WO2019023938A1 - 一种被用于无线通信的用户、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户、基站中的方法和装置 Download PDF

Info

Publication number
WO2019023938A1
WO2019023938A1 PCT/CN2017/095472 CN2017095472W WO2019023938A1 WO 2019023938 A1 WO2019023938 A1 WO 2019023938A1 CN 2017095472 W CN2017095472 W CN 2017095472W WO 2019023938 A1 WO2019023938 A1 WO 2019023938A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
wireless signal
band resource
information
resource
Prior art date
Application number
PCT/CN2017/095472
Other languages
English (en)
French (fr)
Inventor
蒋琦
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201780092127.2A priority Critical patent/CN110832905B/zh
Priority to CN202111038249.8A priority patent/CN113840344A/zh
Priority to PCT/CN2017/095472 priority patent/WO2019023938A1/zh
Priority to CN202111018219.0A priority patent/CN113840343B/zh
Publication of WO2019023938A1 publication Critical patent/WO2019023938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a method and apparatus for transmitting wireless signals supporting cross-carrier scheduling.
  • one UE In the LTE (Long-Term Evolution) system, one UE (User Equipment) is simultaneously served by multiple serving cells (Serving Cell).
  • One of the plurality of serving cells is used as a PCell (Primary Cell) of the UE for transmitting system information and performing random access; and other cells are used as SCell (Secondary Cell) for data. transmission.
  • PCell Primary Cell
  • SCell Secondary Cell
  • the UE needs to replace the PCell, the UE needs to trigger a process of inter-cell HO (Handover, handover) or cell reselection.
  • inter-cell distribution ie inter-cell interference
  • the inter-cell HO or cell considering the inter-cell HO or cell.
  • the upper layer reconfiguration of the RRC (Radio Resource Control) and the Packet Data Convergence Protocol (PDCP) results in a low efficiency and a large delay in the PCell handover procedure.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • the present application discloses a solution.
  • the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station and vice versa.
  • the features in the embodiments and embodiments of the present application may be Intention to each other.
  • the present application discloses a method for use in a user equipment for wireless communication, comprising:
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment stops receiving on the first frequency band resource Said first type of information, said user equipment receiving at least one of said first type of information on said second frequency band resource; said first frequency band resource and said second frequency band resource corresponding to a same MAC entity Or the second wireless signal is generated by a physical layer.
  • the foregoing method has the following advantages: the cell corresponding to the first frequency band resource is the current PCell of the user equipment, and the cell corresponding to the second frequency band resource is a new PCell that the user equipment wishes to switch; Through the second wireless signal, the user equipment initiates handover for the PCell at the physical layer without triggering the high-level process, thereby reducing the delay, improving the speed of the cell handover, and improving the overall performance of the system.
  • the method is characterized in that the cell corresponding to the second frequency band resource is the current SCell of the user equipment, thereby replacing the SCell with the PCell of the user equipment; Compared with the current PCell and SCell, the above method is faster, more efficient, and easier to implement than the existing LTE PCell.
  • one of the application scenarios of the foregoing method is: when the beamforming is introduced by the system, the inter-cell interference situation is more complicated and the change is faster; the user equipment is more likely to be found in all services.
  • the quality of the radio channel of the PCell is not good and the quality of the radio channel of one or more SCells is good.
  • the SCell will be more efficient. Select to improve transmission efficiency and avoid unnecessary delays caused by high-level processing.
  • the method includes the following:
  • the first information is used to determine the K frequency band resources, and the second frequency band resource is one of the K frequency band resources, and the measurement for the K target wireless signals is used to The second frequency band resource is determined from the K frequency band resources, and the K is a positive integer.
  • the foregoing method has the following advantages: the base station configures the K frequency band resources for the user equipment, and the K frequency band resources correspond to PCells that the user equipment can select; the foregoing manner helps the base station to flexibly configure candidate PCells.
  • the number and the occupied frequency band resources, and by configuring the K frequency band resources, effectively reduce the number of serving cells that can be used by the user equipment to be used as the PCell, thereby reducing the complexity of the user equipment to implement dynamic handover of the PCell.
  • the second wireless signal is used to determine that physical layer signaling for scheduling a first target frequency band resource is transmitted on the second frequency band resource.
  • the foregoing method is characterized in that, after the user equipment sends the second wireless signal, the physical layer signaling of the user equipment for scheduling the first target frequency band resource, that is, is used to schedule the first
  • the DCI of the target band resource is transmitted on the second band resource, that is, the user equipment switches to the detected better SCell to detect the downlink control signaling, thereby accelerating the switching speed of the PCell and improving the efficiency.
  • the method includes the following:
  • the second information is used to determine that physical layer signaling for scheduling the first target frequency band resource is transmitted on the second target frequency band resource.
  • the base station configures, by using the second information, a carrier that may be used for scheduling physical layer signaling of the first target frequency band resource, that is, a second target frequency band resource; currently, the LTE system, the first The target frequency band resource (scheduled carrier) is in one-to-one correspondence with the second target frequency band resource (transmitting the scheduled carrier).
  • the second target frequency band resource may be a group of carriers, and then the PCell is flexibly switched.
  • the physical layer signaling for the first target frequency band resource can also be flexibly switched between multiple carriers without introducing a process of RRC reconfiguration.
  • the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the above method is characterized in that: when the K frequency bands are used as When the candidate PCell group of the user equipment is used, and is used for dynamic handover of the PCell, the K frequency band resources may all send scheduling for the second target frequency band resource, thereby increasing scheduling flexibility, and avoiding RRC heavy after PCell dynamic switching.
  • the process of matching reduces the high-level delay.
  • the first measurement result satisfies the first condition
  • the user equipment sends the second wireless signal
  • the first measurement result is for the first wireless signal The result of the measurement.
  • the method is characterized in that the user equipment determines, by using the first measurement result, whether the PCell needs to be dynamically switched.
  • the method includes the following:
  • the third wireless signal is used to determine at least one of ⁇ first terrestrial public mobile network identity, second terrestrial public mobile network identity, first measurement result ⁇ ; the first terrestrial public mobile network identifier uniquely corresponds The first frequency band resource, the second land public mobile network identifier uniquely corresponding to the second frequency band resource, and the first measurement result is a result of the measurement for the first wireless signal.
  • the above method is characterized in that the third wireless signal is used to further report the identification and measurement results for the first frequency band resource as a reference for the PCell dynamic handover decision.
  • the present application discloses a method in a base station used for wireless communication, comprising:
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the sender of the second wireless signal in the first frequency band Stopping receiving the first type of information on the resource, the sender of the second wireless signal receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and The second frequency band resource corresponds to the same MAC entity, or the second wireless signal is generated by the physical layer.
  • the method includes the following:
  • the first information is used to determine the K frequency band resources, and the second frequency band resource is one of the K frequency band resources, and the measurement for the K target wireless signals is used to The second frequency band resource is determined from the K frequency band resources, and the K is a positive integer.
  • the second wireless signal is used to determine that physical layer signaling for scheduling a first target frequency band resource is transmitted on the second frequency band resource.
  • the method includes the following:
  • the second information is used to determine that physical layer signaling for scheduling the first target frequency band resource is transmitted on the second target frequency band resource.
  • the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the first measurement result satisfies the first condition
  • the base station device receives the second wireless signal
  • the first measurement result is for the first wireless signal The result of the measurement.
  • the method includes the following:
  • the third wireless signal is used to determine at least one of ⁇ first terrestrial public mobile network identity, second terrestrial public mobile network identity, first measurement result ⁇ ; the first terrestrial public mobile network identifier uniquely corresponds The first frequency band resource, the second land public mobile network identifier uniquely corresponding to the second frequency band resource, and the first measurement result is a result of the measurement for the first wireless signal.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • a second receiver module receiving the first type of information on the second frequency band resource
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment is on the first frequency band resource Stop receiving the first type of information, the user equipment receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and the second frequency band resource are the same A MAC entity, or the second wireless signal is generated by a physical layer.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver module further receives first information, and respectively receives K target wireless signals on K frequency band resources; the first Information is used to determine the K frequency band resources, the second frequency band resource is one of the K frequency band resources, and measurements for the K target wireless signals are used for the K frequency band resources Determining the second band resource, the K being a positive integer.
  • the user equipment used for wireless communication is characterized in that the second wireless signal is used to determine that physical layer signaling for scheduling a first target frequency band resource is transmitted on the second frequency band resource. .
  • the above user equipment used for wireless communication is characterized in that the first receiver module further receives second information; the second information is used to determine a physics for scheduling a first target frequency band resource Layer signaling is transmitted on the second target band resource.
  • the foregoing user equipment used for wireless communication is characterized in that the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the foregoing user equipment used for wireless communication is characterized in that the first measurement result satisfies the first condition, the user equipment sends the second wireless signal, and the first measurement result is for the first The result of the measurement of a wireless signal.
  • the user equipment used for wireless communication is characterized in that the first transmitter module further transmits a third wireless signal; the third wireless signal is used to determine ⁇ first land public mobile network identifier At least one of a second terrestrial public mobile network identity, a first measurement result; the first terrestrial public mobile network identity uniquely corresponding to the first frequency band resource, and the second terrestrial public mobile network identity uniquely corresponding to the a second frequency band resource, the first measurement result being a result of the measuring of the first wireless signal.
  • the present application discloses a base station device used for wireless communication, which includes:
  • a second transmitter module transmitting the first wireless signal on the first frequency band resource
  • a third receiver module that receives the second wireless signal
  • a third transmitter module that transmits the first type of information on the second frequency band resource
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the sender of the second wireless signal in the first frequency band Stopping receiving the first type of information on the resource, the sender of the second wireless signal receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and The second frequency band resource corresponds to the same MAC entity, or the second wireless signal is generated by the physical layer.
