WO2019128416A1 - 一种机车双动力供电模式无缝切换方法 - Google Patents

一种机车双动力供电模式无缝切换方法 Download PDF

Info

Publication number
WO2019128416A1
WO2019128416A1 PCT/CN2018/111363 CN2018111363W WO2019128416A1 WO 2019128416 A1 WO2019128416 A1 WO 2019128416A1 CN 2018111363 W CN2018111363 W CN 2018111363W WO 2019128416 A1 WO2019128416 A1 WO 2019128416A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
switching
diesel engine
supporting capacitor
Prior art date
Application number
PCT/CN2018/111363
Other languages
English (en)
French (fr)
Inventor
彭辉
李学明
徐绍龙
甘韦韦
蒋奉兵
廖亮
梁兴元
刘毅
袁靖
黄凯
谭永光
黄明明
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2019128416A1 publication Critical patent/WO2019128416A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C13/00Locomotives or motor railcars characterised by their application to special systems or purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of locomotive power supply, and further relates to a seamless switching method for a locomotive dual power supply mode.
  • the converter In the dual-powered locomotive, the converter has two sources of power, namely diesel engine power supply and catenary power supply.
  • any power source is used as the power input, and the dual-power locomotive needs to face the problem of power source switching.
  • FIG. 1 it is a schematic diagram of a main circuit of a dual-powered locomotive; the first inverter INV1 and the second inverter INV2 respectively supply power to two traction motors M; when the circuit is powered by the contact network, the contact net passes through four
  • the quadrant module QC1 charges the supporting capacitor Cd, and the four-quadrant module QC1 adjusts the voltage of the supporting capacitor Cd; when the circuit is powered by the diesel engine, the diesel engine first closes the excitation contactor KM4, and then adjusts the diesel engine output voltage through the excitation control unit, and passes the non-uniform
  • the control rectifier module CON1 converts the alternating current into direct current and charges the supporting capacitor Cd.
  • the dual-power locomotive switches the power source, it must stop first, block the output of the first inverter INV1 and the second inverter INV2, and start another power source after the overall shutdown.
  • the outputs of the first inverter INV1 and the second inverter INV2 must be blocked first, then the main MCB is disconnected, and the pantograph is lowered; then the diesel engine is started to the intermediate circuit.
  • the power is supplied, when the voltage across the intermediate supporting capacitor Cd reaches the target voltage again, the first inverter INV1 and the second inverter INV2 can be re-introduced.
  • the outputs of the first inverter INV1 and the second inverter INV2 must be blocked first, then the excitation contactor KM4 is disconnected, the diesel engine is stopped, and then the pantograph is raised.
  • the main interrupt MCB is closed. After the four-quadrant QC1 is started, the voltage Ud across the intermediate support capacitor Cd reaches the vicinity of the target voltage, and the first inverter INV1 and the second inverter INV2 can be re-introduced.
  • the traditional switching process must be stopped for a short time. After the power source is switched, the locomotive can be restarted. The locomotive must stop to complete the power source switching, and continuous operation cannot be realized.
  • the invention provides a seamless switching method for a locomotive dual power supply mode, which can complete switching between different power sources without stopping the machine, and realizes seamless switching.
  • the specific scheme is as follows:
  • a seamless switching method for locomotive dual power supply mode comprising:
  • the initial power supply is turned off.
  • the voltage value of the switching power supply is adjusted to stabilize the voltage value of the supporting capacitor at a normal working voltage.
  • the initial power supply is a diesel engine
  • the switching power supply is a contact network
  • lowering an output voltage of the diesel engine to be lower than the normal working voltage, and maintaining an output voltage of the contact net is equal to The normal operating voltage
  • the switching power supply is a diesel engine
  • maintaining an output voltage of the contact net equal to the normal working voltage maintaining an output voltage of the diesel engine to be higher than the normal operation. Voltage.
  • the initial power supply is a diesel engine and the switching power supply is a contact network:
  • Adjusting the excitation duty ratio by the excitation control unit reducing the output voltage of the diesel engine to a diesel switching target value (Ud-N) V (Ud is the normal working voltage, N is a positive number), so that the supporting capacitor The intermediate voltage reaches the diesel switching target value, and detects whether the intermediate voltage of the supporting capacitor is stable at the diesel switching target value;
  • the four quadrant module is activated, and detecting whether the four quadrant module is normally started;
  • the intermediate voltage of the supporting capacitor is controlled by the four-quadrant module, the intermediate voltage of the supporting capacitor reaches the normal working voltage, and the voltage of the supporting capacitor is detected to reach the normal operating voltage;
  • the pre-charging contactor is first closed, and the supporting capacitor is pre-charged by a pre-charging resistor and a diode connected in parallel with the IGBT of the four-quadrant module; when the voltage across the supporting capacitor is When the closed threshold voltage is reached, the shorting contactor in parallel with the pre-charging contactor and the pre-charging resistor is closed.
  • the switching power supply is a diesel engine
  • the excitation control unit adjusts the excitation duty ratio, and the output voltage of the diesel engine is raised to an electric power change target value (Ud+N)V (Ud is the normal working voltage, N is a positive number), so that The intermediate voltage of the supporting capacitor reaches the electric power change target value, and detects whether the intermediate voltage of the supporting capacitor is stable at the electric firewood target value;
