一时频资源子池#i在时域的位置与所述第二时频资源子池#i在时域的位置有关是指:所述第一时频资源子池#i位于时隙#K1,所述第二时频资源子池#i位于时隙#K2,所述K1是正整数,所述K2是大于所述K1 的正整数,所述K2与所述K1的差是固定的,或者所述K2与所述K1的差是通过RRC信令配置的。
作为一个子实施例,所述第一类无线信号包括PBCH。
作为一个子实施例,所述第一类无线信号被用于调度系统广播信息。
作为一个子实施例,所述Q1个第一时频资源子池中的任意两个所述第一时频资源子池之间存在至少一个未被占用的多载波符号。
作为一个子实施例,所述Q1个第二时频资源子池中的任意两个所述第二时频资源子池之间存在至少一个未被占用的多载波符号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的所述用户设备。
作为一个子实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持多个频域资源聚合的无线通信。
作为一个子实施例,所述gNB203支持多个频域资源聚合的无线通信。
作为上述两个子实施例的一个附属实施例,本申请中的所述聚合是指Aggregation(聚合)。
作为上述两个子实施例的一个附属实施例,本申请中的所述频域资源是载波(Carrier)。
作为上述两个子实施例的一个附属实施例,本申请中的所述频域资源是BWP(Bandwidth Part,带宽区域)。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的基站。
作为一个子实施例,本申请中的所述第一类无线信号生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第一类无线信号包括NAS(Non-access Stratum,非接入层)信息。
作为一个子实施例,本申请中的所述第一类无线信号生成于所述PHY301,所述第二无线信号包括NAS信息。
作为一个子实施例,本申请中的所述第三无线信号生成于所述MAC子层302。
作为一个子实施例,本申请中的所述第一类信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第二类信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第一信息生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-控制器/处理器440,确定在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-控制器/处理器490,确定在第一时频资源池和第二时频资源池中分别监测第一类无线信号;
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-控制器/处理器440,确定在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解 交织、解扰、解调和物理层控制信令提取等;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490,确定在第一时频资源池和第二时频资源池中分别监测第一类无线信号;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,所述控制器/处理器490被用于确定在第三时频资源池中监测所述第一类无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两 者被用于在第一时频资源池中和第二时频资源池中分别监测第一类无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于分别在Q1个第一类时间单元中监测第一类信令。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在第三时频资源池中监测所述第一类无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于分别在Q1个第二类时间单元中监测第二类信令。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收第二无线信号。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送第三无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收第一信息。
作为一个子实施例,所述控制器/处理器440被用于确定在第一时频资源池和第二时频资源池中的之一发送第一类无线信号。
作为一个子实施例,所述控制器/处理器440被用于确定在第三时频资源池中发送所述第一类无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在第一时频资源池和第二时频资源池中的之一发送第一类无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在第三时频资源池中发送所述第一类无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送第二无线信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收第三无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送第一信息。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区的维持基站。图中,标识为F0的方框、标识为F1的方框、标识为F2的方框和标识为F3的方框中的步骤是可选的。
对于 基站N1,在步骤S10中发送第一信息;在步骤S11中分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;在步骤S12中分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;在步骤S13中在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;在步骤S14中在第三时频资源池中发送所述第一类无线信号;在步骤S15中发送第二无线信号。
对于 用户设备U2,在步骤S20中接收第一信息;在步骤S21中分别在Q1个第一类时间单元中监测第一类信令;在步骤S22中分别在Q1个第二类时间单元中监测第二类信令;在步骤S23中在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;在步骤S24中在第三时频资源池中监测所述第一类无线信号;在步骤S25中接收第二无线信号。