  • the base station device used for wireless communication is characterized in that the second transmitter module further transmits first information, and separately transmits K target wireless signals on K frequency band resources; the first Information is used to determine the K frequency band resources, the second frequency band resource is one of the K frequency band resources, and measurements for the K target wireless signals are used for the K frequency band resources Determining the second band resource, the K being a positive integer.
  • the base station device used for wireless communication is characterized in that the second wireless signal is used to determine that physical layer signaling for scheduling a first target frequency band resource is transmitted on the second frequency band resource. .
  • the base station device used for wireless communication is characterized in that the second transmitter module further transmits second information; the second information is used to determine a physics for scheduling a first target band resource. Layer signaling is transmitted on the second target band resource.
  • the base station device used for wireless communication is characterized in that the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the base station device used for wireless communication is characterized in that the first measurement result satisfies a first condition, the user equipment sends the second wireless signal, and the first measurement result is for the first The result of the measurement of a wireless signal.
  • the base station device used for wireless communication is characterized in that the third receiver module further receives a third wireless signal; the third wireless signal is used to determine ⁇ first terrestrial public mobile network identity At least one of a second terrestrial public mobile network identity, a first measurement result; the first terrestrial public mobile network identity uniquely corresponding to the first frequency band resource, and the second terrestrial public mobile network identity uniquely corresponding to the a second frequency band resource, the first measurement result being a result of the measuring of the first wireless signal.
  • the present application has the following advantages compared with the conventional solution:
  • the user equipment initiates handover for the PCell at the physical layer without triggering the high-level flow, thereby reducing the delay and improving the speed of the cell handover, so as to improve the overall performance of the system.
  • the base station configures the K frequency band resources for the user equipment, where the K frequency band resources correspond to a PCell group that the user equipment can select; the foregoing manner helps the base station to flexibly configure the candidate PCell.
  • the number of carriers searched by the user equipment can be reduced, and the implementation complexity of the PCell dynamic handover is reduced, when the user equipment searches for the PCell group to implement dynamic handover of the PCell.
  • the base station flexibly configures a carrier that may be generated by physical layer signaling for scheduling the first target frequency band resource, that is, a second target frequency band resource; and the second target frequency band resource may be a group of carriers, and further
  • the physical layer signaling for the first target band resource can also be flexibly switched between multiple carriers without introducing a process of RRC reconfiguration.
  • FIG. 1 shows a flow chart of a first wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a given user equipment according to an embodiment of the present application
  • Figure 5 illustrates a flow diagram of transmission of first information in accordance with one embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first target band resource and a second target band resource according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing a first measurement result and a first condition according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of a second measurement and a second condition in accordance with one embodiment of the present application
  • Figure 9 illustrates a processing device for use in a user equipment in accordance with one embodiment of the present application. Block diagram of the structure
  • FIG. 10 shows a block diagram of a structure for a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first wireless signal, as shown in FIG.
  • the user equipment in the present application receives a first wireless signal on a first frequency band resource, secondly transmits a second wireless signal, and then receives first type information on a second frequency band resource; A measurement of a wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment stops receiving the first type of information on the first frequency band resource, The user equipment receives at least one of the first type of information on the second frequency band resource; the first frequency band resource and the second frequency band resource correspond to a same MAC entity, or the second Wireless signals are generated by the physical layer.
  • the first type of information includes at least one of ⁇ synchronization sequence, physical layer broadcast information, high layer broadcast information ⁇ .
  • the synchronization sequence includes ⁇ NR-PSS (New RAT Primary Sychronization Sequence), NR-SSS (New RAT Secondary Sychronization Sequence) At least one of] ⁇ .
  • NR-PSS New RAT Primary Sychronization Sequence
  • NR-SSS New RAT Secondary Sychronization Sequence
  • the synchronization sequence includes at least one of a ⁇ pseudo-random sequence, a Zadoff-Chu sequence ⁇ .
  • the physical layer broadcast information includes an MIB (Master Information Block).
  • MIB Master Information Block
  • the physical layer broadcast information is transmitted on a PBCH (Physical Broadcast Channel), or the physical layer broadcast information is transmitted on an NR-PBCH (New Radio Access Technology Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • NR-PBCH New Radio Access Technology Physical Broadcast Channel
  • the high-level broadcast information includes an SIB (System Information) Block, system information block).
  • SIB System Information Block
  • the high layer broadcast information is transmitted on a physical layer data channel (i.e., a channel capable of carrying physical layer data).
  • a physical layer data channel i.e., a channel capable of carrying physical layer data.
  • the first frequency band resource and the second frequency band resource in the present application are respectively allocated to a first serving cell and a second serving cell.
  • the first serving cell and the second serving cell are respectively PCell and SCell.
  • the user equipment performs a security encryption operation on the first serving cell before transmitting the second wireless signal.
  • the user equipment sends and receives Non-Access Stratum (NAS) information on the first serving cell before transmitting the second radio signal.
  • NAS Non-Access Stratum
  • the user equipment performs mobility related operations on the first serving cell before transmitting the second wireless signal.
  • the second serving cell is accessed by the user equipment after accessing the first serving cell.
  • the first frequency band resource and the second frequency band resource in the present application are respectively one carrier.
  • the first frequency band resource and the second frequency band resource in the present application are one CC (Component Carrier).
  • the first frequency band resource in the application corresponds to the first identifier
  • the second frequency band resource corresponds to the second identifier, where the first identifier and the second identifier are different.
  • the first identifier is a PCID (Physical Cell Identity)
  • the second identifier is a PCID
  • the first identifier is a ServCellIndex
  • the second identifier is a ServCellIndex
  • the second wireless signal is generated by the physical layer, and the second wireless signal is a UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the second wireless signal is generated by the physical layer, and the second wireless signal is a PRACH (Physical Random Access Channel). Random access channel), or the second wireless signal is an NR-PRACH (NR-PRACH, new radio access technology physical random access channel).
  • PRACH Physical Random Access Channel
  • NR-PRACH new radio access technology physical random access channel
  • the generating of the second wireless signal by the physical layer means that the second wireless signal is used for physical layer random access.
  • the generating of the second wireless signal by the physical layer means that the second wireless signal is dynamic.
  • the user equipment does not trigger RRC reestablishment (Reestablish) between performing "receive first radio signal on first frequency band resource” and performing "receive first type information on second frequency band resource”.
  • the user equipment does not trigger RRC reconfiguration between performing "receiving the first radio signal on the first frequency band resource” and performing "receiving the first type information on the second frequency band resource” .
  • the user equipment does not trigger PDCP reconstruction between performing "receive first radio signal on first frequency band resource” and performing "receive first type information on second frequency band resource”.
  • the first wireless signal includes at least one of a ⁇ SS (Synchronization Sequence) block and a CSI-RS (Channel State Information Reference Signal).
  • a ⁇ SS Synchronization Sequence
  • CSI-RS Channel State Information Reference Signal
  • the first radio signal includes at least one of a ⁇ PDCCH (Physical Downlink Control Channel) and a NR-PDCCH (New RAT PDCCH).
  • a ⁇ PDCCH Physical Downlink Control Channel
  • a NR-PDCCH New RAT PDCCH
  • the third frequency band resource corresponds to the first frequency band resource
  • the fourth frequency band resource corresponds to the second frequency band resource
  • the user equipment sends the second wireless signal on the fourth frequency band resource.
  • the first frequency band resource and the second frequency band resource are both downlink frequency band resources
  • the third frequency band resource and the fourth frequency band resource are both uplink frequency band resources
  • the first frequency band resource is equal to the third frequency band resource
  • the second frequency band resource is equal to the fourth frequency band resource
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All user IP (Internet The Protocal (Internet Protocol) packet is transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports cross carrier scheduling.
  • the gNB 203 supports cross-carrier scheduling.
  • the UE 201 supports CA (Carrier Aggregation) scheduling.
  • the gNB 203 supports CA scheduling.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels. The MAC sublayer 302 is also responsible for allocating various wireless in a cell between UEs. Electrical resources (for example, resource blocks). The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated in the MAC sublayer 302.
  • the second wireless signal in the present application terminates at the PHY 301.
  • the second wireless signal in the present application terminates at the MAC sublayer 302.
  • the first information in the present application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the RRC sublayer 306.
  • the third wireless signal in the present application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a band processor 471, a transmitter/receiver 416, and an antenna 420.
  • the user equipment includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a band processor 441, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • the upper layer packet arrives at the controller/processor 440, which provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels,
  • the L2 layer protocol for the user plane and the control plane is implemented; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling air interface resources corresponding to the transmission requirements;
  • a band processor 471 determining first information, determining second information, and determining whether to transmit the first type of information on the second band resource based on the second wireless signal; and transmitting the result to the controller/processor 440;
  • - Transmit processor 415 receives the output bit stream of controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • Transmitter 416 is operative to convert the baseband signals provided by transmit processor 415 into radio frequency signals and transmit them via antenna 420; each transmitter 416 samples the respective input symbol streams to obtain a respective sampled signal stream. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment may include:
  • Receiver 456 for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • a band processor 441 determining first information, determining second information, and determining whether to trigger transmission of the second wireless signal based on measurements for the first wireless signal; and transmitting the result to controller/processor 490 ;
  • the controller/processor 490 receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the user equipment may include:
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression, encryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels, Implementing an L2 layer protocol for the user plane and the control plane; the upper layer packet includes data or control information;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • the memory 480 can be a computer readable medium;
  • a band processor 441 determining first information, determining second information, and determining whether to trigger transmission of the second wireless signal based on measurements for the first wireless signal; and transmitting the result to controller/processor 490 ;
  • the transmit processor 455 receives the output bit stream of the controller/processor 490, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling generation, etc.
  • L1 layer ie, the physical layer
  • various signal transmission processing functions for the L1 layer including coding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling generation, etc.
