WO2019128206A1 - 基于电加热的层压热板以及层压热板的电加热系统 - Google Patents

基于电加热的层压热板以及层压热板的电加热系统 Download PDF

Info

Publication number
WO2019128206A1
WO2019128206A1 PCT/CN2018/096752 CN2018096752W WO2019128206A1 WO 2019128206 A1 WO2019128206 A1 WO 2019128206A1 CN 2018096752 W CN2018096752 W CN 2018096752W WO 2019128206 A1 WO2019128206 A1 WO 2019128206A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heating
hot plate
temperature
laminated hot
zone
Prior art date
Application number
PCT/CN2018/096752
Other languages
English (en)
French (fr)
Inventor
蔡涔
李亮生
范慧斌
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Publication of WO2019128206A1 publication Critical patent/WO2019128206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10871Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B41/00Arrangements for controlling or monitoring lamination processes; Safety arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of solar module packaging technology, and more particularly to an electric heating system based on electric heating and an electric heating system for laminating hot plates.
  • Lamination is a very important process step in the packaging process.
  • the laminator heats and presses the solar module composed of the glass substrate, the interlayer film material and the edge sealing material under vacuum conditions, through the segmented layer.
  • the pressing process firmly bonds the glass and the film together to achieve the sealing effect and ensure the function of the component.
  • the temperature uniformity of the laminated hot plate used in the lamination process plays a decisive role in the lamination effect.
  • the traditional laminated hot plate uses the oil heating method, mainly after heating the heat transfer oil to a certain temperature outside, and the oil is circulated in the laminated hot plate through the valve control, and the heat is transferred to the laminated hot plate through heat conduction. To achieve the temperature required for the lamination process.
  • this heating method has many defects, such as slow heating rate and high energy consumption, because it needs to heat the entire circulation system, the temperature dynamic control response is slow, and the oil channel in the laminated hot plate is dense and guided.
  • the thickness of the oil pipeline directly affects the accuracy of the temperature control.
  • the pipeline leading to the hot plate of the oil passage lacks effective heat preservation measures at the joints, etc., so that the heat dissipation condition is more serious, resulting in rapid heat dissipation and centering around the laminated hot plate. Slow heat dissipation, which in turn affects production efficiency and yield.
  • the purpose of the present disclosure is to provide a laminated hot plate based on electric heating and a laminated hot plate for the problem that the temperature of each zone of the laminated hot plate is uneven due to slow temperature rise and uneven heat dissipation in the assembly laminating process.
  • the electric heating system enables precise temperature control in sub-zones to ensure temperature uniformity in the lamination process.
  • a laminated hot plate based on electric heating the laminated hot plate being provided with a laminating zone for placing components and a heat retaining zone at the edge;
  • a plurality of evenly arranged electric heating elements and temperature sensors are respectively disposed in the laminating zone and the insulative zone, and the number of the electric heating elements is greater than the number of the temperature sensors;
  • the electric heating element and the temperature sensor are electrically connected to a heating controller, respectively.
  • the lamination zone and the heat retention zone further comprise a plurality of temperature control sub-regions, wherein the temperature control sub-region comprises a plurality of the electric heating elements and at least one of the temperature sensors;
  • the number of the heating controllers is the same as the number of the temperature control sub-regions, and the electric heating elements and the temperature sensors in one of the temperature control sub-areas are respectively electrically connected to a corresponding one of the heating controllers .
  • the arrangement of the electrical heating elements in the holding zone is greater than the density of the electrical heating elements in the lamination zone.
  • the electric heating element and the temperature sensor are embedded in the laminated hot plate.
  • the electrical heating element is a graphite electrode heater.
  • the laminated hot plate is a steel plate.
  • the steel sheet has a thickness of 60 mm to 100 mm.
  • An electric heating system for laminating hot plates comprising:
  • the heating controller is electrically coupled to the over temperature alarm unit and the electric heating element and temperature sensor of the laminated hot plate, respectively.
  • the heating controller is a programmable controller with a built-in PID algorithm.
  • the heating controller is provided with a control screen for setting control parameters and displaying alarm information.
  • the present disclosure performs district heating control on the laminated hot plate by electric heating, especially at the edge of the hot plate not in contact with the component, thereby effectively ensuring the overall temperature uniformity of the laminated hot plate during the lamination process, and solving
  • the conventional oil heating causes the temperature unevenness of the edge of the laminated hot plate and the area where the component is placed in the middle portion. Therefore, the heating method of the present disclosure has the advantages of high temperature control precision, fast heating speed, energy saving, etc., and can improve the lamination equipment. Productivity and yield of battery components.
  • FIG. 1 is a schematic view of an embodiment of an electric heating-based laminated hot plate provided by the present disclosure
  • FIG 2 is a schematic view of a preferred embodiment of an electric heating based laminated hot plate provided by the present disclosure.
  • the present disclosure provides an embodiment of a laminated hot plate based on electric heating.
  • the laminated hot plate is divided into two main regions according to functions (indicated by short dashed lines in the figure), one is placed
  • the lamination zone 1 of the assembly and the insulative zone 2 at the edge of the laminated hot plate, the so-called insulative zone 2 is also a relatively heat-dissipating peripheral zone on the hot plate that is not normally in contact with the component, in the present disclosure, due to
  • This area is also equipped with an electric heating function, which can effectively reduce the heat dissipation rate for heat preservation, so it is named as the insulation zone 2.
