WO2018023896A1 - 基于四象限变流器实现交流内燃机车柴油机变频启动电路 - Google Patents

基于四象限变流器实现交流内燃机车柴油机变频启动电路 Download PDF

Info

Publication number
WO2018023896A1
WO2018023896A1 PCT/CN2016/106605 CN2016106605W WO2018023896A1 WO 2018023896 A1 WO2018023896 A1 WO 2018023896A1 CN 2016106605 W CN2016106605 W CN 2016106605W WO 2018023896 A1 WO2018023896 A1 WO 2018023896A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
traction
quadrant
excitation
main generator
Prior art date
Application number
PCT/CN2016/106605
Other languages
English (en)
French (fr)
Inventor
蔡红霞
吴宏军
芮孟寨
陈诚
陈志杰
束昊昱
曹海华
柴永泉
黄敬云
Original Assignee
中车戚墅堰机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车戚墅堰机车有限公司 filed Critical 中车戚墅堰机车有限公司
Publication of WO2018023896A1 publication Critical patent/WO2018023896A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/38Self-excitation by current derived from rectification of both output voltage and output current of generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups

Definitions

  • the present invention relates to the technical field of diesel locomotive electric drive systems, and more particularly to a variable frequency start-up circuit for an AC locomotive diesel engine based on a four-quadrant converter.
  • Diesel engine starting mode of diesel locomotive has three types: electric motor starting, air motor starting, and inverter variable frequency starting.
  • the electric motor is started, that is, the DC start motor is driven by the control battery 74V or 110V DC, and the diesel engine is rotated by the gear box or the large disc until the diesel engine speed reaches the ignition speed, and the diesel engine is started.
  • This method is simple and easy, but there are many mechanical links, the motor has a short service life, and the requirements for controlling the storage battery are high, which is not suitable for the development direction of the main and auxiliary integration of the AC transmission locomotive.
  • the air motor is started, that is, the air motor is driven by the compressed air, and the diesel engine is rotated by the driving mechanism until the diesel engine speed reaches the ignition speed, and the diesel engine is started.
  • This method requires compressed air as the power.
  • the total air cylinder pressure is insufficient, it is necessary to use the DC air compressor to work to supplement the compressed air.
  • the actual performance is poor, the mechanical links are large, the motor and the air cylinder are large, and it is not suitable for AC transmission.
  • the inverter is started by frequency conversion, that is, the excitation phase is provided by using a 74V or 110V DC voltage for controlling the battery.
  • the control battery voltage is loaded into the intermediate DC link, and the three-phase AC is output through the traction converter module, and is loaded to the output end of the main generator.
  • the main generator is used as the motor, and the traction converter module is matched with the frequency conversion voltage regulation.
  • the excitation controller drives the main generator to rotate until the diesel engine speed reaches the ignition speed, and then the control of the traction converter module is interrupted.
  • the main generator is used as a generator. This method saves complicated mechanical structure and reduces the size. In line with the development direction of the main and auxiliary integration of AC transmission locomotives, it is necessary to increase the start-up conversion of CTS and high-power contactors and other equipment, and the control battery has low starting voltage and is difficult to start.
  • the present invention provides a circuit for realizing variable frequency starting of an AC diesel locomotive based on a four quadrant converter.
  • a four-quadrant converter is used to realize a frequency conversion starting circuit of an AC diesel locomotive diesel engine, comprising a main generator, an excitation control loop, a main converter cabinet, a power battery, and a load device, and the excitation control loop includes an automatic excitation controller,
  • the excitation transformer and the control battery the main converter cabinet comprises a four-quadrant converter, a plurality of traction converter modules and an auxiliary converter module, and the load device comprises a plurality of traction motors, a set of braking resistors and auxiliary transformers.
  • the method further includes: the main generator is connected to one end of the contactor K1, the other end of the K1 is connected to the four-quadrant converter and the excitation transformer, the excitation transformer is connected to the automatic excitation controller, and the automatic excitation control is performed.
  • the other input of the device is connected to the control battery, and the output of the automatic excitation controller is connected to the excitation input of the main generator.
  • the method further includes: the four-quadrant converter rectifies the three-phase alternating current generated by the main generator to an intermediate DC link for the bowing converter module and the auxiliary converter The module operates, and the four-quadrant converter can invert the intermediate DC link voltage output to the main generator for use.
  • the method further includes: the three-way chopping bridge arm driving the traction motor in the traction converter module, and the second #2, 3#, and 6# traction converter modules 4 chopping bridge arm adjusts voltage and current output to charge the power battery, and the 4th chopping bridge arm of the 1#, 4#, 5# position traction converter module adjusts power consumption to the braking resistor;
  • a smoothing reactor L1, a pre-charging resistor R1 and contactors K2, ⁇ 3, ⁇ 4 are arranged between the traction converter modules.
  • the beneficial effects of the present invention are that the starting mode realized by the circuit saves complicated mechanical structure, simplifies complicated starting circuit, and does not need to increase conversion equipment such as starting and switching CTS and high-power contactor, and reducing the startup.
  • the equipment is equipped to facilitate the overall optimization of the space layout, and the high voltage starting with the power battery will be even more It is quick and easy, and it also conforms to the development direction of the main and auxiliary integration of AC transmission locomotives.
  • 1 is a circuit schematic diagram of the present invention.