  • Transmitter 456 is operative to convert the baseband signals provided by transmit processor 455 into radio frequency signals and transmit them via antenna 460; each transmitter 456 samples the respective input symbol streams to obtain a respective sampled signal stream. Each transmitter 456 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on the respective sample streams to obtain an uplink signal.
  • the processing related to the base station device (410) may include:
  • Receiver 416 is configured to convert the radio frequency signal received through the antenna 420 into a baseband signal and provide it to the receiving processor 412;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • a band processor 471 determining first information, determining second information, and determining whether to transmit the first type of information on the second band resource based on the second wireless signal; and transmitting the result to the controller/processor 440;
  • the controller/processor 440 receives the bit stream output by the receive processor 412, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation.
  • the controller/processor 440 can be associated with a memory 430 that stores program codes and data.
  • Memory 430 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory The memory and the computer program code are configured to be used with the at least one processor, the UE 450 device at least: receiving a first wireless signal on a first frequency band resource, transmitting a second wireless signal, in a second frequency band resource Receiving a first type of information; a measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment in the first frequency band Stop receiving the first type of information on the resource, the user equipment receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and the second frequency band resource Corresponding to the same MAC entity, or the second wireless signal is generated by the physical layer.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in a first frequency band resource Receiving a first wireless signal, transmitting a second wireless signal, receiving first type information on a second frequency band resource; and measuring for the first wireless signal is used to trigger transmission of the second wireless signal;
  • the second wireless signal is used to determine that ⁇ the user equipment stops receiving the first type of information on the first frequency band resource, and the user equipment receives the first type information on the second frequency band resource ⁇ At least one of the first frequency band resource and the second frequency band resource corresponding to the same MAC entity, or the second wireless signal is generated by a physical layer.
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device transmits at least a first wireless signal on the first frequency band resource, a second wireless signal, and a first type of information on the second frequency band resource; the measurement for the first wireless signal is used to trigger the Transmitting a second wireless signal; the second wireless signal is used to determine ⁇ the sender of the second wireless signal stops receiving the first type of information on the first frequency band resource, the second wireless At least one of the first type of information is received by the sender of the signal on the second frequency band resource; the first frequency band resource and the second frequency band resource correspond to the same MAC entity, or the second Wireless signals are generated by the physical layer.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: resources in a first frequency band Transmitting a first wireless signal, receiving a second wireless signal, transmitting a first type of information on a second frequency band resource; and measuring for the first wireless signal is used Trimming transmission of the second wireless signal; the second wireless signal is used to determine that ⁇ the sender of the second wireless signal stops receiving the first type of information on the first frequency band resource, the first Passing at least one of the first type of information ⁇ on the second frequency band resource; the first frequency band resource and the second frequency band resource corresponding to the same MAC entity, or The second wireless signal is generated by the physical layer.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive at least one of ⁇ first information, second information ⁇ .
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to ⁇ receive a first wireless signal on a first frequency band resource and receive on a second frequency band resource
  • the first type of information receives at least one of the K target wireless signals ⁇ on the K frequency band resources.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit at least one of the ⁇ second wireless signal, the third wireless signal ⁇ .
  • the band processing 441 determines at least one of ⁇ first information, second information ⁇ .
  • band processing 441 determines to transmit a second wireless signal.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit at least one of ⁇ first information, second information ⁇ .
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to ⁇ transmit the first wireless signal on the first frequency band resource and transmit on the second frequency band resource
  • the first type of information transmits at least one of K target wireless signals ⁇ on K frequency band resources.
  • At least two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive at least one of ⁇ a second wireless signal, a third wireless signal ⁇ .
  • the band processing 471 determines at least one of ⁇ first information, second information ⁇ .
  • band processing 471 determines to transmit the first on the second band resource. Class information.
  • Embodiment 5 illustrates a flow chart of the transmission of the first information, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the step identified by block F0 is optional.
  • the first information is transmitted in step S10
  • the second information is transmitted in step S11
  • the first wireless signal is transmitted on the first frequency band resource in step S12
  • the K target wireless signals receive the second wireless signal in step S14, receive the third wireless signal in step S15, and transmit the first type of information on the second frequency band resource in step S16.
  • the first information is received in step S20
  • the second information is received in step S21
  • the first wireless signal is received on the first frequency band resource in step S22
  • the K frequency bands are respectively separated in step S23.
  • the K target wireless signals are received
  • the second wireless signal is transmitted in step S24
  • the third wireless signal is transmitted in step S25
  • the first type of information is received on the second frequency band resource in step S26.
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment U2 is in the first frequency band Stop receiving the first type of information on the resource, the user equipment U2 receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and the second frequency band
  • the resource corresponds to the same MAC entity, or the second wireless signal is generated by a physical layer; the first information is used to determine the K frequency band resources, and the second frequency band resource is the K frequency band resources
  • One of the measurements for the K target wireless signals is used to determine the second frequency band resource from the K frequency band resources, the K being a positive integer; the second wireless signal being used to determine Physical layer signaling for scheduling a first target band resource is transmitted on the second band resource; the second information is used to determine physical layer signaling for scheduling a first target band resource in a second target band Resource transmission; the second item
  • the frequency band resource may be any one of the K frequency band resources, the K is greater than 1; the first
  • the K frequency band resources are respectively allocated to K serving cells.
  • the K serving cells belong to a first serving cell set, and at least one serving cell in the first serving cell set is outside the K serving cell,
  • the first set of serving cells is a set consisting of all currently allocated serving cells of the user equipment U2.
  • the K serving cells belong to a second serving cell set, and at least one serving cell in the second serving cell set is outside the K serving cell,
  • the second set of serving cells is a set consisting of all currently allocated active serving cells of the user equipment U2.
  • the K serving cells correspond to K different PCIDs.
  • the K serving cells correspond to K different ServCellIndex.
  • the K is greater than one.
  • the first information includes a plurality of RRC IEs (Information Elements).
  • the first information is configured in a semi-static configuration.
  • any one of the K frequency band resources may be used to transmit the first type of information.
  • any one of the K frequency band resources may be used for the PCell of the user equipment U2.
  • the measuring for the K target wireless signals is used to determine the second frequency band resource from the K frequency band resources, wherein the user equipment U2 is for the K target
  • the wireless signals respectively obtain K target measurement results; the user equipment U2 receives the first target wireless signal on the second frequency band resource, and the user equipment U2 obtains the second measurement result for the first target wireless signal; Only the second measurement result of the K target measurement results satisfies the second condition, or K1 of the K target measurement results and the second measurement result satisfy the second condition and Second The measurement result is greater than the K1 target measurement results.
  • the fact that the given measurement result satisfies the second condition means that the given measurement result is not less than the second threshold value in the target time window; the given measurement result is the The second measurement result, or the given measurement result is the K1 target measurement results.
  • the second threshold is configured by higher layer signaling, or the second threshold is fixed.
  • the unit of the second threshold is one of ⁇ W, mW, dBm, dB ⁇ .
  • the physical layer signaling includes at least one of ⁇ downward grant signaling, uplink grant signaling ⁇ .
  • the physical layer signaling includes at least one of ⁇ cell common signaling, user equipment specific signaling ⁇ .
  • the first target frequency band resource and the first frequency band resource are orthogonal (ie, there is no overlap in a frequency domain), and the first target frequency band resource and the second frequency band resource are orthogonal of.
  • the second target frequency band resource is any one of the K frequency band resources.
  • the second target frequency band resource is the second frequency band resource.
  • the second information includes some or all of the fields in the CrossCarrierSchedulingConfig IE in TS 36.331.
  • the second information includes a first domain, and a value of the first domain in the second information is equal to the first target frequency band resource in the scheduling resource for scheduling a first target frequency band. Index in physical layer signaling.
  • the first domain refers to the cif-InSchedulingCell IE in 3GPP TS 36.331.
  • the cif-InSchedulingCell is an integer of not less than 1 and not more than 7.
  • the second information includes K second domains, the K second domains one-to-one corresponding to the K frequency band resources, and the K second domains are used Determining that the first target band resource may be scheduled by the K band resources.
  • the second domain refers to a schedulingCellId IE in 3GPP TS 36.331, and the schedulingCellId is an integer not less than 0 and not more than 31.
  • the K second domains correspond to one of the first domains.
  • the first domain and the K second domains all correspond to the first target frequency band resource.
  • the index in the physical layer signaling for scheduling the first target frequency band resource corresponds to a carrier indicator in 3GPP TS 36.212, and the carrier indication is used.
  • the first target frequency band resource is indicated.
  • the first field in the second information includes a number of bits smaller than Q, and the Q is all currently allocated activities of the user equipment U2 (active The serving cell provides the number of bits needed to uniquely identify the Q, which is a positive integer.
  • the second field in the second information includes a number of bits smaller than Q, and the Q is provided for all currently allocated serving cells of the user equipment U2. Uniquely identifies the number of bits needed, the Q being a positive integer.
  • the second target frequency band resource may be any one of the K frequency band resources, where the second target frequency band resource can dynamically switch among the K frequency band resources. .
  • the first measurement result satisfies the first condition, that is, the first measurement result is smaller than the first threshold in a given time window.
  • the first threshold is configured by higher layer signaling, or the first threshold is fixed.
  • the first measurement result satisfies the first condition, that is, the first wireless signal includes physical layer control signaling, and the physical layer control signal is based on a given DCI format and a given aggregation level.
  • the detected BLER Block Error Rate
  • the detected BLER is greater than the first error rate threshold in a given time window.
  • the given DCI format is fixed and the given aggregation level is fixed.
  • the first error rate threshold is not less than 10%.
  • the first measurement result satisfies the first condition, that is, the first wireless signal includes physical layer control signaling, and the physical layer control signal is based on a given DCI format and a given aggregation level.
  • the detection of the command is used to determine that the first band resource is in RLF (Radio Link Failure).
