WO2019128452A1 - 一种支持列车动态连挂和解编的控制方法 - Google Patents

一种支持列车动态连挂和解编的控制方法 Download PDF

Info

Publication number
WO2019128452A1
WO2019128452A1 PCT/CN2018/112833 CN2018112833W WO2019128452A1 WO 2019128452 A1 WO2019128452 A1 WO 2019128452A1 CN 2018112833 W CN2018112833 W CN 2018112833W WO 2019128452 A1 WO2019128452 A1 WO 2019128452A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
information
state
sets
cab
Prior art date
Application number
PCT/CN2018/112833
Other languages
English (en)
French (fr)
Inventor
方兴
常鸣
吕新军
Original Assignee
卡斯柯信号有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡斯柯信号有限公司 filed Critical 卡斯柯信号有限公司
Priority to EP18894348.4A priority Critical patent/EP3730380B1/en
Priority to RS20220342A priority patent/RS63160B1/sr
Priority to US16/958,643 priority patent/US11767043B2/en
Publication of WO2019128452A1 publication Critical patent/WO2019128452A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G7/00Details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2201/00Control methods

Definitions

  • the invention relates to the field of urban rail transit signal control, in particular to a control method for supporting dynamic linkage and de-programming of trains.
  • the line will be designed as a “Y” type branch, that is, it will operate separately in the suburbs and run in the city section. That is, the train is sent to the two destinations leading to the branch, such as Shanghai Lines 10 and 11. In this case, the train running interval on the branch road is also very long. Moreover, due to the limitation of the train running interval of the collinear part, it is impossible to solve the problem of excessive interval of the branching road section by increasing the operating vehicle even during the peak hours.
  • One way is to solve the problem that the passenger flow is unevenly distributed in time and space, and can shorten the operation interval of the off-peak period or the branch road section, and adopt different trains for mixed operation. That is, 8 or 6 long trains are used during peak hours; in the off-peak hours, a long train is decomposed into two 4 or 3 short trains, which guarantees the operation interval, but not much Increase the passenger load rate while extending passenger waiting time, avoiding waste of resources caused by empty car operation.
  • two short trains can be linked to the long group in the collinear section, and decomposed into two short trains at the branch to separate destinations.
  • the existing urban rail transit train control system does not support the dynamic continuous connection and decompilation of trains, that is, the grouping of the required trains must be fixed.
  • the reason is that in the vehicle controller, parameter information such as the length of the train, the antenna of the transponder to the distance of the head, and the like need to be stored in advance, and cannot be changed during the operation. If the train group changes, you must re-burn the data of the vehicle controller to ensure that the information used in the controller is consistent with the actual train. Otherwise, the train position calculation error will result, causing serious safety problems.
  • the object of the present invention is to provide a control method for supporting dynamic connection and de-coupling of a train with high safety, high reliability, and high degree of automation in order to overcome the defects of the prior art described above.
  • the vehicle signal system can be Automatically recognize the train connection status and load the matching configuration for automatic driving and safety protection of the train; during the operation, if the train formation status changes, the train will be safely parked, and then the latest group information will be stored and used. .
  • a control method for supporting train dynamic connection and de-programming includes the following steps:
  • Step A The initialization phase acquires the stored connection state information
  • Step B loading the offline configuration of the corresponding group according to the stored connection state
  • Step C collecting three sets of input signals related to the connection
  • Step D judging whether the train connection state is legal according to the collected signal, if it is legal, then proceeds to step E; if not, proceeds to step F;
  • Step E determining whether the current connection state is consistent with the offline configuration used in step B. If they are consistent, step H is performed; if not, step G is performed;
  • Step F Apply for emergency braking and report an error alarm
  • Step G Apply for emergency braking. After determining that the train is stopped, re-write the serial state information with the code, and then proceed to step A to re-initialize;
  • Step H Perform other functions of the signal system
  • the connected state information stored in step A is encoded, and it is assumed that x represents a non-coded connected state, and the coding format adopted is as follows:
  • r kx is the left shift k-bit operation
  • B x is the pre-allocated signature of the x variable
  • X H is the coded upper bit of the original information x
  • X L is the coded lower bit of the original information x
  • X H and X L form the original Encoding information of information x;
  • connection information After the connection information is read from the storage device, you need to verify the correctness of the information.
  • the verification algorithm is as follows:
