WO2019127761A1 - 低反射复合电极、tft阵列基板 - Google Patents

低反射复合电极、tft阵列基板 Download PDF

Info

Publication number
WO2019127761A1
WO2019127761A1 PCT/CN2018/073497 CN2018073497W WO2019127761A1 WO 2019127761 A1 WO2019127761 A1 WO 2019127761A1 CN 2018073497 W CN2018073497 W CN 2018073497W WO 2019127761 A1 WO2019127761 A1 WO 2019127761A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
composite electrode
metal layer
reflection composite
transparent
Prior art date
Application number
PCT/CN2018/073497
Other languages
English (en)
French (fr)
Inventor
樊勇
萧宇均
阙成文
Original Assignee
惠州市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华星光电技术有限公司 filed Critical 惠州市华星光电技术有限公司
Priority to US15/982,907 priority Critical patent/US10490574B2/en
Publication of WO2019127761A1 publication Critical patent/WO2019127761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a low reflection composite electrode and a TFT array substrate having the low reflection composite electrode.
  • the metal electrodes (including the gate, source and drain) of the TFT are generally made of a single metal such as Cu, Al, Ag, Au, Mo, Cr, or Mo/Cu, Mo/.
  • a composite metal such as Al, Mo/Al/Mo is formed, but whether a single metal structure or a composite structure of a plurality of metals is used, the reflectance of the formed metal electrode is high; generally, the reflection of these metal electrodes
  • the average reflectance can be as high as 40% or more in the wavelength range of visible light of 400 nm to 700 nm.
  • the metal electrode In the case of illumination with external light source, the metal electrode has a relatively strong reflected light, which affects the display effect of the display, especially in the case of a large angle, the reflected light is more intense, and the influence of the picture is greater.
  • the prior art practice is to attach a ⁇ /4 wavelength polarizer on the AM-OLED panel to reduce the metal electrode reflection, which will result in an increase in cost.
  • the current practice is to increase the effect of reflected light by adding a low-reflection film layer and an anti-glare structure on the upper polarizer, thereby improving display quality and increasing cost. And/or complicated processes.
  • an electrode material having a low reflectivity can be provided instead of the high reflectivity metal electrode in the TFT, the purpose of removing the polarizer in the AM-OLED and the low-reflection coating in the AM-LCD can be achieved. , thereby saving costs and enhancing product competitiveness.
  • the present invention provides a low-reflection composite electrode having an average reflectance as low as 3% or less, which is applied to an AM-OLED or an AM-LCD.
  • the polarizer that is, the low-reflection coating, can be omitted, reducing the cost.
  • a low-reflection composite electrode comprising a first metal layer, a first transparent material layer and a second metal layer disposed in series.
  • first metal layer and/or the second metal layer is a single metal layer or a composite metal layer.
  • the first metal layer is at least one selected from the group consisting of Cr, Ti, and Mo; the first metal layer has a thickness of 2 nm to 15 nm; and the second metal layer is selected from the group consisting of Cu, Al, and Mo. At least one; the second metal layer has a thickness of 200 nm to 500 nm.
  • the material of the first transparent material layer is a transparent electrode material or a transparent dielectric material.
  • the transparent electrode material is selected from any one of IZO, ITO, and IGZO
  • the transparent dielectric material is selected from any one of SiN x , SiO x , TiO 2 , and Ta 2 O 5 .
  • the first transparent material layer has a thickness of 10 nm to 150 nm.
  • the low-reflection composite electrode further includes a second transparent material layer disposed on a surface of the first metal layer facing away from the first transparent material layer.
  • the material of the second transparent material layer is a transparent electrode material or a transparent dielectric material.
  • the second transparent material layer has a thickness of 10 nm to 150 nm.
  • Another object of the present invention is to provide a TFT array substrate comprising the low reflection composite electrode as described above.