  • the first measurement result is an RSRP (Reference Signal Received Power) of the first wireless signal.
  • the first measurement result is an RSRQ (Reference Signal Received Quality) of the first wireless signal.
  • the first measurement result is a SINR (Signal to Interference Plus Noise Ratio) of the first wireless signal
  • the first wireless signal is a useful signal.
  • the unit of the first threshold in the present application is W (watt).
  • the unit of the first threshold in the present application is mW (milliwatts).
  • the unit of the first threshold in the present application is dBm (millimeters).
  • the unit of the first threshold in the present application is dB (decibel).
  • the second wireless signal is used to determine that the user equipment U2 stops receiving the first type of information on the first frequency band resource, and the user equipment U2 is in the second frequency band.
  • Receiving the first type of information on the resource the user equipment U2 receiving a first target wireless signal on the second frequency band resource, the first target wireless signal being one of the K target wireless signals
  • the second measurement meets a second condition, the second measurement being a result of the measurement of the first target wireless signal.
  • the first target wireless signal includes at least one of a ⁇ SS block, a CSI-RS ⁇ .
  • the second measurement result satisfies the second condition, that is, the second measurement result is not less than the second threshold in the target time window.
  • the second threshold is configured by higher layer signaling, or the second threshold is fixed.
  • the unit of the second threshold is one of ⁇ W, mW, dBm, dB ⁇ .
  • the user equipment U2 is directed to the K
  • the target wireless signals respectively obtain K target measurement results, and the second measurement results are the largest one of the K target measurement results.
  • the given time window in the present invention contains T1 milliseconds.
  • the T1 is a positive integer.
  • the T1 is a positive integer multiple of 10.
  • the DRX cycle corresponds to Z(ms), which is a positive integer multiple of the Z.
  • the target time window in the present invention contains T2 milliseconds.
  • the T2 is a positive integer.
  • the T2 is a positive integer multiple of ten.
  • the DRX cycle corresponds to Z (ms), which is a positive integer multiple of the Z.
  • the third wireless signal is further used to determine a second measurement result
  • the user equipment U2 receives a first target wireless signal on the second frequency band resource
  • the second measurement result is directed to The result of the measurement of the first target wireless signal.
  • the first target wireless signal includes at least one of a ⁇ SS block, a CSI-RS ⁇ .
  • the third wireless signal and the second wireless signal are transmitted on the same frequency band resource.
  • the terrestrial public mobile network identity is a PLMN (Public Land Mobile Network).
  • PLMN Public Land Mobile Network
  • the user equipment U2 receives the first wireless signal on the first frequency band resource, and receives the first type information on the second frequency band resource.
  • Embodiment 6 illustrates a schematic diagram of a first target band resource and a second target band resource of one embodiment, as shown in FIG.
  • physical layer signaling for scheduling the first target band resource is transmitted on the second target band resource.
  • the second target frequency band resource is any one of the K frequency band resources described in this application.
  • the first domain and the K second domains for the first target frequency band resource in the second information in the present application are respectively shown in FIG. 6; the K second domains respectively Corresponding to K frequency band resources; the second target frequency band resource is one of the K frequency band resources,
  • the CIF for determining the first target band resource in the physical layer signaling is equal to the second Domains; M1 to Mk in the figure correspond to K of the second domain, and the M corresponds to the first domain.
  • the first domain refers to the cif-InSchedulingCell IE in 3GPP TS 36.331.
  • the cif-InSchedulingCell is an integer not less than 1 and not more than 7.
  • the second domain refers to a schedulingCellId IE in 3GPP TS 36.331, and the schedulingCellId is an integer not less than 0 and not more than 31.
  • one of the first domain and the K second domains are all in the second information for the first target frequency band resource.
  • Embodiment 7 exemplifies a first measurement result and a first condition, as shown in FIG.
  • the first condition shown in the left figure corresponds to the first threshold
  • the first condition shown in the right figure corresponds to the first error rate threshold
  • the first measurement result that the first condition is satisfied means: the first A measurement result is greater than the first error rate threshold.
  • the triangle in the figure corresponds to the first measurement result that satisfies the first condition in the first time window.
  • the first error rate threshold is a BLER for detection of the physical layer control signaling based on a given DCI format and a given aggregation level.
  • the unit of the first threshold is one of ⁇ W, mW, dBm, dB ⁇ .
  • the first time window corresponds to the given time window in the present application.
  • the first measurement result detected by the user equipment in the first time window in the application meets the first condition, and the user equipment sends the second wireless signal.
  • Embodiment 8 exemplifies a second measurement result and a second condition, as shown in FIG. Shown.
  • the block in the figure corresponds to the second measurement in the second time window satisfying the second condition; the second measurement meeting in the second condition means: the second The measurement result is not less than the second threshold.
  • the unit of the second threshold is one of ⁇ W, mW, dBm, dB ⁇ .
  • the second time window corresponds to the target time window in the present application.
  • the second measurement result detected by the user equipment in the second time window in the application satisfies the second condition, and the user equipment sends the second wireless signal.
  • the second threshold is equal to the first threshold in Embodiment 7.
  • the second threshold is related to the first threshold in Embodiment 7.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 900 is mainly composed of a first receiver module 901, a first transmitter module 902, and a second receiving module 903.
  • the first receiver module 901 receives the first wireless signal on the first frequency band resource
  • the second receiver module 903 receives the first type of information on the second frequency band resource
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the user equipment is on the first frequency band resource Stop receiving the first type of information, the user equipment receiving at least one of the first type of information on the second frequency band resource; the first frequency band resource and the second frequency band resource are the same A MAC entity, or the second wireless signal is generated by a physical layer.
  • the first receiver module 901 further receives first information, and separately receives K target wireless signals on K frequency band resources; the first information is used to determine the K frequency band resources And the second frequency band resource is one of the K frequency band resources, and the measurement for the K target wireless signals is used to determine the second frequency band resource from the K frequency band resources, K is a positive integer.
  • the second wireless signal is used to determine that physical layer signaling for scheduling a first target band resource is transmitted on the second band resource.
  • the first receiver module 901 further receives second information;
  • the second information is used to determine that physical layer signaling for scheduling the first target band resource is transmitted on the second target band resource.
  • the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the first measurement meets the first condition
  • the user equipment sends the second wireless signal
  • the first measurement result is a result of the measurement for the first wireless signal.
  • the first transmitter module 902 also transmits a third wireless signal; the third wireless signal is used to determine ⁇ first terrestrial public mobile network identity, second terrestrial public mobile network identity, first At least one of the measurement results ⁇ ; the first terrestrial public mobile network identifier uniquely corresponding to the first frequency band resource, and the second terrestrial public mobile network identifier uniquely corresponding to the second frequency band resource, the first measurement result Is the result of the measurement for the first wireless signal.
  • the first receiver module 901 includes at least the first two of the ⁇ receiver 456, the receiving processor 452, the controller/processor 490 ⁇ in Embodiment 4.
  • the first receiver module 901 includes the band processor 441 in Embodiment 4.
  • the first transmitter module 902 includes at least the first two of ⁇ transmitter, transmit processor 455, controller/processor 490 ⁇ in embodiment 4.
  • the second receiver module 903 includes at least the first two of the ⁇ receiver 456, the receiving processor 452, and the controller/processor 490 ⁇ in Embodiment 4.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 1000 is mainly composed of a second transmitter module 1001, a third receiver module 1002, and a third transmitter module 1003.
  • the second transmitter module 1001 transmits the first wireless signal on the first frequency band resource
  • the third receiver module 1002 receives the second wireless signal
  • the measurement for the first wireless signal is used to trigger transmission of the second wireless signal; the second wireless signal is used to determine ⁇ the sender of the second wireless signal is in the Stop receiving the first type of information on the first frequency band resource, and sending the second wireless signal At least one of the first type of information is received on the second frequency band resource; the first frequency band resource and the second frequency band resource correspond to a same MAC entity, or the second wireless signal is Generated by the physical layer.
  • the second transmitter module 1001 further transmits first information, and separately transmits K target wireless signals on K frequency band resources; the first information is used to determine the K frequency band resources.
  • the second frequency band resource is one of the K frequency band resources, and the measurement for the K target wireless signals is used to determine the second frequency band resource from the K frequency band resources, K is a positive integer.
  • the second wireless signal is used to determine that physical layer signaling for scheduling a first target band resource is transmitted on the second band resource.
  • the second transmitter module 1001 further sends second information; the second information is used to determine that physical layer signaling for scheduling the first target frequency band resource is transmitted on the second target frequency band resource.
  • the second target frequency band resource may be any one of the K frequency band resources, and the K is greater than 1.
  • the first measurement meets the first condition
  • the user equipment sends the second wireless signal
  • the first measurement result is a result of the measurement for the first wireless signal.
  • the third receiver module 1002 further receives a third wireless signal; the third wireless signal is used to determine ⁇ first terrestrial public mobile network identity, second terrestrial public mobile network identity, first At least one of the measurement results ⁇ ; the first terrestrial public mobile network identifier uniquely corresponding to the first frequency band resource, and the second terrestrial public mobile network identifier uniquely corresponding to the second frequency band resource, the first measurement result Is the result of the measurement for the first wireless signal.
  • the second transmitter module 1001 includes at least the first two of ⁇ transmitter 416, transmit processor 415, controller/processor 440 ⁇ in embodiment 4.
  • the second transmitter module 1001 includes the band processor 471 in Embodiment 4.
  • the third receiver module 1002 includes at least the first two of the ⁇ receiver 416, the receiving processor 412, the controller/processor 440 ⁇ in the embodiment 4.
  • the third transmitter module 1003 includes the ⁇ issue in the embodiment 4 At least two of the transmitter 416, the transmit processor 415, the controller/processor 440 ⁇ .
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost equipment such as tablets.