实施例5中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时 频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数;所述用户设备U2针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被所述基站N1占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被所述基站N1占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池;针对所述第二类信令的监测被所述用户设备U2用于确定给定第二时频资源子池是否被所述基站N1占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池;所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和HARQ进程号中的至少之一;所述第一类无线信号是物理层信令;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输;所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述R1是不大于所述Q1的正整数;所述P1个第二类时间单元分别对应所述Q1个第二时频资源子池中的P1个第二时频资源子池;所述P1是不大于所述Q1的正整数。
作为一个子实施例,给定第一类时间单元是所述Q1个第一类时间单元中与所述给定第一时频资源子池对应的第一类时间单元,所述用户设备U2在给定第一类时间单元中监测到所述第一类信令,所述用户设备U2确定所述给定第一时频资源子池被占用。
作为一个子实施例,给定第一类时间单元是所述Q1个第一类时间单元中与所述给定第一时频资源子池对应的第一类时间单元,所述用户设备U2在给定第一类时间单元中未监测到所述第一类信令,所述用户设备U2确定所述给定第一时频资源子池未被占用。
作为一个子实施例,所述基站N1分别在所述Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令,且所述用户设备U2在所述Q1个第一类时间单元中监测出所述R1个第一类信令;所述用户设备U2确认所述Q1个第一时频资源子池中与所述R1个第一类时间单元对应的R1个第一时频资源子池被占用,所述R1是不大于所述Q1的正整数。
作为一个子实施例,针对所述第一类信令的监测在所述第一子频带上被执行。
作为一个子实施例,本申请中的所述监测是指能量检测;接收的能量大于给定阈值所述用户设备U2认为监测到,接收的能量小于给定阈值所述用户设备U2认为未被监测到。
作为该子实施例的一个附属实施例,所述监测针对本申请中的所述第一类信令。
作为该子实施例的一个附属实施例,所述监测针对本申请中的所述第二类信令。
作为一个子实施例,本申请中的所述监测是指CRC校验;接收的无线信号所包括的CRC通过校验,所述用户设备U2认为所述无线信号被监测到,接收的无线信号所包括的CRC没有通过校验,所述用户设备U2认为所述无线信号未被监测到。
作为该子实施例的一个附属实施例,所述监测针对本申请中的所述第一类信令。
作为该子实施例的一个附属实施例,所述监测针对本申请中的所述第二类信令。
作为该子实施例的一个附属实施例,所述监测针对本申请中的所述第一类无线信号。
作为一个子实施例,所述用户设备U2通过能量检测的方式确定所述Q1个第二时频资源子池中的每个第二时频资源子池是否被占用。
作为一个子实施例,所述第二子频带和所述第三子频带在频域上是正交的。
作为一个子实施例,所述第一子频带和所述第三子频带在频域上是正交的。
作为一个子实施例,第二时频资源子池#i与第三时频资源子池#i对应,所述第二时频资源子池#i是所述Q1个第二时频资源子池中的第i个,所述第三时频资源子池#i是 所述Q1个第三时频资源子池中的第i个;所述i是大于0且不大于Q1的正整数;所述第二时频资源子池#i在时域的位置与所述第三时频资源子池#i在时域的位置有关。
作为该子实施例的一个附属实施例,所述所述第二时频资源子池#i在时域的位置与所述第三时频资源子池#i在时域的位置有关是指:所述第二时频资源子池#i位于时隙#K2,所述第三时频资源子池#i位于时隙#K3,所述K2是正整数,所述K3是大于所述K2的正整数,所述K3与所述K2的差是固定的,或者所述K3与所述K2的差是通过RRC信令配置的。
作为一个子实施例,所述Q1个第三时频资源子池中的任意两个所述第三时频资源子池之间存在至少一个未被占用的多载波符号。
作为一个子实施例,本申请中的所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号、SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号、FBMC(Filter Bank MultiCarrier,滤波器组多载波)符号、包含CP(Cyclic Prefix,循环前缀)的OFDM符号、包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩频的正交频分复用)符号中的之一。
作为一个子实施例,给定第二类时间单元是所述Q1个第二类时间单元中与所述给定第二时频资源子池对应的第二类时间单元,所述用户设备U2在给定第二类时间单元中监测到所述第二类信令,所述用户设备U2确定所述给定第二时频资源子池被占用。
作为一个子实施例,给定第二类时间单元是所述Q1个第二类时间单元中与所述给定第二时频资源子池对应的第二类时间单元,所述用户设备U2在给定第二类时间单元中未监测到所述第二类信令,所述用户设备U2确定所述给定第二时频资源子池未被占用。
作为一个子实施例,所述基站N1分别在所述Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令,且所述用户设备U2在所述Q1个第二类时间单元中监测出所述P1个第二类信令;所述用户设备U2确认所述Q1个第二时频资源子池中与所述P1个第二类时间单元对应的P1个第二时频资源子池被占用,所述P1是不大于所述Q1的正整数。
作为一个子实施例,针对所述第二类信令的监测在所述第二子频带上被执行。
作为一个子实施例,所述第一类信令是动态信令。
作为一个子实施例,所述第二类信令是动态信令。
作为上述两个子实施例的一个附属实施例,所述动态信令是DCI(Downlink Control Information,下行控制信息)。
作为上述两个子实施例的一个附属实施例,所述动态信令均被给定身份标识。
作为该附属实施例的一个范例,所述给定身份被用于生成所述动态信令对应的DMRS(Demodulation Reference Signal,解调参考信号)的RS(Reference Signal,参考信号)序列。