  • the excitation duty ratio is adjusted by the excitation control unit to stabilize the intermediate voltage of the supporting capacitor at the normal operating voltage.
  • the switching operation is ended.
  • the invention provides a seamless switching method for a locomotive dual power supply mode, comprising the steps of: adjusting an initial power supply and/or switching an output voltage of a power supply, so that an output voltage of the initial power supply is lower than a switching power supply, and the initial supply is The voltage value of the power source is higher than the working voltages of the first inverter and the second inverter. At this time, only the initial power supply charges the supporting capacitor, and the first inverter and the second inverter can still be kept in normal operation.
  • the switching power supply has not been turned on, and the first inverter and the second inverter are not powered; the switching power supply is turned on, and the switching power supply and the initial power supply are simultaneously turned on with the supporting capacitor, but due to the switching
  • the output voltage of the power supply is greater than the initial power supply. Therefore, the supporting capacitor is charged by the power supply with higher voltage value, and the initial power supply is basically no longer supplied.
  • the initial power supply is cut off to complete different powers. Switching between sources.
  • the invention realizes the change of the power source by adjusting the voltage difference between the two different power supply sources, and at least one power source charges the supporting capacitor at any time, keeping the first inverter and the second inverter in an operating state, and switching There is no need to stop the power when driving, and seamless switching is achieved.
  • Figure 1 is a schematic diagram of the main circuit of a dual-powered locomotive
  • Figure 3 is a flow chart showing the switching of the catenary power supply mode to the diesel power supply mode.
  • the core of the invention is to provide a seamless switching method for the locomotive dual power supply mode, which can switch between different power sources without stopping the machine, and realize seamless switching.
  • the invention provides a seamless switching method for a locomotive dual power supply mode, comprising the following steps:
  • Adjusting the initial power supply and/or switching the output voltage of the power supply so that the output voltage of the initial power supply is lower than the switching power supply, and the voltage value of the initial power supply is higher than that of the first inverter INV1 and the second inverter INV2 Working voltage; can be adjusted separately for either the initial power supply or the switching power supply, or the initial power supply and the switching power supply can be adjusted at the same time, so that the initial power supply voltage value that is originally in the power supply state is lower than the switching power supply that needs to be switched.
  • the voltage value at this time, only the initial power supply charges the supporting capacitor Cd, and the first inverter INV1 and the second inverter INV2 are still in the normal operating state. At this time, the switching power supply has not been turned on, and the first is not the first.
  • the inverter INV1 and the second inverter INV2 provide power.
  • the switching power supply and the initial power supply are simultaneously turned on with the supporting capacitor Cd; but since the output voltage of the switching power supply is greater than the initial power supply, the supporting capacitor Cd is charged by the switching power supply with a higher voltage value.
  • the initial power supply is basically no longer powered; the initial power supply is always in a normal state during the closing process.
  • the initial power supply is cut off; that is, the switching process between different power sources is completed.
  • the invention realizes the change of the power source by adjusting the voltage difference between the two different power supply sources, and at least one power source charges the supporting capacitor Cd at any time, keeping the first inverter INV1 and the second inverter INV2 in operation. State, no need to stop when switching between different power sources, to achieve seamless switching.
  • the voltage value of the switching power supply is adjusted to stabilize the voltage value of the supporting capacitor Cd at the normal operating voltage. Since the output voltage of the switching power supply may not be equal to the normal working voltage, when the switching process is completed, the voltage value of the supporting capacitor Cd needs to be stabilized at the normal working voltage to ensure the normal operation of the first inverter INV1 and the second inverter INV2.
  • the switching operation includes two situations, one is switching from the diesel power supply to the contact network power supply, and the other is switching from the contact network power supply to the diesel power supply.
  • the initial power supply is a diesel engine
  • the switching power supply is a contact network
  • the diesel power supply is switched to the contact network power supply, the output voltage of the diesel engine is lowered, and the output voltage is lower than the normal working voltage, and the output voltage of the contact net is equal to the normal working voltage.
  • the core of the invention lies in controlling the output voltage between the diesel engine and the catenary to have a difference, so that the above is only a preferred solution, and other voltage correspondences may be used.
  • the output voltage of the diesel engine is equal to normal operation. Voltage, the output voltage of the catenary is higher than the normal operating voltage.
  • the initial power supply is the contact network
  • the switching power supply is the diesel engine
  • the power supply from the contact network is switched to the diesel engine power supply, and the output voltage of the contact network is kept equal to the normal working voltage, and the output voltage of the diesel engine is raised to be higher than the normal working voltage.
  • the above is only a preferred solution, and other voltage correspondences may be adopted.