  • a four-quadrant converter is used to realize a variable frequency starting circuit of an AC diesel locomotive diesel engine, including a main generator 1, an excitation control circuit 2, a main converter cabinet 3, and a power battery 4
  • the load device 5 includes an automatic excitation controller 21, an excitation transformer 22, and a control battery 23.
  • the main converter cabinet 3 includes a four-quadrant converter 31, a plurality of traction converter modules 32, and an auxiliary device.
  • the converter module 33, the load device 5 comprises a plurality of traction motors 51, a set of braking resistors 52 and an auxiliary transformer 53.
  • the main generator 1 is connected to one end of the contactor K1, the other end of K1 is connected to the four-quadrant converter 31 and the excitation transformer 22, the excitation transformer 22 is connected to the automatic excitation controller 21, and the other input end of the automatic excitation controller 21 is connected to the control battery 23, automatically The output of the excitation controller 21 is connected to the excitation input of the main generator 1.
  • the four-quadrant converter 31 rectifies the three-phase alternating current generated by the main generator 1 to the intermediate DC link for the traction converter module 32 and the auxiliary converter module 33 to operate, and the four-quadrant converter 31 can be intermediate
  • the DC link voltage inverter output is supplied to the main generator 1 for use in the starter.
  • the three-way chopping bridge arm of the traction converter module 32 drives the traction motor 51 to operate, and the fourth chopping bridge arm of the 2#, 3#, and 6# traction converter modules adjusts the voltage and current output to the power.
  • the battery is charged, and the 4th chopping arm of the 1#, 4#, 5# traction converter module 32 adjusts the power consumption to the braking resistor 52; the power battery 4 and the traction converter module 32 are provided with a flat Wave reactor L1, pre-charge resistor R1 and contactors K2, ⁇ 3, ⁇ 4.
  • the main generator is connected to the output end of the diesel engine. After the diesel engine works normally, the main generator is driven to output a three-phase AC voltage to provide a power source to the locomotive.
  • the main generator 1 is used as a motor after starting. In turn, the diesel engine is rotated until the diesel engine reaches the ignition speed, the diesel engine is started, and then the generator is switched to the generator condition.
  • the excitation control circuit includes two parts: an automatic excitation controller 21 and an excitation transformer 22.
  • the automatic excitation controller 21 has two power supply modes, an AC input and a DC input, and the automatic excitation controller 21 can output a frequency according to a preset main generator. Voltage relationship, chopper control excitation current, closed-loop regulation of the output voltage of the main generator, especially in the start-up phase, according to the diesel engine speed, the excitation size is reasonably determined to make the acceleration torque optimal; In the start-up phase, the automatic excitation controller 21
  • the locomotive battery 23 is used for power supply; when the diesel engine is started, the three-phase AC outputted by the main generator 1 is stepped down by the excitation transformer 22 for use by the automatic excitation controller 21.
  • the replacement of the uncontrolled rectifier module by the four-quadrant converter for the original organic vehicle is the key to the present invention.
  • the high voltage of the power battery 4 is input to the intermediate DC link, and the four-quadrant converter 31 inverts and outputs the DC link voltage to the main generator 1, and the variable frequency drive main generator 1 rotates, the same and the automatic excitation control. 21 device communication, reasonable calculation of inverter frequency;
  • the four-quadrant converter 31 will be converted to rectification condition, the three-phase AC power from the main generator 1 is rectified by the four-quadrant converter 31, and output Give the DC link.
  • the present invention is provided with six traction converter modules 32 1#, #2#, 3#, 4#, 5#, 6#, and 1 auxiliary converter module 7#.
  • 6 traction converter modules 32 are used to drive 6 traction motors to invert the voltage of the intermediate DC link into the required three-phase AC to drive the traction motor; the same 1#, 4#, 5# inverter
  • the 4th bridge arm chopper adjusts the voltage and outputs it to the braking resistor 52, consuming excess energy or discharging quickly; and the 4th arm of the 2#, 3#, and 6# inverters chopping the voltage, outputting power
  • the battery of the battery 4 is charged.
  • auxiliary converter module module 33 7# which inverts the voltage of the intermediate DC link into the required three-phase AC, and drives the auxiliary converter 33 to operate.
  • the power battery 4 is another power source of the hybrid locomotive, and provides energy to the locomotive when the diesel engine is not working.
  • the charging mode first close the contactors K4 and K3, the traction converter module chopping the voltage of the required voltage value, filtering by the smoothing reactor, and limiting the current through the pre-charging resistor to pre-charge the power battery 4;
  • the charging current reaches the initial value, close the contactor ⁇ 2 for fast charging.
  • the contactors ⁇ 2, ⁇ 3 and ⁇ 4 are closed, the traction converter module is directly turned on, and the voltage of the power battery 4 is directly output to the DC link for use by the load.
  • the automatic excitation controller 21 When the diesel engine is started, the automatic excitation controller 21 is enabled to operate in the normal working mode, and the four-quadrant converter 31 operates in the rectification mode to complete the startup process.
  • the starting mode realized by the circuit saves complicated mechanical structure, simplifies complicated starting circuit, does not need to increase conversion equipment such as start-up conversion CTS and high-power contactor, reduces startup facilities, and facilitates overall optimization.
  • the spatial layout, the high voltage starting with the power battery will be more rapid and easy, and also meet the development direction of the main and auxiliary integration of the AC transmission locomotive.