  • the laminating zone 1 and the heat retaining zone 2 are respectively provided with a plurality of evenly arranged electric heating elements 3 and temperature sensors 4, and the electric heating elements 3 and the temperature sensors 4 are respectively electrically connected to a heating controller (not shown).
  • a heating controller not shown
  • Connecting, setting, the electric heating element 3 and the temperature sensor 4 may be embedded or embedded in the laminated hot plate, so that the surface of the electric heating element 3 and the temperature sensitive region of the temperature sensor 4 are in sufficient contact with the laminated hot plate;
  • the selection of the electric heating element 3 can be various, for example, a graphite electrode heater or an infrared radiant heater is used.
  • the number of electric heating elements 3 can be more than the number of temperature sensors 4.
  • the specific number and layout of the electric heating elements 3 and the temperature sensors 4 are not limited to the figures. As shown in the figure, it can be adjusted according to actual needs; however, it should be noted that, preferably, the arrangement of the electric heating elements 3 in the holding zone 2 can be greater than that of the electric heating elements 3 in the laminating zone 1 as shown in the drawings. The arrangement density can increase the insulation effect of the heat preservation zone 2 to a certain extent.
  • the heating controller controls the electric heating elements 3 distributed in the laminating zone 1 and the insulative zone 2 according to the set process temperature to heat the laminated hot plate, and adjusts the hot plate in real time through the temperature signal fed back by the uniformly distributed temperature sensor 4.
  • Temperature in order to achieve effective control of temperature uniformity, of course, those skilled in the art can understand that different preset parameters and heating strategies can be set for the laminating zone 1 and the insulative zone 2, which is not limited in this disclosure.
  • the laminated hot plate provided by the present disclosure has less heat loss and faster heating rate, thereby ensuring the production efficiency of the device and achieving the energy saving effect, compared with the conventional oil heating, when the battery assembly is
  • the temperature compensation provided by the oil heating compensates for the slow response, and the electric heating method of the present disclosure can perform rapid temperature compensation on various regions of the laminated hot plate, thereby The uniformity of the temperature of the entire lamination process is ensured, and the yield and production efficiency of the solar cell module are improved.
  • the present disclosure also provides a preferred embodiment of region refinement and multi-path heating.
  • the laminate zone 1 and the heat retention zone 2 are each separately provided with a plurality of temperatures.
  • a control sub-region 5 (indicated by a double-dotted line in the figure), wherein each of the temperature control sub-regions 5 includes a plurality of the aforementioned electric heating elements 3 and at least one temperature sensor 4; meanwhile, the number of heating controllers can be matched with the temperature controller
  • the number of zones 5 is the same to achieve electrical connection of the electrical heating element 3 and the temperature sensor 4 in a temperature controlled sub-area 5 to a respective one of the heating controllers, thus forming a plurality of independently controlled temperature control zones.
  • each of the temperature control sub-areas 5 is mutually correlated and has a complementary function, thereby effectively avoiding the problem that the intermediate temperature of the laminated hot plate is high and the temperature of the periphery is low due to the rapid heat dissipation, so that the laminated hot plate can be
  • the overall temperature uniformity is controlled within a very small fluctuation range.
  • the material of the laminated hot plate may be various.
  • a steel plate having a thickness of 60 mm to 100 mm is used, and a steel plate, not an aluminum plate or a copper plate, is preferred because the present disclosure
  • the laminated hot plate needs to have good bearing capacity, and steel is superior to aluminum or copper in this respect.
  • the electric heating method provided by the present disclosure.
  • a preferred reference range provided by the present disclosure after comprehensively considering heat transfer and load carrying capacity for example, an 80 mm thick steel sheet may be employed as the aforementioned laminated hot plate in a specific implementation.
  • the present disclosure also provides an electric heating system for the above laminated hot plate, the system comprising a heating controller, an over temperature alarm unit, and the aforementioned embodiments and their preferred embodiments Laminated hot plate.
  • the heating controller is electrically connected to the over-temperature alarm unit and the electric heating element and the temperature sensor of the laminated hot plate, respectively.
  • the heating controller may be a device such as a programmable controller (PLC) or a temperature control instrument, and more preferably, a PID algorithm may be built in to achieve accurate closed-loop control;
  • PLC programmable controller
  • the purpose of the alarm unit is to take into account the electric heating method of the present disclosure, there is a certain risk of temperature control imbalance, in order to damage the device or component for high temperature, when the heating controller detects over temperature by the temperature sensor, it can trigger the over temperature alarm. Unit alarm.
  • the foregoing heating controller is further provided with a control screen for setting control parameters and displaying alarm information, so that when an over-temperature condition occurs, the over-temperature alarm unit can be combined with the synchronization.
  • a warning signal is sent to the operator and the corresponding over-temperature time point and temperature value can be recorded for later maintenance reference.
  • the specific working mode can be as follows: the heating controller controls the electric heating element to heat the laminated hot plate, and the PID of the electric heating element is closed-loop controlled by the temperature fed back by the temperature sensor, and the temperature is over temperature when the temperature reaches or exceeds the set temperature value.
  • the information will be displayed on the control panel.
  • the over-temperature alarm unit will emit an acousto-optic signal.
  • the heating controller will perform protective measures such as heating or power-off adjustment to achieve systematic heating of the laminated hot plate. Precise and reliable control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一种基于电加热的层压热板以及层压热板的电加热系统,层压热板设有放置组件的层压区以及位于边缘的保温区;层压区与保温区分别设置多个均匀排布的电加热元件及温度传感器,且电加热元件的数量多于温度传感器的数量;电加热元件与温度传感器分别与加热控制器电连接。本发明能够有效确保层压热板在层压过程中整体的温度均匀性,解决了传统油液加热导致层压热板的边缘与中部放置组件区域的温度不均匀的问题。