  • the offline configuration in the step B includes “unconnected configuration”, “driver 1 connected configuration” and “driver 2 connected configuration”.
  • the three sets of input signals in the step C are respectively that the train is not connected to the ANS, the cab 1 is connected to the ACS1, and the cab 2 is connected to the ACS2 to ensure that the true connected state of the train is correctly reflected.
  • step D it is determined whether the train connection state is legal according to the collected signal, and the judgment logic is as shown in the following table, wherein the combination 2, 3, 5 is a legal state, and the rest is an illegal state:
  • the method supports defining four connected states
  • the onboard controller can store the connected state information with security coding and pre-store three sets of offline configurations, and can collect three sets of hard line input signals from the vehicle in real time. Perform the corresponding control.
  • the four connected states include the unconnected state of the train, the connected state of the cab 1 of the train, the connected state of the cab 2 of the train, and the illegal connected state.
  • the storage device securely encodes the connected state information, and the storage device supports online reading and writing.
  • the stored connected state information is securely coded, and the correctness of the encoded information needs to be verified when reading, thereby ensuring system security.
  • the storage medium selects the FLASH on the board, and the offline configuration includes a corresponding vehicle length, a transponder antenna to the vehicle end distance, and a traction brake of the train for different grouping states. Information about the characteristics.
  • the onboard signal system collects three sets of hard line signal inputs from the vehicle in real time, including a train unconnected signal, a cab 1 connected signal, and a cab 2 connected signal.
  • the present invention has the following advantages:
  • the invention makes it possible to mix and operate long and short marshalling trains and to perform online connection and de-editing, and no manual programming is required before and after the group change, which greatly improves the operation efficiency;
  • the on-board controller can judge the change of the train continuous state in real time through the vehicle input information, ensure that the train parameter configuration used is consistent with the actual connected state, and the train positioning can always be correctly calculated;
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a flow chart of the operation of the present invention.
  • a structure of an on-board controller supporting dynamic link suspension and de-programming of a train includes a storage device for storing train connection state information, a medium FLASH for storing three offline data, and a CPU for performing an on-vehicle signal function.
  • Step A The initialization phase acquires the stored connection state information
  • Step B loading the offline configuration of the corresponding group according to the stored connection state
  • Step C collecting three sets of input signals related to the connection by interfacing with the vehicle;
  • Step D judging whether the train connection state is legal according to the collected signal, if it is legal, then proceeds to step E; if not, proceeds to step F;
  • Step E determining whether the current connection state is consistent with the offline configuration used in step B. If they are consistent, step H is performed; if not, step G is performed;
  • Step F Apply for emergency braking and report an error alarm
  • Step G Apply for emergency braking. After determining that the train is stopped, re-write the serial state information with the code, and then proceed to step A to re-initialize;
  • Step H Perform other functions of the signal system
  • the step A the stored connection information is encoded, and it is assumed that x represents a non-coded connection state, and the coding format adopted is as follows:
  • r kx is the left shift k-bit operation
  • B x is the pre-allocated signature of the x variable.
  • connection information After the connection information is read from the storage device, you need to verify the correctness of the information.
  • the verification algorithm is as follows:
  • Step B There are three types of off-line configurations in which trains may be grouped, including "unconnected configuration”, “driver 1 connected configuration”, and “driver 2 connected configuration”.
  • Said step C three sets of input signals need to be provided separately by the vehicle using different relays, three sets of inputs respectively indicate that the train is not connected (ANS), the cab 1 is connected (ACS1), and the cab 2 is connected (ACS2) ), to ensure that the true connection state of the train is correctly reflected.
  • Step D judging whether the train connection state is legal according to the collected signal, and the judgment logic is as follows:
  • the invention has been successfully applied to the signal system provided by CASCO Signal Co., Ltd. for the LRT project in Addis Ababa, Ethiopia.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种支持列车动态连挂和解编的控制方法,包括:步骤A:初始化阶段获取存储的连挂状态信息;步骤B:根据存储的连挂状态加载对应编组的离线配置;步骤C:采集连挂相关的三组输入信号;步骤D:根据采集信号判断列车连挂状态是否合法,如果合法,则转入步骤E;如果不合法,则转入步骤F;步骤E:判断当前连挂状态是否与步骤B使用的离线配置一致,如果一致,则执行步骤H;如果不一致,则执行步骤G;步骤F:申请紧急制动,并报错告警;步骤G:申请紧急制动,在判断列车停稳后,重新写入带编码的连挂状态信息,其后转入步骤A重新初始化。该发明具有安全性高、可靠性高、且自动化程度高等优点。