Abstract

一种基于四象限变流器实现交流内燃机车柴油机变频启动电路,涉及内燃机车电传动系统技术领域,四象限变流器(31)将主发电机(1)发出的三相交流电整流输出到中间直流环节,四象限变流器(31)将中间直流环节电压逆变输出给主发电机(1)供启机;牵引变流器模块(32)中3路斩波桥臂驱动牵引电机(51)工作,2、3、6位牵引变流器模块(32)的第4斩波桥臂调节电压和电流输出给动力电池(4)充电,1、4、5位牵引变流器模块(32)的第4斩波桥臂调节功率消耗到制动电阻(52)上;动力电池(4)与牵引变流器模块(32)之间设有平波电抗器L1、预充电电阻R1及接触器K2、K3、K4。上述基于四象限变流器实现交流内燃机车柴油机变频启动电路不需要增加启动转换开关CTS及大功率接触器等转换设备,使用动力电池高电压启机更加迅速和容易。

Description

基于四象限变流器实现交流内燃机车柴油机变频启动电路
技术领域
[0001] 本发明涉及内燃机车电传动系统技术领域, 尤其是一种基于四象限变流器实现 交流内燃机车柴油机变频启动电路。
背景技术
[0002] 内燃机车柴油机启机方式大致有电马达启动、 空气马达启动、 逆变器变频启动 三种。
[0003] 电马达启动, 即利用控制蓄电池 74V或 110V直流驱动直流启动马达运转, 通过 齿轮箱或大圆盘带动柴油机旋转, 直至柴油机转速达到发火转速, 完成柴油机 的启动。 这种方式简单易行, 但机械环节较多, 马达使用寿命短, 对控制蓄电 池的要求较高, 已不适合交流传动机车主辅一体化的发展方向。
[0004] 空气马达启动, 即利用压缩空气驱动空气马达运转, 通过驱动机构带动柴油机 旋转, 直至柴油机转速达到发火转速, 完成柴油机的启动。 这种方式需要压缩 空气作为动力, 当总风缸压力不足吋, 需要先使用直流空压机工作补充压缩空 气, 实吋性差, 机械环节较多, 马达及风缸体积大, 也不适合交流传动机车主 辅一体化的发展方向。
[0005] 逆变器变频启动, 即启机阶段利用控制蓄电池的 74V或 110V直流电压提供励磁
, 同吋将控制蓄电池电压加载到中间直流环节, 通过牵引变流器模块输出三相 交流, 加载到主发电机输出端, 此吋主发电机做电动机使用, 牵引变流器模块 变频调压配合励磁控制器, 驱动主发电机旋转, 直至柴油机转速达到发火转速 , 再断幵牵引变流器模块的控制, 此吋主发电机做发电机使用, 这种方式省去 复杂的机械结构, 体积缩小, 符合交流传动机车主辅一体化的发展方向, 但需 要增加启动转换幵关 CTS及大功率接触器等其他设备, 同吋利用控制蓄电池启动 电压较低, 不易启动。
技术问题 [0006] 为了克服现有的技术的不足, 本发明提供了一种基于四象限变流器实现交流内 燃机车柴油机变频启动的电路。
问题的解决方案
技术解决方案
[0007] 本发明解决其技术问题所采用的技术方案是:
[0008] 一种基于四象限变流器实现交流内燃机车柴油机变频启动电路, 包括主发电机 、 励磁控制回路、 主变流柜、 动力电池、 及负载设备, 励磁控制回路包含自动 励磁控制器、 励磁变压器、 及控制蓄电池, 主变流柜内包括四象限变流器、 若 干个牵引变流器模块及辅助变流器模块, 负载设备包括若干个牵引电机、 一组 制动电阻及辅助变压器。