Description

基于电加热的层压热板以及层压热板的电加热系统 技术领域
本公开涉及太阳能组件封装技术领域,尤其涉及一种基于电加热的层压热板以及层压热板的电加热系统。
背景技术
太阳能组件在封装过程中,层压是非常重要的工艺步骤,层压机在真空条件下,将玻璃基板、夹层胶膜材料和边缘密封材料组成的太阳能组件进行加热加压处理,通过分段层压工艺将玻璃和胶膜牢固粘合在一起,从而达到密封的效果,保障组件的使用功能。其中,层压过程中所使用的层压热板的温度均匀性对层压效果起到了决定性的作用。
传统的层压热板使用油液加热方式,主要是在外部将导热油加热到一定温度后,通过阀门控制使油液在层压热板内循环,通过热传导将热量传至层压热板,以实现层压工艺所需温度。
但该加热方式存在诸多缺陷,如升温速度较慢且能耗较高,因为它需要对整个循环系统进行加热,温度动态控制响应较慢,并且层压热板内的油道的疏密及导油管道的粗细直接影响温度控制的精确度,再者油路通往热板的管路在接头等处缺少有效的保温措施,使其散热状况较为严重,导致层压热板周边散热快、中心散热慢,进而影响生产效率以及良品率。
发明内容
本公开的目的是针对组件层压工序中,层压热板各区温度因升温缓慢、散热不均导致的温度不均匀的问题,提供了一种基于电加热的层压热板以及层压热板的电加热系统,从而实现分区域精确控制温度,以此保证层压工艺的温度均匀性。
本公开采用的技术方案如下:
一种基于电加热的层压热板,所述层压热板设有放置组件的层压区以及位于边缘的保温区;
所述层压区与所述保温区分别设置多个均匀排布的电加热元件及温度传感器,且所述电加热元件的数量多于所述温度传感器的数量;
所述电加热元件与所述温度传感器分别与加热控制器电连接。
优选地,所述层压区与所述保温区还分别包括多个温控子区域,所述温控子区域内包括多个所述电加热元件以及至少一个所述温度传感器;
所述加热控制器的数量与所述温控子区域的数量相同,且一个所述温控子区域内的所述电加热元件以及所述温度传感器分别与相应的一个所述加热控制器电连接。
优选地,所述保温区内的电加热元件的排布密度大于所述层压区内的电加热元件的排布密度。
优选地,所述电加热元件以及所述温度传感器埋设于所述层压热板内。
优选地,所述电加热元件为石墨电极加热器。
优选地,所述层压热板为钢板。
优选地,所述钢板的厚度为60mm~100mm。
一种层压热板的电加热系统,包括:
加热控制器、超温报警单元以及上述层压热板;
所述加热控制器分别与所述超温报警单元以及所述层压热板的电加热元件和温度传感器电连接。
优选地,所述加热控制器为内置PID算法的可编程控制器。
优选地,所述加热控制器设有用于设置控制参数以及显示报警信息的操控屏。
本公开通过电加热方式对层压热板进行分区加热控制,尤其在未与组件接触的热板边缘处设置保温区,从而有效确保层压热板在层压过程中整体的温度均匀性,解决了传统油液加热导致层压热板的边缘与中部放置组件区域的温度不均的问题,因而本公开的加热方式具有温控精度高、升温速度快、节能等优势,可以提高层压设备的生产效率和电池组件的良品率。
附图说明
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步描述,其中:
图1为本公开提供的基于电加热的层压热板的实施例示意图;
图2为本公开提供的基于电加热的层压热板的较佳实施例示意图。
附图标记说明:
1层压区 2保温区 3电加热元件 4温度传感器 5温控子区域
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
本公开提供了一种基于电加热的层压热板的实施例,如图1所示,该层压热板根据功能划设了两个主区域(图中由短虚线表示),一个是放置组件的层压区1以及位于该层压热板边缘的保温区2,所谓保温区2也即是热板上通常不与组件接触的较易散失热量的四周区域,在本公开中,由于在此区域同样设置了电加热功能,因而能够有效降低散热率以起到保温作用,所以命名为保温区2。
具体地,层压区1与保温区2分别设置了多个均匀排布的电加热元件3及温度传感器4,并且电加热元件3与温度传感器4分别与加热控制器(图中未示)电连接,设置时可以将电加热元件3以及温度传感器4埋设或者镶嵌在层压热板内,以使电加热元件3的表面以及温度传感器4的温感区与层压热板充分地接触;还需说明的是电加热元件3的选型可以是多样的,例如选用石墨电极加热器或者红外辐射加热器等。