作为该附属实施例的一个范例,所述所述动态信令均被给定身份标识是指:目标动态信令是所述Q1个动态信令中的任意一个,所述目标动态信令所包括的CRC(Cyclic Redundancy Check,循环冗余校验)被给定身份加扰。
作为该附属实施例的一个范例,所述给定身份是16个二进制比特。
作为该附属实施例的一个范例,所述给定身份均被用于所述动态信令的扰码。
作为该附属实施例的一个范例,所述给定身份是CC-RNTI(Common Control Radio Network Temporary Identifier,公共控制无线网络临时标识)。
作为该附属实施例的一个范例,所述给定身份被用于标识所述给定身份所对应的动态信令,所述所对应的动态信令被用于指示正整数个多载波符号被所述基站N1占用。
作为该附属实施例的一个范例,所述给定身份被用于标识所述给定身份所对应的动态信令,所述所对应的动态信令被用于指示正整数个时隙被所述基站N1占用。
作为该附属实施例的一个范例,所述给定身份被用于确定所述动态信令对应的搜索 空间(Search Space),所述搜索空间包括多个RE(Resource Element,资源单元)组,相应的指示信息所占用的RE是所述多个RE组中的一个RE组,所述RE组中包括多个RE。
作为该附属实施例的一个范例,所述给定身份是小区公共的。
作为该附属实施例的一个范例,所述给定身份是终端组特定的,所述用户设备U2是所述终端组中的一个终端。
作为一个子实施例,所述第一类信令都是小区公共的(Cell-Specific)。
作为一个子实施例,所述第二类信令都是小区公共的。
作为一个子实施例,所述第一类无线信号是一个下行授权(Grant)。
作为一个子实施例,所述第一类无线信号是针对所述第二无线信号的调度信令。
作为一个子实施例,所述第一类无线信号包括寻呼相关信息。
作为该子实施例的一个附属实施例,所述第一类无线信号被用于调度给定PDSCH(Physical Downlink Shared Channel,物理下行共享信道),所述给定PDSCH被用于传输寻呼相关信息。
作为该子实施例的一个附属实施例,所述寻呼相关信息被用于向所述用户设备U2发送寻呼请求。
作为该子实施例的一个附属实施例,所述用户设备U2是RRC空闲态(Idle)。
作为该子实施例的一个附属实施例,所述用户设备U2是RRC Inactive(非活跃)态。
作为该子实施例的一个附属实施例,所述寻呼相关信息被用于向所述用户设备U2通知系统信息变更。
作为该子实施例的一个附属实施例,所述寻呼相关信息被用于向所述用户设备U2通知接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警)相关信息。
作为该子实施例的一个附属实施例,所述寻呼相关信息被用于向所述用户设备U2通知接收CMAS(Commercial Mobile Alert Service,商业移动告警服务)相关信息。
作为一个子实施例,所述第一子频带集合包括第三子频带。
作为一个子实施例,所述第一子频带集合包括正整数个子频带,所述第一子频带和所述第二子频带均属于所述正整数个子频带。
作为该子实施例的一个附属实施例,所述用户设备U2在所述正整数个子频带上监测所述第一类无线信号。
作为一个子实施例,所述空中接口(Air Interface)是无线的。
作为一个子实施例,所述空中接口包括无线信道。
作为一个子实施例,所述空中接口是基站设备N1和所述用户设备U2之间的接口。
作为一个子实施例,所述空中接口是Uu接口。
作为一个子实施例,所述空中接口对应图2中UE201和NR节点B203之间的无线通道。
作为一个子实施例,所述基站N1在第三时频资源池中的给定第三时频资源子池中发送所述第一类无线信号,所述给定第三时频资源子池与给定第二时频资源子池对应,所述给定第二时频资源子池与给定第一时频资源子池对应;所述基站N1在所述给定第二时频资源子池中不发送所述第一类无线信号,以及所述基站N1在所述给定第一时频资源子池中不发送所述第一类无线信号。
作为该子实施例的一个附属实施例,所述基站N1未占用所述给定第二时频资源子池。
作为该子实施例的一个附属实施例,所述基站N1未占用所述给定第一时频资源子池。
作为该子实施例的一个附属实施例,所述基站N1在所述给定第一时频资源子池所对应的第一类时间单元中未发送第一类信令。
作为该子实施例的一个附属实施例,所述基站N1在所述给定第二时频资源子池所对应的第二类时间单元中未发送第二类信令。
作为一个子实施例,所述第二时频资源池和所述第三时频资源池在时域上是正交的。
作为一个子实施例,本申请中的所述第一类时间单元占用正整数个多载波符号。
作为一个子实施例,本申请中的所述第二类时间单元占用正整数个多载波符号。
作为一个子实施例,本申请中的所述第一类时间单元占用一个时隙。
作为一个子实施例,本申请中的所述第二类时间单元占用一个时隙。
实施例6
实施例6示例了一个第三无线信号的流程图,如附图6所示。在附图6中,基站N3是用户设备U4的服务小区的维持基站。
对于 基站N3,在步骤S30中接收第三无线信号。
对于 用户设备U4,在步骤S40中发送第三无线信号。
实施例6中,所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和HARQ进程号中的至少之一;所述第二类无线信号是物理层信令。
作为一个子实施例,所述第一类无线信号是一个上行授权。
作为一个子实施例,所述第一类无线信号是针对所述第三无线信号的调度信令。
实施例7
实施例7示例了一个目标第一类信令和目标第二类信令的步骤图,如附图7所示;在附图7中,基站N5是用户设备U6的服务小区的维持基站。本实施例是对实施例5中基站N1步骤S11至S14,以及UE U2步骤S21至S24的细化。
对于 用户设备U6
在步骤S60中在目标第一类时间单元中监测目标第一类信令;所述目标第一类信令指示目标第一时频资源子池是否被占用;如果UE U6监测到所述目标第一类信令,所述UE U6执行步骤S601;如果UE U6未监测到所述目标第一类信令,所述UE U6执行步骤S602。对应基站N5侧的步骤,对应步骤S601,基站N5在所述目标第一类时间单元中发送所述目标第一类信令;对应步骤S602,基站N5在所述目标第一类时间单元中未发送所述目标第一类信令。
在步骤S601中,UE U6在所述目标第一时频资源子池中检测第一类无线信号。
在步骤S602中,UE U6在目标第二类时间单元中监测目标第二类信令,所述目标第二类信令指示目标第二时频资源子池是否被占用,所述目标第二时频资源子池对应所述目标第一时频资源子池;如果UE U6监测到所述目标第二类信令,所述UE U6执行步骤S6021;如果UE U6未监测到所述目标第二类信令,所述UE U6执行步骤S6022。对应基站N5侧的步骤,对应步骤S6021,基站N5在所述目标第二类时间单元中发送所述目标第二类信令;对应步骤S6022,基站N5在所述目标第二类时间单元中未发送所述目标第二类信令。