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户、基站中的方法和装置。用户设备在第一频带资源上接收第一无线信号,其次发送第二无线信号,并在第二频带资源上接收第一类信息;针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。本申请通过设计所述第二无线信号,实现针对用户设备的主小区动态切换,提高系统整体性能。

Description

一种被用于无线通信的用户、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持跨载波调度的无线信号的传输方法和装置。
背景技术
LTE(Long-Term Evolution,长期演进)系统中,一个UE(User Equipment,用户设备)会同时被多个服务小区(Serving Cell)服务。其中,多个服务小区中的一个小区作为所述UE的PCell(Primary Cell,主小区),用于传输系统信息和完成随机接入;其它的小区作为SCell(Secondary Cell,辅小区)用于数据传输。当UE(User Equipment,用户设备)需要更换PCell时,UE需要触发小区间HO(Handover,切换)或者小区重选的过程。
在3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)新空口讨论中,由于波束赋形(Beamforming)的引入,小区间的分布即小区间干扰情况将更为复杂,考虑到小区间HO或者小区重选所带来的延迟,新的更加快速高效的服务小区的选择和切换的方法,尤其是PCell的选择和切换的方法,需要被设计。
发明内容
发明人通过研究发现,目前系统中,UE切换PCell时将会触发HO或者小区重选流程,而HO或者小区重选流程均会触发MAC(Medium/Media Access Control,介质/媒体接入控制)、RRC(Radio Resource Control,无线资源控制)以及PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)等上层的重新配置,从而导致PCell切换流程的效率较低且延迟较大。
针对上述设计,本申请公开了一种解决方案。在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任 意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于包括:
-.在第一频带资源上接收第一无线信号;
-.发送第二无线信号;
-.在第二频带资源上接收第一类信息;
其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个实施例,上述方法的好处在于:所述第一频带资源对应的小区是所述用户设备当前的PCell,所述第二频带资源对应的小区是所述用户设备希望切换的新的PCell;通过所述第二无线信号,所述用户设备在不触发高层流程的情况下,在物理层发起针对PCell的切换,进而降低延迟,提高小区切换的速度,提高系统整体性能。
作为一个实施例,上述方法的特质在于:所述第二频带资源所对应的小区是所述用户设备的当前的SCell,从而将SCell替换为所述用户设备的PCell;因所述用户设备同时保持与当前的PCell和SCell的连接,上述方法较现有LTE的PCell的切换方式更为快速高效,且容易实现。
作为一个实施例,上述方法的应用场景之一在于:当波束赋形被系统引入后,小区间的干扰情况将更为复杂,且变化较快;用户设备较大可能的发现,在所有的服务小区中,PCell的无线信道质量不好且一个或多个SCell的无线信道质量较好;在此场景下,通过动态的选择无线信道质量较好的SCell作为PCell,将更为高效的进行PCell的选取,提高传输效率,避免不必要的高层处理所带来的延迟。
具体的,根据本申请的一个方面,其特征在于包括:
-.接收第一信息;
-.在K个频带资源上分别接收K个目标无线信号;
其中,所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
作为一个实施例,上述方法的好处在于:基站为所述用户设备配置所述K个频带资源,所述K个频带资源对应所述用户设备可以选择的PCell;上述方式帮助基站灵活配置候选的PCell的数量和占用的频带资源,且通过配置所述K个频带资源,有效降低所述用户设备搜索的可用作PCell的服务小区的数量,进而降低用户设备实现PCell动态切换的复杂度。
具体的,根据本申请的一个方面,其特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
作为一个实施例,上述方法的特质在于:当所述用户设备发送所述第二无线信号后,所述用户设备的用于调度第一目标频带资源的物理层信令,即用于调度第一目标频带资源的DCI在所述第二频带资源上传输,即所述用户设备自行切换到检测到的较好的SCell上检测下行控制信令,进而加速PCell的切换速度,提高效率。
具体的,根据本申请的一个方面,其特征在于包括:
-.接收第二信息;
其中,所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
作为一个实施例,上述方法的好处在于:基站通过第二信息配置用于调度第一目标频带资源的物理层信令可能出现的载波,即第二目标频带资源;目前LTE系统,所述第一目标频带资源(被调度载波)与所述第二目标频带资源(发送调度的载波)是一一对应的;本方法中,所述第二目标频带资源可以是一组载波,进而当PCell灵活切换时,针对所述第一目标频带资源的物理层信令也可以在多个载波间灵活切换,而不需要引入RRC重配的过程。
具体的,根据本申请的一个方面,其特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
作为一个实施例,上述方法的特质在于:当所述K个频带资源作为所 述用户设备的候选PCell组,并用于PCell动态切换时,所述K个频带资源均可以发送针对所述第二目标频带资源的调度,进而增加调度的灵活性,且避免PCell动态切换后RRC重配的过程,降低高层延迟。
具体的,根据本申请的一个方面,其特征在于,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
作为一个实施例,上述方法的特质在于:所述用户设备通过所述第一测量结果判断是否需要动态切换PCell。
具体的,根据本申请的一个方面,其特征在于包括:
-.发送第三无线信号;
其中,所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
作为一个实施例,上述方法的特质在于:所述第三无线信号用于进一步汇报针对所述第一频带资源的标识和测量结果,以作为PCell动态切换的判决的参考。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于包括:
-.在第一频带资源上发送第一无线信号;
-.接收第二无线信号;
-.在第二频带资源上发送第一类信息;
其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
具体的,根据本申请的一个方面,其特征在于包括:
-.发送第一信息;
-.在K个频带资源上分别发送K个目标无线信号;
其中,所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
具体的,根据本申请的一个方面,其特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
具体的,根据本申请的一个方面,其特征在于包括:
-.发送第二信息;
其中,所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
具体的,根据本申请的一个方面,其特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
具体的,根据本申请的一个方面,其特征在于,第一测量结果满足第一条件,所述基站设备接收所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
具体的,根据本申请的一个方面,其特征在于包括:
-.接收第三无线信号;
其中,所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
本申请公开了一种被用于无线通信的用户设备,其特征在于包括:
-.第一接收机模块,在第一频带资源上接收第一无线信号;
-.第一发射机模块,发送第二无线信号;
-.第二接收机模块,在第二频带资源上接收第一类信息;
其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上 停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收第一信息,以及在K个频带资源上分别接收K个目标无线信号;所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块还接收第二信息;所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一发射机模块还发送第三无线信号;所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
本申请公开了一种被用于无线通信的基站设备,其特征在于包括:
-.第二发射机模块,在第一频带资源上发送第一无线信号;
-.第三接收机模块,接收第二无线信号;
-.第三发射机模块,在第二频带资源上发送第一类信息;
其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发射机模块还发送第一信息,以及在K个频带资源上分别发送K个目标无线信号;所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发射机模块还发送第二信息;所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第三接收机模块还接收第三无线信号;所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.通过设计所述第二无线信号,所述用户设备在不触发高层流程的情况下,在物理层发起针对PCell的切换,进而降低延迟,提高小区切换的速度,以提高系统整体性能。
-.通过设计所述第一信息,基站为所述用户设备配置所述K个频带资源,所述K个频带资源对应所述用户设备可以选择的PCell组;上述方式帮助基站灵活配置候选的PCell的数量和占用的频带资源,且当所述用户设备通过搜索PCell组以实现PCell动态切换时,上述方式可以降低用户设备搜索的载波数,进而降低PCell动态切换的实现复杂度。
-.通过设计第二信息,基站灵活配置用于调度第一目标频带资源的物理层信令可能出现的载波,即第二目标频带资源;所述第二目标频带资源可以是一组载波,进而当PCell灵活切换时,针对所述第一目标频带资源的物理层信令也可以在多个载波间灵活切换,而不需要引入RRC重配的过程。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的基站设备和给定用户设备的示意图;
图5示出了根据本申请的一个实施例的第一信息的传输的流程图;
图6示出了根据本申请的一个实施例的第一目标频带资源和第二目标频带资源的示意图;
图7示出了根据本申请的一个实施例的第一测量结果与第一条件的示意图;
图8示出了根据本申请的一个实施例的第二测量结果和第二条件的示意图;
图9示出了根据本申请的一个实施例的用于用户设备中的处理装置 的结构框图;
图10示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备在第一频带资源上接收第一无线信号,其次发送第二无线信号,随后在第二频带资源上接收第一类信息;针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述第一类信息包括{同步序列,物理层广播信息,高层广播信息}中的至少之一。
作为一个子实施例,所述同步序列包括{NR-PSS(New RAT Primary Sychronization Sequence,新无线接入技术主同步序列),NR-SSS(New RAT Secondary Sychronization Sequence,新无线接入技术辅同步序列)}中的至少之一。
作为一个子实施例,所述同步序列包括{伪随机序列,Zadoff-Chu序列}中的至少之一。
作为一个子实施例,所述物理层广播信息包括MIB(Master Information Block,主信息块)。
作为一个子实施例,所述物理层广播信息在PBCH(Physical Broadcast Channel,物理广播信道)上传输,或者所述物理层广播信息在NR-PBCH(新无线接入技术物理广播信道)上传输。
作为一个子实施例,所述高层广播信息包括SIB(System Information  Block,系统信息块)。
作为一个子实施例,所述高层广播信息在物理层数据信道(即能承载物理层数据的信道)上传输。
作为一个子实施例,本申请中的所述第一频带资源和所述第二频带资源分别被分配给第一服务小区和第二服务小区。
作为该子实施例的附属实施例,所述第一服务小区和所述第二服务小区分别是PCell和SCell。
作为该子实施例的附属实施例,所述用户设备在发送所述第二无线信号之前在所述第一服务小区上执行安全加密操作。
作为该子实施例的附属实施例,所述用户设备在发送所述第二无线信号之前在所述第一服务小区上收发非接入层(Non Access Stratum,NAS)信息。
作为该子实施例的附属实施例,所述用户设备在发送所述第二无线信号之前在所述第一服务小区上执行移动性相关的操作。
作为该子实施例的附属实施例,所述第二服务小区是所述用户设备在接入所述第一服务小区之后接入的。
作为一个子实施例,本申请中的所述第一频带资源和所述第二频带资源分别是一个载波。
作为一个子实施例,本申请中的所述第一频带资源和所述第二频带资源分别是一个CC(Component Carrier,构成载波)。
作为一个子实施例,本申请中的所述第一频带资源对应第一标识,所述第二频带资源对应第二标识,所述第一标识和所述第二标识是不同的。
作为该子实施例的一个附属实施例,所述第一标识是一个PCID(Physical Cell Identity,物理小区标识),所述第二标识是一个PCID。