  • the output voltage of the contact net is lower than the normal operating voltage, and the output voltage of the diesel engine is equal to the normal operating voltage.
  • the main MCB When the pantograph is raised, the main MCB is closed and delayed for a certain period of time to detect whether the pantograph is normally engaged; after normal engagement, the pre-charge contactor KM1 is closed, and the pre-charge resistor Rchr and the four-quadrant module QC1 are passed.
  • the diode connected in parallel with the IGBT precharges the intermediate circuit supporting capacitor Cd.
  • the voltage on the supporting capacitor Cd rises slowly; when the voltage across the Cd reaches a certain value (short-circuit the contactor closes the threshold voltage), The short contactor KM2 is closed for a certain period of time to detect whether the short contactor KM2 is normally engaged; after the normal engagement, the four-quadrant module QC1 is activated to control the voltage across the intermediate circuit supporting capacitor Cd to be near the target value.
  • the diesel engine output contactor KM3 is closed, and the excitation contactor KM4 is closed, and the diesel engine starts to excite the power generation; the three-phase AC voltage outputted by the diesel engine is converted into direct current by the uncontrollable rectifier module CON1 to charge the supporting capacitor Cd;
  • the control unit adjusts the excitation duty ratio to control the voltage across the intermediate circuit support capacitor Cd to be near the target value.
  • the seamless handover method of the present invention also includes two specific cases, which are described in detail below:
  • the switching power supply is a contact network, that is, switching from the contact network power supply mode to the diesel power supply mode; as shown in FIG. 2, a flow chart for switching the contact network power supply mode to the diesel power supply mode.
  • the excitation control unit adjusts the excitation duty ratio to reduce the output voltage of the diesel engine to the diesel-changing target value (Ud-N)V (Ud is the normal working voltage, N is a positive number), so that the intermediate voltage of the supporting capacitor Cd reaches the diesel exchange
  • the electric target value is detected, and it is detected whether the intermediate voltage of the supporting capacitor Cd is stable at the diesel switching target value.
  • the diesel switching target value (Ud-N) V is based on the first inverter INV1 and the second inverter INV2.
  • the minimum working voltage is determined, and the minimum can be set to the lowest working voltage.
  • the normal working voltage Ud is 1800V
  • N is 100V
  • pantograph If the pantograph is normally raised, close the main break MCB and check if the main break MCB is normally closed.
  • the four-quadrant module QC1 is activated, and it is detected whether the four-quadrant module QC1 is normally started.
  • the intermediate voltage of the supporting capacitor Cd is adjusted by the four-quadrant module QC1, the intermediate voltage of the supporting capacitor Cd reaches the normal working voltage Ud, and the voltage of the supporting capacitor Cd is detected to reach the normal working voltage Ud. Due to the reverse cut-off effect of the uncontrolled rectifier module CON1 diode, the energy of the intermediate circuit is not reversely transmitted to the diesel engine side. At this time, the four-quadrant module QC1 has become the energy source of the loads INV1 and INV2.
  • the exciting contactor KM4 of the diesel engine is turned off, and it is detected whether the exciting contactor KM4 is normally disconnected.
  • the pre-charging contactor KM1 is first closed, and the supporting capacitor Cd is pre-charged by a diode in which the pre-charging resistor Rchr and the IGBT of the four-quadrant module QC1 are connected in parallel; when the voltage across the supporting capacitor reaches the closed state
  • the shorting contactor KM2 in parallel with the pre-charging contactor KM1 and the pre-charging resistor Rchr is closed.
  • the pre-charging contactor KM1 and the pre-charging resistor Rchr are arranged in series, which are commonly connected in parallel with the shorting contactor KM2. Due to the presence of the pre-charging resistor Rchr, the voltage on the supporting capacitor Cd rises slowly to avoid excessive transient current.
  • the feedback power of the four-quadrant module QC1 is much smaller than the power generated by the diesel engine; once the diesel engine is powered, the four-quadrant module QC1 is equivalent to an electrical appliance, feeding back the power supply to the contact network; because the feedback of the four-quadrant module QC1 is limited
  • the power, four-quadrant module QC1 is only equivalent to a small load of the diesel engine, and the removal of the small load does not cause a large disturbance to the output of the diesel engine.
  • the excitation contactor KM4 is closed and it is detected whether the excitation contactor KM4 is normally closed.
  • the excitation duty ratio is adjusted by the excitation control unit to increase the output voltage of the diesel engine to the target value of the diesel-replacement (Ud+N)V (Ud is the normal working voltage, N is a positive number), so that The intermediate voltage of the supporting capacitor Cd reaches the electric power change target value, and it is detected whether the intermediate voltage of the supporting capacitor Cd is stable at the electric power change target value (Ud+N)V.
  • the electric power change target value (Ud+N) V is based on the first inverter INV1 and the second inverter
  • the maximum working voltage of INV2 is determined, and the highest working voltage can be set.
  • the normal working voltage Ud is 1800V
  • N is 100V
  • the four-quadrant module QC1 is stopped, and whether the four-quadrant module QC1 is stopped is detected.
  • the main interrupt MCB is disconnected, and it is detected whether the main interrupt MCB is normally disconnected.
  • the pantograph is lowered and the pantograph is normally lowered.
  • the excitation duty ratio is adjusted by the excitation control unit to stabilize the intermediate voltage of the supporting capacitor at the normal operating voltage Ud.