  • the present invention provides a low-reflection composite electrode capable of achieving extremely low reflectivity by optically optimized design, thereby achieving a large reduction in reflectance compared to a conventional electrode in the prior art, and an average reflectance in the visible light band. It can be reduced to 3% or less, and the average reflectance can be reduced to less than 1% in the green region where the luminance contribution is the highest.
  • the low-reflection composite electrode is particularly suitable for use in AM-OLEDs and AM-LCDs. By changing the metal electrodes of the gate and/or source and drain electrodes in the TFT array substrate to the low-reflection composite electrode of the invention, it is possible to omit the AM-OLED. Polarizers and low-reflective coatings in AM-LCDs save cost and increase product competitiveness.
  • FIG. 1 is a schematic structural view of a low reflection composite electrode according to the present invention.
  • FIG. 2 is a schematic structural view of another low reflection composite electrode according to the present invention.
  • FIG. 3 is a graph showing a reflectance of a low-reflection composite electrode according to Embodiment 1 of the present invention and an electrode of the related art;
  • FIG. 4 is a reflectance diagram of a low reflection composite electrode according to Embodiment 2 of the present invention.
  • Figure 5 is a reflectance diagram of a low reflection composite electrode according to Embodiment 3 of the present invention.
  • Figure 6 is a graph showing the reflectance of a low reflection composite electrode according to Embodiment 4 of the present invention and an electrode of the prior art.
  • the present invention provides a low reflection composite electrode, as shown in Fig. 1, comprising a first metal layer 11, a first transparent material layer 12 and a second metal layer 13 which are sequentially stacked.
  • the low-reflection composite electrode further includes a second transparent material layer 14 disposed on a surface of the first metal layer 11 facing away from the first transparent material layer 12.
  • the first metal layer 11 and/or the second metal layer 13 are a single metal layer or a composite metal layer.
  • first metal layer 11 may be selected from at least one of Cr, Ti, and Mo; and the second metal layer 13 may be selected from at least one of Cu, Al, and Mo.
  • the above-mentioned at least one type refers to a single metal layer formed of these metals, or a composite metal layer formed of at least two of these metals, and of course, when forming a composite metal layer, the two layers may be the same The metal is sandwiched with a layer of other metal.
  • the thickness of the first metal layer 11 may be controlled to be 2 nm to 15 nm, and the thickness of the second metal layer 13 may be controlled to be 200 nm to 500 nm.
  • the materials of the first transparent material layer 12 and the second transparent material layer 14 may each be a transparent electrode material or a transparent dielectric material.
  • the transparent electrode material is selected from any one of IZO, ITO, and IGZO
  • the transparent dielectric material is selected from any one of SiN x , SiO x , TiO 2 , and Ta 2 O 5 .
  • each of the first transparent material layer 12 and the second transparent material layer 14 may be controlled to be 10 nm to 150 nm.
  • the low-reflection composite electrode has a structure as shown in FIG. 1, specifically 4.36 nm of Mo/44.5 nm of ITO/380 nm of Cu; that is, in the present embodiment, the first metal layer 11.
  • the first transparent material layer 12 and the second metal layer 13 are 4.36 nm of Mo, 44.5 nm of ITO, and 380 nm of Cu, respectively.
  • the reflectance of the low-reflection composite electrode of the present embodiment was tested, as shown by the curve of Example 1 in FIG. 3; in order to highlight the low reflectance of the low-reflection composite electrode of the present embodiment, the metal of the prior art was simultaneously The reflectance of the /Cu electrode was tested as shown in the prior art curve of Figure 3.
  • the average reflectance of the metal electrode in the prior art is as high as 80% or more, and the average reflectance of the low-reflection composite electrode of the embodiment is less than 3%.
  • the low-reflection composite electrode of the embodiment The reflectivity is significantly lower than that of conventional metal electrodes.