在步骤S6021中,UE U6在所述目标第二时频资源子池中检测第一类无线信号。
在步骤S6022中,UE U6在目标第三时频资源子池中监测第一类无线信号,所述目标第三时频资源子池与所述目标第二时频资源子池对应。
作为一个子实施例,所述UE U6在执行步骤S6022前还需要在目标第三时间单元中检测目标第三类信令,所述第三类信令被用于确定所述目标第三时频资源子池被所述基站N5占用。
作为一个子实施例,所述目标第一时频资源子池未被占用被用于确定所述目标第二时频资源子池属于本申请中的所述第二时频资源池。
作为一个子实施例,所述目标第二时频资源子池未被占用被用于确定所述目标第三时频资源子池属于本申请中的所述第三时频资源池。
作为一个子实施例,所述目标第一时频资源子池是本申请中的所述Q1个第一时频资源子池中的任意一个。
作为一个子实施例,所述目标第二类时间单元是本申请中的所述Q1个第二类时间单 元中所述目标第二类信令所占据的第二类时间单元。
作为一个子实施例,所述步骤S6022仅在本申请中的所述第三子频带存在时出现。
作为一个子实施例,实施例6中的步骤在实施例5中被重复执行了Q1次。
实施例8
实施例8示例了一个Q1个给定时频资源子池的示意图,如附图8所示;所述Q1个给定时频资源子池对应本申请中的所述Q1个第一时频资源子池,或者所述Q1个给定时频资源子池对应本申请中的所述Q1个第二时频资源子池,或者所述Q1个给定时频资源子池对应本申请中的所述Q1个第三时频资源子池。
作为一个子实施例,所述Q1个给定时频资源子池在时域是周期分布的。
作为一个子实施例,给定第二时频资源子池在时域位于相邻的两个所述第一时频资源子池之间,所述给定第二时频资源子池是所述Q1个第二时频资源子池中的任意一个。
作为该子实施例的一个附属实施例,所述给定第二时频资源子池属于本申请中的所述第二时频资源池,所述相邻的两个所述第一时频资源子池中在时域位于所述给定第二时频资源子池之前的所述第一时频资源子池未被占用。
作为一个子实施例,给定第三时频资源子池在时域位于相邻的两个所述第二时频资源子池之间,所述给定第三时频资源子池是所述Q1个第二时频资源子池中的任意一个。
作为该子实施例的一个附属实施例,所述给定第三时频资源子池属于本申请中的所述第三时频资源池,所述相邻的两个所述第二时频资源子池中在时域位于所述给定第三时频资源子池之前的所述第二时频资源子池未被占用。
作为一个子实施例,所述Q1个第一时频资源子池、所述Q1个第二时频资源子池和所述Q1个第三时频资源子池在时域是依次分布的。
作为该子实施例的一个附属实施例,所述Q1个第一时频资源子池中任意两个在时域相邻的所述第一时频资源子池之间的时域资源中所述第二时频资源子池。
作为该子实施例的一个附属实施例,所述Q1个第二时频资源子池中任意两个在时域相邻的所述第二时频资源子池之间的时域资源中所述第三时频资源子池。
实施例9
实施例9示例了一个第一时频资源池和第二时频资源池的示意图,如附图9所示。在附图9中,所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池和Q1个第二时频资源子池一一对应;所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池。图中粗实线框对应的第一时频资源子池未被占用,图中粗虚线框对应的第二时频资源子池属于所述第二时频资源池;双向箭头表示一一对应的关系。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池的时间间隔是本申请中的所述用户设备的一个DRX(Discontinuous Reception,非连续接收)周期。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池分别对应所述用户设备的两个相邻的PO(Paging Occasion,寻呼机会)。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池的时间间隔等于在时域相邻的两个所述第二时频资源子池的时间间隔。
实施例10
实施例10示例了另一个第一时频资源池和第二时频资源池的示意图,如附图10所示。在附图10中,所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池和Q1个第二时频资源子池一一对应;所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池。图中粗实线框对应的第一时频资源子池未被占用,图中粗虚线框对应的第二时频资源子池属于所述第二时频资源池;双向箭头表示一一对应的关系。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池的时间间隔是本申请中的 所述用户设备的一个DRX周期。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池分别对应所述用户设备的两个相邻的PO。
作为该子实施例的一个附属实施例,所述两个相邻的PO参考所述第一子频带上的定时同步和SFN(System Frame Number,系统帧号)。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池的时间间隔等于在时域相邻的两个所述第二时频资源子池的时间间隔。
作为一个子实施例,在时域相邻的两个所述第一时频资源子池之间的时域资源中不存在任意一个所述第二时频资源子池。
实施例11
实施例11示例了一个第二时频资源池和第三时频资源池的示意图,如附图11所示。在附图11中,所述Q1个第二时频资源子池和Q1个第三时频资源子池一一对应;所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。图中粗实线框对应的第二时频资源子池未被占用,图中粗虚线框对应的第三时频资源子池属于所述第三时频资源池;双向箭头表示一一对应的关系。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池的时间间隔是本申请中的所述用户设备的一个DRX周期。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池分别对应所述用户设备的两个在时域平移了Y个时隙的相邻的两个PO,所述Y是正整数。
作为该子实施例的一个附属实施例,所述相邻的两个PO参考所述第一子频带上的定时同步和SFN。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池的时间间隔等于在时域相邻的两个所述第三时频资源子池的时间间隔。
实施例12
