WO2019024093A1 - 一种被用于非授权频谱的用户设备、基站中的方法和装置 - Google Patents

一种被用于非授权频谱的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019024093A1
WO2019024093A1 PCT/CN2017/096048 CN2017096048W WO2019024093A1 WO 2019024093 A1 WO2019024093 A1 WO 2019024093A1 CN 2017096048 W CN2017096048 W CN 2017096048W WO 2019024093 A1 WO2019024093 A1 WO 2019024093A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
information
time
sub
Prior art date
Application number
PCT/CN2017/096048
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2017/096048 priority Critical patent/WO2019024093A1/zh
Priority to CN201780092117.9A priority patent/CN110771227B/zh
Publication of WO2019024093A1 publication Critical patent/WO2019024093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a transmission scheme and apparatus on an unlicensed spectrum.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting.
  • New Radio or 5G
  • WI Work Item
  • the 3GPP RAN #75 plenary meeting also passed the research project of Unlicensed Spectrum access under NR.
  • the research project is expected to be completed in the R15 version, and then The WI was launched in the R16 version to standardize related technologies.
  • LTE Long Term Evolution
  • LAA Local Area Network
  • eNB LTE base station
  • DRS Discovery Reference Signal
  • LBT Listen Before Talk
  • the present application provides a solution for the design of discovery reference signals under unlicensed spectrum in NR. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • the first information is used to determine a duration of the first signal
  • the monitor of the first signal assumes that at most one time window in the L time windows is used to transmit the first a signal
  • the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, where the first type of information carried by any two of the M sub-signals includes The same information; if the first signal is sent on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is sent on the unlicensed carrier,
  • the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the method is characterized in that the first signal is one of K signals, the duration of each of the K signals is the same, and the monitoring of the first signal It is assumed that at most one of the K signals is transmitted in each of the L time windows, each of the K signals carrying the first type of information, K is a non-negative integer not greater than the L.
  • the above method is characterized by further comprising:
  • the second information is used to determine a first time length, the time length of each of the L time windows is equal to the first time length, and the L time windows are in the time domain. Orthogonal.
  • the above method is characterized by further comprising:
  • the first time window is one of the L time windows, the first time The window includes Y candidate time intervals, and the user equipment assumes that at most one candidate time interval in the Y candidate time intervals is used to transmit the first signal, the third information is used
  • the Y candidate time intervals are determined in the first time window, the Y being a positive integer.
  • the above method is characterized in that the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, the antenna port The group includes a positive integer number of antenna ports.
  • the method is characterized in that the frequency interval occupied by the first signal in the frequency domain is a first frequency interval, and the bandwidth of the first frequency interval occupies a carrier for transmitting the first signal.
  • the ratio of the bandwidth is not less than a first threshold, the first threshold being related to the frequency of the carrier transmitting the first signal.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • the first information is used to determine a duration of the first signal
  • the monitor of the first signal assumes that at most one time window in the L time windows is used to transmit the first a signal
  • the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, where the first type of information carried by any two of the M sub-signals includes The same information; if the first signal is sent on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is sent on the unlicensed carrier,
  • the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the method is characterized in that the first signal is one of K signals, the duration of each of the K signals is the same, and the monitoring of the first signal It is assumed that at most one of the K signals is transmitted in each of the L time windows, each of the K signals carrying the first type of information, K is a non-negative integer not greater than the L.
  • the above method is characterized by further comprising:
  • the second information is used to determine a first time length, in the L time windows
  • the length of time of each time window is equal to the first length of time, and the L time windows are orthogonal in time domain.
  • the above method is characterized by further comprising:
  • the first time window is one of the L time windows, and the first time window includes Y candidate time intervals, and the user equipment assumes that the Y candidate time intervals are the most Only one alternate time interval is used to transmit the first signal, the third information being used to determine the Y candidate time intervals in the first time window, the Y being a positive integer.
  • the above method is characterized in that the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, the antenna port The group includes a positive integer number of antenna ports.
  • the method is characterized in that the frequency interval occupied by the first signal in the frequency domain is a first frequency interval, and the bandwidth of the first frequency interval occupies a carrier for transmitting the first signal.
  • the ratio of the bandwidth is not less than a first threshold, the first threshold being related to the frequency of the carrier transmitting the first signal.
  • the present application discloses a user equipment for wireless communication, which includes:
  • a first receiver module receiving the first information
  • a second receiver module for monitoring the first signal in L time windows
  • the first information is used to determine a duration of the first signal
  • the monitor of the first signal assumes that at most one time window in the L time windows is used to transmit the first a signal
  • the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, where the first type of information carried by any two of the M sub-signals includes The same information; if the first signal is sent on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is sent on the unlicensed carrier,
  • the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the user equipment is characterized in that the first signal is one of K signals, and the duration of each of the K signals is the same, the first signal The monitor assumes that at most one of the K signals is transmitted in each of the L time windows, each of the K signals carrying the In one type of information, the K is a non-negative integer that is not greater than the L.
  • the user equipment is characterized in that the first receiver module further receives second information, wherein the second information is used to determine a first time length, in the L time windows The length of time of each time window is equal to the first time length, and the L time windows are orthogonal in time domain.
  • the user equipment is characterized in that the first receiver module further receives third information, wherein the first time window is one of the L time windows, the first The time window includes Y candidate time intervals, and the user equipment assumes that at most one candidate time interval in the Y candidate time intervals is used to transmit the first signal, and the third information is used
  • the Y candidate time intervals are determined in the first time window, the Y being a positive integer.
  • the user equipment is characterized in that the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by a same antenna port group, the antenna
  • the port group includes a positive integer number of antenna ports.
  • the user equipment is characterized in that the frequency interval occupied by the first signal in the frequency domain is a first frequency interval, and the bandwidth of the first frequency interval occupies the transmission of the first signal.
  • the ratio of the bandwidth of the carrier is not less than a first threshold, the first threshold being related to the frequency of the carrier transmitting the first signal.
  • the present application discloses a base station device for wireless communication, which includes:
  • a second transmitter module transmitting the first signal in L time windows
  • the first information is used to determine a duration of the first signal
  • the monitor of the first signal assumes that at most one time window in the L time windows is used to transmit the first a signal
  • the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, where the first type of information carried by any two of the M sub-signals includes The same information; if the first signal is sent on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is sent on the unlicensed carrier,
  • the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the base station device is characterized in that the first signal is One of the K signals, the duration of each of the K signals is the same, the monitor of the first signal assumes that at most of each of the L time windows One of the K signals is transmitted, each of the K signals carrying the first type of information, the K being a non-negative integer not greater than the L.
  • the base station device is characterized in that the first transmitter module further transmits second information, wherein the second information is used to determine a first time length, in the L time windows The length of time of each time window is equal to the first time length, and the L time windows are orthogonal in time domain.
  • the base station device is characterized in that the first transmitter module further transmits third information, wherein the first time window is one of the L time windows, the first The time window includes Y candidate time intervals, and the user equipment assumes that at most one candidate time interval in the Y candidate time intervals is used to transmit the first signal, and the third information is used
  • the Y candidate time intervals are determined in the first time window, the Y being a positive integer.
  • the base station device is characterized in that the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, the antenna The port group includes a positive integer number of antenna ports.
  • the base station device is characterized in that the frequency interval occupied by the first signal in the frequency domain is a first frequency interval, and the bandwidth of the first frequency interval occupies the transmission of the first signal.
  • the ratio of the bandwidth of the carrier is not less than a first threshold, the first threshold being related to the frequency of the carrier transmitting the first signal.