再结合图1可见,电加热元件3的数量可以多于温度传感器4的数量,在实际操作中,只要确保分布的均匀性,电加热元件3和温度传感器4的具体数量和布局方式不限于图中所示,可以结合实际需求作调整;但需要说明的是,优选参考图中示出的,保温区2内的电加热元件3的排布密度可以大于层压区1内的电加热元件3的排布密度,以此可以在一定程度上提升保温区2的保温效果。
上述实施例的工作原理可以如下:
加热控制器根据所设工艺温度,控制遍布在层压区1和保温区2的电加热元件3为层压热板加热升温,并实时通过均匀分布的温度传感器4反馈的温度信号调整热板的温度,以实现温度均匀性的有效控制,当然,本领域技术人员可以理解的是,可以针对层压区1和保温区2设置不同的预设参数和加热策略,对此本公开不做限定。由此可见,本公开提供的层压热板其热损失较少且升温速度较快,既保证了设备的生产效率又达到了节能的效果,相较于传统的油液加热,当电池组件在层压过程中交联度不均匀时,油液加热所能提供的温度补偿其响应较慢,而本公开的电加热方式则可以做到对层压热板各区域进行迅速的温度补偿,从 而保证整个层压过程温度的均匀性,提升了太阳能电池组件的良品率以及生产效率。
基于上述实施例,本公开还提供了区域细化、多路加热的优选方案,如图2所示的较佳实施例,前述层压区1和保温区2还各自分别划设了多个温控子区域5(图中由双点虚线表示),其中,各温控子区域5内包括多个前述电加热元件3以及至少一个温度传感器4;同时,加热控制器的数量可以与温控子区域5的数量相同,以实现一个温控子区域5内的电加热元件3以及温度传感器4与相应的一个加热控制器电连接,这样就形成了多个独立控制的温控区。借此,每个温控子区域5之间既相互关联又具有互补功能,有效避免层压热板中间温度较高、周边因散热快导致的温度较低的问题,因而可以将层压热板的整体温度均匀性控制在一个极小的波动范围内。
进一步地,前述层压热板的选材也可以多样,在本公开的另一个优选方法中采用的是厚度在60mm~100mm的钢板,之所以优选钢板,而非铝板或铜板,是因为本公开出于对热传导和承压强度的综合考虑,虽然钢的热传导相较铝或铜较低,但层压热板需要具备良好的承载压力的能力,而钢质在此方面要优于铝或铜,并且对于热传导的欠佳,完全可以依靠本公开提供的电加热方式进行弥补。关于前述钢板的厚度,是综合考虑传热和承载能力后,本公开提供的一个优选的参考范围,例如在具体实施时可以采用80mm厚的钢板作为前述层压热板。
结合上述层压热板的实施例,本公开还提供了一种针对上述层压热板的电加热系统,该系统包括加热控制器、超温报警单元以及前述实施例及其优选方案中提及的层压热板。其中,加热控制器分别与超温报警单元以及层压热板的电加热元件和温度传感器电连接。当然,在实际操作中,所述加热控制器可以是可编程控制器(PLC)或温控仪表等设备,更为优选的是可以内置PID算法,以实现精确的闭环控制;而设置前述超温报警单元的目的,是考虑到本公开采用了电加热方式,存在一定温控失调的风险,为了高温损坏设别或组件,因而当加热控制器经温度传感器检测到超温时可以触发超温报警单元报警。这里可以说明的是,在本系统的另一个实施例中,前述加热控制器还设有用于设置控制参数以及显示报警信息的操控屏,这样当出现超温状况时,可以结合超温报警单元同步向操作人员发出警示信号,并可以记录相应的超温时间点和温度值,以供后期维护参考。
具体的工作方式可以如下:加热控制器控制电加热元件对层压热板进行加热,通过温度传感器反馈的温度对电加热元件进行PID闭环控制,当温度达到或超过设定温度值时,超温信息会在操控屏上显示,与此同时超温报警单元发出声光信号,加热控制器则会执行诸如加热断电或温控调节等保护措施,实现系统性对电加热的层压热板进行精确、可靠的控制。
以上依据图式所示的实施例详细说明了本公开的构造、特征及作用效果,但以上所述仅 为本公开的较佳实施例,需要言明的是,上述实施例及其优选方式所涉及的技术特征,本领域技术人员可以在不脱离、不改变本公开的设计思路以及技术效果的前提下,合理地组合搭配成多种等效方案;因此,本公开不以图面所示限定实施范围,凡是依照本公开的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本公开的保护范围内。