  • the low-reflection composite electrode has a structure as shown in FIG. 1, specifically 4.36 nm of Mo/45.5 nm of SiN x /380 nm of Cu; that is, in the present embodiment, the first metal layer 11, a first transparent material layer 12 and the second metal layer 13 of Mo 4.36nm, respectively, of 45.5 nm and 380nm SiN x of Cu.
  • the reflectance of the low-reflection composite electrode of the present embodiment was tested, as shown by the curve in FIG. 4; as can be seen from FIG. 4, the average reflectance of the low-reflection composite electrode of the present embodiment is less than 3%.
  • the reflectance of the low-reflection composite electrode of the example is also significantly lower than that of the conventional metal electrode of FIG.
  • the low-reflection composite electrode has a structure as shown in FIG. 1, specifically, 3.63 nm of Mo/58 nm of SiN x / 30 nm of Mo/380 nm of Cu; that is, in this embodiment, the first metal layer 11, a first transparent material layer 12 and the second metal layer 13, respectively of Mo 3.63nm, 58nm of SiN x and Cu 30nm of Mo / 380nm of.
  • the reflectance of the low-reflection composite electrode of the present embodiment was tested, as shown by the curve in FIG. 5; as can be seen from FIG. 5, the average reflectance of the low-reflection composite electrode of the present embodiment is less than 3%.
  • the reflectance of the low-reflection composite electrode of the example is also significantly lower than that of the conventional metal electrode of FIG.
  • the low-reflection composite electrode has a structure as shown in FIG. 2, specifically 53.8 nm of ITO/6.9 nm of Mo/35.9 nm of ITO/380 nm of Cu; that is, in this embodiment
  • the second transparent material layer 14, the first metal layer 11, the first transparent material layer 12, and the second metal layer 13 are 53.8 nm of ITO, 6.9 nm of Mo, 35.9 nm of ITO, and 380 nm of Cu, respectively.
  • the reflectance of the low-reflection composite electrode of the present embodiment was tested as shown by the curve of Example 4 in FIG. 6; in order to highlight the low reflectance of the low-reflection composite electrode of the present embodiment, while the Mo in the prior art was simultaneously
  • the reflectance of the /Cu electrode was tested as shown in the prior art curve of Figure 6.
  • the average reflectance of the metal electrode in the prior art is 40.8% in the 400 nm to 700 nm band, and the average reflectance in the 400 nm to 650 nm band is 41.4%, and the low reflection composite electrode of this embodiment.
  • the average reflectance in the 400 nm to 700 nm band is 0.6%
  • the average reflectance in the 400 nm to 650 nm band is only 0.3%, that is, the reflectance of the low reflection composite electrode of the present embodiment is much lower than that of the general metal electrode.
  • the rate reflects the ultra-low reflectivity of the wide band.
  • the low-reflection composite electrode provided by the present invention can greatly reduce the reflectance, and the average reflectance in the visible light band can be reduced to 3% or less, and the green light region having the highest luminance contribution.
  • the average reflectance can be reduced to less than 1%.
  • a TFT array substrate is provided.
  • the material of the gate and/or the source and drain of the TFT array substrate is specifically the above-mentioned low-reflection composite electrode.
  • TFT array substrate Other structures and materials selection in the TFT array substrate may be referred to the prior art, and are not described herein again.
  • the above-mentioned low-reflection composite electrode is particularly suitable for use in the AM-OLED and the AM-LCD, and the gate and/or the source and drain of the TFT array substrate are made of the above-mentioned low-reflection composite electrode of the present invention, and the AM can be omitted.
  • the design of polarizers in OLEDs and low-reflection coatings in AM-LCDs saves costs and enhances product competitiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种低反射复合电极,其包括依次叠层设置的第一金属层(11)、第一透明材料层(12)和第二金属层(13)。通过光学优化设计提供了一种可实现极低反射率的低反射复合电极,从而相比一般电极,实现了反射率的大幅度降低,其在可见光波段的平均反射率可以降低至3%以下,在亮度贡献最高的绿光区,其平均反射率可以降低至1%以下。以及一种TFT阵列基板,其包括如上所述的低反射复合电极。上述低反射复合电极应用于AM-OLED和AM-LCD中时,通过把TFT阵列基板中栅极和/或源漏极的金属电极改变成上述低反射复合电极,可以实现省略AM-OLED中偏光片以及AM-LCD中低反射涂层的设计,节省成本,提升产品竞争力。