实施例12示例了另一个第二时频资源池和第三时频资源池的示意图,如附图12所示。在附图12中,所述Q1个第二时频资源子池和Q1个第三时频资源子池一一对应;所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。图中粗实线框对应的第二时频资源子池未被占用,图中粗虚线框对应的第三时频资源子池属于所述第三时频资源池;双向箭头表示一一对应的关系。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池的时间间隔是本申请中的所述用户设备的一个DRX周期。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池分别对应所述用户设备的两个相邻的PO。
作为该子实施例的一个附属实施例,所述两个相邻的PO参考所述第二子频带上的定时同步和SFN。
作为一个子实施例,在时域相邻的两个所述第二时频资源子池的时间间隔等于在时域相邻的两个所述第三时频资源子池的时间间隔。
作为一个子实施例,在时域相邻的两个所述第儿时频资源子池中不存在任意一个所述第三时频资源子池。
实施例13
实施例13示例了一个目标时间单元和目标时频资源子池的示意图,如附图13所示。在附图13中,本申请中的所述用户设备在所述目标时间单元中监测目标信令,针对所述目标信令的监测被用于确定所述目标时频资源子池是否被占用。
作为一个子实施例,所述目标时间单元是给定第一类时间单元,所述目标信令是所 述用户设备在所述给定第一类时间单元中监测的给定第一类信令,所述目标时间资源子池是所述Q1个第一时频资源子池中与所述给定第一类信令对应的第一时频资源子池;所述给定第一类时间单元是本申请中所述Q1个第一类时间单元中的任意一个。
作为一个子实施例,所述目标时间单元是给定第二类时间单元,所述目标信令是所述用户设备在所述给定第二类时间单元中监测的给定第二类信令,所述目标时间资源子池是所述Q1个第二时频资源子池中与所述给定第二类信令对应的第二时频资源子池;所述给定第二类时间单元是本申请中所述Q1个第二类时间单元中的任意一个。
作为一个子实施例,所述目标时间单元是给定第三类时间单元,所述目标信令是所述用户设备在所述给定第三类时间单元中监测的给定第三类信令,所述目标时间资源子池是所述Q1个第三时频资源子池中与所述给定第三类信令对应的第三时频资源子池;所述给定第三类时间单元是本申请中所述Q1个第三类时间单元中的任意一个。
作为一个子实施例,本申请中的所述基站在发送所述目标信令之前,进行针对目标子频带的信道监测。
作为该子实施例的一个附属实施例,所述信道监测是LBT。
作为该子实施例的一个附属实施例,所述信道监测是CCA(Clear Channel Assessment,空闲信道评估)。
作为该子实施例的一个附属实施例,所述目标信令属于本申请中的所述第一类信令,所述目标子频带是本申请中的所述第一子频带。
作为该子实施例的一个附属实施例,所述目标信令属于本申请中的所述第二类信令,所述目标子频带是本申请中的所述第二子频带。
作为该子实施例的一个附属实施例,所述目标信令属于本申请中的所述第三类信令,所述目标子频带是本申请中的所述第三子频带。
实施例14
实施例14示例了一个第一子频带集合的示意图,如附图14所示。在附图14中,所述第一子频带集合包括本申请中的所述第一子频带、第二子频带和第三子频带中的至少前两者。
作为一个子实施例,所述第一子频带对应一个CC(Component Carrier,分量载波)。
作为一个子实施例,所述第一子频带对应一个BWP。
作为一个子实施例,所述第二子频带对应一个CC。
作为一个子实施例,所述第二子频带对应一个BWP。
作为一个子实施例,所述第三子频带对应一个CC。
作为一个子实施例,所述第三子频带对应一个BWP。
作为一个子实施例,所述第一子频带和所述第二子频带在频域是连续的。
作为一个子实施例,所述第二子频带和所述第三子频带在频域是连续的。
作为一个子实施例,所述第一子频带和所述第二子频带在频域是离散的。
作为一个子实施例,所述第二子频带和所述第三子频带在频域是离散的。
作为一个子实施例,所述第一子频带所对应的中心频点、所述第二子频带所对应的中心频点和所述第三子频带所对应的中心频点在频域依次增加。
作为一个子实施例,所述第一子频带所对应的中心频点、所述第二子频带所对应的中心频点和所述第三子频带所对应的中心频点在频域依次减少。
作为一个子实施例,所述第一子频带集合在所述第一子频带、所述第二子频带和所述第三子频带之外还包括其它的子频带。
实施例15
实施例15示例了一个UE中的处理装置的结构框图,如附图15所示。附图15中,UE处理装置1500主要由第一接收机模块1501和第一收发机模块1502组成。其中,所述第一收发机模块1502是可选的。
第一接收机模块1501,在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;
第一收发机模块1502,接收第二无线信号;
实施例15中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数;所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。
作为一个子实施例,所述第一接收机模块1501还分别在Q1个第一类时间单元中监测第一类信令;针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池。
作为一个子实施例,所述第一接收机模块1501还在第三时频资源池中监测所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
作为一个子实施例,所述第一接收机模块1501还分别在Q1个第二类时间单元中监测第二类信令;针对所述第二类信令的监测被用于确定给定第二时频资源子池是否被占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池。
作为一个子实施例,所述第一收发机模块1502发送第三无线信号;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
作为一个子实施例,所述第一类无线信号包括寻呼相关信息。
作为一个子实施例,所述第一接收机模块1501还接收第一信息;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
作为一个子实施例,所述第一接收机模块1501包括实施例4中的接收器456、接收处理器452、控制器/处理器490中的至少前二者。
作为一个子实施例,所述第二收发机模块1502包括实施例4中的接收器/发射器456、接收处理器452、发射处理器455、控制器/处理器490中的至少前三者。
实施例16
实施例16示例了一个基站设备中的处理装置的结构框图,如附图16所示。附图16中,基站设备处理装置1600主要由第一发射机模块1601和第二收发机模块1602组成。其中,所述第二收发机模块1602是可选的。