[0009] 根据本发明的另一个实施例, 进一步包括, 所述主发电机连接接触器 K1一端, K1另一端连接四象限变流器及励磁变压器, 励磁变压器连接自动励磁控制器, 自动励磁控制器另一输入端连接控制蓄电池, 自动励磁控制器的输出端连接主 发电机的励磁输入端。
[0010] 根据本发明的另一个实施例, 进一步包括, 所述四象限变流器将主发电机发出 的三相交流电整流输出到中间直流环节, 供牵弓 I变流器模块及辅助变流器模块 工作, 同吋四象限变流器可将中间直流环节电压逆变输出给主发电机供启机使 用。
[0011] 根据本发明的另一个实施例, 进一步包括, 所述牵引变流器模块中 3路斩波桥 臂驱动牵引电机工作, 2#、 3#、 6#位牵引变流器模块的第 4斩波桥臂调节电压和 电流输出给动力电池充电, 1#、 4#、 5#位牵引变流器模块的第 4斩波桥臂调节功 率消耗到制动电阻上; 所述动力电池与牵引变流器模块之间设有平波电抗器 L1 、 预充电电阻 R1及接触器 K2、 Κ3、 Κ4。
发明的有益效果
有益效果
[0012] 本发明的有益效果是, 本电路实现的启机方式省去复杂的机械结构, 简化复杂 的启机电路, 不需要增加启动转换幵关 CTS及大功率接触器等转换设备, 减少启 机配套设施, 便于总体优化空间布局, 同吋使用动力电池的高电压启机将更加 迅速和容易, 也符合交流传动机车主辅一体化的发展方向。
对附图的简要说明
附图说明
[0013] 下面结合附图和实施例对本发明进一步说明。
[0014] 图 1是本发明的电路原理图。
[0015] 图中 1、 主发电机, 2、 励磁控制回路, 21、 自动励磁控制器, 22、 励磁变压器 , 23、 控制蓄电池, 3、 主变流柜, 31、 四象限变流器, 32、 牵引变流器模块, 33、 辅助变流器模块, 4、 动力电池, 5、 负载设备, 51、 牵引电机, 52、 制动 电阻, 53、 辅助变压器。
实施该发明的最佳实施例
本发明的最佳实施方式
[0016] 如图 1是本发明的结构示意图, 一种基于四象限变流器实现交流内燃机车柴油 机变频启动电路, 包括主发电机 1、 励磁控制回路 2、 主变流柜 3、 动力电池 4、 及负载设备 5, 励磁控制回路 2包含自动励磁控制器 21、 励磁变压器 22、 及控制 蓄电池 23, 主变流柜 3内包括四象限变流器 31、 若干个牵引变流器模块 32及辅助 变流器模块 33, 负载设备 5包括若干个牵引电机 51、 一组制动电阻 52及辅助变压 器 53。 主发电机 1连接接触器 K1一端, K1另一端连接四象限变流器 31及励磁变压 器 22, 励磁变压器 22连接自动励磁控制器 21, 自动励磁控制器 21另一输入端连 接控制蓄电池 23, 自动励磁控制器 21的输出端连接主发电机 1的励磁输入端。 四 象限变流器 31将主发电机 1发出的三相交流电整流输出到中间直流环节, 供牵引 变流器模块 32及辅助变流器模块 33工作, 同吋四象限变流器 31可将中间直流环 节电压逆变输出给主发电机 1供启机使用。
[0017] 牵引变流器模块 32中 3路斩波桥臂驱动牵引电机 51工作, 2#、 3#、 6#位牵引变 流器模块的第 4斩波桥臂调节电压和电流输出给动力电池充电, 1#、 4#、 5#位牵 引变流器模块 32的第 4斩波桥臂调节功率消耗到制动电阻 52上; 动力电池 4与牵 引变流器模块 32之间设有平波电抗器 Ll、 预充电电阻 R1及接触器 K2、 Κ3、 Κ4。
