WO2018095199A1 - 一种无线通信中的方法和装置 - Google Patents

一种无线通信中的方法和装置 Download PDF

Info

Publication number
WO2018095199A1
WO2018095199A1 PCT/CN2017/108340 CN2017108340W WO2018095199A1 WO 2018095199 A1 WO2018095199 A1 WO 2018095199A1 CN 2017108340 W CN2017108340 W CN 2017108340W WO 2018095199 A1 WO2018095199 A1 WO 2018095199A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
interval
carrier
signaling
threshold
Prior art date
Application number
PCT/CN2017/108340
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP17873080.0A priority Critical patent/EP3547588B1/en
Priority to EP23194992.6A priority patent/EP4262130A1/en
Publication of WO2018095199A1 publication Critical patent/WO2018095199A1/zh
Priority to US16/421,488 priority patent/US10925020B2/en
Priority to US17/105,636 priority patent/US11665037B2/en
Priority to US18/138,117 priority patent/US20230261916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to a transmission scheme in a wireless communication system supporting a plurality of Numerology, and more particularly to a method and apparatus for synchronizing signal transmission.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting. , New Radio) for research.
  • future wireless communication systems can support a variety of mathematical structures (Numerology), a variety of mathematical structures refer to a variety of subcarrier spacing, a variety of symbol time lengths, a variety of CP (Cyclic Prefix) length, etc.
  • a WA Working Assumption
  • FDM frequency division multiplexing
  • the cellular structure requires the boundary of the physical resource block (PRB) in the frequency domain of different mathematical structures to be aligned. This multiplexing method can minimize the fragmentation of resources.
  • PRB physical resource block
  • a user equipment In a wireless communication system, a user equipment (UE, User Equipment) needs to detect a base station device and synchronize with the base station device in time and frequency, and then perform subsequent operations. The signal detection and the time and frequency synchronization are all performed by the synchronization signal.
  • the synchronization signal can also be used to indicate the cell identifier, the TRP (Transmission Reception Point) identifier, the antenna port identifier, the beam identifier, and the FDD. /TDD distinguishes information such as subframe/radio frame timing.
  • the user equipment needs to perform initial detection on the synchronization signal at all possible frequency points.
  • a channel raster (Channel Raster) is predefined to limit the carrier on the network side.
  • the center frequency at the time of placement and the search frequency of the user equipment at the initial synchronization (generally the center frequency of the synchronization signal), the center frequency of the carrier and the center frequency of the synchronization signal satisfy the channel grid of 100 kHz, that is, allocated In the band, the center frequency of the carrier is the same as the center frequency of the synchronization signal, and the interval from the initial frequency of the band is an integer multiple of 100 kHz.
  • this frequency definition of LTE is not applicable under NR. There are several reasons for this:
  • ⁇ NR supports wider carrier bandwidth and bandwidth. If the search interval of 100 kHz is used, the complexity and delay of initial synchronization will be greatly increased.
  • the user equipment does not need to support the entire carrier bandwidth, and does not necessarily need to know the center frequency of the carrier. This also supports different carrier center frequency points and synchronization signal center frequency. Points are available.
  • the present application provides a design solution to the problem of the frequency configuration of the NR download wave and the synchronization signal described above.
  • the center frequency of the carrier and the center frequency of the synchronization signal can be independently configured, but at the same time satisfy the requirements of frequency division multiplexing (FDM) of various mathematical structures based on the Nested Structure.
  • FDM frequency division multiplexing
  • Another advantage of the design of the present application is that the carrier center frequency and the center frequency of the synchronization signal can be finely adjusted to achieve synchronization performance, synchronization complexity, and comprehensive consideration and balance of network flexibility.
  • the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method for being used in a base station for synchronization, characterized in that it comprises:
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier.
  • the frequency band to which the first carrier belongs is the first frequency band
  • the center frequency of the first carrier is the second frequency
  • the interval between the first frequency and the second frequency in the frequency domain is the first frequency interval.
  • the first frequency interval is related to a subcarrier spacing of the X subcarriers; the first wireless signal is used to determine at least one of ⁇ the first time window in a time domain, the first frequency ⁇
  • the first wireless signal is broadcast, or the first wireless signal is multicast; the first Signaling is used to determine a feature ID of the sender of the first wireless signal on the first carrier.
  • the PRB of the first wireless signal using different numerology may be in the frequency domain and other transmissions at the PRB boundary. Alignment prevents resource fragmentation, and can meet the flexible network deployment requirements of the base station side, and can simultaneously support flexible configuration of the first frequency.
  • the carrier is the largest continuous frequency domain range that a system's transmission signal can occupy.
  • the band is a range of contiguous spectrum resources that can be allocated for a given operator according to spectrum allocation regulations.
  • the first wireless signal is generated by a sequence of features.
  • the first wireless signal is generated by a feature sequence
  • the feature sequence is one of a ⁇ Zadoff-Chu sequence, a pseudo-random sequence ⁇ .
  • the first wireless signal is generated by a Zadoff-Chu sequence of length 63.
  • the first wireless signal is generated by a Zadoff-Chu sequence having one of a root index ( ⁇ 25, 29, 34 ⁇ ).
  • the first wireless signal is obtained by a feature sequence sequentially passing through a layer mapper, a precoding, a resource element mapper, and a baseband signal generation.
  • the first wireless signal is an SCH (Synchronization Channel).
  • the first wireless signal is a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the first frequency domain resource is contiguous in the frequency domain.
  • the subcarrier spacings of the X subcarriers are equal.
  • the subcarrier spacing of the X subcarriers is one of ⁇ 3.75 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz ⁇ .
  • the subcarrier spacing of the two subcarriers in the X subcarriers is unequal.
  • the first frequency is on one of the X subcarriers. center.
  • the first frequency is a boundary of two subcarriers adjacent to a frequency domain of the X subcarriers.
  • the X subcarriers are X OFDM (Orthogonal Frequency Division Multiplexing) carriers.
  • the subcarriers of the subcarriers included in the first carrier are equally spaced.
  • the first carrier includes two subcarriers with subcarrier spacings that are not equal.
  • the frequency domain bandwidth of the first carrier is fixed.
  • the frequency domain bandwidth of the first carrier is variable.
  • the first carrier includes a transmission frequency domain resource and a protection frequency domain resource.
  • the first frequency band is a pair of consecutive spectral resources.
  • the first frequency band is a single continuous spectrum resource.
  • the first frequency band is an FDD (Frequency Division Duplexing) frequency band.
  • FDD Frequency Division Duplexing
  • the first frequency band is a TDD (Time Division Duplexing) band.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, that is, the first frequency interval is linearly related to the subcarrier spacing of the X subcarriers.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, where the subcarrier spacing of the X subcarriers is used by the base station to determine the first frequency interval.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, that is, the subcarrier spacing of the X subcarriers is used by a user equipment (UE) to determine the first frequency interval.
  • UE user equipment
  • the first wireless signal is used by a User Equipment (UE) to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ .
  • UE User Equipment
  • the first time window is continuous in the time domain.
  • the first time window includes W OFDM symbols that are consecutive in the time domain, the W is a positive integer, and the OFDM symbol includes a CP (Cyclic Prefix) and a transmission symbol.
  • the first time window includes 1 OFDM symbol in the time domain.
  • the location of the first time window in the time domain refers to a start time of the first time window.
  • the location of the first time window in the time domain refers to an end time of the first time window.
  • the location of the first time window in the time domain refers to a start time of an OFDM symbol in the first time window.
  • the location of the first time window in the time domain refers to an end time of an OFDM symbol in the first time window.
  • the first signaling is physical layer signaling.
  • the first signaling is high layer signaling.
  • the first signaling is carried by an SSS (Secondary Synchronization Signal).
  • the first signaling is carried by a generation sequence of the SSS.
  • the first signaling is jointly carried by the PSS and the SSS.
  • the first signaling explicitly indicates a physical layer ID of the base station corresponding to the first carrier.
  • the first signaling implicitly indicates a physical layer ID of the base station corresponding to the first carrier.
  • the sender of the first wireless signal is a network side device composed of one or more TRP (Transmission Reception Point).
  • TRP Transmission Reception Point
  • the feature ID is a Cell ID.
  • the feature ID is a PCID (Physical Cell ID).
  • the feature ID is a transmit beam (Beam) ID corresponding to the first carrier.
  • the method is characterized in that the first frequency interval belongs to a target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers, The frequency domain bandwidth of the first frequency domain resource, the location of the first frequency band in the frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine the location in the Y frequency interval sets A set of target frequency intervals, the Y being a positive integer.
  • the base station is in the target frequency interval set according to a configuration requirement. Determining the first frequency interval, a user equipment (UE) blindly detecting the first wireless signal in the target frequency interval set to determine the first frequency interval.
  • UE user equipment
  • the target frequency interval set includes only the first frequency interval.
  • the frequency intervals in the set of target frequency intervals are all different.
  • the set of frequency intervals in the set of Y frequency intervals are all the same.
  • ⁇ the subcarrier spacing of the X subcarriers, the frequency domain bandwidth of the first frequency domain resource, the location of the first frequency band in the frequency domain, the At least a first one of the frequency domain bandwidths of a carrier determines the target frequency interval set from the set of Y frequency intervals by a given mapping relationship.
  • the frequency domain bandwidth of the first carrier refers to a transmission bandwidth of the first carrier.
  • the frequency domain bandwidth of the first carrier refers to a sum of a transmission bandwidth and a protection bandwidth of the first carrier.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a frequency interval outside the first frequency interval in the target frequency interval set.
  • the second signaling is high layer signaling.
  • the second signaling is RRC (Radio Resource Control).
  • the second signaling is physical layer signaling.
  • the second signaling is a MIB (Master Information Block).
  • the second signaling passes through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the second signaling explicitly indicates a frequency interval outside the first frequency interval in the target frequency interval set.
  • the first signaling implicitly indicates the target frequency interval set The frequency interval outside the first frequency interval.