Description

一种支持列车动态连挂和解编的控制方法 技术领域
本发明涉及城市轨道交通信号控制领域,尤其是涉及一种支持列车动态连挂和解编的控制方法。
背景技术
城市轨道交通线路的客流量通常在时间上分布不均,工作日的上下班通勤时段有明显的客流高峰。为尽快将站台滞留乘客运送的目的地,高峰时段需投入更多的列车以提高运营能力;而其他时段则一般会减少运营列车数量,避免空车运行导致的资源浪费。但是,此种运营方式会导致非高峰时段乘客的等待时间过长,满意度下降。
此外,对于连接郊区新城和市中心的线路,为解决客流在空间上分布不均的问题,会将线路设计为“Y”型分岔,即在郊区段分开运行,在市区段共线运行,即列车是间隔发往通向分岔的两个终点的,如上海10、11号线。此种情况下,在分岔路段的列车运行间隔也很长。而且,由于有共线部分的列车运行间隔限制,即便在高峰时段也无法通过增加运营车辆来解决分岔路段的间隔过长问题。
一种即能解决客流在时间空间上分布不均,又能缩短非高峰期或分岔路段运营间隔的方式,是采用不同编组列车进行混合运营。即在高峰时段采用8节或6节长编组列车;而在非高峰时段,将一列长编组列车解编为两列4节或3节的短编组列车运营,这样可在保证运营间隔,不过多延长乘客等待时间的情况下提高载客率,避免空车运行导致资源浪费。对于“Y”型线路,两列短编组列车可在共线段连挂为长编组运行,在分岔站解编为两个短编组列车分别驶往不同目的地。
但是,上述运营模式无法实施的原因之一,是既有的城市轨道交通列车控制系统,不支持列车的动态连挂和解编作业,即要求运营列车的编组必须是固定的。原因是车载控制器中,需要预先存储列车的长度、应答器天线至车头距离等参数信息,在运行过程中不能改变。如果列车编组发生了变化,则必须要重新烧录车载控制器的数据,确保控制器中使用的信息与实际列车相一致,否则会导致列车位置计算错误,引起严重的安全问题。
因此,如何能安全可靠的判断出列车的连挂状态,能正确并自动地加载使用与当 前列车连挂状态相匹配的配置参数,是实现列车动态连挂和解编控制的关键。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种安全性高、可靠性高、且自动化程度高的支持列车动态连挂和解编的控制方法,根据该方法,车载信号系统可以自动识别列车连挂状态并加载匹配的配置,用于列车的自动驾驶和安全防护;在运行过程中,如果列车编组状态发生改变,也会确保列车安全停车,其后存储并使用最新的编组信息。
本发明的目的可以通过以下技术方案来实现:
一种支持列车动态连挂和解编的控制方法,包括以下步骤:
步骤A:初始化阶段获取存储的连挂状态信息;
步骤B:根据存储的连挂状态加载对应编组的离线配置;
步骤C:采集连挂相关的三组输入信号;
步骤D:根据采集信号判断列车连挂状态是否合法,如果合法,则转入步骤E;如果不合法,则转入步骤F;
步骤E:判断当前连挂状态是否与步骤B使用的离线配置一致,如果一致,则执行步骤H;如果不一致,则执行步骤G;
步骤F:申请紧急制动,并报错告警;
步骤G:申请紧急制动,在判断列车停稳后,重新写入带编码的连挂状态信息,其后转入步骤A重新初始化;
步骤H:执行信号系统其他功能;
优选地,所述的步骤A中存储的连挂状态信息是经过编码的,假设x表示非编码的连挂状态,采用的编码格式如下:
X H=x
X L=-r kx+B x
式中,r kx为x左移k位运算;B x为x变量预先分配的签名;X H为原始信息x的编码高位;X L为原始信息x的编码低位;X H和X L组成原始信息x的编码信息;
从存储设备中读取到连挂信息后,需要校验该信息的正确性,采取的校验算法如下:
Bcheck x=r kx+X L-B x
如果Bcheck x等于0,表示校验成功;如果Bcheck x不等于0,表示校验失败,初始化失败而退出。
优选地,所述的步骤B中的离线配置包括“未连挂配置”、“司机室1连挂配置”和“司机室2连挂配置”。
优选地,所述的步骤C中的三组输入信号分别为列车未连挂ANS、司机室1被连挂ACS1和司机室2被连挂ACS2,用于确保正确反映列车真实的连挂状态。
优选地,所述的步骤D中的根据采集信号判断列车连挂状态是否合法,其判断逻辑如下表所示,其中组合2,3,5为合法状态,其余为非法状态:
