WO2021208198A1 - 一种显示面板及其制备方法 - Google Patents

一种显示面板及其制备方法 Download PDF

Info

Publication number
WO2021208198A1
WO2021208198A1 PCT/CN2020/092578 CN2020092578W WO2021208198A1 WO 2021208198 A1 WO2021208198 A1 WO 2021208198A1 CN 2020092578 W CN2020092578 W CN 2020092578W WO 2021208198 A1 WO2021208198 A1 WO 2021208198A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
metal layer
darkening
viewing angle
Prior art date
Application number
PCT/CN2020/092578
Other languages
English (en)
French (fr)
Inventor
于晓平
林旭林
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2021208198A1 publication Critical patent/WO2021208198A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the invention relates to the field of display technology, in particular to a display panel and a preparation method thereof.
  • Contrast is one of the important indicators for evaluating the image quality performance of a liquid crystal display (LCD).
  • the reflectivity of the display panel will affect the contrast of the picture due to the influence of the ambient light.
  • increase the brightness of the display panel in the bright state and on the other hand, reduce the reflectivity of the display panel.
  • the reflection of ambient light inside the display screen mainly comes from the reflection of metal, including the reflection of metal in the TFT area, and the reflection of metal such as COM electrodes and storage capacitors.
  • a darkening layer is added on the surface of the metal layer to absorb part of the incident light and reflected light, and the spectrum of the reflected light is adjusted by the principle of interference cancellation to reduce the reflectivity of the display panel; but the interference cancellation wavelength and light source
  • the incident angle is related, so the reflected light spectrum of the normal viewing angle and the oblique viewing angle are inconsistent, and the chromaticity of the reflected light oblique viewing angle and the chromaticity of the normal viewing angle will be significantly different, resulting in the phenomenon of squint role deviation. Therefore, it is necessary to seek a new type of display panel to solve the above-mentioned problems.
  • the object of the present invention is to provide a display panel, which can solve the problems of adding a darkening layer on the surface of the metal layer in the existing display panel, resulting in the phenomenon of squinting character film.
  • the present invention provides a display panel, which includes: a metal layer; a darkened layer disposed on the surface of one or both sides of the metal layer; and a conductive layer disposed far away from the darkened layer The surface on one side of the metal layer is alternatively arranged between the darkened layer and the metal layer.
  • the refractive index of the darkening layer is less than the refractive index of the metal layer, and is greater than the refractive index of the conductive layer.
  • the material of the darkening layer includes: at least one of MoaXbOc, MoaXbNd, MoaXbOcNd, MoaXbWc, MoaXbCc, and AlaObNc; wherein a, c, and d are all rational numbers greater than 0; b is greater than or equal to 0 Rational number; X includes at least one of tantalum, vanadium, nickel, niobium, zirconium, tungsten, titanium, rhenium, and hafnium.
  • the material of the conductive layer includes at least one of ITO, IZO, IGZO, and IGZTO.
  • the material of the metal layer includes: at least one of Cu, Mo, Ti, Al, Ni, Nb, Ta, and Cr.
  • the thickness of the darkening layer is in the range of 40-70 nm.
  • the thickness of the conductive layer ranges from 0 to 20 nm.
  • the thickness of the metal layer is 200-700 nm.
  • the object of the present invention is to provide a method for manufacturing a display panel, which can solve the problems of adding a darkening layer on the surface of the metal layer in the existing display panel, resulting in the phenomenon of squinting character film.
  • the present invention provides a method for manufacturing a display panel, which includes providing a metal layer; preparing a darkened layer on one or both sides of the metal layer; A conductive layer is prepared on the surface of one side of the metal layer; or, a conductive layer is prepared between the darkening layer and the metal layer.
  • the darkened layer is prepared on the surface of one or both sides of the metal layer by a physical vapor deposition method.
  • the present invention relates to a display panel and a preparation method thereof.
  • a darkening layer is provided on one or both sides of a metal layer, and then on the surface of the darkening layer away from the metal layer or between the darkening layer and the metal
  • a conductive layer is arranged between the layers, and the conductive layer is used to affect the reflected light spectrum, reduce the difference between the interference and destructive wavelengths of the normal viewing angle and the oblique viewing angle, and reduce the color deviation of the oblique viewing angle relative to the normal viewing angle, thereby reducing the reflectivity of the display panel and avoiding squinting
  • role bias The technical effect of role bias.