第一发射机模块1601,在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
第二收发机模块1602,发送第二无线信号;
实施例16中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被 用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数;所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。
作为一个子实施例,所述第一发射机模块1601还分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述第一终端在所述Q1个第一类时间单元中针对所述R1个第一类信令的监测被所述第一终端用于确定所述Q1个第一时频资源子池是否被占用;所述R1是不大于所述Q1的正整数。
作为一个子实施例,所述第一发射机模块1601还在第三时频资源池中发送所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
作为一个子实施例,所述第一发射机模块1601还分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;所述P1个第二类时间单元分别对应所述Q1个第二时频资源子池中的P1个第二时频资源子池;所述第一终端在所述Q1个第二类时间单元中针对所述P1个第二类信令的监测被所述第一终端用于确定所述Q1个第二时频资源子池是否被占用;所述P1是不大于所述Q1的正整数。
作为一个子实施例,所述第二收发机模块1602接收第三无线信号;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
作为一个子实施例,所述第一类无线信号包括寻呼相关信息。
作为一个子实施例,所述第一发射机模块1601还发送第一信息;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
作为一个子实施例,所述第一发射机模块1601包括实施例4中的发射器416、发射处理器415、控制器/处理器440中的至少前二者。
作为一个子实施例,所述第二收发机模块1602包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、控制器/处理器440中的至少前三者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于包括:
    在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;
    其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
  2. 根据权利要求1所述的方法,其特征在于包括:
    分别在Q1个第一类时间单元中监测第一类信令;或者分别在Q1个第二类时间单元中监测第二类信令;或者接收第一信息;
    其中,针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池;针对所述第二类信令的监测被用于确定给定第二时频资源子池是否被占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
  3. 根据权利要求1所述的方法,其特征在于包括:
    在第三时频资源池中监测所述第一类无线信号;
    其中,所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
  4. 根据权利要求1所述的方法,其特征在于包括:
    接收第二无线信号;或者发送第三无线信号;
    其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
  5. 根据权利要求1所述的方法,其特征在于,所述第一类无线信号包括寻呼相关信息。
  6. 一种被用于无线通信的基站中的方法,其特征在于包括:
    在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
    其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
  7. 根据权利要求6所述的方法,其特征在于包括:
    分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;或者分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;或者发送第一信息;
    其中,所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述第一终端在所述Q1个第一类时间单元中针对所述R1个第一类信令的监测被所述第一终端用于确定所述Q1个第一时频资源子池是否被占用;所述R1是不大于所述Q1的正整数;所述P1个第二类时间单元分别对应所述Q1个第二时频资源子 池中的P1个第二时频资源子池;所述第一终端在所述Q1个第二类时间单元中针对所述P1个第二类信令的监测被所述第一终端用于确定所述Q1个第二时频资源子池是否被占用;所述P1是不大于所述Q1的正整数;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
  8. 根据权利要求6所述的方法,其特征在于包括:
    在第三时频资源池中发送所述第一类无线信号;
    其中,所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
  9. 根据权利要求6所述的方法,其特征在于包括:
    发送第二无线信号;或者接收第三无线信号;
    其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
  10. 根据权利要求6所述的方法,其特征在于,所述第一类无线信号包括寻呼相关信息。
  11. 一种被用于无线通信的用户设备,其特征在于包括:
    第一接收机模块,在第一时频资源池中和第二时频资源池中分别监测第一类无线信号;
    其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述Q1是正整数。
  12. 根据权利要求11所述的用户设备,其特征在于包括:
    所述第一接收模块分别在Q1个第一类时间单元中监测第一类信令;
    或者所述第一接收模块分别在Q1个第二类时间单元中监测第二类信令;
    或者所述第一接收模块接收第一信息;