Figure PCTCN2018112833-appb-000001
优选地,所述的方法支持定义四种连挂状态,车载控制器可在线存储带安全编码的连挂状态信息和预先存储三组离线配置,同时能从车辆实时采集三组硬线输入信号并进行对应的控制。
优选地,所述的四种连挂状态包括列车未连挂状态、列车的司机室1被连挂状态、列车的司机室2被连挂状态和非法的连挂状态。
优选地,所述的存储带安全编码的连挂状态信息,存储设备支持在线读写,存储的连挂状态信息经过安全编码,读取的时候需要校验编码信息的正确性,确保系统安全。
优选地,所述的存储三组离线配置,存储介质选择板卡上的FLASH,所述的离 线配置包括针对不同编组状态下对应的车长、应答器天线到车端距离和列车的牵引制动特性的信息。
优选地,车载信号系统从车辆实时采集三组硬线信号输入,包括列车未连挂信号、司机室1被连挂信号、和司机室2被连挂信号。
与现有技术相比,本发明具有以下优点:
1)本发明使得长短编组列车混合运营且在线进行连挂和解编成为可能,编组变化前后无需人工烧录配置,极大提高了运营效率;
2)车载控制器能通过车辆输入信息实时判断列车连挂状态的变化,确保使用的列车参数配置与实际连挂状态一致,始终能够正确计算列车定位;
3)通过扩展来自车辆的连挂状态输入,可支持更多更灵活的编组方式。
附图说明
图1为本发明的结构示意图;
图2为本发明的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
如图1所示,一种支持列车动态连挂和解编的车载控制器的结构,包括存储列车连挂状态信息的存储设备;存储三种离线数据的介质FLASH;执行车载信号功能的CPU。
如图2所示,本发明的工作流程图,详细描述如下:
步骤A:初始化阶段获取存储的连挂状态信息;
步骤B:根据存储的连挂状态加载对应编组的离线配置;
步骤C:通过与车辆接口,采集连挂相关的三组输入信号;
步骤D:根据采集信号判断列车连挂状态是否合法,如果合法,则转入步骤E;如果不合法,则转入步骤F;
步骤E:判断当前连挂状态是否与步骤B使用的离线配置一致,如果一致,则执行步骤H;如果不一致,则执行步骤G;
步骤F:申请紧急制动,并报错告警;
步骤G:申请紧急制动,在判断列车停稳后,重新写入带编码的连挂状态信息,其后转入步骤A重新初始化;
步骤H:执行信号系统其他功能;
上述各步骤还包括以下特征:
所述的步骤A:存储的连挂信息是经过编码的,假设x表示非编码的连挂状态,采用的编码格式如下:
X H=x
X L=-r kx+B x
式中,r kx为x左移k位运算;B x为x变量预先分配的签名。
从存储设备中读取到连挂信息后,需要校验该信息的正确性,采取的校验算法如下:
Bcheck x=r kx+X L-B x
如果Bcheck x等于0,表示校验成功;如果Bcheck x不等于0,表示校验失败,初始化失败而退出。
所述的步骤B:其中列车可能编组的离线配置有三种,包括“未连挂配置”,“司机室1连挂配置”,“司机室2连挂配置”。
所说的步骤C:三组输入信号需要车辆使用不同的继电器单独提供,三组输入分别表示列车未连挂(ANS),司机室1被连挂(ACS1),司机室2被连挂(ACS2),确保正确反映列车真实的连挂状态。
所述的步骤D:根据采集信号判断列车连挂状态是否合法,其判断逻辑如下表所示:
Figure PCTCN2018112833-appb-000002
Figure PCTCN2018112833-appb-000003
本发明已成功应用于卡斯柯信号有限公司为埃塞俄比亚亚的斯亚贝巴LRT工程提供的信号系统中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种支持列车动态连挂和解编的控制方法,其特征在于,包括以下步骤:
    步骤A:初始化阶段获取存储的连挂状态信息;
    步骤B:根据存储的连挂状态加载对应编组的离线配置;
    步骤C:采集连挂相关的三组输入信号;
    步骤D:根据采集信号判断列车连挂状态是否合法,如果合法,则转入步骤E;如果不合法,则转入步骤F;
    步骤E:判断当前连挂状态是否与步骤B使用的离线配置一致,如果一致,则执行步骤H;如果不一致,则执行步骤G;
    步骤F:申请紧急制动,并报错告警;