Description

低反射复合电极、TFT阵列基板 技术领域
本发明属于显示技术领域,具体来讲,涉及一种低反射复合电极、以及具有该低反射复合电极的TFT阵列基板。
背景技术
在AM-OLED和AM-LCD显示中,其中TFT的金属电极(包括栅极、源极和漏极)一般采用Cu、Al、Ag、Au、Mo、Cr等单一金属或Mo/Cu、Mo/Al、Mo/Al/Mo等复合金属来形成,但不论是采用前面的单一金属结构还是多种金属的复合结构,所形成的金属电极的反射率都很高;一般地,这些金属电极的反射率在可见光400nm~700nm的波长范围内,平均反射率可高达40%以上。
在具有外界光源照明的情况下,由于金属电极具有较强烈的反射光,影响了显示器的显示效果,尤其在大角度情况下,反射光更为强烈,画面影响更大。为了改善AM-OLED中的金属电极反光,现有业界的做法是采用在AM-OLED面板上贴附一张λ/4波长的偏光片来减少金属电极反光,如此将导致了成本的增加。同样地,AM-LCD中也存在金属电极反光的问题,现行的做法也是采用在上偏光片上增加低反射膜层和防眩光结构来改善反射光的影响,进而提升显示品质,也会存在成本增加和/或工艺复杂等问题。
综上,若能够提供一种具有低反射率的电极材料,来替代上述TFT中的高反射率的金属电极,则可实现去掉AM-OLED中偏光片以及AM-LCD中低反射涂层的目的,从而节省成本,提升产品竞争力。
发明内容
为解决上述现有技术存在的问题,本发明提供了一种低反射复合电极,该低反射复合电极的平均反射率低至3%以下,将其应用于 AM-OLED或AM-LCD中时,可以省略偏光片即低反射涂层,降低成本。
为了达到上述发明目的,本发明采用了如下的技术方案:
一种低反射复合电极,包括依次叠层设置的第一金属层、第一透明材料层和第二金属层。
进一步地,所述第一金属层和/或所述第二金属层为单一金属层或复合金属层。
进一步地,所述第一金属层选自Cr、Ti、Mo中的至少一种;所述第一金属层的厚度为2nm~15nm;所述第二金属层选自Cu、Al、Mo中的至少一种;所述第二金属层的厚度为200nm~500nm。
进一步地,所述第一透明材料层的材料为透明电极材料或透明介质材料。
进一步地,所述透明电极材料选自IZO、ITO、IGZO中的任意一种,所述透明介质材料选自SiN x、SiO x、TiO 2、Ta 2O 5中的任意一种。
进一步地,所述第一透明材料层的厚度为10nm~150nm。
进一步地,所述低反射复合电极还包括设置于所述第一金属层背离所述第一透明材料层的表面上的第二透明材料层。
进一步地,所述第二透明材料层的材料为透明电极材料或透明介质材料。
进一步地,所述第二透明材料层的厚度为10nm~150nm。
本发明的另一目的在于提供一种TFT阵列基板,包括如上任一所述的低反射复合电极。
本发明通过光学优化设计提供了一种可实现极低反射率的低反射复合电极,从而相比现有技术中的一般电极,实现了反射率的大幅度降低,其在可见光波段的平均反射率可以降低至3%以下,在亮度贡献最高的绿光区,其平均反射率可以降低至1%以下。该低反射复 合电极尤其适用于AM-OLED和AM-LCD中,通过把TFT阵列基板中栅极和/或源漏极的金属电极改变成本发明的低反射复合电极,可以实现省略AM-OLED中偏光片以及AM-LCD中低反射涂层的设计,节省成本,提升产品竞争力。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的一种低反射复合电极的结构示意图;
图2是根据本发明另一种低反射复合电极的结构示意图;
图3是根据本发明的实施例1的低反射复合电极与现有技术中的电极的反射率对比图;
图4是根据本发明的实施例2的低反射复合电极的反射率图;
图5是根据本发明的实施例3的低反射复合电极的反射率图;
图6是根据本发明的实施例4的低反射复合电极与现有技术中的电极的反射率对比图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,为了清楚起见,可以夸大元件的形状和尺寸,并且相同的标号将始终被用于表示相同或相似的元件。
将理解的是,尽管在这里可使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开来。
本发明提供了一种低反射复合电极,如图1所示,其包括依次叠 层设置的第一金属层11、第一透明材料层12和第二金属层13。
优选地,如图2所示,该低反射复合电极还包括设置于第一金属层11背离第一透明材料层12的表面上的第二透明材料层14。
具体来讲,第一金属层11和/或第二金属层13为单一金属层或复合金属层。
进一步地,第一金属层11可以选自Cr、Ti、Mo中的至少一种;第二金属层13可以选自Cu、Al、Mo中的至少一种。