作为该子实施例的一个附属实施例,所述第一标识是一个ServCellIndex,所述第二标识是一个ServCellIndex。
作为一个子实施例,所述所述第二无线信号是由物理层生成的是指:所述第二无线信号是一个UCI(Uplink Control Information,上行控制信息)。
作为一个子实施例,所述所述第二无线信号是由物理层生成的是指:所述第二无线信号是一个PRACH(Physical Random Access Channel,物理 随机接入信道),或者所述第二无线信号是一个NR-PRACH(NR-PRACH,新无线接入技术物理随机接入信道)。
作为一个子实施例,所述所述第二无线信号是由物理层生成的是指:所述第二无线信号被用于物理层随机接入。
作为一个子实施例,所述所述第二无线信号是由物理层生成的是指:所述第二无线信号是动态的。
作为一个子实施例,所述用户设备在执行“在第一频带资源上接收第一无线信号”与执行“在第二频带资源上接收第一类信息”之间不触发RRC重建(Reestablish)。
作为一个子实施例,所述用户设备在执行“在第一频带资源上接收第一无线信号”与执行“在第二频带资源上接收第一类信息”之间不触发RRC重配(Reconfiguration)。
作为一个子实施例,所述用户设备在执行“在第一频带资源上接收第一无线信号”与执行“在第二频带资源上接收第一类信息”之间不触发PDCP重建。
作为一个子实施例,所述第一无线信号包括{SS(Synchronization Sequence,同步序列)块,CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)}中的至少之一。
作为一个子实施例,所述第一无线信号包括{PDCCH(Physical Downlink Control Channel,物理下行控制信道),NR-PDCCH(New RAT PDCCH,新无线接入技术物理下行控制信道)}中的至少之一。
作为一个子实施例,第三频带资源对应所述第一频带资源,第四频带资源对应所述第二频带资源,所述用户设备在所述第四频带资源上发送所述第二无线信号。
作为该子实施例的一个附属实施例,所述第一频带资源和所述第二频带资源均是下行频带资源,所述第三频带资源和所述第四频带资源均是上行频带资源。
作为该子实施例的一个附属实施例,所述第一频带资源等于所述第三频带资源,所述第二频带资源等于所述第四频带资源。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。 图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet  Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的用户设备。
作为一个子实施例,所述gNB203对应本申请中的基站。
作为一个子实施例,所述UE201支持跨载波(Cross Carrier)调度。
作为一个子实施例,所述gNB203支持跨载波调度。
作为一个子实施例,所述UE201支持CA(Carrier Aggregation)调度。
作为一个子实施例,所述gNB203支持CA调度。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线 电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个子实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个子实施例,本申请中的所述第二无线信号生成于所述MAC子层302。
作为一个子实施例,本申请中的所述第二无线信号终止于所述PHY301。
作为一个子实施例,本申请中的所述第二无线信号终止于所述MAC子层302。
作为一个子实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第三无线信号生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,频带处理器471,发射器/接收器416和天线420。
用户设备(UE450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,频带处理器441,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-上层包到达控制器/处理器440,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用, 来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-频带处理器471,确定第一信息,确定第二信息,以及根据所述第二无线信号确定是否在第二频带资源上发送第一类信息;并将结果发送到控制器/处理器440;
-发射处理器415接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(UE450)有关的处理可以包括:
-接收器456用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-频带处理器441,确定第一信息,确定第二信息,以及根据针对所述第一无线信号的测量确定是否触发所述第二无线信号的发送;并将结果发送到控制器/处理器490;
-控制器/处理器490接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在上行传输中,与用户设备(UE450)有关的处理可以包括:
-数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中包括数据或者控制信息;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体;
-频带处理器441,确定第一信息,确定第二信息,以及根据针对所述第一无线信号的测量确定是否触发所述第二无线信号的发送;并将结果发送到控制器/处理器490;
-发射处理器455接收控制器/处理器490的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令生成等;
-发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去;每个发射器456对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器456对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到上行信号。
在上行传输中,与基站设备(410)有关的处理可以包括:
-接收器416用于将通过天线420接收的射频信号转换成基带信号提供给接收处理器412;
-接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-频带处理器471,确定第一信息,确定第二信息,以及根据所述第二无线信号确定是否在第二频带资源上发送第一类信息;并将结果发送到控制器/处理器440;
-控制器/处理器440接收接收处理器412输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器440可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存 储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:在第一频带资源上接收第一无线信号,发送第二无线信号,在第二频带资源上接收第一类信息;针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一频带资源上接收第一无线信号,发送第二无线信号,在第二频带资源上接收第一类信息;针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在第一频带资源上发送第一无线信号,接收第二无线信号,在第二频带资源上发送第一类信息;针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一频带资源上发送第一无线信号,接收第二无线信号,在第二频带资源上发送第一类信息;针对所述第一无线信号的测量被用于 触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收{第一信息,第二信息}中的至少之一。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于{在第一频带资源上接收第一无线信号,在第二频带资源上接收第一类信息,在K个频带资源上分别接收K个目标无线信号}中的至少之一。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送{第二无线信号,第三无线信号}中的至少之一。
作为一个子实施例,频带处理441确定{第一信息,第二信息}中的至少之一。
作为一个子实施例,频带处理441确定发送第二无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送{第一信息,第二信息}中的至少之一。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于{在第一频带资源上发送第一无线信号,在第二频带资源上发送第一类信息,在K个频带资源上分别发送K个目标无线信号}中的至少之一。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收{第二无线信号,第三无线信号}中的至少之一。
作为一个子实施例,频带处理471确定{第一信息,第二信息}中的至少之一。
作为一个子实施例,频带处理471确定在第二频带资源上发送第一 类信息。
实施例5
实施例5示例了第一信息的传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。其中,方框F0标识的步骤是可选的。
对于基站N1,在步骤S10中发送第一信息,在步骤S11中发送第二信息,在步骤S12中在第一频带资源上发送第一无线信号,在步骤S13中在K个频带资源上分别发送K个目标无线信号,在步骤S14中接收第二无线信号,在步骤S15中接收第三无线信号,在步骤S16中在第二频带资源上发送第一类信息。
对于用户设备U2,在步骤S20中接收第一信息,在步骤S21中接收第二信息,在步骤S22中在第一频带资源上接收第一无线信号,在步骤S23中在K个频带资源上分别接收K个目标无线信号,在步骤S24中发送第二无线信号,在步骤S25中发送第三无线信号,在步骤S26中在第二频带资源上接收第一类信息。
在实施例5中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备U2在所述第一频带资源上停止接收所述第一类信息,所述用户设备U2在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的;所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数;所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输;所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输;所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1;第一测量结果满足第一条件,所述用户设备U2发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果;所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一 对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
作为一个子实施例,所述K个频带资源分别被分配给K个服务小区。
作为该子实施例的一个附属实施例,所述K个服务小区都属于第一服务小区集合且所述第一服务小区集合中至少存在一个服务小区在所述K个服务小区之外,所述第一服务小区集合是由所述用户设备U2当前所有被分配的服务小区所组成的集合。
作为该子实施例的一个附属实施例,所述K个服务小区都属于第二服务小区集合且所述第二服务小区集合中至少存在一个服务小区在所述K个服务小区之外,所述第二服务小区集合是由所述用户设备U2当前所有被分配的活动(active)服务小区所组成的集合。
作为该子实施例的一个附属实施例,所述K个服务小区对应K个不同的PCID。
作为该子实施例的一个附属实施例,所述K个服务小区对应K个不同的ServCellIndex。
作为一个子实施例,所述K大于1。
作为一个子实施例,所述第一信息包括多个RRC IE(Information Element,信息单元)。
作为一个子实施例,所述第一信息是半静态配置配置的。
作为一个子实施例,所述K个频带资源中的任一所述频带资源可能用于传输所述第一类信息。
作为一个子实施例,所述K个频带资源中的任一所述频带资源可能用于所述用户设备U2的PCell。
作为一个子实施例,所述针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源是指:所述用户设备U2针对所述K个目标无线信号分别获得K个目标测量结果;所述用户设备U2在所述第二频带资源上接收第一目标无线信号,针对所述第一目标无线信号所述用户设备U2获得第二测量结果;所述K个目标测量结果中仅所述第二测量结果满足第二条件,或者所述K个目标测量结果中的K1个所述目标测量结果和所述第二测量结果均满足第二条件且所述第二 测量结果大于所述K1个所述目标测量结果。
作为该子实施例的一个附属实施例,给定测量结果满足第二条件是指:所述给定测量结果在目标时间窗中均不小于第二阈值;所述给定测量结果是所述第二测量结果,或者所述给定测量结果是所述K1个所述目标测量结果。
作为该附属实施例的一个范例,所述第二阈值是高层信令配置的,或者所述第二阈值是固定的。
作为该附属实施例的一个范例,所述第二阈值的单位是{W,mW,dBm,dB}中的之一。
作为一个子实施例,所述物理层信令包括{下行授予(Grant)信令,上行授予信令}中的至少之一。
作为一个子实施例,所述物理层信令包括{小区公共信令,用户设备特定的信令}中的至少之一。