    其中,针对所述第一类信令的监测被用于确定给定第一时频资源子池是否被占用,所述给定第一时频资源子池是所述Q1个第一时频资源子池中与所述第一类信令对应的第一时频资源子池;针对所述第二类信令的监测被用于确定给定第二时频资源子池是否被占用,所述给定第二时频资源子池是所述Q1个第二时频资源子池中与所述第二类信令对应的第二时频资源子池;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
  13. 根据权利要求11所述的用户设备,其特征在于,所述第一接收机模块在第三时频资源池中监测所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
  14. 根据权利要求11所述的用户设备,其特征在于包括:
    第一收发机模块,接收第二无线信号;或者发送第三无线信号;
    其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令。;其中,所述第一类无线信 号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
  15. 根据权利要求11所述的用户设备,其特征在于,所述第一类无线信号包括寻呼相关信息。
  16. 一种被用于无线通信的基站设备,其特征在于包括:
    第一发射机模块,在第一时频资源池和第二时频资源池中的之一发送第一类无线信号;
    其中,所述第一时频资源池与所述第二时频资源池分别位于第一子频带和第二子频带,所述第一时频资源池与所述第二时频资源池在时域上是正交的;所述第一时频资源池包括Q1个第一时频资源子池,所述Q1个第一时频资源子池与Q1个第二时频资源子池一一对应,所述Q1个第一时频资源子池中的任一第一时频资源子池是否被占用被用于确定所述第二时频资源池是否包括相应的第二时频资源子池;所述第一类无线信号的接收者包括第一终端;所述Q1是正整数。
  17. 根据权利要求16所述的基站设备,其特征在于包括:
    所述第一发射机模块分别在Q1个第一类时间单元中的R1个第一类时间单元中发送R1个第一类信令;
    或者所述第一发射机模块分别在Q1个第二类时间单元中的P1个第二类时间单元中发送P1个第二类信令;
    或者所述第一发射机模块发送第一信息;
    其中,所述R1个第一类时间单元分别对应所述Q1个第一时频资源子池中的R1个第一时频资源子池;所述第一终端在所述Q1个第一类时间单元中针对所述R1个第一类信令的监测被所述第一终端用于确定所述Q1个第一时频资源子池是否被占用;所述R1是不大于所述Q1的正整数;所述P1个第二类时间单元分别对应所述Q1个第二时频资源子池中的P1个第二时频资源子池;所述第一终端在所述Q1个第二类时间单元中针对所述P1个第二类信令的监测被所述第一终端用于确定所述Q1个第二时频资源子池是否被占用;所述P1是不大于所述Q1的正整数;所述第一信息被用于确定第一子频带集合,所述第一子频带集合包括所述第一子频带和所述第二子频带;所述第一信息通过空中接口传输。
  18. 根据权利要求16所述的基站设备,其特征在于,所述第一发射机模块在第三时频资源池中发送所述第一类无线信号;所述第三时频资源池位于第三子频带;所述Q1个第二时频资源子池与Q1个第三时频资源子池一一对应,所述Q1个第二时频资源子池中的任一第二时频资源子池是否被占用被用于确定所述第三时频资源池是否包括相应的第三时频资源子池。
  19. 根据权利要求16所述的方法,其特征在于包括:
    第二收发机模块,发送第二无线信号;或者接收第三无线信号;
    其中,所述第一类无线信号包括第一配置信息,所述第一配置信息适用于所述第二无线信号,所述第一配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第一类无线信号是物理层信令;所述第一类无线信号包括第二配置信息,所述第二配置信息适用于所述第三无线信号,所述第二配置信息包括所占用的频域资源、调制编码状态和混合自动重传请求进程号中的至少之一;所述第二类无线信号是物理层信令。
  20. 根据权利要求16所述的基站设备,其特征在于,所述第一类无线信号包括寻呼相关信息。
PCT/CN2018/122986 2017-12-26 2018-12-24 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019128902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/830,300 US11523371B2 (en) 2017-12-26 2020-03-26 Method and device in UE and base station for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711429636.8A CN109963341B (zh) 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置
CN201711429636.8 2017-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/830,300 Continuation US11523371B2 (en) 2017-12-26 2020-03-26 Method and device in UE and base station for wireless communication

Publications (1)

Publication Number Publication Date
WO2019128902A1 true WO2019128902A1 (zh) 2019-07-04

Family

ID=67021830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122986 WO2019128902A1 (zh) 2017-12-26 2018-12-24 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11523371B2 (zh)
CN (1) CN109963341B (zh)
WO (1) WO2019128902A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203351B (zh) * 2019-07-08 2022-11-11 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11166255B2 (en) * 2019-12-03 2021-11-02 Lg Electronics Inc. Monitoring a paging on an unlicensed band