  • the present application has the following main technical advantages:
  • the user equipment can obtain the number of resources occupied by the discovery reference signal in the unlicensed spectrum of the NR or the number of beams that are swept by the beam, satisfying the coverage requirement under the high frequency carrier and reducing the blindness of the user equipment.
  • the detection finds the complexity and power consumption of the reference signal.
  • the user equipment can obtain the number of resources occupied by the discovery reference signal in the unlicensed spectrum of the NR during beam sweeping or the number of beams that are swept by the beam, and can be performed when its signal or channel and the discovery reference signal are multiplexed. Rate matching improves link-level performance of signal or channel transmission.
  • the length of the period of the reference signal transmission is related to the resource occupied by the beam sweeping or the number of beams swept by the beam, and is reduced under the premise that the duty ratio under the unlicensed spectrum is met. Configured signaling overhead.
  • FIG. 1 shows a flow chart of transmission of first information and first signals in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • Figure 6 shows a schematic diagram of a first signal in accordance with one embodiment of the present application.
  • FIG. 7 shows a schematic diagram of K signals in accordance with one embodiment of the present application.
  • Figure 8 shows a schematic diagram of Y alternative time intervals in accordance with one embodiment of the present application.
  • FIG. 9 shows a schematic diagram of an antenna port group in accordance with one embodiment of the present application.
  • Figure 10 shows a schematic diagram of a first frequency interval in accordance with one embodiment of the present application.
  • FIG. 11 is a block diagram showing the structure of a processing device in a User Equipment (UE) according to an embodiment of the present application;
  • UE User Equipment
  • FIG. 12 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of first information and first signals in accordance with one embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the user equipment in the present application first receives the first information, and then monitors the first signal in L time windows; wherein the first information is used to determine the duration of the first signal, The monitor of the first signal assumes that at most one of the L time windows is used to transmit the first signal, the first signal comprising M sub-signals, each of the M sub-signals Carrying the first type of information, the first type of information carried by any two of the M sub-signals includes the same information; if the first signal is sent on the authorized carrier, the M sub-signals The time domain resources occupied by any two sub-signals are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time domain resources; the L and the M are both greater than A positive integer of 1.
  • the first information is high layer information.
  • the first information is transmitted through RRC signaling.
  • the first information includes all or a part of an IE (Information Element) in one RRC signaling.
  • IE Information Element
  • the first information includes a field in one RRC signaling.
  • the first information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is used by the user equipment to determine the duration of the first signal.
  • the first information indicates the duration of the first signal.
  • the first signal is used by the user equipment to determine a timing (Timing) of a carrier transmitting the first signal.
  • the first signal is used by the user equipment to determine a frequency of a carrier transmitting the first signal.
  • the first signal is used by the user equipment to determine whether a carrier transmitting the first signal is available.
  • the first signal carries a physical cell ID (PCID) of a serving cell of the user equipment.
  • PCID physical cell ID
  • the first signal is a physical layer signal.
  • the first signal is broadcast.
  • the first signal is multicast.
  • the first signal comprises a synchronization signal.
  • the first signal comprises a frequency domain repetition of the synchronization signal.
  • the first signal includes at least one of a ⁇ PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • ⁇ PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the first signal includes a frequency domain repetition of at least one of a ⁇ PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • ⁇ PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the first signal includes a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first signal includes a frequency domain repetition of a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first signal comprises a reference signal.
  • the first signal includes a DRS (Discovery Reference Signal).
  • DRS Digital Reference Signal
  • the first signal comprises a reference signal for PBCH demodulation.
  • the first signal comprises a frequency domain repetition of a reference signal for PBCH demodulation.
  • the first signal includes a DMRS (Demodulation Reference Signal) for PBCH demodulation.
  • DMRS Demodulation Reference Signal
  • the first signal includes a CSI-RS (Channel Status Information Reference Signal).
  • CSI-RS Channel Status Information Reference Signal
  • the first signal includes a PTRS (Phase Tracking Reference Signal).
  • PTRS Phase Tracking Reference Signal
  • the duration of the first signal is a length of time from a transmission start time of the first signal to a transmission end time of the first signal.
  • the first signal is generated by a sequence.
  • one or more PN (Pseudo Noise) sequences are used to generate the first signal.
  • one or more m sequences are used to generate the first signal.
  • the L time windows have the same length of time.
  • the time lengths of the two time windows in the L time windows are not equal.
  • the L time windows occupy consecutive time domain resources.
  • the time domain resources occupied by the L time windows are discrete.
  • time interval there is no time interval that belongs to any two of the L time windows, and the time length of the time interval is greater than zero.
  • the sender of the first signal performs LBT (Listen Before Talk) before transmitting the first signal.
  • LBT Listen Before Talk
  • the sender of the first signal listens to the channel before transmitting the first signal.
  • the sender of the first signal listens to the channel before transmitting the first signal, and if the channel is idle, the first signal is sent in the current or next time window in the L time windows. The first signal, if the channel is busy, the sender of the first signal waits for an opportunity to listen to the next channel.
  • the sender of the first signal listens to the channel based on ED (Energy Detection) before transmitting the first signal.
  • ED Electronicgy Detection
  • the monitor of the first signal is assumed to exist in a subsequent time window in the L time windows after detecting the first signal in one of the L time windows
  • the transmission of the second signal, the second signal and the information carried by the first signal include the same information.
  • none of the first signals are transmitted in the L time windows.
  • the first signal is transmitted in one of the L time windows.
  • any two of the M sub-signals occupy different time domain resources.
  • the time domain resources occupied by any two of the M sub-signals are orthogonal.
  • the duration of any two of the M sub-signals is the same.
  • the presence of two sub-signals of the M sub-signals has different durations.
  • information phase carried by any two of the M sub-signals with.
  • any two of the M sub-signals are generated by the same sequence.
  • the presence of two of the M sub-signals is generated by a different sequence.
  • any two of the M sub-signals are generated by the same sequence and bit block.
  • the M sub-signals are time-domain repeats of a sub-signal.
  • the M sub-signals are time-domain repeated transmissions of a sub-signal by Beam Sweeping.
  • any one of the M sub-signals is broadcast.
  • any one of the M sub-signals is multicast.
  • any one of the M sub-signals is Beam Specific.
  • the first type of information includes physical cell ID (PCID) information.
  • PCID physical cell ID
  • the first type of information includes time domain location information of the first signal.
  • the first type of information includes an index of one of the L time windows in which the first signal is located.
  • the first type of information carried by one of the M sub-signals includes time domain location information of the sub-signal.
  • the first type of information carried by one of the M sub-signals includes an index of the sub-signals in the M sub-signals.
  • the first type of information includes MIB (Master Information Block) information.
  • the licensed carrier is an authorized carrier having a frequency range below 6 GHz.
  • the licensed carrier is an authorized carrier with a frequency range above 6 GHz.
  • the unlicensed carrier is an unlicensed carrier having a frequency range below 6 GHz.
  • the unlicensed carrier is an unlicensed carrier having a frequency range above 6 GHz.
  • the authorized carrier is determined according to a statistic of a region in which the monitor of the first signal is located.
  • the unlicensed carrier is determined according to regulations of a region in which the monitor of the first signal is located.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, Wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to a user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports blind detection of a reference signal.
  • the UE 201 supports blind detection of a synchronization signal.
  • the UE 201 supports transmission over an unlicensed spectrum.
  • the gNB 203 supports transmission over an unlicensed spectrum.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including P-GW terminated on the network side.
  • the network layer eg, IP layer
  • the application layer at the other end of the connection (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first information in the present application is generated in the RRC 306.