作为一个子实施例,所述第一目标频带资源和所述第一频带资源是正交的(即在频域没有重叠),所述第一目标频带资源和所述第二频带资源是正交的。
作为一个实施例,所述第二目标频带资源是所述K个频带资源中的任一频带资源。
作为一个子实施例,所述第二目标频带资源是所述第二频带资源。
作为一个子实施例,所述第二信息包括TS 36.331中CrossCarrierSchedulingConfig IE中的部分或者全部域(Field)。
作为一个子实施例,所述第二信息包括第一域,所述第二信息中的所述第一域的值等于所述第一目标频带资源在所述用于调度第一目标频带资源的物理层信令中的索引。
作为该子实施例的一个附属实施例,所述第一域参考3GPP TS36.331中的cif-InSchedulingCell IE。
作为该附属实施例的一个范例,所述cif-InSchedulingCell是不小于1且不大于7的整数。
作为该子实施例的一个附属实施例,所述第二信息包括K个第二域,所述K个第二域一一对应所述K个频带资源,所述K个第二域被用于确定所述第一目标频带资源可能被所述K个频带资源调度。
作为该附属实施例的一个范例,所述第二域参考3GPP TS 36.331中的schedulingCellId IE,所述schedulingCellId是不小于0且不大于31的整数。
作为该附属实施例的一个范例,所述K个第二域对应一个所述第一域。
作为上述两个附属实施例的一个范例,所述第一域和所述K个第二域均对应所述第一目标频带资源。
作为该子实施例的一个附属实施例,所述用于调度第一目标频带资源的所述物理层信令中的索引对应3GPP TS 36.212中的载波指示(Carrier Indicator),所述载波指示被用于指示所述第一目标频带资源。
作为该子实施例的一个附属实施例,所述第二信息中的所述第一域所包括的比特得数量小于Q,所述Q是为所述用户设备U2当前所有被分配的活动(active)服务小区提供唯一标识所需要的比特的数量,所述Q是正整数。
作为该子实施例的一个附属实施例,所述第二信息中的所述第二域所包括的比特得数量小于Q,所述Q是为所述用户设备U2当前所有被分配的服务小区提供唯一标识所需要的比特的数量,所述Q是正整数。
作为一个子实施例,所述所述第二目标频带资源可能是所述K个频带资源中的任一频带资源是指:所述第二目标频带资源能在所述K个频带资源中动态切换。
作为一个子实施例,所述第一测量结果满足第一条件是指:所述第一测量结果在给定时间窗中均小于第一阈值。
作为该子实施例的一个附属实施例,所述第一阈值是高层信令配置的,或者所述第一阈值是固定的。
作为一个子实施例,所述第一测量结果满足第一条件是指:所述第一无线信号包括物理层控制信令,基于给定DCI格式和给定聚合等级的针对所述物理层控制信令的检测的BLER(Block Error Rate,块误码率)在给定时间窗中均大于第一错误率门限。
作为该子实施例的一个附属实施例,所述给定DCI格式是固定的,所述给定聚合等级是固定的。
作为该子实施例的一个附属实施例,所述第一错误率门限不小于10%。
作为一个子实施例,所述第一测量结果满足第一条件是指:所述第一无线信号包括物理层控制信令,基于给定DCI格式和给定聚合等级的针对所述物理层控制信令的检测被用于确定所述第一频带资源处于RLF(Radio Link Failure,无线链路失败)。
作为一个子实施例,所述第一测量结果是所述第一无线信号的RSRP(Reference Signal Received Power,参考信道接收功率)。
作为一个子实施例,所述第一测量结果是所述第一无线信号的RSRQ(Reference Signal Received Quality,参考信道接收质量)。
作为一个子实施例,所述第一测量结果是所述第一无线信号的SINR(Signal to Interference Plus Noise Ratio,信干噪比),所述第一无线信号是有用信号。
作为一个子实施例,本申请中的所述第一阈值的单位是W(瓦特)。
作为一个子实施例,本申请中的第一阈值的单位是mW(毫瓦特)。
作为一个子实施例,本申请中的第一阈值的单位是dBm(毫分贝)。
作为一个子实施例,本申请中的第一阈值的单位是dB(分贝)。
作为一个子实施例,所述第二无线信号被用于确定{所述用户设备U2在所述第一频带资源上停止接收所述第一类信息,所述用户设备U2在所述第二频带资源上接收所述第一类信息},所述用户设备U2在所述第二频带资源上接收第一目标无线信号,所述第一目标无线信号是所述K个目标无线信号中的之一;第二测量结果满足第二条件,所述第二测量结果是针对所述第一目标无线信号的测量的结果。
作为该子实施例的一个附属实施例,所述第一目标无线信号包括{SS块,CSI-RS}中的至少之一。
作为该子实施例的一个附属实施例,所述第二测量结果满足第二条件是指:所述第二测量结果在目标时间窗中均不小于第二阈值。
作为该附属实施例的一个范例,所述第二阈值是高层信令配置的,或者所述第二阈值是固定的。
作为该附属实施例的一个范例,所述第二阈值的单位是{W,mW,dBm,dB}中的之一。
作为该子实施例的一个附属实施例,所述用户设备U2针对所述K 个目标无线信号分别获得K个目标测量结果,所述第二测量结果是所述K个目标测量结果中最大的一个。
作为一个子实施例,本发明中的所述给定时间窗包含T1个毫秒。
作为该子实施例的一个附属实施例,所述T1是正整数。
作为该子实施例的一个附属实施例,所述T1是10的正整数倍。
作为该子实施例的一个附属实施例,DRX周期对应Z(ms),所述T1是所述Z的正整数倍。
作为一个子实施例,本发明中的所述目标时间窗包含T2个毫秒。
作为该子实施例的一个附属实施例,所述T2是正整数。
作为该子实施例的一个附属实施例,所述T2是10的正整数倍。
作为该子实施例的一个附属实施例,DRX周期对应Z(ms),所述T2是所述Z的正整数倍。
作为一个子实施例,所述第三无线信号还被用于确定第二测量结果,所述用户设备U2在所述第二频带资源上接收第一目标无线信号,所述第二测量结果是针对所述第一目标无线信号的测量的结果。
作为该子实施例的一个附属实施例,所述第一目标无线信号包括{SS块,CSI-RS}中的至少之一。
作为一个子实施例,所述第三无线信号和所述第二无线信号在相同的频带资源上发送。
作为一个子实施例,所述陆地公共移动网络标识是PLMN(Public Land Mobile Network,公共陆地移动网络)。
作为一个子实施例,所述用户设备U2在所述第一频带资源上接收所述第一无线信号,且在所述第二频带资源上接收所述第一类信息。
实施例6
实施例6示例了一个实施例的第一目标频带资源和第二目标频带资源的示意图,如附图6所示。在附图6中,用于调度所述第一目标频带资源的物理层信令在所述第二目标频带资源上传输。所述第二目标频带资源是本申请中所述K个频带资源中的任意一个。
附图6中分别示出了本申请中所述第二信息中针对所述第一目标频带资源的所述第一域和K个所述第二域;所述K个所述第二域分别对应K个频带资源;所述第二目标频带资源是所述K个频带资源中的之一, 当调度所述第一目标频带资源的物理层信令在所述第二目标频带资源上传输时,所述物理层信令中用于确定所述第一目标频带资源的CIF等于所述第二域;图中所述M1至Mk对应K个所述第二域,所述M对应所述第一域。
作为一个子实施例,所述第一域参考3GPP TS 36.331中的cif-InSchedulingCell IE。
作为该子实施例的一个附属实施例,所述cif-InSchedulingCell是不小于1且不大于7的整数。
作为一个子实施例,所述第二域参考3GPP TS 36.331中的schedulingCellId IE,所述schedulingCellId是不小于0且不大于31的整数。
作为一个子实施例,在所述第二信息中存在一个所述第一域和K个所述第二域均针对所述第一目标频带资源。
实施例7
实施例7示例了一个第一测量结果和第一条件的示意图,如附图7所示。在附图7中,左边的图所示的所述第一条件对应所述第一阈值,右边的图所示的所述第一条件对应所述第一错误率门限;在左图中,所述第一测量结果满足所述第一条件是指:所述第一测量结果小于所述第一阈值;在右图中,所述第一测量结果满足所述第一条件是指:所述第一测量结果大于所述第一错误率门限。图中的三角对应在第一时间窗中满足所述第一条件的所述第一测量结果。
作为一个子实施例,所述第一错误率门限是基于给定DCI格式和给定聚合等级的针对所述物理层控制信令的检测的BLER。
作为一个子实施例,所述第一阈值的单位是{W,mW,dBm,dB}中的之一。
作为一个子实施例,所述第一时间窗对应本申请中的所述给定时间窗。
作为一个子实施例,本申请中的所述用户设备在所述第一时间窗中检测的所述第一测量结果均满足所述第一条件,所述用户设备发送所述第二无线信号。
实施例8
实施例8示例了一个第二测量结果和第二条件的示意图,如附图8 所示。在附图8中,图中的方框对应在第二时间窗中所述第二测量结果满足所述第二条件;所述第二测量结果满足所述第二条件是指:所述第二测量结果不小于所述第二阈值。
作为一个子实施例,所述第二阈值的单位是{W,mW,dBm,dB}中的之一。
作为一个子实施例,所述第二时间窗对应本申请中的所述目标时间窗。
作为一个子实施例,本申请中的所述用户设备在所述第二时间窗中检测的所述第二测量结果均满足所述第二条件,所述用户设备发送所述第二无线信号。
作为一个子实施例,所述第二阈值等于实施例7中的所述第一阈值。
作为一个子实施例,所述第二阈值与实施例7中的所述第一阈值有关。
实施例9
实施例9示例了一个UE中的处理装置的结构框图,如附图9所示。附图9中,UE处理装置900主要由第一接收机模块901,第一发射机模块902和第二接收模块903组成。
-.第一接收机模块901,在第一频带资源上接收第一无线信号;
-.第一发射机模块902,发送第二无线信号;
-.第二接收机模块903,在第二频带资源上接收第一类信息;
实施例9中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述第一接收机模块901还接收第一信息,以及在K个频带资源上分别接收K个目标无线信号;所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
作为一个子实施例,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
作为一个子实施例,所述第一接收机模块901还接收第二信息;所 述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
作为一个子实施例,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
作为一个子实施例,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
作为一个子实施例,所述第一发射机模块902还发送第三无线信号;所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
作为一个子实施例,所述第一接收机模块901包括实施例4中的{接收器456、接收处理器452、控制器/处理器490}中的至少前两者。
作为一个子实施例,所述第一接收机模块901包括实施例4中的频带处理器441。
作为一个子实施例,所述第一发射机模块902包括实施例4中的{发射器、发射处理器455、控制器/处理器490}中的至少前两者。
作为一个子实施例,所述第二接收机模块903包括实施例4中的{接收器456、接收处理器452、控制器/处理器490}中的至少前两者。
实施例10
实施例10示例了一个基站设备中的处理装置的结构框图,如附图10所示。附图10中,基站设备处理装置1000主要由第二发射机模块1001,第三接收机模块1002和第三发射机模块1003组成。
-.第二发射机模块1001,在第一频带资源上发送第一无线信号;
-.第三接收机模块1002,接收第二无线信号;
-.第三发射机模块1003,在第二频带资源上发送第一类信息;
实施例10中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送 者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
作为一个子实施例,所述第二发射机模块1001还发送第一信息,以及在K个频带资源上分别发送K个目标无线信号;所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
作为一个子实施例,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
作为一个子实施例,所述第二发射机模块1001还发送第二信息;所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
作为一个子实施例,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
作为一个子实施例,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
作为一个子实施例,所述第三接收机模块1002还接收第三无线信号;所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
作为一个子实施例,所述第二发射机模块1001包括实施例4中的{发射器416、发射处理器415、控制器/处理器440}中的至少前两者。
作为一个子实施例,所述第二发射机模块1001包括实施例4中的频带处理器471。
作为一个子实施例,所述第三接收机模块1002包括实施例4中的{接收器416、接收处理器412、控制器/处理器440}中的至少前两者。
作为一个子实施例,所述第三发射机模块1003包括实施例4中的{发 射器416、发射处理器415、控制器/处理器440}中的至少前两者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于包括:
    -.在第一频带资源上接收第一无线信号;
    -.发送第二无线信号;
    -.在第二频带资源上接收第一类信息;
    其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
  2. 根据权利要求1所述的方法,其特征在于包括:
    -.接收第一信息;
    -.在K个频带资源上分别接收K个目标无线信号;
    其中,所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于包括:
    -.接收第二信息;