  • FIG. 1 is a schematic diagram of the structure of the display panel of the first embodiment.
  • FIG. 2 is a schematic diagram of the structure of the display panel of the second embodiment.
  • Figure 3 shows the reflection spectrum of Cu at a front viewing angle.
  • Figure 4 is a reflection spectrum diagram of the darkened layer + Cu at a positive viewing angle.
  • Figure 5 shows the Cu reflection spectrum at a viewing angle of 60°.
  • Figure 6 shows the reflection spectrum of the darkened layer + Cu at a viewing angle of 60°.
  • Figure 7 shows the reflection spectrum of ITO+darkening layer+Cu at a viewing angle of 60°.
  • Figure 8 shows the reflection spectrum of the darkening layer + ITO + Cu at a viewing angle of 60°.
  • the component can be directly placed on the other component; there may also be an intermediate component on which the component is placed , And the intermediate component is placed on another component.
  • a component is described as “installed to” or “connected to” another component, both can be understood as directly “installed” or “connected”, or a component is “installed to” or “connected to” through an intermediate component Another component.
  • the present embodiment provides a display panel 100 including: a metal layer 1, a darkened layer 2 and a conductive layer 3.
  • the material of the metal layer 1 includes at least one of Cu, Mo, Ti, Al, Ni, Nb, Ta, and Cr.
  • the thickness of the metal layer is 200-700 nm. Among them, 200 nm, 400 nm, and 600 nm are preferable. In this way, effects such as signal transmission can be achieved.
  • the display panel 100 includes a substrate and thin film transistors disposed on the substrate.
  • the thin film transistor includes: an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, and a source and drain layer.
  • the material of the gate layer and the source/drain layer is metal, so the metal layer 1 described in this embodiment is the gate layer and the source/drain layer in the thin film transistor.
  • the darkening layer 2 is provided on the surface of one or both sides of the metal layer 1. In this embodiment, the darkening layer 2 is preferably provided on the bottom surface of the metal layer 1.
  • the material of the darkening layer 2 includes: Mo a X b O c , Mo a X b N d , Mo a X b O c N d , Mo a X b W c , Mo a X b C c and Al a At least one of O b N c ; where a, c, and d are all rational numbers greater than 0; b is a rational number greater than or equal to 0; X includes tantalum, vanadium, nickel, niobium, zirconium, tungsten, titanium, rhenium, At least one of hafnium.
  • the thickness of the darkening layer 2 ranges from 40 nm to 70 nm. In this embodiment, 40nm, 50nm, 60nm or 70nm is preferred.
  • the refractive index of the darkened layer 2 is smaller than the refractive index of the metal layer 1. Therefore, the darkened layer 2 is used to absorb a part of the incident light and reflected light, and the spectrum of the reflected light is adjusted by the principle of interference cancellation to reduce the display The reflectivity of the panel 100.
  • the conductive layer 3 is arranged on the surface of the darkening layer 2 on the side away from the metal layer 1.
  • the material of the conductive layer includes at least one of ITO, IZO, IGZO, and IGZTO.
  • the thickness of the conductive layer 3 ranges from 0 to 20 nm. It may preferably be 5nm, 10nm, 15nm. As the thickness of the conductive layer 3 increases, the thickness of the darkened layer 2 gradually decreases, thereby ensuring the optimal anti-reflection effect and large viewing angle improvement effect.
  • the refractive index of the darkening layer 2 is greater than the refractive index of the conductive layer 3, and the conductive layer 3 is used to affect the reflected light spectrum, reducing the difference between the interference and destructive wavelengths of the normal viewing angle and the oblique viewing angle, and reducing the color of the oblique viewing angle relative to the normal viewing angle.
  • Deviation in order to achieve the technical effect of reducing the reflectivity of the display panel 100 and avoiding the phenomenon of squint role deviation.
  • the normal viewing angle reflectivity of the display panel 100 with the darkening layer 2 added on the surface of the metal layer 1 is significantly higher than that of the display panel 100 without the darkening layer 2
  • the normal viewing angle reflectivity of the display panel 100 is greatly reduced, so adding the darkening layer 2 on the surface of the metal layer 1 can significantly reduce the normal viewing angle reflectivity of the display panel 100.