  • the second information in the present application is generated in the RRC 306.
  • the third information in the present application is generated in the RRC 306.
  • the first signal in the present application is generated by the PHY 301. .
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, etc., in the present application
  • the detection of the first signal is done at the receive processor 452.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling (including PBCH, PDCCH). , PHICH, PCFICH, reference signal generation, etc., the first signal in the present application is generated by the transmit processor 415.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • the upper layer packet DL-SCH includes the first information in the present application, and the second information and the third information are supplied to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)).
  • the baseband signal is modulated, dividing the modulation symbols into parallel streams and Each class is mapped to a corresponding multi-carrier subcarrier and/or multi-carrier symbol and then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • the first signal in the present application is transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes monitoring and carrying the first information, the second information, the receiving of the physical layer signal of the third information, and the like in the present application, and performing the multi-carrier symbol in the multi-carrier symbol stream based on various Demodulation of a modulation scheme (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by decoding and deinterleaving to recover data or control transmitted by the gNB 410 on the physical channel, followed by data And control signals are provided to controller/processor 490.
  • the controller/processor 490 implements the L2 layer.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: receives first information and monitors a first signal in L time windows; the first information is used to determine a duration of the first signal, the first signal The monitor assumes that at most one time window in the L time windows is used to transmit the first signal, the first signal includes M sub-signals, each of the M sub-signals carrying the first Class information, the first type of information carried by any two of the M sub-signals includes the same information; if the first signal is transmitted on an authorized carrier, any two of the M sub-signals The occupied time domain resources are discontinuous; if the first signal is sent on an unlicensed carrier, the M sub-signals occupy consecutive time domain resources The said M and L are positive integer greater than 1.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first information and Monitoring a first signal in L time windows; the first information being used to determine a duration of the first signal, the monitor of the first signal assuming at most one time window in the L time windows Used to transmit the first signal, the first signal includes M sub-signals, each of the M sub-signals carrying a first type of signal The first type of information carried by any two of the M sub-signals includes the same information; if the first signal is transmitted on an authorized carrier, any two of the M sub-signals The occupied time domain resources are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB 410 device at least: transmitting the first information and transmitting the first signal in the L time windows; wherein the first information is used to determine a duration of the first signal, the monitor of the first signal Assume that at most one time window in the L time windows is used to transmit the first signal, the first signal includes M sub-signals, each of the M sub-signals carrying the first type of information The first type of information carried by any two of the M sub-signals includes the same information; if the first signal is sent on an authorized carrier, any two of the M sub-signals are occupied by The time domain resources are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than one.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first information and Transmitting a first signal in L time windows; wherein the first information is used to determine a duration of the first signal, the monitor of the first signal assuming at most one of the L time windows A time window is used to transmit the first signal, the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, any two of the M sub-signals The first type of information carried includes the same information; if the first signal is sent on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; The first signal is transmitted on an unlicensed carrier, the M sub-signals occupying a continuous time domain resource; the L and the M are both positive integers greater than one.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • receiver 456 (including antenna 460) and receive processor 452 are used Monitoring of the first signal in this application.
  • receiver 456 (including antenna 460), receive processor 452, and controller/processor 490 are used in the present application to receive the first information.
  • receiver 456 (including antenna 460), receive processor 452, and controller/processor 490 are used in the present application to receive the second information.
  • receiver 456 (including antenna 460), receive processor 452, and controller/processor 490 are used to receive the third information in this application.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit the first signal in this application.
  • transmitter 416 (including antenna 420), transmit processor 415, and controller/processor 440 are used to transmit the first information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415, and controller/processor 440 are used to transmit the second information in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the third information in this application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the first information is transmitted in step S11
  • the second information is transmitted in step S12
  • the third information is transmitted in step S13
  • the first signal is transmitted in L time windows in step S14.
  • the first information is received in step S21
  • the second information is received in step S22
  • the third information is received in step S23
  • the first signal is monitored in L time windows in step S14.
  • the first information is used to determine a duration of the first signal, and a monitor of the first signal assumes that at most one time window in the L time windows is used for transmission
  • the first signal the first signal includes M sub-signals, each of the M sub-signals carrying a first type of information, where the any two sub-signals of the M sub-signals carry One type of information includes the same information; if the first signal is transmitted on the authorized carrier, the time domain resources occupied by any two of the M sub-signals are discontinuous; If the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time domain resources; the L and the M are both positive integers greater than 1; the second information is used to determine a length of time, the length of time of each of the L time windows is equal to the first time length, the L time windows are orthogonal in time domain; the first time window is the L time a time window in the time window, wherein the first time window includes Y candidate time intervals, and the user equipment assumes that
  • the first signal is one of K signals
  • the duration of each of the K signals is the same
  • the monitor of the first signal assumes at the L times At most one of the K signals is transmitted in each time window in the window, and each of the K signals carries the first type of information, and the K is not greater than the L Non-negative integer.
  • the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, and the antenna port group includes a positive integer number of antenna ports.
  • the frequency interval occupied by the first signal in the frequency domain is a first frequency interval
  • the ratio of the bandwidth of the first frequency interval to the bandwidth of the carrier transmitting the first signal is not less than the first a threshold, the first threshold being related to a frequency of the carrier transmitting the first signal.
  • the L time windows are orthogonal in the time domain, meaning that there is no time interval and any two time windows belonging to the L time windows, and the time length of the time interval is greater than 0. .
  • the second information is high layer information.
  • the second information is transmitted through RRC signaling.
  • the second information includes all or part of an IE (Information Element) in one RRC signaling.
  • the second information is used by the user equipment to determine the first length of time.
  • the second information indicates the first length of time.
  • the second information is a field in an RRC signaling.
  • the second information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the second information is the same as the first information.
  • the second information is the first information.
  • the second information and the first information comprise the same information.
  • the second information and the first information are the same field in one signaling.
  • the second information is different from the first information.
  • the second information and the first information are carried by two different signaling.
  • the second information and the first information are two different fields in one signaling.
  • the first length of time is related to the duration of the first signal.
  • the ratio of the first time length to the duration of the first signal is not less than a first ratio, and the first ratio is based on an area in which the sender of the K signals is located.
  • the Y is equal to one.
  • the Y is equal to 6.
  • the Y is equal to 5.
  • the first signal occupies one complete candidate time interval of the Y alternate time intervals.
  • the first signal occupies a portion of one of the Y alternate time intervals.
  • each of the Y candidate time intervals has an equal length of time.
  • the Y alternate time intervals occupy consecutive time domain resources.
  • the time domain resources occupied by the Y candidate time intervals are discrete.
  • the Y candidate time intervals are orthogonal to each other.
  • the third information is high layer information.
  • the third information is transmitted through RRC signaling.
  • the third information is an IE (Information Element) in one RRC signaling.
  • the third information is used by the user equipment to determine the Y candidate time intervals in the first time window.
  • the third information indicates the Y candidate time intervals in the first time window.
  • the third information includes all or a part of a field in one RRC signaling.
  • the third information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the third information and the second information are carried by two different signaling.
  • the third information and the second information are two different fields in one signaling.
  • the third information and the second information are two different IEs in one signaling.
  • Embodiment 6 illustrates a schematic diagram of a first signal in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • each obliquely filled small rectangle represents a sub-signal of the first signal if transmitted on the licensed carrier
  • the small rectangle filled by each cross line represents if it is on an unlicensed carrier.