Abstract

一种机车双动力供电模式无缝切换方法,调节初始供电源和/或切换供电源的输出电压,使初始供电源的输出电压低于切换供电源,并且初始供电源的电压值高于第一逆变器和第二逆变器的工作电压,保持第一逆变器和第二逆变器呈正常运行状态;接通切换供电源,由切换供电源和初始供电源同时与支撑电容导通,由电压值较高的切换供电源充电,而初始供电源基本不再供电;当支撑电容的电压值稳定后,切断初始供电源,完成不同动力源之间的切换。本发明通过调节两种不同供电源之间的电压差实现动力源的改变,在任意时刻至少一个动力源对支撑电容充电,保持第一逆变器和第二逆变器处于运行状态,在切换动力时不必停机,实现无缝切换。

Description

一种机车双动力供电模式无缝切换方法
本申请要求于2017年12月27日提交中国专利局、申请号为201711448673.3、发明名称为“一种机车双动力供电模式无缝切换方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机车供电技术领域,更进一步涉及一种机车双动力供电模式无缝切换方法。
背景技术
在双动力机车中,变流器具有两种动力来源,即柴油机供电和接触网供电,双动力机车运行时使用任意一种动力源作为动力输入,双动力机车需要面对动力源切换的问题。
如图1所示,为双动力机车的主电路原理图;第一逆变器INV1和第二逆变器INV2分别对两个牵引电机M供电;当电路由接触网供电时,接触网通过四象限模块QC1对支撑电容Cd充电,由四象限模块QC1调节支撑电容Cd的电压;当电路由柴油机供电时,柴油机通过先闭合励磁接触器KM4,再通过励磁控制单元调节柴油机输出电压,并通过不可控整流模块CON1将交流电转换为直流电,对支撑电容Cd充电。
目前,双动力机车切换动力源之前,必须先停机,封锁第一逆变器INV1和第二逆变器INV2的输出,整体停机后再启动另一种动力源。
当由接触网供电模式切换至柴油机供电模式时,必须先封锁第一逆变器INV1和第二逆变器INV2的输出,然后断开主断MCB,降下受电弓;之后启动柴油机给中间回路供电,当中间支撑电容Cd两端电压重新达到目标电压时,才能重新投入第一逆变器INV1和第二逆变器INV2。
当由柴油机供电模式切换至接触网供电模式时,必须先封锁第一逆变器INV1和第二逆变器INV2的输出,然后断开励磁接触器KM4,停止柴油机;之后升起受电弓,闭合主断MCB,待四象限QC1启动后,中间支撑电容Cd两端电压Ud达到目标电压附近,才能重新投入第一逆变器INV1 和第二逆变器INV2。
传统的切换过程必须短时停机,待动力源切换完毕后机车才能重新作业,机车必须停止才能完成动力源切换,无法实现连续作业。
发明内容
本发明提供一种机车双动力供电模式无缝切换方法,在不停机的状态下完成不同动力源之间的切换,实现无缝切换,具体方案如下:
一种机车双动力供电模式无缝切换方法,包括:
调节初始供电源和/或切换供电源的输出电压,使所述初始供电源的输出电压低于所述切换供电源,并且所述初始供电源的电压值高于第一逆变器和第二逆变器的工作电压;
接通所述切换供电源,由所述切换供电源和所述初始供电源同时与支撑电容导通;
当所述支撑电容的电压值稳定后,切断所述初始供电源。
可选地,切断所述初始供电源后,调节所述切换供电源的电压值,使所述支撑电容的电压值稳定在正常工作电压。
可选地,当所述初始供电源为柴油机,所述切换供电源为接触网时,降低所述柴油机的输出电压、使其低于所述正常工作电压,保持所述接触网的输出电压等于所述正常工作电压;
当所述初始供电源为接触网,所述切换供电源为柴油机时,保持所述接触网的输出电压等于所述正常工作电压,提升所述柴油机的输出电压,使其高于所述正常工作电压。
可选地,当所述初始供电源为柴油机,所述切换供电源为接触网时:
通过励磁控制单元调节励磁占空比,降低所述柴油机的输出电压至柴换电目标值(Ud-N)V(Ud为所述正常工作电压,N为正数),使所述支撑电容的中间电压达到所述柴换电目标值,并检测所述支撑电容的中间电压是否稳定在所述柴换电目标值;
若是,则升起受电弓,并检测所述受电弓是否正常升起;
若是,则闭合主断,并检测所述主断是否正常闭合;
若是,则启动四象限模块,并检测所述四象限模块是否正常启动;
若是,则通过所述四象限模块控制所述支撑电容的中间电压,使所述支撑电容的中间电压达到所述正常工作电压,并检测所述支撑电容的电压是否达到所述正常工作电压;
若是,则断开所述柴油机的所述励磁接触器,并检测所述励磁接触器是否正常断开;
若是,则停止所述柴油机,并检测所述柴油机是否正常停止;
若是,则结束。
可选地,启动四象限模块之时,先闭合预充电接触器,通过预充电电阻和所述四象限模块的IGBT并联的二极管对所述支撑电容进行预充电;当所述支撑电容两端的电压达到闭合门槛电压时,再闭合与所述预充电接触器及所述预充电电阻并联的短接接触器。