    步骤G:申请紧急制动,在判断列车停稳后,重新写入带编码的连挂状态信息,其后转入步骤A重新初始化;
    步骤H:执行信号系统其他功能。
  2. 根据权利要求1所述的方法,其特征在于,所述的步骤A中存储的连挂状态信息是经过编码的,假设x表示非编码的连挂状态,采用的编码格式如下:
    X H=x
    X L=-r kx+B x
    式中,r kx为x左移k位运算;B x为x变量预先分配的签名;X H为原始信息x的编码高位;X L为原始信息x的编码低位;X H和X L组成原始信息x的编码信息;
    从存储设备中读取到连挂信息后,需要校验该信息的正确性,采取的校验算法如下:
    Bcheck x=r kx+X L-B x
    如果Bcheck x等于0,表示校验成功;如果Bcheck x不等于0,表示校验失败,初始化失败而退出。
  3. 根据权利要求1所述的方法,其特征在于,所述的步骤B中的离线配置包括“未连挂配置”、“司机室1连挂配置”和“司机室2连挂配置”。
  4. 根据权利要求1所述的方法,其特征在于,所述的步骤C中的三组输入信号分别为列车未连挂ANS、司机室1被连挂ACS1和司机室2被连挂ACS2,用于确保正确反映列车真实的连挂状态。
  5. 根据权利要求1所述的方法,其特征在于,所述的步骤D中的根据采集信号判断列车连挂状态是否合法,其判断逻辑如下表所示,其中组合2,3,5为合法状态,其余为非法状态:
    Figure PCTCN2018112833-appb-100001
  6. 根据权利要求1所述的方法,其特征在于,所述的方法支持定义四种连挂状态,车载控制器可在线存储带安全编码的连挂状态信息和预先存储三组离线配置,同时能从车辆实时采集三组硬线输入信号并进行对应的控制。
  7. 根据权利要求6所述的方法,其特征在于,所述的四种连挂状态包括列车未连挂状态、列车的司机室1被连挂状态、列车的司机室2被连挂状态和非法的连挂状态。
  8. 根据权利要求6所述的方法,其特征在于,所述的存储带安全编码的连挂状态信息,存储设备支持在线读写,存储的连挂状态信息经过安全编码,读取的时候需要校验编码信息的正确性,确保系统安全。
  9. 根据权利要求6所述的方法,其特征在于,所述的存储三组离线配置,存储介质选择板卡上的FLASH,所述的离线配置包括针对不同编组状态下对应的车长、应答器天线到车端距离和列车的牵引制动特性的信息。
  10. 根据权利要求6所述的方法,其特征在于,车载信号系统从车辆实时采集三组硬线信号输入,包括列车未连挂信号、司机室1被连挂信号、和司机室2被连挂信号。
PCT/CN2018/112833 2017-12-27 2018-10-31 一种支持列车动态连挂和解编的控制方法 WO2019128452A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18894348.4A EP3730380B1 (en) 2017-12-27 2018-10-31 Control method for dynamic coupling and separation of train
RS20220342A RS63160B1 (sr) 2017-12-27 2018-10-31 Postupak za upravljanje dinamičkim povezivanjem i razdvajanjem voza
US16/958,643 US11767043B2 (en) 2017-12-27 2018-10-31 Control method for supporting dynamic coupling and uncoupling of train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711450032.1A CN108163012B (zh) 2017-12-27 2017-12-27 一种支持列车动态连挂和解编的控制方法
CN201711450032.1 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128452A1 true WO2019128452A1 (zh) 2019-07-04