  • each frequency interval in the set of target frequency intervals is equal to a sum of ⁇ non-negative integer number of unit frequency intervals, a first frequency offset ⁇ ; or the target frequency interval
  • Each frequency interval in the set is equal to a sum of ⁇ a non-negative integer number of said unit frequency intervals, one half of said unit frequency interval, said first frequency offset ⁇ ; said unit frequency interval being equal to 12 times the first child a carrier interval, a subcarrier spacing of each of the X subcarriers is equal to the first subcarrier spacing, and the first frequency offset is a non-negative number that is less than half of the unit frequency interval, the first The frequency offset is configurable; or the first frequency offset is a predefined fixed value.
  • the unit frequency interval is equal to a width of a PRB (Physical Resource Block) in the frequency domain.
  • PRB Physical Resource Block
  • the first frequency offset is a frequency interval between the first frequency and a third frequency
  • the third frequency is a center frequency of a second frequency domain resource
  • the second frequency domain resource a set of consecutive PRB blocks occupied by the first wireless signal.
  • the first frequency offset is equal to zero.
  • the first frequency offset is equal to one half of the first subcarrier spacing.
  • the first frequency offset is equal to a sum of J first subcarrier spacings, and J is a positive integer.
  • the first frequency offset is equal to a sum of J and 1/2 of the first subcarrier spacing, and the J is a positive integer.
  • the first frequency offset is less than or equal to a sum of 6 of the first subcarrier spacings.
  • the first frequency is biased to be less than or equal to a sum of 5.5 of the first subcarrier spacings.
  • the method is characterized in that a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P being positive An integer, the first grid being a predefined fixed frequency interval; or the first grid being determined by a position of the first frequency band in a frequency domain; the second frequency offset being configurable Or the second frequency offset is a predefined value less than or equal to the first threshold; the first threshold is a non-negative number, the first threshold is smaller than the first grid, and the first threshold is Fixed; or the first threshold is ⁇ the first frequency band in the frequency domain, the first sub At least one of the carrier spacings ⁇ is determined.
  • the sender of the first wireless signal can flexibly control the frequency domain resource location occupied when the first wireless signal is sent, so that the network can be comprehensively considered.
  • the flexibility and performance of user equipment (UE) synchronization can be flexibly control the frequency domain resource location occupied when the first wireless signal is sent, so that the network can be comprehensively considered.
  • the first grid is equal to 100 kHz.
  • the first grid is equal to 200 kHz.
  • the first grid is equal to a positive integer number of 100 kHz.
  • the first grid is determined by a given mapping relationship of the location of the first frequency band in the frequency domain.
  • the second frequency offset is equal to zero.
  • the second frequency offset is one of K frequency offsets
  • the K is a positive integer
  • each of the K frequency offsets is less than or equal to the first threshold.
  • the first threshold is determined by ⁇ at least one of the location of the first frequency band in the frequency domain, the first subcarrier spacing ⁇ by a given mapping relationship.
  • the first threshold is equal to zero.
  • the unit of the first threshold is Hz.
  • the unit of the first threshold is PPM.
  • the above method is characterized by further comprising:
  • the third signaling is used to determine the second frequency offset.
  • the third signaling is high layer signaling.
  • the third signaling is RRC (Radio Resource Control).
  • the third signaling is physical layer signaling.
  • the third signaling is a MIB (Master Information Block).
  • the third signaling is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the third signaling is carried by an SSS (Secondary Synchronization Signal).
  • the third signaling is carried by a generated sequence of SSS.
  • the third signaling is jointly carried by the SSS and the PBCH.
  • the third signaling explicitly indicates the second frequency offset.
  • the first signaling implicitly indicates the second frequency offset.
  • the method is characterized in that a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q being positive An integer, the second grid is a predefined fixed frequency interval; or the second grid is determined by a position of the first frequency band in a frequency domain; the third frequency offset is less than or equal to a predefined value of a second threshold, the second threshold being a non-negative value, the second threshold being fixed; or the second threshold being ⁇ the first frequency band in a frequency domain, the first At least one of the subcarrier spacings ⁇ is determined.
  • the second grid is equal to 100 kHz.
  • the second grid is equal to 200 kHz.
  • the second grid is equal to a positive integer number of 100 kHz.
  • the second grid is determined by a given mapping relationship of the location of the first frequency band in the frequency domain.
  • the third frequency offset is zero.
  • the third frequency offset is greater than zero.
  • the third frequency is offset by one of L frequency offsets, the L is a positive integer, and each of the L frequency offsets is less than or equal to a first threshold.
  • the second threshold is determined by ⁇ at least one of the location of the first frequency band in the frequency domain, the first subcarrier spacing ⁇ by a given mapping relationship.
  • the second threshold is equal to zero.
  • the unit of the second threshold is Hz.
  • the unit of the second threshold is PPM.
  • the present application discloses a method for being used in a user equipment for synchronization, characterized in that it comprises:
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier.
  • the frequency band to which the first carrier belongs is the first frequency band
  • the center frequency of the first carrier is a second frequency, wherein the interval between the first frequency and the second frequency in the frequency domain is a first frequency interval, and the first frequency interval is related to a subcarrier spacing of the X subcarriers;
  • the first wireless signal Used to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ ; the first wireless signal is broadcast, or the first wireless signal is multicast;
  • the first signaling is used to determine a feature ID of the sender of the first wireless signal corresponding to the first carrier.
  • the method is characterized in that the first frequency interval belongs to a target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers, The frequency domain bandwidth of the first frequency domain resource, the location of the first frequency band in the frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine the location in the Y frequency interval sets A set of target frequency intervals, the Y being a positive integer.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a frequency interval outside the first frequency interval in the target frequency interval set.
  • each frequency interval in the set of target frequency intervals is equal to a sum of ⁇ non-negative integer number of unit frequency intervals, a first frequency offset ⁇ ; or the target frequency interval
  • Each frequency interval in the set is equal to a sum of ⁇ a non-negative integer number of said unit frequency intervals, one half of said unit frequency interval, said first frequency offset ⁇ ; said unit frequency interval being equal to 12 times the first child a carrier interval, a subcarrier spacing of each of the X subcarriers is equal to the first subcarrier spacing, and the first frequency offset is a non-negative number that is less than half of the unit frequency interval, the first The frequency offset is configurable; or the first frequency offset is a predefined fixed value.
  • the method is characterized in that a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P being positive An integer, the first grid being a predefined fixed frequency interval; or the first grid being determined by a position of the first frequency band in a frequency domain; the second frequency offset being configurable Or the second frequency offset is a predefined value that is less than or equal to a first threshold, the first threshold is a non-negative number, the first threshold is smaller than the first grid, and the first threshold is Fixed; or the first threshold is determined by at least one of ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ .
  • the above method is characterized by further comprising the steps of:
  • the third signaling is used to determine the second frequency offset.
  • the method is characterized in that a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q being positive An integer, the second grid is a predefined fixed frequency interval; or the second grid is determined by a position of the first frequency band in a frequency domain; the third frequency offset is less than or equal to a predefined value of a second threshold, the second threshold being a non-negative value, the second threshold being fixed; or the second threshold being ⁇ the first frequency band in a frequency domain, the first At least one of the subcarrier spacings ⁇ is determined.
  • the present application discloses a base station device used for synchronization, which includes:
  • a first transmitter module transmitting the first wireless signal on the first frequency domain resource in the first time window
  • a second transmitter module transmitting the first signaling
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier.
  • the frequency band to which the first carrier belongs is the first frequency band
  • the center frequency of the first carrier is the second frequency
  • the interval between the first frequency and the second frequency in the frequency domain is the first frequency interval.
  • the first frequency interval is related to a subcarrier spacing of the X subcarriers; the first wireless signal is used to determine at least one of ⁇ the first time window in a time domain, the first frequency ⁇
  • the first wireless signal is broadcast, or the first wireless signal is multicast; the first signaling is used to determine that a sender of the first wireless signal corresponds to the first carrier Feature ID.
  • the base station device is characterized in that the first frequency interval belongs to a target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers
  • the frequency domain bandwidth of the first frequency domain resource, the location of the first frequency band in the frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine in the Y frequency interval sets
  • the set of target frequency intervals, the Y being a positive integer.
  • the base station device is characterized in that the second transmitter module further transmits second signaling, the second signaling being used to determine the first one of the target frequency interval sets Frequency interval outside the frequency interval.
  • the base station device is characterized in that each of the target frequency interval sets is equal to a sum of ⁇ non-negative integer unit frequency intervals, a first frequency offset ⁇ ; or the target frequency
  • Each frequency interval in the set of intervals is equal to a sum of ⁇ a non-negative integer number of said unit frequency intervals, one half of said unit frequency interval, said first frequency offset ⁇ ; said unit frequency interval being equal to 12 times the first a subcarrier spacing, a subcarrier spacing of each of the X subcarriers is equal to the first subcarrier spacing, and the first frequency offset is a non-negative number smaller than a half of the unit frequency interval, where A frequency offset is configurable; or the first frequency offset is a predefined fixed value.
  • the base station device is characterized in that a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P Is a positive integer, the first grid is a predefined fixed frequency interval; or the first grid is determined by the position of the first frequency band in the frequency domain; the second frequency offset is configurable Or the second frequency offset is a predefined value that is less than or equal to a first threshold, the first threshold is a non-negative number, the first threshold is less than the first grid, the first threshold Is fixed; or the first threshold is determined by at least one of ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ .
  • the base station device is characterized in that the second transmitter module further transmits third signaling, the third signaling being used to determine the second frequency offset.
  • the base station device is characterized in that a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q Is a positive integer, the second grid is a predefined fixed frequency interval; or the second grid is determined by the position of the first frequency band in the frequency domain; the third frequency offset is less than or a predefined value equal to a second threshold, the second threshold being a non-negative value, the second threshold being fixed; or the second threshold being ⁇ the first frequency band in a frequency domain, the At least one of a subcarrier spacing ⁇ is determined.
  • the present application discloses a user equipment used for synchronization, which includes:
  • a first receiver module receiving a first wireless signal on a first frequency domain resource in a first time window
  • a second receiver module receiving the first signaling
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first a carrier
  • a frequency band to which the first carrier belongs is a first frequency band
  • a center frequency of the first carrier is a second frequency
  • an interval between the first frequency and the second frequency in a frequency domain is a first frequency interval
  • the first frequency interval is related to a subcarrier spacing of the X subcarriers
  • the first wireless signal is used to determine ⁇ at least a position of the first time window in a time domain, the first frequency ⁇
  • the first wireless signal is broadcast, or the first wireless signal is multicast; the first signaling is used to determine that a sender of the first wireless signal corresponds to the first carrier Feature ID.