    其中,所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
  5. 根据权利要求4所述的方法,其特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,第一测量结果满足第一条件,所述用户设备发送所述第二无线信号,所述第一测量结果是针对所述第一无线信号的所述测量的结果。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于包括:
    -.发送第三无线信号;
    其中,所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公 共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
  8. 一种被用于无线通信的基站中的方法,其特征在于包括:
    -.在第一频带资源上发送第一无线信号;
    -.接收第二无线信号;
    -.在第二频带资源上发送第一类信息;
    其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
  9. 根据权利要求8所述的方法,其特征在于包括:
    -.发送第一信息;
    -.在K个频带资源上分别发送K个目标无线信号;
    其中,所述第一信息被用于确定所述K个频带资源,所述第二频带资源是所述K个频带资源中的之一,针对所述K个目标无线信号的测量被用于从所述K个频带资源中确定所述第二频带资源,所述K是正整数。
  10. 根据权利要求8或9中任一权利要求所述的方法,其特征在于,所述第二无线信号被用于确定用于调度第一目标频带资源的物理层信令在所述第二频带资源上传输。
  11. 根据权利要求8至10中任一权利要求所述的方法,其特征在于包括:
    -.发送第二信息;
    其中,所述第二信息被用于确定用于调度第一目标频带资源的物理层信令在第二目标频带资源上传输。
  12. 根据权利要求11所述的方法,其特征在于,所述第二目标频带资源可能是所述K个频带资源中的任一频带资源,所述K大于1。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,第一测量结果满足第一条件,所述基站设备接收所述第二无线信号,所述 第一测量结果是针对所述第一无线信号的所述测量的结果。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于包括:
    -.接收第三无线信号;
    其中,所述第三无线信号被用于确定{第一陆地公共移动网络标识,第二陆地公共移动网络标识,第一测量结果}中至少之一;所述第一陆地公共移动网络标识唯一对应所述第一频带资源,所述第二陆地公共移动网络标识唯一对应所述第二频带资源,所述第一测量结果是所述针对所述第一无线信号的测量的结果。
  15. 一种被用于无线通信的用户设备,其特征在于包括:
    -.第一接收机模块,在第一频带资源上接收第一无线信号;
    -.第一发射机模块,发送第二无线信号;
    -.第二接收机模块,在第二频带资源上接收第一类信息;
    其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述用户设备在所述第一频带资源上停止接收所述第一类信息,所述用户设备在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
  16. 一种被用于无线通信的基站设备,其特征在于包括:
    -.第二发射机模块,在第一频带资源上发送第一无线信号;
    -.第三接收机模块,接收第二无线信号;
    -.第三发射机模块,在第二频带资源上发送第一类信息;
    其中,针对所述第一无线信号的测量被用于触发所述第二无线信号的发送;所述第二无线信号被用于确定{所述第二无线信号的发送者在所述第一频带资源上停止接收所述第一类信息,所述第二无线信号的发送者在所述第二频带资源上接收所述第一类信息}中的至少之一;所述第一频带资源和所述第二频带资源对应同一个MAC实体,或者所述第二无线信号是由物理层生成的。
PCT/CN2017/095472 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置 WO2019023938A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780092127.2A CN110832905B (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置
CN202111038249.8A CN113840344A (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置
PCT/CN2017/095472 WO2019023938A1 (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置
CN202111018219.0A CN113840343B (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095472 WO2019023938A1 (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019023938A1 true WO2019023938A1 (zh) 2019-02-07

Family

ID=65232245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095472 WO2019023938A1 (zh) 2017-08-01 2017-08-01 一种被用于无线通信的用户、基站中的方法和装置

Country Status (2)

Country Link
CN (3) CN110832905B (zh)
WO (1) WO2019023938A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205060A (zh) * 2020-09-17 2022-03-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114793151B (zh) * 2021-01-26 2024-05-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115399038A (zh) * 2022-07-29 2022-11-25 北京小米移动软件有限公司 上行传输切换、上行传输切换指示方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044512A1 (en) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Mobile robustness optimization in carrier aggregation
CN103906105A (zh) * 2012-12-28 2014-07-02 普天信息技术研究院有限公司 一种载波的管理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867511B2 (en) * 2010-12-09 2014-10-21 Qualcomm Incorporated System and method for reducing resets during handovers in a single frequency dual carrier wireless communication system
CN103781136B (zh) * 2012-08-07 2017-10-31 诺基亚通信公司 用于终端设备的自主移动的控制机制
US9756678B2 (en) * 2013-12-13 2017-09-05 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
EP3092864B1 (en) * 2014-01-08 2019-08-21 LG Electronics Inc. C-rnti collision in dual connectivity
WO2016055095A1 (en) * 2014-10-07 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Mobility in dense networks
KR20170053573A (ko) * 2015-11-05 2017-05-16 주식회사 케이티 차량 통신 제어 방법 및 그 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044512A1 (en) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Mobile robustness optimization in carrier aggregation
CN103906105A (zh) * 2012-12-28 2014-07-02 普天信息技术研究院有限公司 一种载波的管理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PCell change procedure for CA in NR", 3GPP TSG - RAN WG2 #97 R2-1700855, 17 February 2017 (2017-02-17), XP051211636 *
SAMSUNG: "Introduction of UE autonomous mobility", 3GPP TSG - RAN WG 2 MEETING # 97 R2-1701360, 17 February 2017 (2017-02-17), XP051212022 *
ZTE ET AL.: "Solutions for single connected handover", 3GPP TSG - RAN WG2TT97 R2-1701385, 17 February 2017 (2017-02-17), XP051212042 *

Also Published As

Publication number Publication date
CN110832905B (zh) 2021-10-29
CN113840344A (zh) 2021-12-24
CN113840343B (zh) 2024-05-14
CN110832905A (zh) 2020-02-21
CN113840343A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US20220295318A1 (en) Method and terminal for performing rrm measurement in wireless communication system
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018090816A1 (zh) 一种被用于用户设备和基站中的方法和装置
TW201639335A (zh) 用於使用支援部分wwan收發機能力的wlan收發機的多sim多活動多rat場景的資源映射
CN111108764B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
KR20190143295A (ko) 차세대 이동통신 시스템에서 이중연결구조를 고려하여 패킷 중복을 제어하는 방법 및 장치
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11044615B2 (en) Method and device in UE and base station used for multi-antenna wireless communication
US11638182B2 (en) Method and device in UE and base station used for wireless communication
US11528704B2 (en) Method and device used in UE and base station for wireless communication
US11979358B2 (en) Method and device in UE and base station for wireless communication
KR20200039518A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2018099293A1 (zh) 一种被用于多天线传输的用户设备、基站中的方法和装置
CN110832905B (zh) 一种被用于无线通信的用户、基站中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20240179611A1 (en) Method and device for wireless communication
US20230232485A1 (en) Method and device for wireless communication
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230403670A1 (en) Sip-deregistration by evolved packet core network
WO2019024067A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2019024093A1 (zh) 一种被用于非授权频谱的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919819

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17919819

Country of ref document: EP

Kind code of ref document: A1