Claims (10)

  1. 一种基于电加热的层压热板,其特征在于,所述层压热板设有放置组件的层压区以及位于边缘的保温区;
    所述层压区与所述保温区分别设置多个均匀排布的电加热元件及温度传感器,且所述电加热元件的数量多于所述温度传感器的数量;
    所述电加热元件与所述温度传感器分别与加热控制器电连接。
  2. 根据权利要求1所述的层压热板,其特征在于,所述层压区与所述保温区还分别包括多个温控子区域,所述温控子区域内包括多个所述电加热元件以及至少一个所述温度传感器;
    所述加热控制器的数量与所述温控子区域的数量相同,且一个所述温控子区域内的所述电加热元件以及所述温度传感器分别与相应的一个所述加热控制器电连接。
  3. 根据权利要求1所述的层压热板,其特征在于,所述保温区内的电加热元件的排布密度大于所述层压区内的电加热元件的排布密度。
  4. 根据权利要求1~3任一项所述的层压热板,其特征在于,所述电加热元件以及所述温度传感器埋设于所述层压热板内。
  5. 根据权利要求1~3任一项所述的层压热板,其特征在于,所述电加热元件为石墨电极加热器。
  6. 根据权利要求1~3任一项所述的层压热板,其特征在于,所述层压热板为钢板。
  7. 根据权利要求6所述的层压热板,其特征在于,所述钢板的厚度为60mm~100mm。
  8. 一种层压热板的电加热系统,其特征在于,包括:
    加热控制器、超温报警单元以及权利要求1~7任一项所述的层压热板;
    所述加热控制器分别与所述超温报警单元以及所述层压热板的电加热元件和温度传感器电连接。
  9. 根据权利要求8所述的电加热系统,其特征在于,所述加热控制器为内置PID算法的可编程控制器。
  10. 根据权利要求8或9所述的电加热系统,其特征在于,所述加热控制器设有用于设置控制参数以及显示报警信息的操控屏。
PCT/CN2018/096752 2017-12-26 2018-07-24 基于电加热的层压热板以及层压热板的电加热系统 WO2019128206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721856373.4 2017-12-26
CN201721856373.4U CN207558819U (zh) 2017-12-26 2017-12-26 基于电加热的层压热板以及层压热板的电加热系统

Publications (1)

Publication Number Publication Date
WO2019128206A1 true WO2019128206A1 (zh) 2019-07-04

Family

ID=62661299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096752 WO2019128206A1 (zh) 2017-12-26 2018-07-24 基于电加热的层压热板以及层压热板的电加热系统

Country Status (5)

Country Link
US (1) US20190198705A1 (zh)
EP (1) EP3505346A1 (zh)
KR (1) KR20190001693U (zh)
CN (1) CN207558819U (zh)
WO (1) WO2019128206A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207558819U (zh) * 2017-12-26 2018-06-29 君泰创新(北京)科技有限公司 基于电加热的层压热板以及层压热板的电加热系统
CN114246422A (zh) * 2021-12-23 2022-03-29 广州宏屹精密机械工程有限公司 一种加热桌
CN116638848B (zh) * 2023-07-27 2023-09-22 秦皇岛博冠科技有限公司 一种用于层压机的控温电加热装置、方法及层压机
CN117584589B (zh) * 2023-11-13 2024-09-06 秦皇岛博冠科技有限公司 一种层压机加热板的保温系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241048A1 (en) * 2003-05-30 2004-12-02 Applera Corporation Thermal cycling apparatus and method for providing thermal uniformity
CN101879804A (zh) * 2009-05-07 2010-11-10 安吉申科太阳能设备制造有限公司 一种适用于太阳能电池层压机的加热板
CN102602115A (zh) * 2012-03-15 2012-07-25 江西开昂教育股份有限公司上海分公司 一种安全节能太阳能电池组件层压机
CN102886958A (zh) * 2011-07-20 2013-01-23 上海申科技术有限公司 电加热层压机的非线性加热的方法