  • the user equipment is characterized in that the first frequency interval belongs to a target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers
  • the frequency domain bandwidth of the first frequency domain resource, the location of the first frequency band in the frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine in the Y frequency interval sets
  • the set of target frequency intervals, the Y being a positive integer.
  • the user equipment is characterized in that the second receiver module further receives second signaling, the second signaling is used to determine the first one of the target frequency interval sets Frequency interval outside the frequency interval.
  • each frequency interval in the target frequency interval set is equal to a sum of ⁇ non-negative integer unit frequency intervals, a first frequency offset ⁇ ; or the target frequency
  • Each frequency interval in the set of intervals is equal to a sum of ⁇ a non-negative integer number of said unit frequency intervals, one half of said unit frequency interval, said first frequency offset ⁇ ; said unit frequency interval being equal to 12 times the first a subcarrier spacing, a subcarrier spacing of each of the X subcarriers is equal to the first subcarrier spacing, and the first frequency offset is a non-negative number smaller than a half of the unit frequency interval, where A frequency offset is configurable; or the first frequency offset is a predefined fixed value.
  • the user equipment is characterized in that a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P Is a positive integer, the first grid is a predefined fixed frequency interval; or the first grid is determined by the position of the first frequency band in the frequency domain; the second frequency offset is configurable Or the second frequency offset is a predefined value that is less than or equal to a first threshold, the first threshold is a non-negative number, the first threshold is less than the first grid, the first threshold Is fixed; or the first threshold is determined by at least one of ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ .
  • the user equipment is characterized in that the second receiver module further receives third signaling, the third signaling being used to determine the second frequency offset.
  • the user equipment is characterized in that a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q Is a positive integer, the second grid is a predefined fixed frequency interval; or the second grid is determined by the position of the first frequency band in the frequency domain; the third frequency offset is less than or a predefined value equal to a second threshold, the second threshold being a non-negative value, the second threshold being fixed; or the second threshold being ⁇ the first frequency band in a frequency domain, the At least one of a subcarrier spacing ⁇ is determined.
  • the present application has the following main technical advantages:
  • the carrier frequency and the synchronization signal transmission frequency can satisfy the Nested Structure of different mathematical structures FDM, and avoid the fragmentation of resources.
  • FIG. 1 shows a flow chart of transmission of a first wireless signal and first signaling in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 is a flowchart of downlink transmission of a wireless signal according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing a relationship between a first frequency and a second frequency according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a relationship between a first frequency interval and a target frequency interval set according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing a relationship between a first frequency and a first grid, and a second frequency and a second grid according to an embodiment of the present application;
  • FIG. 9 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • FIG. 10 is a block diagram showing the structure of a processing device in a User Equipment (UE) according to an embodiment of the present application;
  • UE User Equipment
  • Embodiment 1 illustrates a flow chart of transmission of a first wireless signal and first signaling in accordance with one embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the base station device in the application first sends the first wireless signal on the first frequency domain resource in the first time window; then sends the first signaling; wherein, the center of the first frequency domain resource
  • the frequency is the first frequency
  • the first frequency domain resource includes X subcarriers, the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier
  • the frequency band to which the first carrier belongs is a frequency band
  • the center frequency of the first carrier is a second frequency
  • the interval between the first frequency and the second frequency in the frequency domain is a first frequency interval
  • the first frequency interval and the X subcarriers The subcarrier spacing is related; the first wireless signal is used to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ ; the first wireless signal is broadcast, Or the first
  • the carrier is the largest continuous frequency domain range that a system's transmission signal can occupy.
  • the band is a range of contiguous spectrum resources that can be allocated for a given operator according to spectrum allocation regulations.
  • the first wireless signal is generated by a sequence of features.
  • the first wireless signal is a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the subcarrier spacing of the X subcarriers is one of ⁇ 3.75 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz ⁇ .
  • the subcarrier spacing of the two subcarriers in the X subcarriers is unequal.
  • the first frequency is at the center of one of the X subcarriers.
  • the first frequency is a boundary of two subcarriers adjacent to a frequency domain of the X subcarriers.
  • the first frequency band is a pair of consecutive spectral resources.
  • the first frequency band is a single continuous spectrum resource.
  • the first frequency band is an FDD (Frequency Division Duplexing) frequency band.
  • FDD Frequency Division Duplexing
  • the first frequency band is a TDD (Time Division Duplexing) band.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, that is, the first frequency interval is linearly related to the subcarrier spacing of the X subcarriers.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, where the subcarrier spacing of the X subcarriers is used by the base station to determine the first frequency interval.
  • the first signaling is carried by an SSS (Secondary Synchronization Signal).
  • the first signaling is carried by a generation sequence of the SSS.
  • the first signaling is jointly carried by the PSS and the SSS.
  • the feature ID is a PCID (Physical Cell ID).
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. Figure 2 illustrates NR 5G, LTE (Long-Term Evolution) and A diagram of a LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator corresponding Internet Protocol service, and may specifically include the Internet, an intranet, and an IMS (IP). Multimedia Subsystem, IP Multimedia Subsystem) and PS Streaming Service (PSS).
  • IP IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to a user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports transmission over multiple frequency bands.
  • the gNB 203 supports transmission over multiple frequency bands.
  • the UE 201 supports transmission on a millimeter wave band.
  • the gNB 203 supports transmission over a millimeter wave band.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated in the RRC 306.
  • the third signaling in the present application is generated in the RRC 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper packet arrives at the controller/processor 440, which is provided by the controller/processor 440
  • the L2 layer protocol for the user plane and the control plane is implemented by header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling (including PBCH, PDCCH). , PHICH, PCFICH, reference signal generation, etc.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • the upper layer packet includes the second signaling and the third signaling in the present application are provided to the controller/processor 440.
  • the controller/processor 440 performs the functions of the L2 layer and above.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer). Signal processing functions include sequence generation, baseband signal generation, physical resource mapping, etc., which are then transmitted by transmitter 415 via transmitter 416 to antenna 420 for transmission as a radio frequency signal.
  • the first wireless signal and the first signaling in the present application are transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes detection of the first wireless signal and the first signaling in the present application, and reception of the physical layer signal carrying the second signaling, the third signaling, etc., and then the required data and/or control
  • the signal is provided to controller/processor 490.
  • the controller/processor 490 implements the L2 layer and above.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB410 device transmits at least the first radio signal on the first frequency domain resource in the first time window, and sends the first signaling, where the center frequency of the first frequency domain resource is the first frequency,
  • the first frequency domain resource includes X subcarriers, the X is a positive integer, the carrier to which the first frequency domain resource belongs is the first carrier, and the frequency band to which the first carrier belongs is the first frequency band, and the first carrier of
  • the center frequency is a second frequency, and the interval between the first frequency and the second frequency in the frequency domain is a first frequency interval, and the first frequency interval is related to a subcarrier spacing of the X subcarriers;
  • a wireless signal is used to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ ; the first wireless
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: in a first time window Transmitting the first radio signal on the first frequency domain resource; transmitting the first signaling; wherein, the center frequency of the first frequency domain resource is a first frequency, and the first frequency domain resource includes X subcarriers, X is a positive integer, the carrier to which the first frequency domain resource belongs is the first carrier, the frequency band to which the first carrier belongs is the first frequency band, and the center frequency of the first carrier is the second frequency, the first The interval between the frequency and the second frequency in the frequency domain is a first frequency interval, and the first frequency interval is related to a subcarrier spacing of the X subcarriers; the first wireless signal is used to determine ⁇ the first a time window at a position in the time domain, at least one of the first frequencies ⁇ ; the first wireless signal is broadcast, or the first wireless signal is multicast; the first
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one And the UE 450 device at least: receiving the first wireless signal on the first frequency domain resource in the first time window; receiving the first signaling; wherein, the center frequency of the first frequency domain resource is first Frequency, the first frequency domain resource includes X subcarriers, the X is a positive integer, the carrier to which the first frequency domain resource belongs is the first carrier, and the frequency band to which the first carrier belongs is the first frequency band.
  • the center frequency of the first carrier is a second frequency
  • the interval between the first frequency and the second frequency in the frequency domain is a first frequency interval
  • the first frequency interval is spaced from a subcarrier of the X subcarriers.
  • the first wireless signal is used to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ ; the first wireless signal is broadcast, or Multicast the first wireless signal; the first signaling is used to determine the sender of the first wireless signal in the first carrier corresponding features ID.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: in a first time window Receiving the first radio signal on the first frequency domain resource; receiving the first signaling; wherein, the center frequency of the first frequency domain resource is a first frequency, and the first frequency domain resource includes X subcarriers, X is a positive integer, the carrier to which the first frequency domain resource belongs is the first carrier, the frequency band to which the first carrier belongs is the first frequency band, and the center frequency of the first carrier is the second frequency, the first The interval between the frequency and the second frequency in the frequency domain is a first frequency interval, and the first frequency interval is related to a subcarrier spacing of the X subcarriers; the first wireless signal is used to determine ⁇ the first a time window at a position in the time domain, at least one of the first frequencies ⁇ ; the first wireless signal is broadcast, or the first wireless signal is multicast; the first signaling is
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • receiver 456 (including antenna 460) and receive processor 452 are used for reception of the first wireless signal in this application.
  • receiver 456 (including antenna 460) and receive processor 452 are used for reception of the first signaling in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used to receive the second signaling in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used to receive the third signaling in this application.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit the first wireless signal in this application.
  • transmitter 416 (including antenna 420) and transmit processor 415 are used to transmit the first signaling in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the second signaling in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the third signaling in this application.
  • Embodiment 5 exemplifies a wireless signal downlink transmission flowchart, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2, and the steps identified in block F1 are optional.
  • the first radio signal is transmitted on the first frequency domain resource in the first time window in step S11, the first signaling is transmitted in step S12, and the third signaling is transmitted in step S13, in step S14. Transmitting the second signaling.
  • the first radio signal is received on the first frequency domain resource in the first time window in step S21, the first signaling is received in step S22, and the third signaling is received in step S23, in step S24 Receiving the second signaling.