[0018] 主发电机与柴油机输出端相连, 柴油机正常工作后, 驱动主发电机输出三相交 流电压给机车提供动力源, 在本发明中, 主发电机 1在启动吋, 作为电动机使用 , 反过来驱动柴油机转动, 直至柴油机到达发火转速, 完成柴油机的启动, 而 后切换到发电机工况。
[0019] 励磁控制回路包含自动励磁控制器 21及励磁变压器 22两部分, 自动励磁控制器 21具有交流输入及直流输入两种供电方式, 自动励磁控制器 21可以根据预设的 主发电机输出频率电压关系, 斩波控制励磁电流, 闭环调节主发电机的输出电 压, 特别是在启动阶段, 根据柴油机转速, 合理决定励磁大小, 使得加速转矩 最佳; 在启机阶段, 自动励磁控制器 21使用机车蓄电池 23供电; 当柴油机启机 完成后, 利用励磁变压器 22将主发电机 1输出的三相交流降压, 供自动励磁控制 器 21使用。
[0020] 四象限变流器替换原有机车使用的不可控整流模块是本发明的关键。 在启机阶 段, 动力电池 4的高电压输入到中间直流环节, 四象限变流器 31将直流环节电压 逆变输出给主发电机 1, 变频驱动主发电机 1转动, 同吋与自动励磁控制 21器通 讯, 合理计算逆变频率; 当柴油机启机完成后, 四象限变流器 31将转为整流工 况, 主发电机 1发出的三相交流电, 经四象限变流器 31整流, 输出给直流环节。
[0021] 本发明共设有 6个牵引变流器模块 32 1#、 #2#、 3#、 4#、 5#、 6#、 和 1个辅助变 流器模块 7#。 6个牵引变流器模块 32用于驱动 6个牵引电机工作, 将中间直流环 节的电压逆变成需要的三相交流, 驱动牵引电机工作; 同吋 1#、 4#、 5#逆变器 的第 4路桥臂斩波调节电压, 输出到制动电阻 52上, 消耗多余能量或快速放电; 而 2#、 3#、 6#逆变器的第 4路桥臂斩波调节电压, 输出给动力电池 4的蓄电池充 电。
[0022] 还有一个辅助变流器模块模块 33 7#, 将中间直流环节的电压逆变成需要的三相 交流, 驱动辅助变流器 33工作。
[0023] 动力电池 4是混合动力机车的另一动力源, 在柴油机未工作吋给机车提供能源 。 当工作在充电模式吋, 首先闭合接触器 K4与 K3, 牵引变流器模块斩波输出需 求电压值的电压, 经平波电抗器滤波, 经预充电电阻限流, 给动力电池 4预充电 ; 当充电电流达到初始值后, 闭合接触器 Κ2, 进行快速充电。 当工作在放电模 式吋, 接触器 Κ2、 Κ3及 Κ4闭合, 牵引变流器模块直接幵通, 动力电池 4的电压 直接输出给直流环节, 供负载使用。 [0024] 本发明电路的控制具体方式如下:
[0025] 闭合接触器 Kl, 闭合接触器 Κ3与 Κ4, 延吋闭合接触器 Κ2, 使能自动励磁控制 器 21工作在启机励磁模式, 四象限变流器 31工作在逆变模式, 配合自动励磁控 制器 21, 驱动柴油机转动;
[0026] 当柴油机启机完成后, 使能自动励磁控制器 21工作在正常工作模式, 四象限变 流器 31工作在整流模式, 完成启机过程。
[0027] 本电路实现的启机方式省去复杂的机械结构, 简化复杂的启机电路, 不需要增 加启动转换幵关 CTS及大功率接触器等转换设备, 减少启机配套设施, 便于总体 优化空间布局, 同吋使用动力电池的高电压启机将更加迅速和容易, 也符合交 流传动机车主辅一体化的发展方向。