值得说明的是,上述选自至少一种是指由这些金属形成的单一金属层、或由这些金属中的至少两种形成的复合金属层,当然在形成复合金属层时,可以是两层相同的金属夹设一层其他金属。
第一金属层11的厚度控制为2nm~15nm即可,第二金属层13的厚度控制为200nm~500nm即可。
更为具体地,第一透明材料层12、第二透明材料层14的材料均可以为透明电极材料或透明介质材料。
进一步地,透明电极材料选自IZO、ITO、IGZO中的任意一种,透明介质材料选自SiN x、SiO x、TiO 2、Ta 2O 5中的任意一种。
第一透明材料层12和第二透明材料层14的厚度均控制为10nm~150nm即可。
以下结合具体的实施例来表述上述低反射复合电极,当然,下述实施例仅是本发明上述低反射复合电极的具体示例,但不代表全部。
实施例1
在本实施例中,该低反射复合电极具有如图1所示的结构,具体为4.36nm的Mo/44.5nm的ITO/380nm的Cu;也就是说,在本实施例中,第一金属层11、第一透明材料层12和第二金属层13分别为4.36nm的Mo、44.5nm的ITO和380nm的Cu。
对本实施例的低反射复合电极的反射率进行了测试,如图3中实施例1的曲线所示;为了突显本实施例的低反射复合电极的低反射率, 同时对现有技术中的金属/Cu电极的反射率进行了测试,如图3中现有技术的曲线所示。
从图3中可以看出,现有技术中的金属电极的平均反射率高达80%以上,而本实施例的低反射复合电极的平均反射率低于3%,本实施例的低反射复合电极的反射率较传统金属电极的反射率大幅度降低。
实施例2
在本实施例中,该低反射复合电极具有如图1所示的结构,具体为4.36nm的Mo/45.5nm的SiN x/380nm的Cu;也就是说,在本实施例中,第一金属层11、第一透明材料层12和第二金属层13分别为4.36nm的Mo、45.5nm的SiN x和380nm的Cu。
对本实施例的低反射复合电极的反射率进行了测试,如图4中曲线所示;从图4中可以看出,本实施例的低反射复合电极的平均反射率低于3%,本实施例的低反射复合电极的反射率较图3中传统金属电极的反射率也大幅度降低。
实施例3
在本实施例中,该低反射复合电极具有如图1所示的结构,具体为3.63nm的Mo/58nm的SiN x/30nm的Mo/380nm的Cu;也就是说,在本实施例中,第一金属层11、第一透明材料层12和第二金属层13分别为3.63nm的Mo、58nm的SiN x和30nm的Mo/380nm的Cu。
对本实施例的低反射复合电极的反射率进行了测试,如图5中曲线所示;从图5中可以看出,本实施例的低反射复合电极的平均反射率低于3%,本实施例的低反射复合电极的反射率较图3中传统金属电极的反射率也大幅度降低。
实施例4
在本实施例中,该低反射复合电极具有如图2所示的结构,具体为53.8nm的ITO/6.9nm的Mo/35.9nm的ITO/380nm的Cu;也就 是说,在本实施例中,第二透明材料层14、第一金属层11、第一透明材料层12和第二金属层13分别为53.8nm的ITO、6.9nm的Mo、35.9nm的ITO和380nm的Cu。
对本实施例的低反射复合电极的反射率进行了测试,如图6中实施例4的曲线所示;为了突显本实施例的低反射复合电极的低反射率,同时对现有技术中的Mo/Cu电极的反射率进行了测试,如图6中现有技术的曲线所示。
从图6中可以看出,现有技术中的金属电极在400nm~700nm波段的平均反射率为40.8%,在400nm~650nm波段的平均反射率为41.4%,而本实施例的低反射复合电极对应在400nm~700nm波段的平均反射率为0.6%,在400nm~650nm波段的平均反射率仅为0.3%,即本实施例的低反射复合电极的反射率远远低于一般的金属电极的反射率,体现出了宽波段超低反射率的特性。
本发明提供的上述低反射复合电极相比现有技术中的一般电极材料,能够大幅度降低反射率,其在可见光波段的平均反射率可以降低至3%以下,在亮度贡献最高的绿光区,其平均反射率可以降低至1%以下。
实施例5
在本实施例中,提供了一种TFT阵列基板,该TFT阵列基板中栅极和/或源漏极的材料具体为上述低反射复合电极。
该TFT阵列基板中其他结构及其材料选择参照现有技术即可,此处不再赘述。
由此,上述低反射复合电极尤其适用于AM-OLED和AM-LCD中,以本发明的上述低反射复合电极为材料制成TFT阵列基板中栅极和/或源漏极,可以实现省略AM-OLED中偏光片以及AM-LCD中低反射涂层的设计,节省成本,提升产品竞争力。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (20)