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs a first carrier
  • a frequency band to which the first carrier belongs is a first frequency band
  • a center frequency of the first carrier is a second frequency
  • an interval between the first frequency and the second frequency in the frequency domain is first a frequency interval
  • the first frequency interval being related to a subcarrier spacing of the X subcarriers
  • the first wireless signal being used to determine ⁇ the first time window in a time domain, the first frequency ⁇
  • the first wireless signal is broadcast, or the first wireless signal is multicast
  • the first signaling is used to determine that the sender of the first wireless signal is in the a feature ID corresponding to a carrier
  • the second signaling is used to determine a frequency interval outside the first frequency interval in the target frequency interval set
  • the third signaling is used to determine a second frequency offset .
  • the first frequency interval belongs to the target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers, the first frequency domain a frequency domain bandwidth of the resource, the location of the first frequency band in the frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine the target frequency interval set in the Y frequency interval sets,
  • the Y is a positive integer.
  • a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first gratings and the second frequency offset, and the P is a positive integer
  • the first The grid is a predefined fixed frequency interval; or the first grid is determined by the location of the first frequency band in the frequency domain; the second frequency offset is configurable; or the second The frequency offset is a predefined value that is less than or equal to the first threshold, the first threshold is a non-negative number, the first threshold is smaller than the first grid, and the first threshold is fixed; Or the first threshold is determined by at least one of ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ .
  • the first wireless signal is generated by a feature sequence
  • the feature sequence is one of a ⁇ Zadoff-Chu sequence, a pseudo-random sequence ⁇ .
  • the first wireless signal is a PSS (Primary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • the first time window includes 1 OFDM symbol in the time domain.
  • the first signaling is carried by at least a first one of a ⁇ SSS (Secondary Synchronization Signal), a PSS.
  • ⁇ SSS Secondary Synchronization Signal
  • the feature ID is a PCID (Physical Cell ID).
  • the second signaling is RRC (Radio Resource Control).
  • the third signaling is transmitted by at least one of a ⁇ PBCH (Physical Broadcast Channel), an SSS (Secondary Synchronization Signal).
  • ⁇ PBCH Physical Broadcast Channel
  • SSS Secondary Synchronization Signal
  • Embodiment 6 exemplifies a relationship between the first frequency and the second frequency, as shown in FIG.
  • the horizontal axis represents the frequency
  • the unfilled rectangle represents the unit frequency interval when the subcarrier spacing is 15 kHz
  • the obliquely filled rectangle represents the unit frequency interval when the subcarrier spacing is 30 kHz
  • the cross line is filled.
  • the rectangle represents a unit frequency interval when the subcarrier spacing is 60 kHz
  • the frequency domain resource corresponding to the unit frequency interval circled by the dotted line frame is the first frequency domain resource.
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs a first carrier
  • a frequency band to which the first carrier belongs is a first frequency band
  • a center frequency of the first carrier is a second frequency
  • an interval between the first frequency and the second frequency in the frequency domain is first a frequency interval
  • the first frequency interval is related to a subcarrier spacing of the X subcarriers
  • a frequency domain width of the first carrier is equal to a sum of an even number of unit frequency intervals, the first frequency interval being equal to a ⁇ non-negative integer a sum of the unit frequency intervals, a first frequency offset ⁇
  • a frequency domain width of the first carrier is equal to a sum of an odd number of the unit frequency intervals, the first frequency interval, etc.
  • the unit frequency interval being equal to 12 times a first subcarrier spacing
  • said X sub-intervals a subcarrier spacing of each subcarrier in the carrier is equal to the first subcarrier spacing
  • the first frequency offset being a non-negative number less than one-half of the unit frequency spacing, the first frequency offset being configurable
  • the first frequency offset is a predefined fixed value.
  • the first frequency domain resource is contiguous in the frequency domain.
  • the subcarrier spacings of the X subcarriers are equal.
  • the first carrier includes two subcarriers with subcarrier spacings that are not equal.
  • the first carrier includes a transmission frequency domain resource and a protection frequency domain resource.
  • the first frequency band is a pair of consecutive spectral resources.
  • the first frequency band is a single continuous spectrum resource.
  • the first frequency interval is related to the subcarrier spacing of the X subcarriers, that is, the first frequency interval is linearly related to the subcarrier spacing of the X subcarriers.
  • the unit frequency interval is equal to a width of a PRB (Physical Resource Block) in the frequency domain.
  • PRB Physical Resource Block
  • the first frequency offset is a frequency interval between the first frequency and a third frequency
  • the third frequency is a center frequency of a second frequency domain resource
  • the second frequency domain resource a set of consecutive PRB blocks occupied by the first wireless signal.
  • the first frequency offset is equal to zero.
  • the first frequency offset is equal to one half of the first subcarrier spacing.
  • the first subcarrier spacing is one of ⁇ 3.75 kHz, 7.5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz ⁇ .
  • Embodiment 7 illustrates a schematic diagram of a first frequency domain resource, as shown in FIG.
  • each rectangle represents a set of frequency intervals in a set of Y frequency intervals
  • a rectangle filled with oblique lines represents a set of target frequency intervals
  • an upper right corner is an explanatory diagram of a combination of target frequency intervals, wherein the horizontal axis Representing the frequency, each vertical line represents the frequency interval in the combination of the target frequency interval to the starting frequency.
  • the first frequency interval belongs to a target frequency interval set, and the target frequency interval set includes a positive integer number of frequency intervals, the target frequency interval set belongs to one of Y frequency interval sets, and the Y is positive Integer.
  • the target frequency interval set includes only the first frequency interval.
  • the frequency intervals in the set of target frequency intervals are all different.
  • the set of frequency intervals in the set of Y frequency intervals are all the same.
  • Embodiment 8 exemplifies a relationship between a first frequency and a first grid, and a relationship between a second frequency and a second grid, as shown in FIG.
  • the horizontal axis represents the frequency
  • each of the vertical lines with arrows represents the frequency of the first grid
  • each vertical line with dots represents the frequency of the second grid
  • the line represents the lowest frequency of the first frequency band
  • the elongated vertical line with the arrow represents the first frequency
  • the vertical line of the extended band represents the second frequency.
  • the frequency interval of the first frequency and the lowest frequency of the first frequency band is equal to the sum of the P first grids and the second frequency offset, the P is a positive integer, and the first grid is a pre- a defined fixed frequency interval; or the first grid is determined by a position of the first frequency band in a frequency domain; the second frequency offset is configurable; or the second frequency offset is less than Or a predefined value equal to a first threshold, the first threshold being a non-negative number, the first threshold being less than the first grid, the first threshold being fixed; or the first threshold being ⁇
  • the first frequency band is determined at least one of the locations in the frequency domain, the first subcarrier spacing ⁇ .
  • the frequency interval between the second frequency and the lowest frequency of the first frequency band is equal to the sum of the Q second grids and the third frequency offset, the Q is a positive integer, and the second grid is a predefined fixed a frequency interval; or the second grid is determined by a position of the first frequency band in a frequency domain; the third frequency offset is a predefined value less than or equal to a second threshold, the second threshold Non-negative, the second threshold is fixed; or the second threshold is ⁇ the location of the first frequency band in the frequency domain, At least one of the first subcarrier spacings ⁇ is determined.
  • the first grid is equal to a positive integer number of 100 kHz.
  • the first grid is determined by a given mapping relationship of the location of the first frequency band in the frequency domain.
  • the second frequency offset is equal to zero.
  • the second frequency offset is one of K frequency offsets
  • the K is a positive integer
  • each of the K frequency offsets is less than or equal to the first threshold.
  • the first threshold is determined by ⁇ at least one of the location of the first frequency band in the frequency domain, the first subcarrier spacing ⁇ by a given mapping relationship.
  • the first threshold is equal to zero.
  • the unit of the first threshold is Hz.
  • the unit of the first threshold is PPM.
  • the second grid is equal to 100 kHz.
  • the second grid is determined by a given mapping relationship of the location of the first frequency band in the frequency domain.
  • the third frequency offset is zero.
  • the third frequency offset is greater than zero.
  • the third frequency is offset by one of L frequency offsets, the L is a positive integer, and each of the L frequency offsets is less than or equal to a first threshold.
  • the second threshold is determined by ⁇ at least one of the location of the first frequency band in the frequency domain, the first subcarrier spacing ⁇ by a given mapping relationship.
  • the second threshold is equal to zero.
  • the unit of the second threshold is Hz.
  • the unit of the second threshold is PPM.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • base station processing apparatus 900 is primarily comprised of a first transmitter module 901 and a second transmitter module 902.
  • the first transmitter module 901 includes a transmitter/receiver 416 (including an antenna 420) and a transmission processor 415 in FIG. 4 of the present application
  • the second transmitter module 902 includes the transmitter in FIG. 4 of the present application/ Receiver 416 (including antenna 420), transmit processor 415 and controller/processor 440.
  • the first transmitter module 901 is configured to send the first wireless signal on the first frequency domain resource in the first time window
  • the second transmitter module 902 is configured to send the first signaling.
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier.
  • the frequency band to which the first carrier belongs is the first frequency band
  • the center frequency of the first carrier is the second frequency
  • the interval between the first frequency and the second frequency in the frequency domain is the first frequency interval, where the A frequency interval is related to the subcarrier spacing of the X subcarriers.
  • the first wireless signal is used to determine at least one of ⁇ the first time window in the time domain, the first frequency ⁇ .
  • the first wireless signal is broadcast; or the first wireless signal is multicast.
  • the first signaling is used to determine a feature ID of the sender of the first wireless signal corresponding to the first carrier.
  • the second transmitter module 902 is further configured to send the second signaling and send the third signaling.
  • the first frequency interval belongs to a target frequency interval set, where the target frequency interval set includes a positive integer number of frequency intervals, ⁇ the subcarrier spacing of the X subcarriers, and the first frequency domain resource a frequency domain bandwidth, a location of the first frequency band in a frequency domain, at least a first one of the frequency domain bandwidths of the first carrier is used to determine the target frequency interval set in the Y frequency interval sets, Y is a positive integer.
  • the second signaling is used to determine a frequency interval outside the first frequency interval in the set of target frequency intervals.