Claims

权利要求书
[权利要求 1] 一种基于四象限变流器实现交流内燃机车柴油机变频启动电路, 其特 征是, 包括主发电机 (1) 、 励磁控制回路 (2) 、 主变流柜 (3) 、 动力电池 (4) 、 及负载设备 (5) , 所述励磁控制回路 (2) 包含自 动励磁控制器 (21) 、 励磁变压器 (22) 、 及控制蓄电池 (23) , 所 述主变流柜 (3) 内包括四象限变流器 (31) 、 若干个牵引变流器模 块 (32) 及辅助变流器模块 (33) , 负载设备 (5) 包括若干个牵引 电机 (51) 、 一组制动电阻 (52) 及辅助变压器 (53) 。
[权利要求 2] 根据权利要求 1所述的基于四象限变流器实现交流内燃机车柴油机变 频启动电路, 其特征是, 所述主发电机 (1) 连接接触器 K1一端, K1 另一端连接四象限变流器 (31) 及励磁变压器 (22) , 励磁变压器 ( 22) 连接自动励磁控制器 (21) , 自动励磁控制器 (21) 另一输入端 连接控制蓄电池 (23) , 自动励磁控制器 (21) 的输出端连接主发电 机 (1) 的励磁输入端。
[权利要求 3] 根据权利要求 1所述的基于四象限变流器实现交流内燃机车柴油机变 频启动电路, 其特征是, 所述四象限变流器 (31) 将主发电机 (1) 发出的三相交流电整流输出到中间直流环节, 供牵引变流器模块 (32 ) 及辅助变流器模块 (33) 工作, 同吋四象限变流器 (31) 可将中间 直流环节电压逆变输出给主发电机 (1) 供启机使用。
[权利要求 4] 根据权利要求 1所述的基于四象限变流器实现交流内燃机车柴油机变 频启动电路, 其特征是, 所述牵引变流器模块 (32) 中 3路斩波桥臂 驱动牵引电机 (51) 工作, 2#、 3#、 6#位牵引变流器模块的第 4斩波 桥臂调节电压和电流输出给动力电池充电, 1#、 4#、 5#位牵引变流器 模块 (32) 的第 4斩波桥臂调节功率消耗到制动电阻 (52) 上; 所述 动力电池 (4) 与牵引变流器模块 (32) 之间设有平波电抗器 Ll、 预 充电电阻 R1及接触器 K2、 Κ3、 Κ4。
PCT/CN2016/106605 2016-08-04 2016-11-21 基于四象限变流器实现交流内燃机车柴油机变频启动电路 WO2018023896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610631500.4A CN105971798A (zh) 2016-08-04 2016-08-04 基于四象限变流器实现交流内燃机车柴油机变频启动电路
CN201610631500.4 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018023896A1 true WO2018023896A1 (zh) 2018-02-08