CN113950105B (zh) * 2020-07-15 2024-06-11 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154854A1 (en) * 2007-06-15 2008-12-24 Huawei Technologies Co., Ltd. Method and apparatus for assigning resources in a wireless system with multiple regions
CN101527962A (zh) * 2008-03-03 2009-09-09 中兴通讯股份有限公司 一种资源分配的方法
US20170127444A1 (en) * 2014-07-03 2017-05-04 Sharp Kabushiki Kaisha Base station apparatus and terminal device
CN107113732A (zh) * 2014-12-22 2017-08-29 微软技术许可有限责任公司 信道感测增强

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8812680B2 (en) * 2011-09-14 2014-08-19 Qualcomm Incorporated Methods and apparatus for peer discovery interference management in a wireless wide area network
US9629166B2 (en) * 2012-05-11 2017-04-18 Qualcomm Incorporated Coexistence between legacy carrier types and new carrier types
US9992652B2 (en) * 2014-09-11 2018-06-05 Qualcomm Incorporated Group priority handling for wireless communication
WO2016085379A1 (en) * 2014-11-24 2016-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception in a determined third set of time-frequency resources
WO2017156973A1 (zh) * 2016-03-18 2017-09-21 广东欧珀移动通信有限公司 用于d2d通信的方法和d2d设备
WO2017193365A1 (en) * 2016-05-13 2017-11-16 Huizhou Tcl Mobile Communication Co., Ltd Uplink transmission methods, resource assignment methods, user equipment, and base stations using unlicensed spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154854A1 (en) * 2007-06-15 2008-12-24 Huawei Technologies Co., Ltd. Method and apparatus for assigning resources in a wireless system with multiple regions
CN101527962A (zh) * 2008-03-03 2009-09-09 中兴通讯股份有限公司 一种资源分配的方法
US20170127444A1 (en) * 2014-07-03 2017-05-04 Sharp Kabushiki Kaisha Base station apparatus and terminal device
CN107113732A (zh) * 2014-12-22 2017-08-29 微软技术许可有限责任公司 信道感测增强

Also Published As

Publication number Publication date
US11523371B2 (en) 2022-12-06
CN109963341A (zh) 2019-07-02
CN109963341B (zh) 2020-10-02
US20200229147A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2019109362A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174490A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019104470A1 (zh) 一种被用于非授权频谱的基站设备中的方法和装置
WO2019210512A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2019128902A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020134908A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110012540B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20190289637A1 (en) Method and Device in UE and Base Station
CN110350954B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018082519A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170058A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018095199A1 (zh) 一种无线通信中的方法和装置
WO2019023938A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 25/09/2020 )

122 Ep: pct application non-entry in european phase

Ref document number: 18894624

Country of ref document: EP

Kind code of ref document: A1