  • each frequency interval in the set of target frequency intervals is equal to a sum of ⁇ non-negative integer number of unit frequency intervals, a first frequency offset ⁇ ; or each frequency interval in the set of target frequency intervals is equal to a non-negative integer number of said unit frequency intervals, a half of said unit frequency interval, said first frequency offset ⁇ ; said unit frequency interval being equal to 12 times a first subcarrier spacing, said X subcarriers a subcarrier spacing of each of the subcarriers is equal to the first subcarrier spacing, the first frequency offset being a non-negative number less than one-half of the unit frequency spacing, the first frequency offset being configurable; Or the first frequency offset is a predefined fixed value.
  • a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P is a positive integer, the first grid a predetermined fixed frequency interval; or the first grid is determined by the location of the first frequency band in the frequency domain.
  • the second frequency offset is configurable; or the second frequency offset is a predefined value less than or equal to a first threshold, the first threshold being a non-negative number, The first threshold is smaller than the first grid, the first threshold is fixed; or the first threshold is at least by ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ A certain.
  • the third signaling is used to determine the second frequency offset.
  • a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q is a positive integer, and the second grid Is a predefined fixed frequency interval; or the second grid is determined by the location of the first frequency band in the frequency domain.
  • the third frequency offset is a predefined value that is less than or equal to a second threshold, the second threshold is a non-negative number, the second threshold is fixed; or the second threshold is ⁇ the first The location of the frequency band in the frequency domain, at least one of the first subcarrier spacings ⁇ is determined.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 1000 is mainly composed of a first receiver module 1001 and a second receiver module 1002.
  • the first receiver module 1001 includes a transmitter/receiver 456 (including an antenna 460) and a receiving processor 452 in FIG. 4 of the present application;
  • the second receiver module 1002 includes the transmitter/receiver in FIG. 4 of the present application. 456 (including antenna 460), receiving processor 452 and controller/processor 490.
  • the first receiver module 1001 is configured to receive a first wireless signal on a first frequency domain resource in a first time window
  • the second receiver module 1002 is configured to receive the first signaling.
  • the center frequency of the first frequency domain resource is a first frequency
  • the first frequency domain resource includes X subcarriers
  • the X is a positive integer
  • the carrier to which the first frequency domain resource belongs is the first carrier.
  • the frequency band to which the first carrier belongs is the first frequency band, the center frequency of the first carrier is the second frequency, and the interval between the first frequency and the second frequency in the frequency domain is the first frequency interval, where the a frequency interval is related to a subcarrier spacing of the X subcarriers;
  • the first wireless signal is used to determine at least one of ⁇ the first time window in a time domain, the first frequency ⁇ ; Said first wireless signal is broadcast; or said first wireless signal is multicast; said first signaling is used to determine a feature ID of said first wireless signal sender corresponding to said first carrier .
  • the second receiver module 1002 is also operative to receive the second signaling and receive the third signaling.
  • the first frequency interval belongs to a target frequency interval set
  • the target frequency interval set includes a positive integer number of frequency intervals, ⁇ between subcarriers of the X subcarriers Separating, a frequency domain bandwidth of the first frequency domain resource, a location of the first frequency band in a frequency domain, and at least a first one of frequency domain bandwidths of the first carrier is used in a set of Y frequency intervals Determining the set of target frequency intervals, the Y being a positive integer.
  • the second signaling is used to determine a frequency interval outside the first frequency interval in the set of target frequency intervals.
  • each frequency interval in the set of target frequency intervals is equal to a sum of ⁇ non-negative integer number of unit frequency intervals, a first frequency offset ⁇ ; or each frequency interval in the set of target frequency intervals is equal to ⁇ a non-negative integer number of said unit frequency intervals, half of said unit frequency intervals, said first frequency offset ⁇ .
  • the unit frequency interval is equal to 12 times the first subcarrier spacing, the subcarrier spacing of each of the X subcarriers is equal to the first subcarrier spacing, and the first frequency offset is less than the unit A non-negative number of half of the frequency interval, the first frequency offset being configurable; or the first frequency offset being a predefined fixed value.
  • a frequency interval between the first frequency and a lowest frequency of the first frequency band is equal to a sum of P first grids and a second frequency offset, the P is a positive integer, the first grid a predetermined fixed frequency interval; or the first grid is determined by the location of the first frequency band in the frequency domain.
  • the second frequency offset is configurable; or the second frequency offset is a predefined value less than or equal to a first threshold, the first threshold being a non-negative number, the first threshold being less than the a first grid, the first threshold is fixed; or the first threshold is determined by at least one of ⁇ the first frequency band in a frequency domain, the first subcarrier spacing ⁇ .
  • the third signaling is used to determine the second frequency offset.
  • a frequency interval between the second frequency and a lowest frequency of the first frequency band is equal to a sum of Q second grids and a third frequency offset, the Q is a positive integer, and the second grid a predetermined fixed frequency interval; or the second grid is determined by a position of the first frequency band in a frequency domain; the third frequency offset is a predefined value less than or equal to a second threshold
  • the second threshold is a non-negative number, the second threshold is fixed; or the second threshold is at least one of ⁇ the first frequency band in the frequency domain, the first subcarrier spacing ⁇ definite.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes but is not limited to a wireless communication device such as a macro cell base station, a micro cell base station, a home base station, and a relay base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线通信中的方法和装置。基站在第一时间窗中的第一频域资源上发送第一无线信号;接着发送第一信令。其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述第一频域资源所属的载波为第一载波,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔与所述X个子载波的子载波间隔有关。所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一。所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。本发明公开的方法能够独立配置载波的中心频点与用户设备的中心频点,避免资源浪费同时降低同步的复杂性。

Description

一种无线通信中的方法和装置 技术领域
本申请涉及支持多种数理结构(Numerology)的无线通信系统中的传输方案,特别是涉及同步信号传输的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)进行研究。
为了能够灵活适应多种不同的应用场景,未来的无线通信系统,特别是NR将可以支持多种数理结构(Numerology),多种数理结构是指多种子载波间隔,多种符号时间长度,多种CP(Cyclic Prefix,循环前缀)长度等。在RAN1#86bis会议达成了一个WA(Working Assumption,工作假设)支持采用蜂巢结构(Nested Structure)的多种数理结构的频分复用(FDM)。蜂巢结构要求不同的数理结构的在频域上的物理资源块(PRB,Physical Resource Block)的边界对齐,这种复用方式可以最大限度地避免资源的碎片化。