Family

ID=56951266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106605 WO2018023896A1 (zh) 2016-08-04 2016-11-21 基于四象限变流器实现交流内燃机车柴油机变频启动电路

Country Status (2)

Country Link
CN (1) CN105971798A (zh)
WO (1) WO2018023896A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076938A (zh) * 2019-12-30 2020-04-28 凯迈(洛阳)机电有限公司 一种基于电力测功机的起动机负载控制系统的控制方法
CN111076938B (zh) * 2019-12-30 2024-04-26 凯迈(洛阳)机电有限公司 一种基于电力测功机的起动机负载控制系统的控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971798A (zh) * 2016-08-04 2016-09-28 中车戚墅堰机车有限公司 基于四象限变流器实现交流内燃机车柴油机变频启动电路
CN108507804A (zh) * 2017-02-24 2018-09-07 中国铁建高新装备股份有限公司 基于多重四象限整流的直流共母线机车试验台电气传动系统
CN107701318B (zh) * 2017-08-22 2020-06-05 太原理工大学 无飞轮柴油机发电机/电动机系统控制方法
CN107733055B (zh) * 2017-11-29 2023-10-10 中车资阳机车有限公司 一种用于油--电混合动力机车车载动力电池的充电系统
CN111162715B (zh) * 2018-11-08 2023-09-15 中车永济电机有限公司 一种电力机车用兆瓦级直驱永磁电传动系统
CN110696845B (zh) * 2019-10-23 2021-03-23 中车大连机车车辆有限公司 一种基于架控方式的混合动力机车、主辅传动系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023137A (en) * 1997-10-01 2000-02-08 General Electric Company Use of traction inverter for supplying power for non-traction applications
EP1331725A2 (en) * 2002-01-29 2003-07-30 Mitsubishi Denki Kabushiki Kaisha Automotive electric power supply apparatus
CN201074565Y (zh) * 2007-09-11 2008-06-18 中国北车集团大连机车研究所 内燃机车柴油机变频启动装置
CN202080279U (zh) * 2011-06-02 2011-12-21 株洲南车时代电气股份有限公司 双动力源内燃机车电传动系统
CN103490675A (zh) * 2013-10-11 2014-01-01 南车株洲电力机车研究所有限公司 一种交流内燃机车柴油机变频起动控制方法
CN203637592U (zh) * 2013-12-17 2014-06-11 北车大连电力牵引研发中心有限公司 驱动装置及车辆
CN105971798A (zh) * 2016-08-04 2016-09-28 中车戚墅堰机车有限公司 基于四象限变流器实现交流内燃机车柴油机变频启动电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911621B2 (ja) * 2000-06-06 2007-05-09 株式会社日立製作所 バッテリ駆動列車の鉄道システム
CN102412775B (zh) * 2011-10-20 2014-10-15 南车资阳机车有限公司 一种机车多模块变频交流辅助系统及实现方法
CN104527659B (zh) * 2014-12-29 2017-08-25 中车北京二七机车有限公司 用于列车牵引的传动系统
CN204586534U (zh) * 2015-05-08 2015-08-26 株洲南车时代电气股份有限公司 一种列车牵引变流装置
CN105235536B (zh) * 2015-11-04 2017-11-28 株洲中车时代电气股份有限公司 一种动车组牵引系统及能量控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023137A (en) * 1997-10-01 2000-02-08 General Electric Company Use of traction inverter for supplying power for non-traction applications
EP1331725A2 (en) * 2002-01-29 2003-07-30 Mitsubishi Denki Kabushiki Kaisha Automotive electric power supply apparatus
CN201074565Y (zh) * 2007-09-11 2008-06-18 中国北车集团大连机车研究所 内燃机车柴油机变频启动装置
CN202080279U (zh) * 2011-06-02 2011-12-21 株洲南车时代电气股份有限公司 双动力源内燃机车电传动系统
CN103490675A (zh) * 2013-10-11 2014-01-01 南车株洲电力机车研究所有限公司 一种交流内燃机车柴油机变频起动控制方法
CN203637592U (zh) * 2013-12-17 2014-06-11 北车大连电力牵引研发中心有限公司 驱动装置及车辆
CN105971798A (zh) * 2016-08-04 2016-09-28 中车戚墅堰机车有限公司 基于四象限变流器实现交流内燃机车柴油机变频启动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, LIANG ET AL.: "Electric Drive and Control System of CKD6E Hybrid Power Locomotive", ELECTRIC DRIVE FOR LOCOMOTIVES, no. 4, 10 July 2012 (2012-07-10), pages 18 - 22, ISSN: 1000-128X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076938A (zh) * 2019-12-30 2020-04-28 凯迈(洛阳)机电有限公司 一种基于电力测功机的起动机负载控制系统的控制方法
CN111076938B (zh) * 2019-12-30 2024-04-26 凯迈(洛阳)机电有限公司 一种基于电力测功机的起动机负载控制系统的控制方法