可选地,当所述初始供电源为接触网,所述切换供电源为柴油机时:
限制四象限模块的回馈功率,使其远小于所述柴油机的发电功率;
启动所述柴油机,并检测所述柴油机是否正常启动;
若是,则闭合励磁接触器,并检测所述励磁接触器是否正常闭合;
若是,则通过励磁控制单元调节励磁占空比,提升所述柴油机的输出电压至电换柴目标值(Ud+N)V(Ud为所述正常工作电压,N为正数),使所述支撑电容的中间电压达到所述电换柴目标值,并检测所述支撑电容的中间电压是否稳定在所述电换柴目标值;
若是,则停止所述四象限模块,并检测所述四象限模块是否停机;
若是,则断开主断,并检测所述主断是否正常断开;
若是,则降下受电弓,并检测所述受电弓是否正常下降;
若是,则通过励磁控制单元调节励磁占空比,使所述支撑电容的中间电压稳定在所述正常工作电压。
可选地,若任一判断过程结果为否,则结束切换操作。
本发明提供了一种机车双动力供电模式无缝切换方法,包括以下步骤:调节初始供电源和/或切换供电源的输出电压,使初始供电源的输出电压低于切换供电源,并且初始供电源的电压值高于第一逆变器和第二逆变器的 工作电压,此时仅有初始供电源对支撑电容充电,依然能够保持第一逆变器和第二逆变器呈正常运行状态,此时切换供电源尚未接通,不对第一逆变器和第二逆变器提供动力;接通切换供电源,由切换供电源和初始供电源同时与支撑电容导通,但是由于切换供电源的输出电压大于初始供电源,因此支撑电容由电压值较高的切换供电源充电,而初始供电源基本不再供电;当支撑电容的电压值稳定后,切断初始供电源,完成不同动力源之间的切换。
本发明通过调节两种不同供电源之间的电压差实现动力源的改变,在任意时刻至少一个动力源对支撑电容充电,保持第一逆变器和第二逆变器处于运行状态,在切换动力时不必停机,实现无缝切换。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为双动力机车的主电路原理图;
图2为接触网供电模式切换至柴油机供电模式的流程图;
图3为接触网供电模式切换至柴油机供电模式的流程图。
具体实施方式
本发明的核心在于提供一种机车双动力供电模式无缝切换方法,在不停机的状态下完成不同动力源之间的切换,实现无缝切换。
为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合附图及具体的实施方式,对本发明的机车双动力供电模式无缝切换方法进行详细的介绍说明。
本发明提供了一种机车双动力供电模式无缝切换方法,包括以下步骤:
调节初始供电源和/或切换供电源的输出电压,使初始供电源的输出电压低于切换供电源,并且初始供电源的电压值高于第一逆变器INV1和第二逆变器INV2的工作电压;可单独调节初始供电源或切换供电源中的任意一个,也可同时调节初始供电源和切换供电源,使原本处于供电状态的初始供电源的电压值低于需要切换的切换供电源的电压值;此时仅有初始供电源对支撑电容Cd充电,依然能够保持第一逆变器INV1和第二逆变器INV2处于正常运行状态,此时切换供电源尚未接通,不对第一逆变器INV1和第二逆变器INV2提供动力。
接通切换供电源,由切换供电源和初始供电源同时与支撑电容Cd导通;但是由于切换供电源的输出电压大于初始供电源,因此支撑电容Cd由电压值较高的切换供电源充电,而初始供电源基本不再供电;闭合过程中初始供电源始终保持正常导通状态。
当支撑电容Cd的电压值稳定后,切断初始供电源;即完成不同动力源之间的切换过程。
本发明通过调节两种不同供电源之间的电压差实现动力源的改变,在任意时刻至少有一个动力源对支撑电容Cd充电,保持第一逆变器INV1和第二逆变器INV2处于运行状态,在不同的动力源之间切换时不必停机,实现无缝切换。
在上述方案的基础上,当切断初始供电源后,调节切换供电源的电压值,使支撑电容Cd的电压值稳定在正常工作电压。因切换供电源的输出电压可能不等于正常工作电压,当切换过程完成时需要将支撑电容Cd的电压值稳定在正常工作电压以保证第一逆变器INV1和第二逆变器INV2正常运行。
切换操作包括两种情况,一种是由柴油机供电切换为接触网供电,另一种是由接触网供电切换为柴油机供电。
当初始供电源为柴油机,切换供电源为接触网时,也即由柴油机供电切换为接触网供电,降低柴油机的输出电压、使其低于正常工作电压,保持接触网的输出电压等于正常工作电压。本发明的核心在于控制柴油机和接触网之间的输出电压,使其存在一个差值,因此上述仅作为一种优选的 方案,也可采用其他的电压对应关系,例如柴油机的输出电压等于正常工作电压,接触网的输出电压高于正常工作电压。
当初始供电源为接触网,切换供电源为柴油机时,也即由接触网供电切换为柴油机供电,保持接触网的输出电压等于正常工作电压,提升柴油机的输出电压,使其高于正常工作电压。同样地,上述仅作为一种优选的方案,也可采用其他的电压对应关系,例如接触网的输出电压低于正常工作电压,柴油机的输出电压等于正常工作电压。