  • the monitor of the first signal assumes that at most one time window in the L time windows is used to transmit the first signal, the first signal includes M sub-signals, among the M sub-signals Each of the sub-signals carries a first type of information, and the first type of information carried by any two of the M sub-signals includes the same information; if the first signal is transmitted on an authorized carrier, The time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy a continuous time domain resource; the L and the M are both positive integers greater than 1; the time length of each time window in the L time windows is equal to the first time length, and the L time windows are in time The fields are orthogonal to each other.
  • the L time windows are orthogonal in the time domain, meaning that there is no time interval and any two time windows belonging to the L time windows, and the time length of the time interval is greater than 0. .
  • the first length of time is related to the duration of the first signal.
  • the first length of time is determined by the duration of the first signal.
  • the first length of time and the duration of the first signal are linearly related.
  • the ratio of the first time length to the duration of the first signal is not less than a first ratio, and the first ratio is based on an area in which the sender of the K signals is located.
  • Embodiment 7 illustrates a schematic diagram of K signals in accordance with one embodiment of the present application, as shown in FIG. In Fig. 7, the horizontal axis represents time, and the rectangle filled by each cross line represents one of the K signals.
  • the first signal is one of K signals
  • the duration of each of the K signals is the same
  • the monitor of the first signal is assumed to be in L time windows At most one of the K signals is transmitted in each time window, each of the K signals carrying a first type of information, the K being a non-negative integer not greater than the L.
  • the K is equal to 0, and the first signal is not transmitted in the L time windows.
  • the K is equal to 1, and the K signals include only the first signal.
  • the K signals are transmitted on the same carrier.
  • the sender of the K signals performs LBT (Listen Before Talk) before transmitting any one of the K signals.
  • the sender of the K signals listen to the channel before transmitting any of the K signals.
  • the sender of the K signals listens to the channel before transmitting any one of the K signals, and sends the current or next time window in the L time windows if the channel is idle.
  • the sender of the K signals listens to the channel based on ED (Energy Detection) before transmitting any one of the K signals.
  • ED Electronicgy Detection
  • the K signals are time domain repeat transmissions of the first signal.
  • any two of the K signals carry the same information.
  • any two of the K signals are generated by the same sequence.
  • the presence of two of the K signals is generated by a different sequence.
  • any two of the K signals are generated by the same sequence and bit block.
  • any one of the K signals is used by the user equipment to determine a timing (Timing) of a carrier transmitting the K signals.
  • any one of the K signals is used by the user equipment to determine the frequency of the carrier transmitting the K signals.
  • any one of the K signals is used by the user equipment to determine if a carrier transmitting the K signals is available.
  • any one of the K signals includes a synchronization signal.
  • any one of the K signals includes at least one of a ⁇ PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • a ⁇ PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • any one of the K signals includes a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • any one of the K signals includes a reference signal.
  • any one of the K signals includes a CSI-RS (Channel Status Information Reference Signal).
  • CSI-RS Channel Status Information Reference Signal
  • any one of the K signals includes a PTRS (Phase Tracking Reference Signal).
  • PTRS Phase Tracking Reference Signal
  • Embodiment 8 illustrates a schematic diagram of Y alternate time intervals in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • each small rectangle represents one candidate time interval among Y candidate time intervals
  • the small rectangle filled by the cross line represents Y candidate time intervals occupied by the first signal.
  • An alternate time interval is a schematic diagram of Y alternate time intervals in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • each small rectangle represents one candidate time interval among Y candidate time intervals
  • the small rectangle filled by the cross line represents Y candidate time intervals occupied by the first signal.
  • An alternate time interval is an alternate time interval.
  • the first time window is one time window of L time windows, the first time window includes Y candidate time intervals, and the user equipment assumes at the Y candidate time intervals At most one alternate time interval is used to transmit the first signal in the present application, the Y being a positive integer.
  • the Y is equal to one.
  • the Y is equal to 6.
  • the Y is equal to 5.
  • the first signal occupies one complete candidate time interval of the Y alternate time intervals.
  • the first signal occupies a portion of one of the Y alternate time intervals.
  • each of the Y candidate time intervals has an equal length of time.
  • the Y alternate time intervals occupy consecutive time domain resources.
  • the time domain resources occupied by the Y candidate time intervals are discrete.
  • the Y candidate time intervals are orthogonal to each other.
  • Embodiment 9 illustrates a schematic diagram of an antenna port group according to an embodiment of the present application, such as Figure 9 shows.
  • a diagonally filled ellipse represents one antenna port
  • one antenna port group includes J antenna ports
  • J is a positive integer.
  • the monitor of the first signal in the present application cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, and the antenna port group includes positive An integer number of antenna ports.
  • one of the antenna port groups corresponds to one beam (Beam).
  • one of the antenna port groups corresponds to an analog beam.
  • one of the antenna port groups corresponds to a BPL (Beam Pair Link).
  • the antenna port in one of the antenna port groups is QCL (Quasi Co-Located).
  • one of the antenna port groups includes only one antenna port.
  • one of the antenna port groups includes a plurality of antenna ports.
  • Embodiment 10 illustrates a schematic diagram of a first frequency interval in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents frequency
  • the rectangle filled by each cross line represents a portion of the frequency domain resources occupied by the first signal.
  • the frequency interval occupied by the first signal in the frequency domain in the application is a first frequency interval, and the bandwidth of the first frequency interval occupies a bandwidth of a carrier transmitting the first signal.
  • the ratio is not less than a first threshold, the first threshold being related to a frequency of the carrier transmitting the first signal.
  • the first threshold is further related to a region in which the sender of the first signal is located for a frequency of transmitting the carrier of the first signal.
  • the first signal occupies a continuous frequency domain resource.
  • the frequency domain resources occupied by the first signal are discrete.
  • the first threshold is greater than zero.
  • the first threshold is less than one.
  • the first threshold is equal to 80%.
  • the first threshold is equal to 70%.
  • Embodiment 11 exemplifies a structural block diagram of a processing device in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 1100 is mainly composed of a first receiver module 1101 and a second receiver module 1102.
  • the first receiver module 1101 includes a transmitter/receiver 456 (including an antenna 460) in FIG. 4 of the present application, a receiving processor 452 and a controller/processor 490.
  • the second receiver module 1102 includes a transmitter/receiver 456 (including an antenna 460) and a receive processor 452 in FIG. 4 of the present application.
  • the first receiver module 1101 receives the first information; the second receiver module 1102 monitors the first signal in the L time windows; wherein the first information is used to determine the first signal The duration of the first signal, the monitor assumes that at most one of the L time windows is used to transmit the first signal, the first signal comprising M sub-signals, the M sub- Each of the sub-signals of the signal carries a first type of information, and the first type of information carried by any two of the M sub-signals includes the same information; if the first signal is sent on an authorized carrier, The time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time-domain resources; The M is a positive integer greater than one.
  • the first signal is one of K signals
  • the duration of each of the K signals is the same
  • the monitor of the first signal assumes at the L times At most one of the K signals is transmitted in each time window in the window, and each of the K signals carries the first type of information, and the K is not greater than the L Non-negative integer.
  • the first receiver module 1101 further receives second information, wherein the second information is used to determine a first time length, a length of time of each of the L time windows Equal to the first length of time, the L time windows are orthogonal in time domain.
  • the first receiver module 1101 further receives third information, wherein the first time window is one of the L time windows, and the first time window includes Y candidates a time interval, the user equipment assumes that at most one candidate time interval in the Y candidate time intervals is used to transmit the first signal, the third information is used in the first time window
  • the Y candidate time intervals are determined, and the Y is a positive integer.
  • the monitor of the first signal cannot assume the first signal
  • the M sub-signals included are transmitted by the same antenna port group, which includes a positive integer number of antenna ports.