Family

ID=62518794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112833 WO2019128452A1 (zh) 2017-12-27 2018-10-31 一种支持列车动态连挂和解编的控制方法

Country Status (5)

Country Link
US (1) US11767043B2 (zh)
EP (1) EP3730380B1 (zh)
CN (1) CN108163012B (zh)
RS (1) RS63160B1 (zh)
WO (1) WO2019128452A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163012B (zh) * 2017-12-27 2019-12-03 卡斯柯信号有限公司 一种支持列车动态连挂和解编的控制方法
CN112440832B (zh) * 2019-08-28 2022-02-22 湖南华宏铁路高新科技开发有限公司 一种推导接触网作业车编组排序连挂的方法及系统
CN112441089B (zh) * 2019-08-30 2022-03-18 比亚迪股份有限公司 列车调度控制方法、平台及系统、智能车厢和介质
CN110936983B (zh) * 2019-11-25 2022-01-28 卡斯柯信号有限公司 一种用于轨道交通中的列车自动联挂方法
CN111267915A (zh) * 2020-02-28 2020-06-12 卡斯柯信号有限公司 一种城市轨道交通车辆编组状态的安全检测方法
CN111874008B (zh) * 2020-05-26 2021-09-03 卡斯柯信号有限公司 一种城市轨道交通灵活编组运营的实现方法
CN111766809B (zh) * 2020-06-30 2022-04-19 通号城市轨道交通技术有限公司 一种连挂列车车辆控制方法及车载控制器
CN111994097B (zh) * 2020-08-19 2021-11-12 交控科技股份有限公司 一种基于协同编队的y字型线路动态解编方法及系统
CN112208583B (zh) * 2020-08-25 2022-06-17 通号城市轨道交通技术有限公司 列车联挂控制方法及系统
CN112061140B (zh) * 2020-08-25 2021-12-07 通号城市轨道交通技术有限公司 一种列车在线连挂方法和在线解编方法
CN111923931B (zh) * 2020-10-15 2020-12-29 北京全路通信信号研究设计院集团有限公司 一种基于自组网的列车动态编组解编方法与系统
CN113771918B (zh) * 2021-09-14 2023-10-20 重庆交通大学 用于高速列车应对动态客流的自动驾驶控制方法
CN113734246B (zh) * 2021-09-26 2022-09-02 交控科技股份有限公司 车辆连挂控制方法、装置及系统
CN114802357B (zh) * 2022-03-29 2023-08-25 卡斯柯信号有限公司 一种多列车连挂状态的安全识别方法、装置、设备及介质
DE102023108550A1 (de) * 2022-04-06 2023-10-12 Voith Patent Gmbh Entkuppelsystem, automatische Zugkupplung und Schienenfahrzeug mit einer automatischen Zugkupplung mit einem derartigen Entkuppelsystem und Verfahren zum Entkuppeln einer mechanisch mit einer Gegen-Zugkupplung gekoppelten automatischen Kupplung
CN114940195B (zh) * 2022-05-31 2023-03-31 中国铁路通信信号股份有限公司 列车运行安全防护方法及系统
CN115285173B (zh) * 2022-06-22 2023-08-25 卡斯柯信号有限公司 基于cbtc的列车自动过分相区的实现方法、设备及介质
CN115303331A (zh) * 2022-06-30 2022-11-08 卡斯柯信号有限公司 轨道交通多编组列车联挂的安全检测方法、设备及介质
CN117755342B (zh) * 2023-12-25 2024-09-03 中车青岛四方车辆研究所有限公司 一种低成本等间隔运营的灵活编组轨道交通列车系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292252A (zh) * 2008-11-24 2011-12-21 通用电气公司 用于控制非公路车辆的移动的控制系统和方法
CN203623659U (zh) * 2013-08-30 2014-06-04 深圳市远望谷信息技术股份有限公司 用于编组列车车辆制动性能检测的装置
CN104477214A (zh) * 2014-09-19 2015-04-01 成都可益轨道技术有限公司 一种基于智能电子终端的列车长度和车辆信息自动识别方法