CN102886968A (zh) * 2011-07-20 2013-01-23 上海申科技术有限公司 电加热层压机的温度曲线的控制方法
CN207558819U (zh) * 2017-12-26 2018-06-29 君泰创新(北京)科技有限公司 基于电加热的层压热板以及层压热板的电加热系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1663810A (en) * 1926-02-06 1928-03-27 Morse Sterne Electric heater
US4943706A (en) * 1988-04-18 1990-07-24 R. W. Lyall & Company, Inc. Method and apparatus for fusing thermoplastic materials
JP3606472B2 (ja) * 1994-07-12 2005-01-05 信越化学工業株式会社 熱分解窒化ホウ素被覆複層成形体及びその製造方法
US6847018B2 (en) * 2002-02-26 2005-01-25 Chon Meng Wong Flexible heating elements with patterned heating zones for heating of contoured objects powered by dual AC and DC voltage sources without transformer
DE102004034204A1 (de) * 2004-07-14 2006-02-09 Meier Vakuumtechnik Gmbh Heizplatte, insbesondere für einen Laminator
JP2008047766A (ja) * 2006-08-18 2008-02-28 Npc Inc ラミネート装置
DE102007041261B3 (de) * 2007-08-30 2009-03-19 Meier Vakuumtechnik Gmbh Laminator, Andrückmembran und Verfahren für das Laminieren von Bauteilstapeln
DE102008044924B4 (de) * 2008-08-29 2010-09-16 Meier Solar Solutions Gmbh Heizeinrichtung für eine Presse zum Laminieren von Bauteilen und Verfahren zum Betreiben der Heizeinrichtung
US8511651B2 (en) * 2011-03-29 2013-08-20 Smiths Medical Asd, Inc. Heater unit humidification chamber monitor
JP6234674B2 (ja) * 2012-12-13 2017-11-22 株式会社Screenホールディングス 熱処理装置
EP2954753A2 (en) * 2013-02-05 2015-12-16 Swansea University Heating element
DE102014018934A1 (de) * 2014-12-22 2016-06-23 Airbus Defence and Space GmbH Vorrichtung zum Aufheizen eines Verbundwerkstoffs mit temperaturabhängigen Verarbeitungseigenschaften und damit zusammenhängende Verfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241048A1 (en) * 2003-05-30 2004-12-02 Applera Corporation Thermal cycling apparatus and method for providing thermal uniformity
CN101879804A (zh) * 2009-05-07 2010-11-10 安吉申科太阳能设备制造有限公司 一种适用于太阳能电池层压机的加热板
CN102886958A (zh) * 2011-07-20 2013-01-23 上海申科技术有限公司 电加热层压机的非线性加热的方法
CN102886968A (zh) * 2011-07-20 2013-01-23 上海申科技术有限公司 电加热层压机的温度曲线的控制方法
CN102602115A (zh) * 2012-03-15 2012-07-25 江西开昂教育股份有限公司上海分公司 一种安全节能太阳能电池组件层压机
CN207558819U (zh) * 2017-12-26 2018-06-29 君泰创新(北京)科技有限公司 基于电加热的层压热板以及层压热板的电加热系统