如图1所示,为双动力机车的主电路原理图;传统的切换操作包括两种情况:
1)接触网取电
当受电弓升起后,闭合主断MCB,延时一定时间,以检测受电弓是否正常接合;正常接合后,先闭合预充电接触器KM1,通过预充电电阻Rchr和四象限模块QC1的IGBT并联的二极管给中间回路支撑电容Cd进行预充电,因存在预充电电阻Rchr,支撑电容Cd上的电压缓慢上升;当Cd两端电压达到一定值后(短接接触器闭合门槛电压),再闭合短接接触器KM2,延时一定时间,以检测短接接触器KM2是否正常接合;正常接合后,启动四象限模块QC1,将中间回路支撑电容Cd两端电压控制在目标值附近。
2)柴油机取电
当柴油机启动后,先闭合柴油机输出接触器KM3,再闭合励磁接触器KM4,柴油机开始励磁发电;柴油机输出的三相交流电压通过不可控整流模块CON1转换为直流电,对支撑电容Cd充电;通过励磁控制单元调节励磁占空比,将中间回路支撑电容Cd两端电压控制在目标值附近。
本发明的无缝切换方法同样包括两种具体的情况,以下分别详细说明:
1)当初始供电源为柴油机,切换供电源为接触网时,也即从接触网供电模式切换至柴油机供电模式;如图2所示,为接触网供电模式切换至柴油机供电模式的流程图。
通过励磁控制单元调节励磁占空比,降低柴油机的输出电压至柴换电目标值(Ud-N)V(Ud为正常工作电压,N为正数),使支撑电容Cd的 中间电压达到柴换电目标值,并检测支撑电容Cd的中间电压是否稳定在柴换电目标值。此时仅有柴油机对支撑电容Cd充电,支撑电容Cd的电压值随柴油机的输出电压变化;柴换电目标值(Ud-N)V根据第一逆变器INV1和第二逆变器INV2的最低工作电压确定,最低可设置为最低工作电压,例如正常工作电压Ud为1800V,N为100V,则柴换电目标值为1800V-100V=1700V。
检测支撑电容Cd的中间电压是否稳定在柴换电目标值(Ud-N)V,若是,则升起受电弓,并检测受电弓是否正常升起。受电弓用于与接触网接触导电,对机车进行供电。
若受电弓是否正常升起,则闭合主断MCB,并检测主断MCB是否正常闭合。
若主断MCB是否正常闭合,则启动四象限模块QC1,并检测四象限模块QC1是否正常启动。
若四象限模块QC1正常启动,则通过四象限模块QC1调节支撑电容Cd的中间电压,使支撑电容Cd的中间电压达到正常工作电压Ud,并检测支撑电容Cd的电压是否达到正常工作电压Ud。由于不可控整流模块CON1二极管的反向截止作用,中间回路的能量不会往柴油机侧反向传输,此时四象限模块QC1已成为负载INV1和INV2的能量来源。
若支撑电容Cd的电压达到正常工作电压Ud,则断开柴油机的励磁接触器KM4,并检测励磁接触器KM4是否正常断开。
若励磁接触器KM4正常断开,则停止柴油机,并检测柴油机是否正常停止。
若柴油机正常停止,则结束,完成柴油机供电至接触网供电的切换过程。
具体地,启动四象限模块QC1之时,先闭合预充电接触器KM1,通过预充电电阻Rchr和四象限模块QC1的IGBT并联的二极管对支撑电容Cd进行预充电;当支撑电容两端的电压达到闭合门槛电压时,再闭合与预充电接触器KM1及预充电电阻Rchr并联的短接接触器KM2。预充电接触器KM1和预充电电阻Rchr串联设置,两者共同与短接接触器KM2并联。 因存在预充电电阻Rchr,支撑电容Cd上的电压缓慢上升,避免瞬时电流过大。
2)当初始供电源为接触网,切换供电源为柴油机时,也即从接触网供电模式切换至柴油机供电,如图3所示,为接触网供电模式切换至柴油机供电模式的流程图。
限制四象限模块QC1的回馈功率,使回馈功率远小于柴油机的发电功率;一旦柴油机进行供电,则四象限模块QC1相当于一个用电器,向接触网反馈供电;由于限制了四象限模块QC1的回馈功率,四象限模块QC1只相当于柴油机的一个小负载,小负载的切除对柴油机的输出不会造成大的扰动。
启动柴油机,并检测柴油机是否正常启动。
若柴油机正常启动,则闭合励磁接触器KM4,并检测励磁接触器KM4是否正常闭合。
若励磁接触器KM4正常闭合,则通过励磁控制单元调节励磁占空比,提升柴油机的输出电压至电换柴目标值(Ud+N)V(Ud为正常工作电压,N为正数),使支撑电容Cd的中间电压达到电换柴目标值,并检测支撑电容Cd的中间电压是否稳定在电换柴目标值(Ud+N)V。此时仅有接触网对支撑电容Cd充电,支撑电容Cd的电压值随接触网的输出电压变化;电换柴目标值(Ud+N)V根据第一逆变器INV1和第二逆变器INV2的最高工作电压确定,最高可设置为最高工作电压,例如正常工作电压Ud为1800V,N为100V,则柴换电目标值为1800V+100V=1900V。
若支撑电容Cd的中间电压稳定在电换柴目标值(Ud+N)V,则停止四象限模块QC1,并检测四象限模块QC1是否停机。