Also Published As

Publication number Publication date
CN105971798A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2018023896A1 (zh) 基于四象限变流器实现交流内燃机车柴油机变频启动电路
WO2018188224A1 (zh) 供电系统、电力驱动装置、纯电动汽车及其工作方法
WO2018088110A1 (ja) 駆動システム
CN104163111A (zh) 基于双向dc/dc的电动车复合能源增程系统
WO2022033369A1 (zh) 一种基于四象限整流的混合动力调车机车控制系统
KR20130078106A (ko) 전기자동차 충전장치
CN113364063B (zh) 纯电池动力船舶综合电力系统辐射状电网结构及控制方法
WO2014177061A1 (zh) 电源驱动系统
WO2017215450A1 (zh) 一种电机控制器、电机控制系统和电动汽车
CN107733055B (zh) 一种用于油--电混合动力机车车载动力电池的充电系统
WO2017161842A1 (zh) 一种轮胎式龙门起重机三动力混合节能系统
WO2020097896A1 (zh) 一种油电混合动力机车能量管理控制系统和控制方法
KR100802679B1 (ko) 하이브리드 인버터 dc링크 전압 방전 시스템 및 방법
CN109131380B (zh) 内燃机车主辅传动系统及内燃机车
CN104578253A (zh) 一种具有高频三角变技术的电动汽车电机驱动dc/dc变换装置
CN106671796A (zh) 机车牵引系统
CN205202756U (zh) 机车牵引系统
CN104467589A (zh) 内燃机车交直电传动系统及其励磁控制方法
CN106183875A (zh) 一种充放电一体化的电动汽车高压电气架构系统
CN201918962U (zh) 一种具有充电功能的电机驱动电路
WO2024055618A1 (zh) 一种供能控制方法、装置及混合动力车辆
JP6673046B2 (ja) 電気自動車用の電源システム
CN209454733U (zh) 一种动车组双向供电电路和动车组
WO2014041695A1 (ja) ハイブリッド車両の推進制御装置
CN207150225U (zh) 一种基于高电压平台的电梯能量回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911491

Country of ref document: EP

Kind code of ref document: A1