  • the 60° viewing angle reflectivity of the display panel 100 with the darkened layer 2 added on the surface of the metal layer 1 is significantly higher than that of the display panel without the darkened layer 2
  • the 60° viewing angle reflectivity of 100 is greatly reduced. Therefore, adding the darkening layer 2 on the surface of the metal layer 1 can significantly reduce the 60° viewing angle reflectivity of the display panel 100.
  • the color resistance coordinate difference between the normal viewing angle and the 60° viewing angle of the display panel 100 after adding the darkening layer 2 on the surface of the metal layer 1 is higher than that of the display panel 100 without adding the darkening layer 2
  • the color resistance coordinate difference between the viewing angle and the viewing angle of 60° is large, which can indicate that adding the darkening layer 2 on the surface of the metal layer 1 will cause poor color shift.
  • a darkening layer 2 is added on the surface of the metal layer 1 and a conductive layer 3 is provided on the surface of the darkening layer 2 on the side away from the metal layer 1.
  • the 60° viewing angle reflectance of the subsequent display panel 100 is significantly lower than the 60° viewing angle reflectance of the display panel 100 without the darkening layer 2. Therefore, adding the darkening layer 2 on the surface of the metal layer 1, and providing the conductive layer 3 on the surface of the darkening layer 2 on the side away from the metal layer 1 can significantly reduce the 60° viewing angle reflectivity of the display panel 100.
  • the darkening layer 2 is added on the surface of the metal layer 1 and the conductive layer 3 is provided on the surface of the darkening layer 2 on the side away from the metal layer 1.
  • the positive viewing angle of the display panel 100 is 60 °
  • the color resistance coordinate difference between viewing angles is smaller than the color resistance coordinate difference between the front viewing angle of the display panel 100 with only the darkening layer 2 and the 60° viewing angle, which indicates that the darkening is added to the surface of the metal layer 1 Layer 2
  • the display panel 100 after the conductive layer 3 is provided on the surface of the darkened layer 2 on the side away from the metal layer 1 can significantly improve the color shift phenomenon.
  • adding a darkening layer 2 on the surface of the metal layer 1 and providing a conductive layer 3 on the surface of the darkening layer 2 away from the metal layer 1 can reduce the reflectivity of the display panel 100. At the same time, it can effectively improve color cast.
  • the display panel 100 of this embodiment includes: a metal layer 1, a darkened layer 2 and a conductive layer 3.
  • the material of the metal layer 1 includes at least one of Cu, Mo, Ti, Al, Ni, Nb, Ta, and Cr.
  • the thickness of the metal layer is 200-700 nm. Among them, 200 nm, 400 nm, and 600 nm are preferable. In this way, effects such as signal transmission can be achieved.
  • the display panel 100 includes a substrate and thin film transistors disposed on the substrate.
  • the thin film transistor includes: an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, and a source and drain layer.
  • the material of the gate layer and the source/drain layer is metal, so the metal layer 1 described in this embodiment is the gate layer and the source/drain layer in the thin film transistor.
  • the darkening layer 2 is provided on the surface of one or both sides of the metal layer 1. In this embodiment, the darkening layer 2 is preferably provided on the bottom surface of the metal layer 1.
  • the material of the darkening layer 2 includes: Mo a X b O c , Mo a X b N d , Mo a X b O c N d , Mo a X b W c , Mo a X b C c and Al a At least one of O b N c ; where a, c, and d are all rational numbers greater than 0; b is a rational number greater than or equal to 0; X includes tantalum, vanadium, nickel, niobium, zirconium, tungsten, titanium, rhenium, At least one of hafnium.
  • the thickness of the darkening layer 2 ranges from 40 nm to 70 nm. In this embodiment, 40nm, 50nm, 60nm or 70nm is preferred.
  • the refractive index of the darkened layer 2 is smaller than the refractive index of the metal layer 1. Therefore, the darkened layer 2 is used to absorb a part of the incident light and reflected light, and the spectrum of the reflected light is adjusted by the principle of interference cancellation to reduce the display The reflectivity of the panel 100.
  • the conductive layer 3 is arranged between the darkened layer 2 and the metal layer 1.
  • the material of the conductive layer includes at least one of ITO, IZO, IGZO, and IGZTO.
  • the thickness of the conductive layer 3 ranges from 0 to 20 nm. It may preferably be 5nm, 10nm, 15nm.
  • the refractive index of the darkening layer 2 is greater than the refractive index of the conductive layer 3.