  1. 一种低反射复合电极,其中,包括依次叠层设置的第一金属层、第一透明材料层和第二金属层。
  2. 根据权利要求1所述的低反射复合电极,其中,所述第一金属层和/或所述第二金属层为单一金属层或复合金属层。
  3. 根据权利要求2所述的低反射复合电极,其中,所述第一金属层选自Cr、Ti、Mo中的至少一种;所述第一金属层的厚度为2nm~15nm;所述第二金属层选自Cu、Al、Mo中的至少一种;所述第二金属层的厚度为200nm~500nm。
  4. 根据权利要求1所述的低反射复合电极,其中,所述第一透明材料层的材料为透明电极材料或透明介质材料。
  5. 根据权利要求4所述的低反射复合电极,其中,所述透明电极材料选自IZO、ITO、IGZO中的任意一种,所述透明介质材料选自SiN x、SiO x、TiO 2、Ta 2O 5中的任意一种。
  6. 根据权利要求1所述的低反射复合电极,其中,所述第一透明材料层的厚度为10nm~150nm。
  7. 根据权利要求1所述的低反射复合电极,其中,所述低反射复合电极还包括设置于所述第一金属层背离所述第一透明材料层的表面上的第二透明材料层。
  8. 根据权利要求7所述的低反射复合电极,其中,所述第二透明材料层的材料为透明电极材料或透明介质材料。
  9. 根据权利要求7所述的低反射复合电极,其中,所述第二透明材料层的厚度为10nm~150nm。
  10. 根据权利要求4所述的低反射复合电极,其中,所述低反射复合电极还包括设置于所述第一金属层背离所述第一透明材料层的表面上的第二透明材料层。
  11. 根据权利要求10所述的低反射复合电极,其中,所述第二透明材料层的材料为透明电极材料或透明介质材料。
  12. 根据权利要求10所述的低反射复合电极,其中,所述第二透明材料层的厚度为10nm~150nm。
  13. 一种TFT阵列基板,其中,包括低反射复合电极;其中,所述低反射复合电极包括依次叠层设置的第一金属层、第一透明材料层和第二金属层。
  14. 根据权利要求13所述的TFT阵列基板,其中,所述第一金属层和/或所述第二金属层为单一金属层或复合金属层。
  15. 根据权利要求14所述的TFT阵列基板,其中,所述第一金属层选自Cr、Ti、Mo中的至少一种;所述第一金属层的厚度为2nm~15nm;所述第二金属层选自Cu、Al、Mo中的至少一种;所述第二金属层的厚度为200nm~500nm。
  16. 根据权利要求13所述的TFT阵列基板,其中,所述第一透明材料层的材料为透明电极材料或透明介质材料。
  17. 根据权利要求16所述的TFT阵列基板,其中,所述透明电极材料选自IZO、ITO、IGZO中的任意一种,所述透明介质材料选自SiN x、SiO x、TiO 2、Ta 2O 5中的任意一种。
  18. 根据权利要求13所述的TFT阵列基板,其中,所述低反射复合电极还包括设置于所述第一金属层背离所述第一透明材料层的表面上的第二透明材料层。
  19. 根据权利要求18所述的TFT阵列基板,其中,所述第二透明材料层的材料为透明电极材料或透明介质材料。
  20. 根据权利要求16所述的TFT阵列基板,其中,所述低反射复合电极还包括设置于所述第一金属层背离所述第一透明材料层的表面上的第二透明材料层。
PCT/CN2018/073497 2017-12-28 2018-01-19 低反射复合电极、tft阵列基板 WO2019127761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/982,907 US10490574B2 (en) 2017-12-28 2018-05-17 Low-reflection composite electrode and TFT array substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711459657.4 2017-12-28
CN201711459657.4A CN108598157B (zh) 2017-12-28 2017-12-28 低反射复合电极、tft阵列基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/982,907 Continuation US10490574B2 (en) 2017-12-28 2018-05-17 Low-reflection composite electrode and TFT array substrate