若四象限模块QC1正常停机,则断开主断MCB,并检测主断MCB是否正常断开。
若主断MCB正常断开,则降下受电弓,并检测受电弓是否正常下降。
若受电弓正常下降,则通过励磁控制单元调节励磁占空比,使支撑电容的中间电压稳定在正常工作电压Ud。
如图2和图3所示,由接触网供电模式切换至柴油机供电模式和接触 网供电模式切换至柴油机供电模式的过程中,若任一判断过程结果为否,则结束切换操作,继续保持初始供电源供电。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理,可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种机车双动力供电模式无缝切换方法,其特征在于,包括:
    调节初始供电源和/或切换供电源的输出电压,使所述初始供电源的输出电压低于所述切换供电源,并且所述初始供电源的电压值高于第一逆变器和第二逆变器的工作电压;
    接通所述切换供电源,由所述切换供电源和所述初始供电源同时与支撑电容导通;
    当所述支撑电容的电压值稳定后,切断所述初始供电源。
  2. 根据权利要求1所述的机车双动力供电模式无缝切换方法,其特征在于,切断所述初始供电源后,调节所述切换供电源的电压值,使所述支撑电容的电压值稳定在正常工作电压。
  3. 根据权利要求2所述的机车双动力供电模式无缝切换方法,其特征在于,当所述初始供电源为柴油机,所述切换供电源为接触网时,降低所述柴油机的输出电压、使其低于所述正常工作电压,保持所述接触网的输出电压等于所述正常工作电压;
    当所述初始供电源为接触网,所述切换供电源为柴油机时,保持所述接触网的输出电压等于所述正常工作电压,提升所述柴油机的输出电压,使其高于所述正常工作电压。
  4. 根据权利要求3所述的机车双动力供电模式无缝切换方法,其特征在于,当所述初始供电源为柴油机,所述切换供电源为接触网时:
    通过励磁控制单元调节励磁占空比,降低所述柴油机的输出电压至柴换电目标值(Ud-N)V(Ud为所述正常工作电压,N为正数),使所述支撑电容的中间电压达到所述柴换电目标值,并检测所述支撑电容的中间电压是否稳定在所述柴换电目标值;
    若是,则升起受电弓,并检测所述受电弓是否正常升起;
    若是,则闭合主断,并检测所述主断是否正常闭合;
    若是,则启动四象限模块,并检测所述四象限模块是否正常启动;
    若是,则通过所述四象限模块控制所述支撑电容的中间电压,使所述支撑电容的中间电压达到所述正常工作电压,并检测所述支撑电容的电压 是否达到所述正常工作电压;
    若是,则断开所述柴油机的所述励磁接触器,并检测所述励磁接触器是否正常断开;
    若是,则停止所述柴油机,并检测所述柴油机是否正常停止;
    若是,则结束。
  5. 根据权利要求4所述的机车双动力供电模式无缝切换方法,其特征在于,启动四象限模块之时,先闭合预充电接触器,通过预充电电阻和所述四象限模块的IGBT并联的二极管对所述支撑电容进行预充电;当所述支撑电容两端的电压达到闭合门槛电压时,再闭合与所述预充电接触器及所述预充电电阻并联的短接接触器。
  6. 根据权利要求3所述的机车双动力供电模式无缝切换方法,其特征在于,当所述初始供电源为接触网,所述切换供电源为柴油机时:
    限制四象限模块的回馈功率,使其远小于所述柴油机的发电功率;
    启动所述柴油机,并检测所述柴油机是否正常启动;
    若是,则闭合励磁接触器,并检测所述励磁接触器是否正常闭合;
    若是,则通过励磁控制单元调节励磁占空比,提升所述柴油机的输出电压至电换柴目标值(Ud+N)V(Ud为所述正常工作电压,N为正数),使所述支撑电容的中间电压达到所述电换柴目标值,并检测所述支撑电容的中间电压是否稳定在所述电换柴目标值;
    若是,则停止所述四象限模块,并检测所述四象限模块是否停机;
    若是,则断开主断,并检测所述主断是否正常断开;
    若是,则降下受电弓,并检测所述受电弓是否正常下降;
    若是,则通过励磁控制单元调节励磁占空比,使所述支撑电容的中间电压稳定在所述正常工作电压。
  7. 根据权利要求4或6所述的机车双动力供电模式无缝切换方法,其特征在于,若任一判断过程结果为否,则结束切换操作。
PCT/CN2018/111363 2017-12-27 2018-10-23 一种机车双动力供电模式无缝切换方法 WO2019128416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711448673.3 2017-12-27
CN201711448673.3A CN109980767A (zh) 2017-12-27 2017-12-27 一种机车双动力供电模式无缝切换方法