  • the frequency interval occupied by the first signal in the frequency domain is a first frequency interval
  • the ratio of the bandwidth of the first frequency interval to the bandwidth of the carrier transmitting the first signal is not less than the first a threshold, the first threshold being related to a frequency of the carrier transmitting the first signal.
  • Embodiment 12 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • base station processing apparatus 1200 is primarily comprised of a first transmitter module 1201 and a second transmitter module 1202.
  • the first transmitter module 1201 includes a transmitter/receiver 416 (including an antenna 420), a transmitting processor 415, and a controller/processor 440 in FIG. 4 of the present application.
  • the second transmitter module 1202 includes the transmitter/receiver 416 (including the antenna 420) and the transmit processor 415 of Figure 4 of the present application.
  • the first transmitter module 1201 transmits the first information; the second transmitter module 1202 transmits the first signal in the L time windows; wherein the first information is used to determine the first signal The duration of the first signal, the monitor assumes that at most one of the L time windows is used to transmit the first signal, the first signal comprising M sub-signals, the M sub- Each of the sub-signals of the signal carries a first type of information, and the first type of information carried by any two of the M sub-signals includes the same information; if the first signal is sent on an authorized carrier, The time domain resources occupied by any two of the M sub-signals are discontinuous; if the first signal is transmitted on an unlicensed carrier, the M sub-signals occupy consecutive time-domain resources; The M is a positive integer greater than one.
  • the first signal is one of K signals
  • the duration of each of the K signals is the same
  • the monitor of the first signal assumes at the L times At most one of the K signals is transmitted in each time window in the window, and each of the K signals carries the first type of information, and the K is not greater than the L Non-negative integer.
  • the first transmitter module 1201 further transmits second information, wherein the second information is used to determine a first time length, and a time length of each of the L time windows is equal to For the first time length, the L time windows are orthogonal in time domain.
  • the first transmitter module 1201 further sends third information, wherein the first time window is one of the L time windows, and the first time window includes Y candidate time intervals.
  • the user equipment assumes that at most one candidate time interval in the Y candidate time intervals is used to transmit the first signal, the third information is used to determine in the first time window The Y candidate time intervals, the Y being a positive integer.
  • the monitor of the first signal cannot assume that the M sub-signals included in the first signal are transmitted by the same antenna port group, and the antenna port group includes a positive integer number of antenna ports.
  • the frequency interval occupied by the first signal in the frequency domain is a first frequency interval
  • the ratio of the bandwidth of the first frequency interval to the bandwidth of the carrier transmitting the first signal is not less than the first a threshold, the first threshold being related to a frequency of the carrier transmitting the first signal.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种被用于非授权频谱的用户设备、基站中的方法和装置。用户设备首先接收第一信息,接着在L个时间窗中监测第一信号。所述第一信息被用于确定所述第一信号的持续时间,在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源。本发明能提高链路性能并降低用户设备复杂度。

Description

一种被用于非授权频谱的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及非授权频谱上的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过NR下的非授权频谱(Unlicensed Spectrum)的接入的研究项目,该研究项目预期在R15版本完成,然后在R16版本中启动WI对相关技术进行标准化。
发明内容
在LTE(Long Term Evolution,长期演进)的LAA(License Assisted Access,授权辅助接入)项目中,为了确定非授权频谱可用,同时保证在非授权频谱上的同步,LTE基站(eNB)在非授权频域上传输DRS(Discovery Reference Signal,发现参考信号)。DRS只能在配置的可用于DRS传输的资源上进行传输同时要满足非授权频谱的接入法规要求(比如LBT,Listen Before Talk,先听后说)。在NR的非授权频谱接入中类似于DRS的信号也是需要的。在NR的非授权频谱中包括高频段的频谱(一般高于6GHz),由于高频段频谱的传输损耗非常大,采用大规模天线来实现覆盖变得非常必要。但是为了实现简单与成本的限制,基于模拟波束赋形(Analog Beamforming)的波束扫荡(Beam Sweeping)会被广泛采用。当采用波束扫荡进行类似于DRS的信号传输时需要特别 的设计。
针对NR中的非授权频谱下的发现参考信号的设计,本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一信息;
-在L个时间窗中监测第一信号;
其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第二信息;
其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第三信息;
其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间 窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
-发送第一信息;
-在L个时间窗中发送第一信号;
其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第二信息;
其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的 每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第三信息;
其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
根据本申请的一个方面,上述方法的特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
-第一接收机模块,接收第一信息;
-第二接收机模块,在L个时间窗中监测第一信号;
其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第 一类信息,所述K是不大于所述L的非负整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一接收机模块还接收第二信息,其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
根据本申请的一个方面,上述用户设备的特征在于,所述第一接收机模块还接收第三信息,其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