Publications (1)

Publication Number Publication Date
WO2019127761A1 true WO2019127761A1 (zh) 2019-07-04

Family

ID=63633604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073497 WO2019127761A1 (zh) 2017-12-28 2018-01-19 低反射复合电极、tft阵列基板

Country Status (2)

Country Link
CN (1) CN108598157B (zh)
WO (1) WO2019127761A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635554B (zh) * 2020-12-28 2022-04-12 Tcl华星光电技术有限公司 薄膜晶体管及其制备方法、阵列基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700735A (zh) * 2012-09-28 2014-04-02 上海蓝光科技有限公司 一种发光二极管及其制造方法
CN103733350A (zh) * 2011-06-10 2014-04-16 Posco公司 太阳能电池基底、其制备方法以及使用其的太阳能电池
CN105683884A (zh) * 2013-11-12 2016-06-15 株式会社神户制钢所 电极及其制造方法
CN105932172A (zh) * 2016-05-11 2016-09-07 吉林大学 一种可定量调节功函数的透明叠层电极及其制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733350A (zh) * 2011-06-10 2014-04-16 Posco公司 太阳能电池基底、其制备方法以及使用其的太阳能电池
CN103700735A (zh) * 2012-09-28 2014-04-02 上海蓝光科技有限公司 一种发光二极管及其制造方法
CN105683884A (zh) * 2013-11-12 2016-06-15 株式会社神户制钢所 电极及其制造方法
CN105932172A (zh) * 2016-05-11 2016-09-07 吉林大学 一种可定量调节功函数的透明叠层电极及其制备工艺

Also Published As

Publication number Publication date
CN108598157A (zh) 2018-09-28
CN108598157B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
US8536781B2 (en) Black organic light-emitting diode device
TWI240119B (en) Polarizer for multi-domain vertical alignment liquid crystal display
US11926558B2 (en) Conductive structure, manufacturing method therefor, and electrode comprising conductive structure
US20040175577A1 (en) Structure of a light-incidence electrode of an optical interference display plate
US8289489B2 (en) Fringe-field-switching-mode liquid crystal display and method of manufacturing the same
TWI641878B (zh) 線柵偏光器以及使用此線柵偏光器的顯示面板
US10133135B2 (en) Liquid crystal display device
TWI485500B (zh) 液晶顯示裝置
JP2011128586A (ja) 半透過半反射型液晶表示装置
TWI507779B (zh) 液晶顯示器
WO2016090853A1 (zh) 阵列基板及其制造方法和全反射式液晶显示器
CN110350003A (zh) 有机发光显示面板及其制造方法
US20160327691A1 (en) Polarizer and manufacturing method thereof, display panel and display device
CN108321171A (zh) 一种用于显示面板中的薄膜晶体管及显示面板
TW201615405A (zh) 用於調光薄膜之導電膜結構
KR102115564B1 (ko) 표시기판 및 이를 포함하는 표시패널
US9981872B2 (en) Single layer smart window
TWI528095B (zh) 電致變色元件及其製造方法
WO2019127761A1 (zh) 低反射复合电极、tft阵列基板
TW201222083A (en) Liquid crystal display device
CN112654918B (zh) 反射式电极及其阵列基板、显示装置
US11005080B2 (en) Organic light emitting diode display screen and manufacturing method thereof
CN108336144B (zh) 一种用于显示面板中的薄膜晶体管及显示面板
WO2021103105A1 (zh) 一种显示面板及电子装置
WO2021208198A1 (zh) 一种显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897394

Country of ref document: EP

Kind code of ref document: A1