CN104787048A (zh) * 2015-04-10 2015-07-22 长春轨道客车股份有限公司 一种更为灵活的电力动车组编组方法
CN106476846A (zh) * 2016-10-20 2017-03-08 中车青岛四方车辆研究所有限公司 重载货物列车编组装置、编组方法及电控空气制动系统
CN108163012A (zh) * 2017-12-27 2018-06-15 卡斯柯信号有限公司 一种支持列车动态连挂和解编的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623413A (en) * 1994-09-01 1997-04-22 Harris Corporation Scheduling system and method
US20020105916A1 (en) * 2001-02-06 2002-08-08 Bill Smith Method and apparatus for allocating funtions in an electronics system
US6891805B2 (en) * 2001-02-06 2005-05-10 Telephonics Corporation Communications system
US20060005739A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad system comprising railroad vehicle with energy regeneration
US20040133411A1 (en) * 2003-01-08 2004-07-08 Derrick Babb Automated Transit System
CA2454988A1 (en) * 2004-01-07 2005-07-07 Alstom Canada Inc. System for deploying ip over an existing or a new two conductor cable on-board rail vehicles
US7458545B1 (en) * 2005-07-22 2008-12-02 Liontech Trains Llc System for sending commands to train cars based on location in train
US7826938B2 (en) * 2005-12-22 2010-11-02 Mitsubishi Electric Research Laboratories, Inc. System for tracking railcars in a railroad environment
DE102010035302C5 (de) * 2010-08-16 2015-04-23 Alstom Transport Technologies Verfahren und Vorrichtung zur Überwachung eines Betriebszustands einer Kupplungsvorrichtung
CA2818605A1 (en) * 2010-11-23 2012-05-31 Siemens Sas Method for securing a control system of a reconfigurable multi-unit vehicle, and secured control system
CN102602433B (zh) * 2011-01-20 2017-05-10 上海稳得新能源科技有限公司 轨道交通合分联运方法
CN202163460U (zh) * 2011-08-04 2012-03-14 中国北车股份有限公司大连电力牵引研发中心 基于现场总线的可重联轻轨车
US8942868B2 (en) * 2012-12-31 2015-01-27 Thales Canada Inc Train end and train integrity circuit for train control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292252A (zh) * 2008-11-24 2011-12-21 通用电气公司 用于控制非公路车辆的移动的控制系统和方法
CN203623659U (zh) * 2013-08-30 2014-06-04 深圳市远望谷信息技术股份有限公司 用于编组列车车辆制动性能检测的装置
CN104477214A (zh) * 2014-09-19 2015-04-01 成都可益轨道技术有限公司 一种基于智能电子终端的列车长度和车辆信息自动识别方法
CN104787048A (zh) * 2015-04-10 2015-07-22 长春轨道客车股份有限公司 一种更为灵活的电力动车组编组方法
CN106476846A (zh) * 2016-10-20 2017-03-08 中车青岛四方车辆研究所有限公司 重载货物列车编组装置、编组方法及电控空气制动系统
CN108163012A (zh) * 2017-12-27 2018-06-15 卡斯柯信号有限公司 一种支持列车动态连挂和解编的控制方法