-第一发射机模块,发送第一信息;
-第二发射机模块,在L个时间窗中发送第一信号;
其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信号是 K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一发射机模块还发送第二信息,其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
根据本申请的一个方面,上述基站设备的特征在于,所述第一发射机模块还发送第三信息,其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
根据本申请的一个方面,上述基站设备的特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
作为一个实施例,本申请具有如下主要技术优势:
-采用本申请,用户设备可以获得NR的非授权频谱下的发现参考信号传输在波束扫荡时所占用的资源或者波束扫荡的波束的数量,在满足高频载波下的覆盖要求同时降低用户设备盲检测发现参考信号的复杂性和功率消耗。
-采用本申请,用户设备可以获得NR的非授权频谱下的发现参考信号传输在波束扫荡时所占用的资源或者波束扫荡的波束的数量,当它信号或者信道和发现参考信号复用时可以进行速率匹配,提高信号或信道传输的链路级性能。
-采用本申请,发现参考信号传输的周期的时间长度和波束扫荡时所占用的资源或者波束扫荡的波束的数量相关联在一起,在满足非授权频谱下的占空比的要求的前提下降低配置的信令开销。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息和第一信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第一信号的示意图;
图7示出了根据本申请的一个实施例的K个信号的示意图;
图8示出了根据本申请的一个实施例的Y个备选时间间隔的示意图;
图9示出了根据本申请的一个实施例的天线端口组的示意图;
图10示出了根据本申请的一个实施例的第一频率区间的示意图;
图11示出了根据本申请的一个实施例的用户设备(UE)中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息和第一信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施 例1中,本申请中的用户设备首先接收第一信息,接着在L个时间窗中监测第一信号;其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述第一信息是高层信息。
作为一个实施例,所述第一信息是通过RRC信令传输的。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE(Information Element,信息单元)的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的一个域(Field)。
作为一个实施例,所述第一信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第一信息被所述用户设备用于确定所述第一信号的所述持续时间。
作为一个实施例,所述第一信息指示所述第一信号的所述持续时间。
作为一个实施例,所述第一信号被所述用户设备用于确定发送所述第一信号的载波的定时(Timing)。
作为一个实施例,所述第一信号被所述用户设备用于确定发送所述第一信号的载波的频率。
作为一个实施例,所述第一信号被所述用户设备用于确定发送所述第一信号的载波是否可用。
作为一个实施例,所述第一信号携带了所述用户设备的服务小区的物理小区ID(PCID)。
作为一个实施例,所述第一信号是物理层信号。
作为一个实施例,所述第一信号是广播的。
作为一个实施例,所述第一信号是组播的。
作为一个实施例,所述第一信号包括同步信号。
作为一个实施例,所述第一信号包括同步信号的频域重复。
作为一个实施例,所述第一信号包括{PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)}中至少之一。
作为一个实施例,所述第一信号包括{PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)}中至少之一的频域重复
作为一个实施例,所述第一信号包括PBCH(Physical Broadcast Channel,物理广播信道)。
作为一个实施例,所述第一信号包括PBCH(Physical Broadcast Channel,物理广播信道)的频域重复。
作为一个实施例,所述第一信号包括参考信号。
作为一个实施例,所述第一信号包括DRS(Discovery Reference Signal,发现参考信号)。
作为一个实施例,所述第一信号包括用于PBCH解调的参考信号。
作为一个实施例,所述第一信号包括用于PBCH解调的参考信号的频域重复。
作为一个实施例,所述第一信号包括用于PBCH解调的DMRS(Demodulation Reference Signal,解调参考信号)。
作为一个实施例,所述第一信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一信号包括PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)。
作为一个实施例,所述第一信号的所述持续时间为所述第一信号的发送起始时刻到所述第一信号的发送结束时刻的时间长度。
作为一个实施例,所述第一信号由序列生成。
作为一个实施例,一个或多个PN(Pseudo Noise,伪噪声)序列被用于生成所述第一信号。
作为一个实施例,一个或多个m序列被用于生成所述第一信号。
作为一个实施例,所述L个时间窗的时间长度相等。
作为一个实施例,所述L个时间窗中存在两个时间窗的时间长度不等。
作为一个实施例,所述L个时间窗占用连续的时域资源。
作为一个实施例,所述L个时间窗所占用的时域资源是离散的。
作为一个实施例,不存在一个时间间隔同时属于所述L个时间窗中的任意两个时间窗,所述时间间隔的时间长度大于0。
作为一个实施例,所述第一信号的发送者在发送所述第一信号之前执行LBT(Listen Before Talk,先听后说)。
作为一个实施例,所述第一信号的发送者在发送所述第一信号之前监听信道。
作为一个实施例,所述第一信号的发送者在发送所述第一信号之前监听信道,如果信道空闲,所述第一信号在所述L个时间窗中的当前或下一时间窗中发送所述第一信号,如果信道繁忙,所述第一信号的所述发送者等待下一个监听信道的机会。
作为一个实施例,所述第一信号的发送者在发送所述第一信号之前基于ED(Energy Detection,能量检测)监听信道。
作为一个实施例,所述第一信号的监测者在所述L个时间窗中的一个时间窗中检测到所述第一信号之后,假定在所述L个时间窗中的后续时间窗中存在第二信号的传输,所述第二信号和所述第一信号携带的信息中包括相同的信息。
作为一个实施例,在所述L个时间窗中所述第一信号都没有被传输。
作为一个实施例,在所述L个时间窗中中的一个时间窗中所述第一信号被传输。
作为一个实施例,所述M个子信号中的任意两个子信号占用不同的时域资源。
作为一个实施例,所述M个子信号中的任意两个子信号所占用的时域资源正交。
作为一个实施例,所述M个子信号中的任意两个子信号的持续时间相同。
作为一个实施例,所述M个子信号中的存在两个子信号的持续时间不同。
作为一个实施例,所述M个子信号中的任意两个子信号携带的信息相 同。
作为一个事实,所述M个子信号中存在两个子信号携带的信息不同。
作为一个实施例,所述M个子信号中的任意两个子信号都由相同的序列生成。
作为一个实施例,所述M个子信号中的存在两个子信号由不同的序列生成。
作为一个实施例,所述M个子信号中的任意两个子信号都由相同的序列和比特块生成。
作为一个实施例,所述M个子信号是一个子信号的时域重复传输(Repetition)。
作为一个实施例,所述M个子信号是一个子信号通过波束扫荡(Beam Sweeping)的时域重复传输(Repetition)。
作为一个实施例,所述M个子信号中的任意一个子信号是广播的。
作为一个实施例,所述M个子信号中的任意一个子信号是组播的。
作为一个实施例,所述M个子信号中的任意一个子信号是波束特有的(Beam Specific)。
作为一个实施例,所述第一类信息包括物理小区ID(PCID,Physical Cell ID)信息。
作为一个实施例,所述第一类信息包括所述第一信号的时域位置信息。
作为一个实施例,所述第一类信息包括所述第一信号所处的所述L个时间窗中的一个时间窗的索引。
作为一个实施例,所述M个子信号中的一个子信号所携带的所述第一类信息包括该子信号的时域位置信息。
作为一个实施例,所述M个子信号中的一个子信号所携带的所述第一类信息包括该子信号在所述M个子信号中的索引。
作为一个实施例,所述第一类信息中包括MIB(Master Information Block,主信息块)信息。
作为一个实施例,所述授权载波是频率范围在6GHz以下的授权载波。
作为一个实施例,所述授权载波是频率范围在6GHz以上的授权载波。
作为一个实施例,所述非授权载波是频率范围在6GHz以下的非授权载波。
作为一个实施例,所述非授权载波是频率范围在6GHz以上的非授权载波。
作为一个实施例,所述授权载波是依据所述第一信号的所述监测者所处的地区的法规确定的。
作为一个实施例,所述非授权载波是依据所述第一信号的所述监测者所处的地区的法规确定的。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、 无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的用户设备。
作为一个实施例,所述gNB203对应本申请中的基站。
作为一个实施例,所述UE201支持对参考信号进行盲检测。
作为一个实施例,所述UE201支持对同步信号进行盲检测。
作为一个实施例,所述UE201支持在非授权频谱上的传输。
作为一个实施例,所述gNB203支持在非授权频谱上的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW 处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或 UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等,本申请中对第一信号的检测即在接收处理器452完成。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等,本申请中的第一信号通过发射处理器415生成。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包DL-SCH包括本申请中的第一信息,第二信息和第三信息提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将 每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信号由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中在第一信号的监测和携带第一信息,第二信息,第三信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息和在L个时间窗中监测第一信号;所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息和在L个时间窗中监测第一信号;所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信 息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息和在L个时间窗中发送第一信号;其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息和在L个时间窗中发送第一信号;其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用 于本申请中的第一信号的监测。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第二信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第三信息。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的第一信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第二信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第三信息。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。