发明内容
在无线通信系统中,用户设备(UE,User Equipment)需要检测到基站设备并和基站设备在时间和频率上进行同步,然后才可以进行后续的操作。这种信号检测和时间与频率同步都是通过同步信号来完成的,同时依据设计的不同,同步信号还可以用来指示小区标识,TRP(Transmission Reception Point)标识,天线口标识,波束标识,FDD/TDD区分,子帧/无线帧定时等信息。
用户设备在对网络进行初始搜索(Initial Cell Search)的过程中,用户设备需要在所有可能的频点对同步信号进行初始检测。在LTE系统中,预先定义了信道格栅(Channel Raster)来限制网络侧的载波 放置时的中心频率和用户设备在初始同步时的搜索频点(一般是同步信号的中心频率),载波的中心频点和同步信号的中心频点都满足100kHz的信道格栅,即在所分配的频带(Band)内,载波的中心频点和同步信号的中心频点相同,并且与频带的初始频率的间隔是100kHz的整数倍。但是LTE的这种频率定义方式在NR下并不适用,主要有一下几个原因:
■NR支持更宽的载波带宽和频带宽度,如果沿用100kHz的搜索间隔,将会大大增加初始同步的时候的复杂度和延时。
■多种不同的数理结构的引入可能导致无法永远保持载波的中心频率与同步信号的中心频率一致。
■对于不同能力,尤其是射频能力的用户设备的支持,用户设备不需要一定支持整个载波带宽,也不一定需要知道载波的中心频率,这也给支持不同的载波中心频点与同步信号中心频点提供了可能。
针对上述NR下载波与同步信号的频率配置的问题,本申请提供了设计方案。采用本申请的方案,载波的中心频率与同步信号的中心频率可以独立配置,但同时满足基于蜂巢结构(Nested Structure)的多种数理结构的频分复用(FDM)的要求。本申请的设计方案的另外一个优势是可以对载波中心频率和同步信号的中心频率进行微调整来达到同步性能,同步复杂性,布网灵活性多方面的综合考虑和平衡。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于同步的基站中的方法,其特征在于,包括:
-在第一时间窗中的第一频域资源上发送第一无线信号;
-发送第一信令;
其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一 信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,通过所述第一频率间隔与所述X个子载波的子载波间隔相关联,可以使得使用不同的numerology的所述第一无线信号的PRB在频域的与其它传输在PRB边界对齐,防止资源碎片,同时可以满足基站侧灵活的布网需求,并且能够同时支持所述第一频率的灵活配置。
作为一个实施例,所述载波(carrier)为一个系统的传输信号所能占用的最大的连续频域范围。
作为一个实施例,所述频带(Band)为根据频谱分配法规可以为给定运营商所分配的连续频谱资源范围。
作为一个实施例,所述第一无线信号由特征序列生成。
作为一个实施例,所述第一无线信号由特征序列生成,所述特征序列为{Zadoff-Chu序列,伪随机序列}中之一。
作为一个实施例,所述第一无线信号由长度为63的Zadoff-Chu序列生成。
作为一个实施例,所述第一无线信号由根指数(Root Index)为{25,29,34}中之一的Zadoff-Chu序列生成。
作为一个实施例,所述第一无线信号由特征序列依次经过层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Generation)之后得到。
作为一个实施例,所述第一无线信号是SCH(Synchronization Channel,同步信道)。
作为一个实施例,所述第一无线信号是PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一频域资源在频域上是连续的。
作为一个实施例,所述X个子载波的子载波间隔是相等的。
作为一个实施例,所述X个子载波的子载波间隔是{3.75kHz,7.5kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz}中之一。
作为一个实施例,所述X个子载波中存在两个子载波的子载波间隔是不等的。
作为一个实施例,所述第一频率在所述X个子载波中的一个子载波的 中心。
作为一个实施例,所述第一频率在所述X个子载波中的频域相邻的两个子载波的边界。
作为一个实施例,所述X个子载波是X个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)在载波。
作为一个实施例,所述第一载波包含的子载波的子载波间隔相等。
作为一个实施例,所述第一载波包含两个子载波的子载波间隔不等。
作为一个实施例,所述第一载波的频域带宽是固定的。
作为一个实施例,所述第一载波的频域带宽是可变的。
作为一个实施例,所述第一载波包括传输频域资源与保护频域资源。
作为一个实施例,所述第一频带是一个成对的连续的频谱资源。
作为一个实施例,所述第一频带是一个单独的连续的频谱资源。
作为一个实施例,所述第一频带是一个FDD(Frequency Division Duplexing,频分双工)频带。
作为一个实施例,所述第一频带是一个TDD(Time Division Duplexing,时分双工)频带。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述第一频率间隔与所述X个子载波的子载波间隔线性相关。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述X个子载波的子载波间隔被所述基站用于确定所述第一频率间隔。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述X个子载波的子载波间隔被用户设备(UE)用于确定所述第一频率间隔。
作为一个实施例,所述第一无线信号被用户设备(UE)用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一。
作为一个实施例,所述第一时间窗在时域是连续的。
作为一个实施例,所述第一时间窗包括在时域上连续的W个OFDM符号,所述W为正整数,所述OFDM符号包括CP(Cyclic Prefix,循环前缀)和传输符号。
作为一个实施例,所述第一时间窗在时域上包括1个OFDM符号。
作为一个实施例,所述所述第一时间窗在时域的位置是指所述第一时间窗的起始时刻。
作为一个实施例,所述所述第一时间窗在时域的位置是指所述第一时间窗的结束时刻。
作为一个实施例,所述所述第一时间窗在时域的位置是指所述第一时间窗中的OFDM符号的起始时刻。
作为一个实施例,所述所述第一时间窗在时域的位置是指所述第一时间窗中的OFDM符号的结束时刻。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令通过SSS(Secondary Synchronization Signal,辅同步信号)携带的。
作为一个实施例,所述第一信令通过SSS的生成序列携带的。
作为一个实施例,所述第一信令通过PSS和SSS联合携带的。
作为一个实施例,所述第一信令显式地指示所述基站在所述第一载波对应的物理层ID。
作为一个实施例,所述第一信令隐式地指示所述基站在所述第一载波对应的物理层ID。
作为一个实施例,所述所述第一无线信号的发送者是一个或多个TRP(Transmission Reception Point,传输接收节点)组成的网络侧设备。
作为一个实施例,所述特征ID是小区(Cell)ID。
作为一个实施例,所述特征ID是PCID(Physical Cell ID,物理小区ID)。
作为一个实施例,所述特征ID是所述第一载波对应的发送波束(Beam)ID。
根据本申请的一个方面,上述方法的特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
作为一个实施例,所述基站根据配置需要在所述目标频率间隔集合中 确定所述第一频率间隔,用户设备(UE)在所述目标频率间隔集合中盲检测所述第一无线信号来确定所述第一频率间隔。
作为一个实施例,所述目标频率间隔集合只包括所述第一频率间隔。
作为一个实施例,所述目标频率间隔集合中的频率间隔都是不同的。
作为一个实施例,所述Y个频率间隔集合中的频率间隔集合都是相同的。
作为一个实施例,所述Y个频率间隔集合中存在两个频率间隔集合是不同的。
作为一个实施例,{所述所述X个子载波的子载波间隔,所述所述第一频域资源的频域带宽,所述所述第一频带在频域的位置,所述所述第一载波的频域带宽}中至少第一者通过给定的映射关系从所述Y个频率间隔集合中确定所述目标频率间隔集合。
作为一个实施例,所述所述第一载波的频域带宽是指所述第一载波的传输带宽。
作为一个实施例,所述所述第一载波的频域带宽是指所述第一载波的传输带宽和保护带宽之和。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第二信令;
其中,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
作为一个实施例,所述第二信令是高层信令。
作为一个实施例,所述第二信令是RRC(Radio Resource Control,无线资源控制)。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是MIB(Master Information Block,主信息块)。
作为一个实施例,所述第二信令通过PBCH(Physical Broadcast Channel,物理广播信道)。
作为一个实施例,所述第二信令显式地指示所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
作为一个实施例,所述第一信令隐式地指示所述目标频率间隔集合中 的所述第一频率间隔之外的频率间隔。
根据本申请的一个方面,上述方法的特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
作为一个实施例,所述单位频率间隔在频域等于一个PRB(Physical Resource Block,物理资源块)的宽度。
作为一个实施例,所述第一频率偏移为所述第一频率与第三频率之间的频率间隔,所述第三频率为第二频域资源的中心频率,所述第二频域资源为所述第一无线信号占用的连续PRB块的集合。
作为一个实施例,所述第一频率偏移等于0。
作为一个实施例,所述第一频率偏移等于所述第一子载波间隔的一半。
作为一个实施例,所述第一频率偏移等于J个所述第一子载波间隔的和,所述J是正整数。
作为一个实施例,所述第一频率偏移等于J又1/2个所述第一子载波间隔的和,所述J是正整数。
作为一个实施例,所述第一频率偏移小于或者等于6个所述第一子载波间隔的和。
作为一个实施例,所述第一频率偏于小于或者等于5.5个所述第一子载波间隔的和。
根据本申请的一个方面,上述方法的特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值;所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子 载波间隔}中至少之一确定的。
作为一个实施例,通过所述第二频率偏移的引入,所述第一无线信号的发送者可以灵活控制发送所述第一无线信号时所占用的频域资源位置,从而可以综合考虑布网的灵活性与用户设备(UE)同步的性能与复杂性。
作为一个实施例,所述第一格栅等于100kHz。
作为一个实施例,所述第一格栅等于200kHz。
作为一个实施例,所述第一格栅等于正整数个100kHz。
作为一个实施例,所述第一格栅是所述第一频带在频域的位置通过给定的映射关系确定的。
作为一个实施例,所述第二频率偏移等于0。
作为一个实施例,所述第二频率偏移为K个频率偏移中的一个,所述K是正整数,所述K个频率偏移中的每一个都小于或者等于第一阈值。
作为一个实施例,所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一通过给定的映射关系确定的。
作为一个实施例,所述第一阈值等于0。
作为一个实施例,所述第一阈值的单位是Hz。
作为一个实施例,所述第一阈值的单位是PPM。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第三信令;
其中,所述第三信令被用于确定所述第二频率偏移。
作为一个实施例,所述第三信令是高层信令。
作为一个实施例,所述第三信令是RRC(Radio Resource Control,无线资源控制)。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第三信令是MIB(Master Information Block,主信息块)。
作为一个实施例,所述第三信令通过PBCH(Physical Broadcast Channel,物理广播信道)传输的。
作为一个实施例,所述第三信令通过SSS(Secondary Synchronization Signal,辅同步信号)携带的。
作为一个实施例,所述第三信令通过SSS的生成序列携带的。
作为一个实施例,所述第三信令通过SSS和PBCH联合携带的。
作为一个实施例,所述第三信令显式地指示所述第二频率偏移。
作为一个实施例,所述第一信令隐式地指示所述第二频率偏移。
根据本申请的一个方面,上述方法的特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
作为一个实施例,所述第二格栅等于100kHz。
作为一个实施例,所述第二格栅等于200kHz。
作为一个实施例,所述第二格栅等于正整数个100kHz。
作为一个实施例,所述第二格栅是所述第一频带在频域的位置通过给定的映射关系确定的。
作为一个实施例,所述第三频率偏移为0。
作为一个实施例,所述第三频率偏移大于0。
作为一个实施例,所述第三频率偏移L个频率偏移中的一个,所述L是正整数,所述L个频率偏移中的每一个都小于或者等于第一阈值。
作为一个实施例,所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一通过给定的映射关系确定的。
作为一个实施例,所述第二阈值等于0。
作为一个实施例,所述第二阈值的单位是Hz。
作为一个实施例,所述第二阈值的单位是PPM。
本申请公开了一种被用于同步的用户设备中的方法,其特征在于,包括:
-在第一时间窗中的第一频域资源上接收第一无线信号;
-接收第一信令;
其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为 第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
根据本申请的一个方面,上述方法的特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第二信令;
其中,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
根据本申请的一个方面,上述方法的特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
根据本申请的一个方面,上述方法的特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
根据本申请的一个方面,上述方法的特征在于,还包括如下步骤:
-接收第三信令;
其中,所述第三信令被用于确定所述第二频率偏移。
根据本申请的一个方面,上述方法的特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
本申请公开了一种被用于同步的基站设备,其特征在于,包括:
-第一发射机模块,在第一时间窗中的第一频域资源上发送第一无线信号;
-第二发射机模块,发送第一信令;
其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
根据本申请的一个方面,上述基站设备的特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
根据本申请的一个方面,上述基站设备的特征在于,所述第二发射机模块还发送第二信令,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
根据本申请的一个方面,上述基站设备的特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
根据本申请的一个方面,上述基站设备的特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
根据本申请的一个方面,上述基站设备的特征在于,所述第二发射机模块还发送第三信令,所述第三信令被用于确定所述第二频率偏移。
根据本申请的一个方面,上述基站设备的特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
本申请公开了一种被用于同步的用户设备,其特征在于,包括:
-第一接收机模块,在第一时间窗中的第一频域资源上接收第一无线信号;
-第二接收机模块,接收第一信令;
其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一 载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
根据本申请的一个方面,上述用户设备的特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第二接收机模块还接收第二信令,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
根据本申请的一个方面,上述用户设备的特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
根据本申请的一个方面,上述用户设备的特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
根据本申请的一个方面,上述用户设备的特征在于,所述第二接收机模块还接收第三信令,所述第三信令被用于确定所述第二频率偏移。