  • the conductive layer 3 is used to influence the reflected light spectrum, reducing the difference between the normal viewing angle and the oblique viewing angle interference destructive wavelength, and reducing the oblique viewing angle relative to the normal
  • the color deviation of the viewing angle can achieve the technical effect of reducing the reflectivity of the display panel 100 and avoiding the phenomenon of squint role deviation.
  • the normal viewing angle reflectivity of the display panel 100 with the darkening layer 2 added on the surface of the metal layer 1 is significantly higher than that of the display panel 100 without the darkening layer 2
  • the normal viewing angle reflectivity of the display panel 100 is greatly reduced, so adding the darkening layer 2 on the surface of the metal layer 1 can significantly reduce the normal viewing angle reflectivity of the display panel 100.
  • the 60° viewing angle reflectivity of the display panel 100 with the darkened layer 2 added on the surface of the metal layer 1 is significantly higher than that of the display panel without the darkened layer 2
  • the 60° viewing angle reflectivity of 100 is greatly reduced. Therefore, adding the darkening layer 2 on the surface of the metal layer 1 can significantly reduce the 60° viewing angle reflectivity of the display panel 100.
  • the color resistance coordinate difference between the normal viewing angle and the 60° viewing angle of the display panel 100 after adding the darkening layer 2 on the surface of the metal layer 11 is higher than that of the display panel 100 without adding the darkening layer 2
  • the color resistance coordinate difference between the viewing angle and the viewing angle of 60° is large, which can indicate that adding the darkening layer 2 on the surface of the metal layer 1 will cause poor color shift.
  • a darkening layer 2 is added on the surface of the metal layer 1 and a conductive layer 3 is provided between the darkening layer 2 and the metal layer 1.
  • the 60° viewing angle reflectance of the display panel 100 is significantly lower than the 60° viewing angle reflectance of the display panel 100 without the darkening layer 2. Therefore, the darkening layer 2 is added on the surface of the metal layer 11, and the conductive layer 3 is arranged between the darkening layer 2 and the metal layer 1, which can significantly reduce the 60° viewing angle reflectivity of the display panel 100.