对于基站N1,在步骤S11中发送第一信息,在步骤S12中发送第二信息,在步骤S13中发送第三信息,在步骤S14中在L个时间窗中发送第一信号。
对于UE U2,在步骤S21中接收第一信息,在步骤S22中接收第二信息,在步骤S23中接收第三信息,在步骤S14中在L个时间窗中监测第一信号。
在实施例5中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的; 如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数;所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交;第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
作为一个实施例,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
作为一个实施例,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
作为一个实施例,所述L个时间窗在时域两两正交是指不存在一个时间间隔同时属于所述L个时间窗中的任意两个时间窗,所述时间间隔的时间长度大于0。
作为一个实施例,所述第二信息是高层信息。
作为一个实施例,所述第二信息是通过RRC信令传输的。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE(Information Element,信息单元)的全部或部分。
作为一个实施例,所述第二信息被所述用户设备用于确定所述第一时间长度。
作为一个实施例,所述第二信息指示所述第一时间长度。
作为一个实施例,所述第二信息是一个RRC信令中的一个域(Field)。
作为一个实施例,所述第二信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第二信息和所述第一信息相同。
作为一个实施例,所述第二信息就是所述第一信息。
作为一个实施例,所述第二信息和所述第一信息包括相同的信息。
作为一个实施例,所述第二信息和所述第一信息是一个信令中的相同的域(field)。
作为一个实施例,所述第二信息和所述第一信息不同。
作为一个实施例,所述第二信息和所述第一信息通过两个不同的信令携带。
作为一个实施例,所述第二信息和所述第一信息是一个信令中的两个不同的域(field)。
作为一个实施例,所述第一时间长度和所述第一信号的所述持续时间有关。
作为一个实施例,所述第一时间长度和所述第一信号的所述持续时间的比值不小于第一比例,所述第一比例基于所述K个信号的发送者所处的区域针对发送所述K个信号的载波频率的法规确定;作为一个子实施例,所述第一比例等于40比1。
作为一个实施例,所述Y等于1。
作为一个实施例,所述Y等于6。
作为一个实施例,所述Y等于5。
作为一个实施例,所述第一信号占用所述Y个备选时间间隔中的一个完整的备选时间间隔。
作为一个实施例,所述第一信号占用所述Y个备选时间间隔中的一个备选时间间隔的一部分。
作为一个实施例,所述Y个备选时间间隔中的每个备选时间间隔的时间长度相等。
作为一个实施例,所述Y个备选时间间隔中存在两个备选时间间隔的时间长度不等。
作为一个实施例,所述Y个备选时间间隔占用连续的时域资源。
作为一个实施例,所述Y个备选时间间隔所占用的时域资源是离散的。
作为一个实施例,所述Y个备选时间间隔两两正交。
作为一个实施例,所述第三信息是高层信息。
作为一个实施例,所述第三信息是通过RRC信令传输的。
作为一个实施例,所述第三信息是一个RRC信令中的一个IE(Information Element,信息单元)。
作为一个实施例,所述第三信息被所述用户设备用于在所述第一时间窗中确定所述Y个备选时间间隔。
作为一个实施例,所述第三信息在所述第一时间窗中指示所述Y个备选时间间隔。
作为一个实施例,所述第三信息包括一个RRC信令中的一个域(Field)的全部或一部分。
作为一个实施例,所述第三信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第三信息和所述第二信息通过两个不同的信令携带。
作为一个实施例,所述第三信息和所述第二信息是一个信令中的两个不同的域(field)。
作为一个实施例,所述第三信息和所述第二信息是一个信令中的两个不同的IE。
实施例6
实施例6示例了根据本申请的一个实施例的第一信号的示意图,如附图6所示。附图6中,横轴代表时间,每个斜线填充的小矩形代表如果在授权载波上传输时的第一信号的一个子信号,每个交叉线填充的小矩形代表如果在非授权载波上传输时的第一信号的一个子信号。
在实施例6中,第一信号的监测者假定在L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用 连续的时域资源;所述L和所述M都是大于1的正整数;所述L个时间窗中的每个时间窗的时间长度等于第一时间长度,所述L个时间窗在时域两两正交。
作为一个实施例,所述L个时间窗在时域两两正交是指不存在一个时间间隔同时属于所述L个时间窗中的任意两个时间窗,所述时间间隔的时间长度大于0。
作为一个实施例,所述第一时间长度和所述第一信号的所述持续时间有关。
作为一个实施例,所述第一时间长度由所述第一信号的所述持续时间确定。
作为一个实施例,所述第一时间长度和所述第一信号的所述持续时间是线性相关。
作为一个实施例,所述第一时间长度和所述第一信号的所述持续时间的比值不小于第一比例,所述第一比例基于所述K个信号的发送者所处的区域针对发送所述K个信号的载波频率的法规确定;作为一个子实施例,所述第一比例等于40比1。
实施例7
实施例7示例了根据本申请的一个实施例的K个信号的示意图,如附图7所示。在附图7中,横轴代表时间,每个交叉线填充的矩形代表K个信号中的一个信号。
在实施例7中,第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带第一类信息,所述K是不大于所述L的非负整数。
作为一个实施例,所述K等于0,所述第一信号在所述L个时间窗中没有被传输。
作为一个实施例,所述K等于1,所述K个信号仅包括所述第一信号。
作为一个实施例,所述K个信号在相同的载波上发送。
作为一个实施例,所述K个信号的发送者在发送所述K个信号中的任意一个信号之前执行LBT(Listen Before Talk,先听后说)。
作为一个实施例,所述K个信号的发送者在发送所述K个信号中的任意一个信号之前监听信道。
作为一个实施例,所述K个信号的发送者在发送所述K个信号中的任意一个信号之前监听信道,如果信道空闲,在所述L个时间窗中的当前或下一时间窗中发送当然计划发送的K个信号中的信号,如果信道繁忙,等待下一个监听信道的机会。
作为一个实施例,所述K个信号的发送者在发送所述K个信号中的任意一个信号之前基于ED(Energy Detection,能量检测)监听信道。
作为一个实施例,所述K个信号是所述第一信号的时域重复传输(Repetition)。
作为一个实施例,所述K个信号中的任意两个信号携带的信息相同。
作为一个事实,所述K个信号中存在两个信号携带的信息不同。
作为一个实施例,所述K个信号中的任意两个信号都由相同的序列生成。
作为一个实施例,所述K个信号中的存在两个信号由不同的序列生成。
作为一个实施例,所述K个信号中的任意两个信号都由相同的序列和比特块生成。
作为一个实施例,所述K个信号中的任意一个信号被所述用户设备用于确定发送所述K个信号的载波的定时(Timing)。
作为一个实施例,所述K个信号中的任意一个信号被所述用户设备用于确定发送所述K个信号的载波的频率。
作为一个实施例,所述K个信号中的任意一个信号被所述用户设备用于确定发送所述K个信号的载波是否可用。
作为一个实施例,所述K个信号中的任意一个信号包括同步信号。
作为一个实施例,所述K个信号中的任意一个信号包括{PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)}中至少之一。
作为一个实施例,所述K个信号中的任意一个信号包括PBCH(Physical Broadcast Channel,物理广播信道)。
作为一个实施例,所述K个信号中的任意一个信号包括参考信号。
作为一个实施例,所述K个信号中的任意一个信号包括CSI-RS (Channel Status Information Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述K个信号中的任意一个信号包括PTRS(Phase Tracking Reference Signal,相位跟踪参考信号)。
实施例8
实施例8示例了根据本申请的一个实施例的Y个备选时间间隔的示意图,如附图8所示。在附图8中,横轴代表时间,每一个小矩形代表Y个备选时间间隔中的一个备选时间间隔,交叉线填充的小矩形代表第一信号所占用的Y个备选时间间隔中的一个备选时间间隔。
在实施例8中,第一时间窗是L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输本申请中的所述第一信号,所述Y是正整数。
作为一个实施例,所述Y等于1。
作为一个实施例,所述Y等于6。
作为一个实施例,所述Y等于5。
作为一个实施例,所述第一信号占用所述Y个备选时间间隔中的一个完整的备选时间间隔。
作为一个实施例,所述第一信号占用所述Y个备选时间间隔中的一个备选时间间隔的一部分。
作为一个实施例,所述Y个备选时间间隔中的每个备选时间间隔的时间长度相等。
作为一个实施例,所述Y个备选时间间隔中存在两个备选时间间隔的时间长度不等。
作为一个实施例,所述Y个备选时间间隔占用连续的时域资源。
作为一个实施例,所述Y个备选时间间隔所占用的时域资源是离散的。
作为一个实施例,所述Y个备选时间间隔两两正交。
实施例9
实施例9示例了根据本申请的一个实施例的天线端口组的示意图,如 附图9所示。在附图9中,一个斜线填充的椭圆形代表一个天线端口,一个天线端口组包括J个天线端口,所述J是正整数。
在实施例9中,本申请中的所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
作为一个实施例,一个所述天线端口组对应一个波束(Beam)。
作为一个实施例,一个所述天线端口组对应一个模拟波束(Analog Beam)。
作为一个实施例,一个所述天线端口组对应一个BPL(Beam Pair Link,波束对连接)。
作为一个实施例,一个所述天线端口组中的天线端口是QCL(Quasi Co-Located,准共址的)。
作为一个实施例,一个所述天线端口组仅包括一个天线端口。
作为一个实施例,一个所述天线端口组包括多个天线端口。
实施例10
实施例10示例了根据本申请的一个实施例的第一频率区间的示意图,如附图10所示。在附图10中,横轴代表频率,每个交叉线填充的矩形代表第一信号占用的一部分频域资源。
在实施例10中,本申请中的所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
作为一个实施例,所述第一阈值还和所述第一信号的发送者所处的区域针对传输所述第一信号的所述载波的频率的法规有关。
作为一个实施例,所述第一信号占用连续的频域资源。
作为一个实施例,所述第一信号所占用的频域资源是离散的。
作为一个实施例,所述第一阈值大于0。
作为一个实施例,所述第一阈值小于1。
作为一个实施例,所述第一阈值等于80%。
作为一个实施例,所述第一阈值等于70%。
实施例11
实施例11示例了一个用户设备中的处理装置的结构框图,如附图11所示。附图11中,用户设备处理装置1100主要由第一接收机模块1101和第二接收机模块1102组成。第一接收机模块1101包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。第二接收机模块1102包括本申请附图4中的发射器/接收器456(包括天线460)和接收处理器452。