Publications (1)

Publication Number Publication Date
WO2019128416A1 true WO2019128416A1 (zh) 2019-07-04

Family

ID=67065073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111363 WO2019128416A1 (zh) 2017-12-27 2018-10-23 一种机车双动力供电模式无缝切换方法

Country Status (2)

Country Link
CN (1) CN109980767A (zh)
WO (1) WO2019128416A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238518B (zh) * 2021-05-06 2024-04-09 上海御微半导体技术有限公司 运动控制系统及驱动器切换方法
CN114228753B (zh) * 2021-11-30 2023-03-14 中车大连机车车辆有限公司 一种机车用接触网、柴油机动力源转换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024029A (zh) * 2012-01-05 2014-09-03 株式会社东芝 电动车控制装置以及电动车
CN104742918A (zh) * 2015-03-30 2015-07-01 株洲时代电子技术有限公司 双动力源地铁电传动钢轨打磨车及其动力切换方法
CN205523729U (zh) * 2016-01-29 2016-08-31 王强 一种混合动力机车的动力控制系统
CN105984351A (zh) * 2015-01-29 2016-10-05 徐工集团工程机械股份有限公司 电传动自卸车动力系统、电传动自卸车以及方法
CN106740151A (zh) * 2016-12-27 2017-05-31 中车唐山机车车辆有限公司 轨道车辆的混合动力系统以及高速动车组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406493B2 (ja) * 2014-02-05 2018-10-17 テクノナレッジ・システム有限会社 Dc/acコンバータの制御回路
CN105256675A (zh) * 2015-11-03 2016-01-20 株洲南车时代电气股份有限公司 一种双动力地铁打磨车电气传动系统及动力切换方法
CN205818956U (zh) * 2016-07-19 2016-12-21 株洲中车时代电气股份有限公司 一种多流制变流设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024029A (zh) * 2012-01-05 2014-09-03 株式会社东芝 电动车控制装置以及电动车
CN105984351A (zh) * 2015-01-29 2016-10-05 徐工集团工程机械股份有限公司 电传动自卸车动力系统、电传动自卸车以及方法
CN104742918A (zh) * 2015-03-30 2015-07-01 株洲时代电子技术有限公司 双动力源地铁电传动钢轨打磨车及其动力切换方法
CN205523729U (zh) * 2016-01-29 2016-08-31 王强 一种混合动力机车的动力控制系统
CN106740151A (zh) * 2016-12-27 2017-05-31 中车唐山机车车辆有限公司 轨道车辆的混合动力系统以及高速动车组

Also Published As

Publication number Publication date
CN109980767A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
KR101219119B1 (ko) 다중 태양광발전 어레이를 결합하기 위한 장치, 시스템 및 방법
EP2639958A2 (en) Apparatus and method for energy efficient motor drive standby operation
KR101836577B1 (ko) 차량의 고전압배터리 충전 제어방법 및 시스템
CN103010868B (zh) 电梯节能系统及其控制方法
JPS6217958A (ja) 燃料電池発電システムの制御装置
JP5766640B2 (ja) 電気車制御装置
KR20040009370A (ko) 연료 전지 하이브리드 전기자동차의 연료 전지 출력 파워제어방법
JPH055752B2 (zh)
WO2019128416A1 (zh) 一种机车双动力供电模式无缝切换方法
CN107872090B (zh) 一种储能电池预充电电路及预充电方法
CN108512240B (zh) 一种混合储能电源电流斩波控制系统
US20170275140A1 (en) Three-power hybrid energy saving system of a rubber tyred gantry crane
WO2018023896A1 (zh) 基于四象限变流器实现交流内燃机车柴油机变频启动电路
WO2018069960A1 (ja) 電力変換装置及びその運転方法
JP2012217317A (ja) 電力変換装置
CN103683467A (zh) 一种具有自启动功能的独立光伏供电系统
JP2011050191A (ja) 発電システム
CN101673959B (zh) 一种燃料电池电源管理系统
CN103684159B (zh) 防止内燃机车辅助发电电路过压的控制方法
CN201509088U (zh) 一种燃料电池电源管理系统
JP5179727B2 (ja) エレベータの制御装置
KR20150034857A (ko) 전기자동차의 배터리 승온 제어장치 및 방법
CN108574307B (zh) 一种列供主电路的igbt软开关控制方法
CN205610300U (zh) 一种混动式柴油发电机组
JP2015104195A (ja) 電気自動車の電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895100

Country of ref document: EP

Kind code of ref document: A1