  • a darkening layer 2 is added on the surface of the metal layer 1 and a conductive layer 3 is arranged between the darkening layer 2 and the metal layer 1.
  • the front viewing angle and the 60° viewing angle of the display panel 100 are The difference in color resistance coordinates is smaller than the difference in color resistance coordinates between the front viewing angle of the display panel 100 with only the darkening layer 2 and the viewing angle of 60°, which indicates that the darkening layer 2 is added on the surface of the metal layer 1
  • the display panel 100 with the conductive layer 3 disposed between the darkening layer 2 and the metal layer 1 can significantly improve the color shift phenomenon.
  • the darkened layer 2 is added to the surface of the metal layer 1 and the conductive layer 3 is arranged between the darkened layer 2 and the metal layer 1 and the display panel 100 can reduce the reflectance while reducing the reflectivity. Can effectively improve the color cast phenomenon.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制备方法,在金属层(1)的一侧或两侧的表面设置暗化层(2),然后在暗化层(2)远离金属层(1)的一侧的表面或者在暗化层(2)与金属层(1)之间设置导电层(3),利用导电层(3)影响反射光频谱,缩小正视角和斜视角干涉相消波长的差异,降低斜视角相对正视角的颜色偏差,降低显示面板反射率,避免产生斜视角色偏现象。

Description

一种显示面板及其制备方法
本申请要求于2020年04月14日提交中国专利局、申请号为202010288409.3、发明名称为“一种显示面板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种显示面板及其制备方法。
背景技术
对比度是评估液晶显示屏(LCD)的画质表现的重要指标之一。在真实使用场景中,由于周围环境光的影响,显示面板的反射率会影响画面的对比度。想要提高显示面板的对比度可以从两个方面入手:一方面,提高显示面板的亮态亮度,另一方面,降低显示面板的反射率。显示屏内部对环境光的反射主要来自于金属的反光,包括TFT区域的金属反光,COM电极和存储电容等金属反光。
技术问题
传统结构中,在金属层表面增加一层暗化层,吸收一部分入射光和反射光,通过干涉相消原理调整反射光的频谱,以降低显示面板的反射率;但是干涉相消的波长与光源入射角度有关,所以正视角和斜视角的反射光频谱不一致,反射光斜视角的色度与正视角地色度会有明显的差异,导致出现斜视角色偏现象。因此需要寻求一种新型的显示面板,以解决上述问题。
技术解决方案
本发明的目的是提供一种显示面板,其能够解决现有的显示面板中在金属层表面增加一层暗化层,产生斜视角色片现象等问题。
为了解决上述问题,本发明提供了一种显示面板,其包括:金属层;暗化层,设置于所述金属层一侧或两侧的表面;以及导电层,设置于所述暗化层远离所述金属层的一侧的表面,或者,设置于所述暗化层与所述金属层之间。
进一步的,其中所述暗化层的折射率小于所述金属层的折射率,且大于所述导电层的折射率。
进一步的,其中所述暗化层的材质包括:MoaXbOc、MoaXbNd、MoaXbOcNd、MoaXbWc、MoaXbCc以及AlaObNc中的至少一种;其中,a、c、d皆为大于0的有理数;b为大于等于0的有理数;X包括钽、钒、镍、铌、锆、钨、钛、铼、铪中的至少一种。
进一步的,其中所述导电层的材质包括:ITO、IZO、IGZO以及IGZTO中的至少一种。
进一步的,其中所述金属层的材质包括:Cu、Mo、Ti、Al、Ni、Nb、Ta以及Cr中的至少一种。
进一步的,其中所述暗化层的厚度范围为40-70nm。
进一步的,其中所述导电层的厚度范围为0-20nm。
进一步的,其中所述金属层的厚度为200-700nm。
本发明的目的是提供一种显示面板的制备方法,其能够解决现有的显示面板中在金属层表面增加一层暗化层,产生斜视角色片现象等问题。
为了解决上述问题,本发明提供了一种显示面板的制备方法,包括提供一金属层;在所述金属层一侧或两侧的表面制备暗化层;以及在所述暗化层远离所述金属层的一侧的表面制备导电层;或者,在所述暗化层与所述金属层之间制备导电层。
进一步的,在所述金属层一侧或两侧的表面制备暗化层的步骤中,通过物理气相沉积法在所述金属层一侧或两侧的表面制备暗化层。
有益效果
本发明涉及一种显示面板及其制备方法,在金属层的一侧或两侧的表面设置暗化层,然后在暗化层远离金属层的一侧的表面或者在暗化层与所述金属层之间设置导电层,利用导电层影响反射光频谱,缩小正视角和斜视角干涉相消波长的差异,降低斜视角相对正视角的颜色偏差,以此实现降低显示面板反射率,避免产生斜视角色偏现象的技术效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1的显示面板的结构示意图。