Also Published As

Publication number Publication date
US20200369304A1 (en) 2020-11-26
EP3730380B1 (en) 2022-03-16
US11767043B2 (en) 2023-09-26
CN108163012A (zh) 2018-06-15
RS63160B1 (sr) 2022-05-31
EP3730380A4 (en) 2021-01-20
EP3730380A1 (en) 2020-10-28
CN108163012B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2019128452A1 (zh) 一种支持列车动态连挂和解编的控制方法
CN101801760B (zh) 分布式列车控制
CN107709136B (zh) 用于为轨道车辆确定行驶授权的方法和装置
JP4812821B2 (ja) 列車速度制御装置
CN107235054B (zh) 基于cbtc系统的货运列车发车方法以及cbtc系统
CN113715881B (zh) 列车调车编组方法、装置、电子设备和存储介质
US20090292411A1 (en) System, method, and computer software code for linking a plurality of powered systems having different linking protocols to operate as a single powered system
CN112722018B (zh) 调车进路中途折返处理方法、装置和电子设备
CN115402375B (zh) 行车电子地图获取方法及系统
CN106240603B (zh) 一种铁路非自动闭塞进站信号机接近区段设计方法
CN115503786B (zh) 一种提高车载设备可用性的处理方法和系统
CN111086541B (zh) 基于ctcs-1等级的地面数据处理方法及车载设备
CN109747686B (zh) 一种基于云计算和物联网的微轨交通调度方法及系统
JPH07227009A (ja) 自動列車制御装置
JP5056033B2 (ja) 列車運行管理システム
CN114407978B (zh) 连挂列车折返方法、装置、电子设备及计算机程序产品
CN114394136B (zh) 一种用于市域铁路c2+ato的列车控制方法
CN105848985A (zh) 轨道车辆的控制
CN109677451B (zh) 调车监控功能与列车运行控制相结合的控制系统及方法
CN115140128B (zh) 适用于非固定编组的列车运行方法及装置
CN102874276B (zh) 一种车辆走行部故障诊断方法、装置和系统
CN202935371U (zh) 一种车辆走行部故障诊断装置和系统
CN106740995B (zh) 一种相邻轨信号泄露的锁频处理方法
CN110789584A (zh) 防止误用线路数据的处理方法及ctcs-1级列控系统
CN113978521B (zh) 一种列车折返方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018894348

Country of ref document: EP

Effective date: 20200720