在实施例11中,第一接收机模块1101接收第一信息;第二接收机模块1102在L个时间窗中监测第一信号;其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
作为一个实施例,所述第一接收机模块1101还接收第二信息,其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
作为一个实施例,所述第一接收机模块1101还接收第三信息,其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
作为一个实施例,所述第一信号的所述监测者不能假定所述第一信号 所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
实施例12
实施例12示例了一个基站设备中的处理装置的结构框图,如附图12所示。在附图12中,基站处理装置1200主要由第一发射机模块1201和第二发射机模块1202组成。第一发射机模块1201包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。第二发射机模块1202包括本申请附图4中的发射器/接收器416(包括天线420)和发射处理器415。
在实施例12中,第一发射机模块1201发送第一信息;第二发射机模块1202在L个时间窗中发送第一信号;其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
作为一个实施例,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
作为一个实施例,第一发射机模块1201还发送第二信息,其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
作为一个实施例,第一发射机模块1201还发送第三信息,其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
作为一个实施例,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    -接收第一信息;
    -在L个时间窗中监测第一信号;
    其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,还包括:
    -接收第二信息;
    其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,还包括:
    -接收第三信息;
    其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号 被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
  7. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    -发送第一信息;
    -在L个时间窗中发送第一信号;
    其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信号是K个信号中之一,所述K个信号中的每个信号的持续时间是相同的,所述第一信号的监测者假定在所述L个时间窗中的每个时间窗中最多只有所述K个信号中的一个信号被发送,所述K个信号中的每个信号都携带所述第一类信息,所述K是不大于所述L的非负整数。
  9. 根据权利要求7或8中任一权利要求所述的方法,其特征在于,还包括:
    -发送第二信息;
    其中,所述第二信息被用于确定第一时间长度,所述L个时间窗中的每个时间窗的时间长度等于所述第一时间长度,所述L个时间窗在时域两两正交。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,还包括:
    -发送第三信息;
    其中,第一时间窗是所述L个时间窗中的一个时间窗,所述第一时间 窗中包括Y个备选时间间隔,所述用户设备假定在所述Y个备选时间间隔中最多只有一个备选时间间隔被用于传输所述第一信号,所述第三信息被用于在所述第一时间窗中确定所述Y个备选时间间隔,所述Y是正整数。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,所述第一信号的所述监测者不能假定所述第一信号所包括的所述M个子信号被相同的天线端口组发送,所述天线端口组包括正整数个天线端口。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,所述第一信号在频域上所占用的频率区间为第一频率区间,所述第一频率区间的带宽占传输所述第一信号的载波的带宽的比例不小于第一阈值,所述第一阈值是和传输所述第一信号的所述载波的频率有关的。
  13. 一种用于无线通信的用户设备,其特征在于,包括:
    -第一接收机模块,接收第一信息;
    -第二接收机模块,在L个时间窗中监测第一信号;
    其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所述L和所述M都是大于1的正整数。
  14. 一种用于无线通信的基站设备,其特征在于,包括:
    -第一发射机模块,发送第一信息;
    -第二发射机模块,在L个时间窗中发送第一信号;
    其中,所述第一信息被用于确定所述第一信号的持续时间,所述第一信号的监测者假定在所述L个时间窗中最多只有一个时间窗被用于传输所述第一信号,所述第一信号包括M个子信号,所述M个子信号中的每个子信号都携带第一类信息,所述M个子信号中的任意两个子信号所携带的所述第一类信息包括相同的信息;如果所述第一信号在授权载波上发送,所述M个子信号中任意两个子信号所占用的时域资源是不连续的;如果所述第一信号在非授权载波上发送,所述M个子信号占用连续的时域资源;所 述L和所述M都是大于1的正整数。
PCT/CN2017/096048 2017-08-04 2017-08-04 一种被用于非授权频谱的用户设备、基站中的方法和装置 WO2019024093A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/096048 WO2019024093A1 (zh) 2017-08-04 2017-08-04 一种被用于非授权频谱的用户设备、基站中的方法和装置
CN201780092117.9A CN110771227B (zh) 2017-08-04 2017-08-04 一种被用于非授权频谱的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096048 WO2019024093A1 (zh) 2017-08-04 2017-08-04 一种被用于非授权频谱的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019024093A1 true WO2019024093A1 (zh) 2019-02-07

Family

ID=65233195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096048 WO2019024093A1 (zh) 2017-08-04 2017-08-04 一种被用于非授权频谱的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (1) CN110771227B (zh)
WO (1) WO2019024093A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376861A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种占用非授权载波的发送的方法、系统及接入点
CN105578609A (zh) * 2014-10-10 2016-05-11 中兴通讯股份有限公司 实现非授权载波使用权竞争的方法、系统及竞争回退方法
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
WO2016164202A1 (en) * 2015-04-10 2016-10-13 Motorola Mobility Llc Drx handling in lte license assisted access operation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105007627B (zh) * 2014-04-16 2019-06-14 上海朗帛通信技术有限公司 一种非授权频带上的通信方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376861A (zh) * 2014-08-22 2016-03-02 中兴通讯股份有限公司 一种占用非授权载波的发送的方法、系统及接入点
CN105578609A (zh) * 2014-10-10 2016-05-11 中兴通讯股份有限公司 实现非授权载波使用权竞争的方法、系统及竞争回退方法
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
WO2016164202A1 (en) * 2015-04-10 2016-10-13 Motorola Mobility Llc Drx handling in lte license assisted access operation

Also Published As

Publication number Publication date
CN110771227A (zh) 2020-02-07
CN110771227B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
US20200305082A1 (en) Method and device in ue and base station for power saving
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10750493B2 (en) Method and device in UE and base station for unlicensed spectrum
CN112020848B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2020119519A1 (zh) 一种无线通信中的第一节点中的方法和装置
WO2020083039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019104470A1 (zh) 一种被用于非授权频谱的基站设备中的方法和装置
US11665037B2 (en) Method and device for wireless communication
WO2020024784A1 (zh) 一种被用于无线通信的第一节点、第二节点中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
CN110012540B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019128902A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170058A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
WO2020042862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019113914A1 (zh) 一种用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920213

Country of ref document: EP

Kind code of ref document: A1