图2为实施例2的显示面板的结构示意图。
图3为Cu正视角的反射频谱图。
图4为暗化层+Cu正视角的反射频谱图。
图5为Cu 60°视角的反射频谱图。
图6为暗化层+Cu 60°视角的反射频谱图。
图7为ITO+暗化层+Cu 60°视角的反射频谱图。
图8为暗化层+ITO+Cu 60°视角的反射频谱图。
图中部件标识如下:
100、显示器
1、金属层           2、暗化层
3、导电层。
本发明的实施方式
以下结合说明书附图详细说明本发明的优选实施例,以向本领域中的技术人员完整介绍本发明的技术内容,以举例证明本发明可以实施,使得本发明公开的技术内容更加清楚,使得本领域的技术人员更容易理解如何实施本发明。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例,下文实施例的说明并非用来限制本发明的范围。
本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是附图中的方向,本文所使用的方向用语是用来解释和说明本发明,而不是用来限定本发明的保护范围。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。此外,为了便于理解和描述,附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。
当某些组件,被描述为“在”另一组件“上”时,所述组件可以直接置于所述另一组件上;也可以存在一中间组件,所述组件置于所述中间组件上,且 所述中间组件置于另一组件上。当一个组件被描述为“安装至”或“连接至”另一组件时,二者可以理解为直接“安装”或“连接”,或者一个组件通过一中间组件“安装至”或“连接至”另一个组件。
实施例1
如图1所示,本实施例提供了一种显示面板100包括:金属层1、暗化层2以及导电层3。
其中所述金属层1的材质包括:Cu、Mo、Ti、Al、Ni、Nb、Ta以及Cr中的至少一种。其中所述金属层的厚度为200-700nm。其中可以优选200nm、400nm以及600nm。由此可以实现信号传递等效果。
事实上,所述显示面板100包括基板以及设置于基板上的薄膜晶体管。所述薄膜晶体管中包括:有源层、栅极绝缘层、栅极层、层间绝缘层以及源漏极层。其中所述栅极层以及源漏极层的材质为金属,故而本实施例所述的金属层1即薄膜晶体管中的栅极层以及源漏极层。
暗化层2设置于所述金属层1一侧或两侧的表面,本实施例优选暗化层2设置于金属层1的底面上。其中所述暗化层2的材质包括:Mo aX bO c、Mo aX bN d、Mo aX bO cN d、Mo aX bW c、Mo aX bC c以及Al aO bN c中的至少一种;其中,a、c、d皆为大于0的有理数;b为大于等于0的有理数;X包括钽、钒、镍、铌、锆、钨、钛、铼、铪中的至少一种。其中所述暗化层2的厚度范围为40-70nm。本实施例优选40nm、50nm、60nm或者70nm。其中所述暗化层2的折射率小于所述金属层1的折射率,由此,利用暗化层2吸收一部分入射光和反射光,通过干涉相消原理调整反射光的频谱,以降低显示面板100的反射率。
导电层3设置于所述暗化层2远离所述金属层1的一侧的表面上。其中所述导电层的材质包括:ITO、IZO、IGZO以及IGZTO中的至少一种。其中所述导电层3的厚度范围为0-20nm。可以优选5nm、10nm、15nm。随着导电层3的厚度的增加,暗化层2的厚度逐渐降低,由此可以确保最优的减反效果和大视角改善效果。其中所述暗化层2的折射率大于所述导电层3的折射率,利用导电层3影响反射光频谱,缩小正视角和斜视角干涉相消波长的差异,降低斜视角相对正视角的颜色偏差,以此实现降低显示面板100反射率,避免产生斜视角色偏现象的技术效果。
如图3、图4所示,在相同波长的情况下,在金属层1一的表面增加暗化层2后的显示面板100的正视角反射率明显比未增加暗化层2的显示面板100的正视角反射率降低很多,由此在金属层1一的表面增加暗化层2可以明显降低显示面板100的正视角反射率。
如图5、图6所示,在相同波长的情况下,在金属层1一的表面增加暗化层2后的显示面板100的60°视角反射率明显比未增加暗化层2的显示面板100的60°视角反射率降低很多,由此在金属层1一的表面增加暗化层2可以明显降低显示面板100的60°视角反射率。
如表一所示,在金属层1一的表面增加暗化层2后的显示面板100的正视角与60°视角之间的色阻坐标差异比未增加暗化层2的显示面板100的正视角与60°视角之间的色阻坐标差异大,由此可以表明,在金属层1一的表面增加暗化层2会差生色偏现象。
如图5、图7所示,在相同波长的情况下,在金属层1一的表面增加暗化层2,在暗化层2远离所述金属层1的一侧的表面上设置导电层3后的显示面板100的60°视角反射率明显比未增加暗化层2的显示面板100的60°视角反射率降低很多。由此在金属层1一的表面增加暗化层2,在暗化层2远离所述金属层1的一侧的表面上设置导电层3可以明显降低显示面板100的60°视角反射率。
如表一所示,在金属层1一的表面增加暗化层2,在暗化层2远离所述金属层1的一侧的表面上设置导电层3后的显示面板100的正视角与60°视角之间的色阻坐标差异比仅增加暗化层2的显示面板100的正视角与60°视角之间的色阻坐标差异小,由此表明,在金属层1一的表面增加暗化层2,在暗化层2远离所述金属层1的一侧的表面上设置导电层3后的显示面板100可以明显改善色偏现象。
综上所述,在金属层1一的表面增加暗化层2,在暗化层2远离所述金属层1的一侧的表面上设置导电层3后的显示面板100既能降低反射率,同时也能有效改善色偏现象。
  色阻横坐标 色阻纵坐标 反射率
Cu正视角 0.362 0.338 68.9