Also Published As

Publication number Publication date
US20190198705A1 (en) 2019-06-27
EP3505346A1 (en) 2019-07-03
KR20190001693U (ko) 2019-07-04
CN207558819U (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019128206A1 (zh) 基于电加热的层压热板以及层压热板的电加热系统
JP3098003B2 (ja) 太陽電池におけるラミネート装置
CN201817546U (zh) 衬底支撑基座和应用该衬底支撑基座的化学气相沉积设备
JP5095166B2 (ja) 予熱による太陽電池モジュールのラミネート方法およびその装置
JP2004533718A5 (zh)
KR20160035386A (ko) 단순 구조의 히팅롤러
CN207602525U (zh) 一种用于功率器件老炼的温控装置
KR101593833B1 (ko) 기판 히팅 유닛 및 이를 포함하는 다이 본딩 장치
CN110278668A (zh) 一种压合装置及显示装置的安装方法
US9134066B2 (en) Glue-thermal curing equipment
KR20130102577A (ko) 기판 가열 장치
JP2008103251A (ja) 電解質膜への触媒層の熱転写方法および装置
CN211426343U (zh) 一种橡胶高温膨胀压力的测试装置
CN205538770U (zh) 耐高温测试装置
JP2000101119A (ja) 太陽電池におけるラミネ―ト方法及びそのラミネ―ト装置
CN109049933B (zh) 光伏太阳能电池组件层压机及该层压机用复合电加热片
WO2018153151A1 (zh) 移载台、贴附装置及其贴附方法
CN206450915U (zh) 移载台以及贴附装置
CN211720759U (zh) 一种蒸镀用加热装置
CN106304424A (zh) 一种可控温的加热装置
CN106118516B (zh) 用于高致密性散热贴膜的制造工艺
KR101935687B1 (ko) 라미네이터
TWI685914B (zh) 工件固持加熱設備
JP5033020B2 (ja) 誘導加熱を用いた熱処理方法並びに誘導加熱装置
US20210167336A1 (en) Heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895074

Country of ref document: EP

Kind code of ref document: A1