根据本申请的一个方面,上述用户设备的特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
作为一个实施例,本申请具有如下主要技术优势:
-载波频率和同步信号传输频率能够满足不同数理结构FDM时的蜂巢结构(Nested Structure),避免了资源的碎片化。
-灵活配置载波中心频率与同步信号中心频率,在网络规划,同步性能与同步复杂性方面综合考虑,从而可以根据需要达到一个平衡点。
-打破了载波中心频率与同步信号中心频率必须一致的限制,使得基站可以更加灵活地配置不同数理结构的频率资源。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号和第一信令的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的无线信号下行传输流程图;
图6示出了根据本申请的一个实施例的第一频率与第二频率关系示意图;
图7示出了根据本申请的一个实施例的第一频率间隔与目标频率间隔集合的关系示意图;
图8示出了根据本申请的一个实施例的第一频率与第一格栅,第二频率与第二格栅的关系示意图;
图9示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用户设备(UE)中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号和第一信令的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的基站设备首先在第一时间窗中的第一频域资源上发送第一无线信号;接着发送第一信令;其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,所述载波(carrier)为一个系统的传输信号所能占用的最大的连续频域范围。
作为一个实施例,所述频带(Band)为根据频谱分配法规可以为给定运营商所分配的连续频谱资源范围。
作为一个实施例,所述第一无线信号由特征序列生成。
作为一个实施例,所述第一无线信号是PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述X个子载波的子载波间隔是{3.75kHz,7.5kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz}中之一。
作为一个实施例,所述X个子载波中存在两个子载波的子载波间隔是不等的。
作为一个实施例,所述第一频率在所述X个子载波中的一个子载波的中心。
作为一个实施例,所述第一频率在所述X个子载波中的频域相邻的两个子载波的边界。
作为一个实施例,所述第一频带是一个成对的连续的频谱资源。
作为一个实施例,所述第一频带是一个单独的连续的频谱资源。
作为一个实施例,所述第一频带是一个FDD(Frequency Division Duplexing,频分双工)频带。
作为一个实施例,所述第一频带是一个TDD(Time Division Duplexing,时分双工)频带。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述第一频率间隔与所述X个子载波的子载波间隔线性相关。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述X个子载波的子载波间隔被所述基站用于确定所述第一频率间隔。
作为一个实施例,所述第一信令通过SSS(Secondary Synchronization Signal,辅同步信号)携带的。
作为一个实施例,所述第一信令通过SSS的生成序列携带的。
作为一个实施例,所述第一信令通过PSS和SSS联合携带的。
作为一个实施例,所述特征ID是PCID(Physical Cell ID,物理小区ID)。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及 LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP  Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的用户设备。
作为一个实施例,所述gNB203对应本申请中的基站。
作为一个实施例,所述UE201支持在多个频带上的传输。
作为一个实施例,所述gNB203支持在多个频带上的传输。
作为一个实施例,所述UE201支持在毫米波频段上的传输。
作为一个实施例,所述gNB203支持在毫米波频段上的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩 功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供 包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包包括本申请中的第二信令和第三信令提供到控制器/处理器440。控制器/处理器440实施L2层及以上的功能。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能。信号处理功能包括序列生成,基带信号生成,物理资源映射等,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一无线信号和第一信令由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中在第一无线信号和第一信令的检测,和携带第二信令,第三信令的物理层信号的接收等,随后将需要的数据和/或控制信号提供到控制器/处理器490。控制器/处理器490实施L2层及以上。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在第一时间窗中的第一频域资源上发送第一无线信号;发送第一信令;其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的 中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间窗中的第一频域资源上发送第一无线信号;发送第一信令;其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:在第一时间窗中的第一频域资源上接收第一无线信号;接收第一信令;其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间窗中的第一频域资源上接收第一无线信号;接收第一信令;其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中的第一无线信号的接收。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中的第一信令的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于接收本申请中的第二信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于接收本申请中的第三信令。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的第一无线信号。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第二信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第三信令。
实施例5
实施例5示例了无线信号下行传输流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站,方框F1中标识的步骤是可选的。
对于基站N1,在步骤S11中在第一时间窗中的第一频域资源上发送第一无线信号,在步骤S12中发送第一信令,在步骤S13中发送第三信令,在步骤S14中发送第二信令。
对于UE U2,在步骤S21中在第一时间窗中的第一频域资源上接收第一无线信号,在步骤S22中接收第一信令,在步骤S23中接收第三信令,在步骤S24中接收第二信令。
在实施例5中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID;所述第二信令被用于确定目标频率间隔集合中的所述第一频率间隔之外的频率间隔,所述第三信令被用于确定第二频率偏移。
作为一个实施例,所述第一频率间隔属于所述目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
作为一个实施例,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与所述第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的; 或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
作为一个实施例,所述第一无线信号由特征序列生成,所述特征序列为{Zadoff-Chu序列,伪随机序列}中之一。
作为一个实施例,所述第一无线信号是PSS(Primary Synchronization Signal,主同步信号)。
作为一个实施例,所述第一时间窗在时域上包括1个OFDM符号。
作为一个实施例,所述第一信令通过{SSS(Secondary Synchronization Signal,辅同步信号),PSS}中至少第一者携带的。
作为一个实施例,所述特征ID是PCID(Physical Cell ID,物理小区ID)。
作为一个实施例,所述第二信令是RRC(Radio Resource Control,无线资源控制)。
作为一个实施例,所述第三信令是通过{PBCH(Physical Broadcast Channel,物理广播信道),SSS(Secondary Synchronization Signal,辅同步信号)}中至少之一传输的。
实施例6
实施例6示例了第一频率与第二频率关系示意图,如附图6所示。在附图6中,横轴代表频率,无填充的矩形表示当子载波间隔为15kHz时的单位频率间隔,斜线填充的矩形表示当子载波间隔为30kHz时的单位频率间隔,十字线填充的矩形表示当子载波间隔为60kHz时的单位频率间隔,虚线框圈起的单位频率间隔对应的频域资源为第一频域资源。
在实施例6中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一载波的频域宽度等于偶数个单位频率间隔之和,所述第一频率间隔等于{非负整数个所述单位频率间隔,第一频率偏移}的和;或者所述所述第一载波的频域宽度等于奇数个所述单位频率间隔之和,所述第一频率间隔等 于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
作为一个实施例,所述第一频域资源在频域上是连续的。
作为一个实施例,所述X个子载波的子载波间隔是相等的。
作为一个实施例,所述第一载波包含两个子载波的子载波间隔不等。
作为一个实施例,所述第一载波包括传输频域资源与保护频域资源。
作为一个实施例,所述第一频带是一个成对的连续的频谱资源。
作为一个实施例,所述第一频带是一个单独的连续的频谱资源。
作为一个实施例,所述第一频率间隔与所述X个子载波的子载波间隔有关是指所述第一频率间隔与所述X个子载波的子载波间隔线性相关。
作为一个实施例,所述单位频率间隔在频域等于一个PRB(Physical Resource Block,物理资源块)的宽度。
作为一个实施例,所述第一频率偏移为所述第一频率与第三频率之间的频率间隔,所述第三频率为第二频域资源的中心频率,所述第二频域资源为所述第一无线信号占用的连续PRB块的集合。
作为一个实施例,所述第一频率偏移等于0。
作为一个实施例,所述第一频率偏移等于所述第一子载波间隔的一半。
作为一个实施例,所述第一子载波间隔是{3.75kHz,7.5kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz}中之一。
实施例7
实施例7示例了第一频域资源示意图,如附图7所示。在附图7中,每个矩形代表Y个频率间隔集合中的一个频率间隔集合,斜线填充的矩形代表目标频率间隔集合,右上角为目标频率间隔结合的解释图,其中横轴 代表频率,每一条竖线代表到起始频率的目标频率间隔结合中的频率间隔。
在实施例7中,第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,所述目标频率间隔集合属于Y个频率间隔集合中之一,所述Y是正整数。
作为一个实施例,所述目标频率间隔集合只包括所述第一频率间隔。
作为一个实施例,所述目标频率间隔集合中的频率间隔都是不同的。
作为一个实施例,所述Y个频率间隔集合中的频率间隔集合都是相同的。
作为一个实施例,所述Y个频率间隔集合中存在两个频率间隔集合是不同的。
实施例8
实施例8示例了第一频率与第一格栅,第二频率与第二格栅的关系示意图,如附图8所示。附图8中,横轴代表频率,每一个带箭头的竖线代表间隔为第一格栅的频率,每一个带圆点的竖线代表间隔为第二格栅的频率,两头带十字的竖线代表第一频带的最低频率,伸长的带箭头的竖线代表第一频率,伸长带圆点竖线代表第二频率。
在实施例8中,第一频率与第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述 第一子载波间隔}中至少之一确定的。
作为一个实施例,所述第一格栅等于正整数个100kHz。
作为一个实施例,所述第一格栅是所述第一频带在频域的位置通过给定的映射关系确定的。
作为一个实施例,所述第二频率偏移等于0。
作为一个实施例,所述第二频率偏移为K个频率偏移中的一个,所述K是正整数,所述K个频率偏移中的每一个都小于或者等于第一阈值。
作为一个实施例,所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一通过给定的映射关系确定的。
作为一个实施例,所述第一阈值等于0。
作为一个实施例,所述第一阈值的单位是Hz。
作为一个实施例,所述第一阈值的单位是PPM。
作为一个实施例,所述第二格栅等于100kHz。
作为一个实施例,所述第二格栅是所述第一频带在频域的位置通过给定的映射关系确定的。
作为一个实施例,所述第三频率偏移为0。
作为一个实施例,所述第三频率偏移大于0。
作为一个实施例,所述第三频率偏移L个频率偏移中的一个,所述L是正整数,所述L个频率偏移中的每一个都小于或者等于第一阈值。
作为一个实施例,所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一通过给定的映射关系确定的。
作为一个实施例,所述第二阈值等于0。
作为一个实施例,所述第二阈值的单位是Hz。
作为一个实施例,所述第二阈值的单位是PPM。
实施例9
实施例9示例了一个基站设备中的处理装置的结构框图,如附图9所示。在附图9中,基站处理装置900主要由第一发射机模块901和第二发射机模块902组成。第一发射机模块901包括本申请附图4中的中的发射器/接收器416(包括天线420)和发射处理器415,第二发射机模块902包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器 415和控制器/处理器440。
在实施例9中,第一发射机模块901用于在第一时间窗中的第一频域资源上发送第一无线信号,第二发射机模块902用于发送第一信令。所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关。所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一。所述第一无线信号是广播的;或者所述第一无线信号是组播的。所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。第二发射机模块902还用于发送第二信令和发送第三信令。
作为一个实施例,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
作为一个实施例,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
作为一个实施例,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
作为一个实施例,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的。所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述 第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
作为一个实施例,所述第三信令被用于确定所述第二频率偏移。
作为一个实施例,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的。所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
实施例10
实施例10示例了一个用户设备中的处理装置的结构框图,如附图10所示。附图10中,用户设备处理装置1000主要由第一接收机模块1001和第二接收机模块1002组成。第一接收机模块1001包括本申请附图4中的发射器/接收器456(包括天线460)和接收处理器452;第二接收机模块1002包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
在实施例10中,第一接收机模块1001用于在第一时间窗中的第一频域资源上接收第一无线信号,第二接收机模块1002用于接收第一信令。所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的;或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。第二接收机模块1002还被用于接收第二信令和接收第三信令。
作为一个实施例,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间 隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