Cu 60°视角 0.359 0.336 69.6
暗化层+Cu正视角 0.274 0.261 4.85
暗化层+Cu 60°视角 0.308 0.302 10.1
ITO+暗化层+Cu正视角 0.290 0.290 10.28
ITO+暗化层+Cu 60°视角 0.292 0.293 10.27
表一
实施例2
如2所示,本实施的显示面板100包括:金属层1、暗化层2以及导电层3。
其中所述金属层1的材质包括:Cu、Mo、Ti、Al、Ni、Nb、Ta以及Cr中的至少一种。其中所述金属层的厚度为200-700nm。其中可以优选200nm、400nm以及600nm。由此可以实现信号传递等效果。
事实上,所述显示面板100包括基板以及设置于基板上的薄膜晶体管。所述薄膜晶体管中包括:有源层、栅极绝缘层、栅极层、层间绝缘层以及源漏极层。其中所述栅极层以及源漏极层的材质为金属,故而本实施例所述的金属层1即薄膜晶体管中的栅极层以及源漏极层。
暗化层2设置于所述金属层1一侧或两侧的表面,本实施例优选暗化层2设置于金属层1的底面上。其中所述暗化层2的材质包括:Mo aX bO c、Mo aX bN d、Mo aX bO cN d、Mo aX bW c、Mo aX bC c以及Al aO bN c中的至少一种;其中,a、c、d皆为大于0的有理数;b为大于等于0的有理数;X包括钽、钒、镍、铌、锆、钨、钛、铼、铪中的至少一种。其中所述暗化层2的厚度范围为40-70nm。本实施例优选40nm、50nm、60nm或者70nm。其中所述暗化层2的折射率小于所述金属层1的折射率,由此,利用暗化层2吸收一部分入射光和反射光,通过干涉相消原理调整反射光的频谱,以降低显示面板100的反射率。
导电层3设置于所述暗化层2与所述金属层1之间。其中所述导电层的材质包括:ITO、IZO、IGZO以及IGZTO中的至少一种。其中所述导电层3的厚 度范围为0-20nm。可以优选5nm、10nm、15nm。其中所述暗化层2的折射率大于所述导电层3的折射率,由此,利用导电层3影响反射光频谱,缩小正视角和斜视角干涉相消波长的差异,降低斜视角相对正视角的颜色偏差,以此实现降低显示面板100反射率,避免产生斜视角色偏现象的技术效果。
如图3、图4所示,在相同波长的情况下,在金属层1一的表面增加暗化层2后的显示面板100的正视角反射率明显比未增加暗化层2的显示面板100的正视角反射率降低很多,由此在金属层1一的表面增加暗化层2可以明显降低显示面板100的正视角反射率。
如图5、图6所示,在相同波长的情况下,在金属层1一的表面增加暗化层2后的显示面板100的60°视角反射率明显比未增加暗化层2的显示面板100的60°视角反射率降低很多,由此在金属层1一的表面增加暗化层2可以明显降低显示面板100的60°视角反射率。
如表二所示,在金属层1一的表面增加暗化层2后的显示面板100的正视角与60°视角之间的色阻坐标差异比未增加暗化层2的显示面板100的正视角与60°视角之间的色阻坐标差异大,由此可以表明,在金属层1一的表面增加暗化层2会差生色偏现象。
如图5、图8所示,在相同波长的情况下,在金属层1一的表面增加暗化层2,在所述暗化层2与所述金属层1之间设置导电层3后的显示面板100的60°视角反射率明显比未增加暗化层2的显示面板100的60°视角反射率降低很多。由此在金属层1一的表面增加暗化层2,在所述暗化层2与所述金属层1之间设置导电层3可以明显降低显示面板100的60°视角反射率。
如表二所示,在金属层1一的表面增加暗化层2,在所述暗化层2与所述金属层1之间设置导电层3后的显示面板100的正视角与60°视角之间的色阻坐标差异比仅增加暗化层2的显示面板100的正视角与60°视角之间的色阻坐标差异小,由此表明,在金属层1一的表面增加暗化层2,在所述暗化层2与所述金属层1之间设置导电层3后的显示面板100可以明显改善色偏现象。
综上所述,在金属层1一的表面增加暗化层2,在所述暗化层2与所述金属层1之间设置导电层3后的显示面板100既能降低反射率,同时也能有效改善色偏现象。
  色阻横坐标 色阻纵坐标 反射率
Cu正视角 0.362 0.338 68.9
Cu 60°视角 0.359 0.336 69.6
暗化层+Cu正视角 0.274 0.261 4.85
暗化层+Cu 60°视角 0.308 0.302 10.1
暗化层+ITO+Cu正视角 0.291 0.291 10.29
暗化层+ITO+Cu 60°视角 0.293 0.287 10.29
表二
以上对本申请所提供的显示面板及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (10)

  1. 一种显示面板,其中包括:
    金属层;
    暗化层,设置于所述金属层一侧或两侧的表面;以及
    导电层,设置于所述暗化层远离所述金属层的一侧的表面,或者,设置于所述暗化层与所述金属层之间。
  2. 根据权利要求1所述的显示面板,其中所述暗化层的折射率小于所述金属层的折射率,且大于所述导电层的折射率。
  3. 根据权利要求1所述的显示面板,其中所述暗化层的材质包括:MoaXbOc、MoaXbNd、MoaXbOcNd、MoaXbWc、MoaXbCc以及AlaObNc中的至少一种;
    其中,a、c、d皆为大于0的有理数;
    b为大于等于0的有理数;
    X包括钽、钒、镍、铌、锆、钨、钛、铼、铪中的至少一种。
  4. 根据权利要求1所述的显示面板,其中所述导电层的材质包括:ITO、IZO、IGZO以及IGZTO中的至少一种。
  5. 根据权利要求1所述的显示面板,其中所述金属层的材质包括:Cu、Mo、Ti、Al、Ni、Nb、Ta以及Cr中的至少一种。
  6. 根据权利要求1所述的显示面板,其中所述暗化层的厚度范围为40-70nm。
  7. 根据权利要求1所述的显示面板,其中所述导电层的厚度范围为0-20nm。