作为一个实施例,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
作为一个实施例,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和。所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
作为一个实施例,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的。所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
作为一个实施例,所述第三信令被用于确定所述第二频率偏移。
作为一个实施例,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或 部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种被用于同步的基站中的方法,其特征在于,包括:
    -在第一时间窗中的第一频域资源上发送第一无线信号;
    -发送第一信令;
    其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
  2. 根据权利要求1所述的方法,其特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    -发送第二信令;
    其中,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
  4. 根据权利要求2或3中任一权利要求所述的方法,其特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或 者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
  6. 根据权利要求5所述的方法,其特征在于,还包括:
    -发送第三信令;
    其中,所述第三信令被用于确定所述第二频率偏移。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
  8. 一种被用于同步的用户设备中的方法,其特征在于,包括:
    -在第一时间窗中的第一频域资源上接收第一无线信号;
    -接收第一信令;
    其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
  9. 根据权利要求8所述的方法,其特征在于,所述第一频率间隔属于目标频率间隔集合,所述目标频率间隔集合中包括正整数个频率间隔,{所述X个子载波的子载波间隔,所述第一频域资源的频域带宽,所述第一频带在频域的位置,所述第一载波的频域带宽}中至少第一者被用于在Y个频率间隔集合中确定所述目标频率间隔集合,所述Y是正整数。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    -接收第二信令;
    其中,所述第二信令被用于确定所述目标频率间隔集合中的所述第一频率间隔之外的频率间隔。
  11. 根据权利要求9或10中任一权利要求所述的方法,其特征在于,所述目标频率间隔集合中的每个频率间隔等于{非负整数个单位频率间隔,第一频率偏移}的和;或者所述目标频率间隔集合中的每个频率间隔等于{非负整数个所述单位频率间隔,所述单位频率间隔的一半,所述第一频率偏移}的和;所述单位频率间隔等于12倍的第一子载波间隔,所述X个子载波中的每个子载波的子载波间隔等于所述第一子载波间隔,所述第一频率偏移为小于所述单位频率间隔的一半的非负数,所述第一频率偏移是可配置的;或者所述第一频率偏移是预定义的固定值。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,所述第一频率与所述第一频带的最低频率的频率间隔等于P个第一格栅与第二频率偏移之和,所述P是正整数,所述第一格栅为一个预定义的固定的频率间隔;或者所述第一格栅由所述第一频带在频域的位置确定的;所述第二频率偏移是可配置的;或者所述第二频率偏移为小于或者等于第一阈值的预定义的值,所述第一阈值为非负数,所述第一阈值小于所述第一格栅,所述第一阈值是固定的;或者所述第一阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    -接收第三信令;
    其中,所述第三信令被用于确定所述第二频率偏移。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于,所述第二频率与所述第一频带的最低频率的频率间隔等于Q个第二格栅与第三频率偏移之和,所述Q是正整数,所述第二格栅为一个预定义的固定的频率间隔;或者所述第二格栅由所述第一频带在频域的位置确定的;。所述第三频率偏移为小于或者等于第二阈值的预定义的值,所述第二阈值为非负数,所述第二阈值是固定的;或者所述第二阈值由{所述第一频带在频域的位置,所述第一子载波间隔}中至少之一确定的。
  15. 一种被用于同步的基站设备,其特征在于,包括:
    -第一发射机模块,在第一时间窗中的第一频域资源上发送第一无线信号;
    -第二发射机模块,发送第一信令;
    其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
  16. 一种被用于同步的用户设备,其特征在于,包括:
    -第一接收机模块,在第一时间窗中的第一频域资源上接收第一无线信号;
    -第二接收机模块,接收第一信令;
    其中,所述第一频域资源的中心频率为第一频率,所述第一频域资源包括X个子载波,所述X为正整数,所述第一频域资源所属的载波为第一载波,所述第一载波所属的频带为第一频带,所述第一载波的中心频率为第二频率,所述第一频率与所述第二频率在频域的间隔为第一频率间隔,所述第一频率间隔与所述X个子载波的子载波间隔有关;所述第一无线信号被用于确定{所述第一时间窗在时域的位置,所述第一频率}中至少之一;所述第一无线信号是广播的,或者所述第一无线信号是组播的;所述第一信令被用于确定所述第一无线信号的发送者在所述第一载波对应的特征ID。
PCT/CN2017/108340 2016-11-27 2017-10-30 一种无线通信中的方法和装置 WO2018095199A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17873080.0A EP3547588B1 (en) 2016-11-27 2017-10-30 Method and device in radio communications
EP23194992.6A EP4262130A1 (en) 2016-11-27 2017-10-30 Method and device for wireless communication
US16/421,488 US10925020B2 (en) 2016-11-27 2019-05-24 Method and device for wireless communication
US17/105,636 US11665037B2 (en) 2016-11-27 2020-11-27 Method and device for wireless communication
US18/138,117 US20230261916A1 (en) 2016-11-27 2023-04-23 Method and device for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016110579630 2016-11-27
CN201611057963.0A CN108123782B (zh) 2016-11-27 2016-11-27 一种无线通信中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/421,488 Continuation US10925020B2 (en) 2016-11-27 2019-05-24 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2018095199A1 true WO2018095199A1 (zh) 2018-05-31

Family

ID=62194741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108340 WO2018095199A1 (zh) 2016-11-27 2017-10-30 一种无线通信中的方法和装置

Country Status (4)

Country Link
US (3) US10925020B2 (zh)
EP (2) EP3547588B1 (zh)
CN (3) CN112332966A (zh)
WO (1) WO2018095199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855836A4 (en) * 2018-10-22 2021-11-24 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE FOR USE IN WIRELESS COMMUNICATIONS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332966A (zh) * 2016-11-27 2021-02-05 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN113325420A (zh) * 2020-02-29 2021-08-31 华为技术有限公司 信号传输方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130016630A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated Beacons for user equipment relays
CN103124246A (zh) * 2011-11-17 2013-05-29 晨星软件研发(深圳)有限公司 用于无线网络的接收端以因应频率偏移的方法与相关装置
CN103460610A (zh) * 2011-03-31 2013-12-18 索尼公司 接收装置、接收方法、程序及接收系统
CN105530080A (zh) * 2014-09-30 2016-04-27 上海朗帛通信技术有限公司 一种蜂窝通信中的laa传输方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440895B2 (ja) * 2006-01-18 2010-03-24 株式会社エヌ・ティ・ティ・ドコモ 送信装置および送信方法
KR101496896B1 (ko) * 2009-02-16 2015-02-27 삼성전자주식회사 대역 확장성을 지원하는 셀룰러 무선통신시스템에서 보호대역이 구성된 하향링크 신호의 송수신 방법 및 장치
EP3043610B1 (en) * 2013-09-27 2019-09-04 Huawei Technologies Co., Ltd. Communication method, user equipment and base station
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
CN105472702B (zh) * 2014-08-21 2019-03-15 上海朗帛通信技术有限公司 Laa通信中的小区搜索方法和装置
US10440710B2 (en) * 2014-09-09 2019-10-08 Telefonaktiebolaget Lm Ericsson (Publ) Resource structure and indication for Rel-13 MTC UE
CN110381593B (zh) * 2014-10-28 2023-04-07 上海朗帛通信技术有限公司 一种laa侦听资源分配方法和装置
CN105900472B (zh) * 2014-11-07 2019-07-23 华为技术有限公司 直流分量子载波配置方法和装置
US10285144B2 (en) * 2015-11-05 2019-05-07 Qualcomm Incorporated Clean-slate synchronization signal design and cell search algorithms
US9609585B1 (en) * 2016-03-30 2017-03-28 Intel IP Corporation Devices and method for cell search and detection
CN109891971B (zh) * 2016-07-29 2023-05-02 夏普株式会社 终端装置、通信方法以及集成电路
CN112332966A (zh) * 2016-11-27 2021-02-05 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460610A (zh) * 2011-03-31 2013-12-18 索尼公司 接收装置、接收方法、程序及接收系统
US20130016630A1 (en) * 2011-07-12 2013-01-17 Qualcomm Incorporated Beacons for user equipment relays
CN103124246A (zh) * 2011-11-17 2013-05-29 晨星软件研发(深圳)有限公司 用于无线网络的接收端以因应频率偏移的方法与相关装置
CN105530080A (zh) * 2014-09-30 2016-04-27 上海朗帛通信技术有限公司 一种蜂窝通信中的laa传输方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3855836A4 (en) * 2018-10-22 2021-11-24 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE FOR USE IN WIRELESS COMMUNICATIONS

Also Published As

Publication number Publication date
EP4262130A1 (en) 2023-10-18
EP3547588B1 (en) 2023-10-18
US20210099964A1 (en) 2021-04-01
US10925020B2 (en) 2021-02-16
CN112332965B (zh) 2022-03-29
CN112332966A (zh) 2021-02-05
CN108123782A (zh) 2018-06-05
US20190281565A1 (en) 2019-09-12
CN108123782B (zh) 2020-11-06
EP3547588A1 (en) 2019-10-02
US20230261916A1 (en) 2023-08-17
EP3547588A4 (en) 2019-12-11
US11665037B2 (en) 2023-05-30
CN112332965A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US11818704B2 (en) Method and device in wireless communication
US10728007B2 (en) Method and device in wireless transmission
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2018033009A1 (zh) 一种无线通信中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11665037B2 (en) Method and device for wireless communication
CN109391346B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112020848B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2020083039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019085729A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11848892B2 (en) Method and device in wireless transmission
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020052462A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111769920B (zh) 一种被用于无线通信的节点中的方法和装置
CN111726869B (zh) 一种被用于无线通信的节点中的方法和装置
WO2019213798A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019024093A1 (zh) 一种被用于非授权频谱的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017873080

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017873080

Country of ref document: EP

Effective date: 20190627