  8. 根据权利要求1所述的显示面板,其中所述金属层的厚度为200-700nm。
  9. 一种显示面板的制备方法,其中包括:
    提供一金属层;
    在所述金属层一侧或两侧的表面制备暗化层;以及
    在所述暗化层远离所述金属层的一侧的表面制备导电层;或者,在所述暗化层与所述金属层之间制备导电层。
  10. 根据权利要求9所述的显示面板的制备方法,其中在所述金属层一侧 或两侧的表面制备暗化层的步骤中,通过物理气相沉积法在所述金属层一侧或两侧的表面制备暗化层。
PCT/CN2020/092578 2020-04-14 2020-05-27 一种显示面板及其制备方法 WO2021208198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010288409.3 2020-04-14
CN202010288409.3A CN111338118A (zh) 2020-04-14 2020-04-14 一种显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2021208198A1 true WO2021208198A1 (zh) 2021-10-21

Family

ID=71182881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092578 WO2021208198A1 (zh) 2020-04-14 2020-05-27 一种显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN111338118A (zh)
WO (1) WO2021208198A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071880B (zh) * 2020-09-07 2023-10-17 Tcl华星光电技术有限公司 显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976684A (en) * 1996-12-17 1999-11-02 Asahi Glass Company Ltd. Organic substrate provided with a light absorptive antireflection film and process for its production
CN103081026A (zh) * 2011-03-04 2013-05-01 Lg化学株式会社 导电结构体及其制备方法
CN105745610A (zh) * 2013-11-20 2016-07-06 Lg化学株式会社 导电结构及其制造方法
CN107428127A (zh) * 2015-03-27 2017-12-01 株式会社Lg化学 导电结构体、其制造方法以及包括导电结构体的电极

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9354659B2 (en) * 2014-03-07 2016-05-31 Lg Innotek Co., Ltd. Touch window
EP3144940B1 (en) * 2014-05-12 2019-08-07 LG Chem, Ltd. Conductive structure and preparation method therefor
KR20160035998A (ko) * 2014-09-24 2016-04-01 주식회사 엘지화학 전도성 구조체 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976684A (en) * 1996-12-17 1999-11-02 Asahi Glass Company Ltd. Organic substrate provided with a light absorptive antireflection film and process for its production
CN103081026A (zh) * 2011-03-04 2013-05-01 Lg化学株式会社 导电结构体及其制备方法
CN105745610A (zh) * 2013-11-20 2016-07-06 Lg化学株式会社 导电结构及其制造方法
CN107428127A (zh) * 2015-03-27 2017-12-01 株式会社Lg化学 导电结构体、其制造方法以及包括导电结构体的电极

Also Published As

Publication number Publication date
CN111338118A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
US11926558B2 (en) Conductive structure, manufacturing method therefor, and electrode comprising conductive structure
US7768603B2 (en) Liquid crystal display device and method of manufacturing the same
KR101076262B1 (ko) 무반사 유기 발광 다이오드 소자
JP4646030B2 (ja) 液晶表示装置
CN103207426B (zh) 一种偏光片及显示装置
US7547494B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal display
US9081122B2 (en) Light blocking member and display panel including the same
US7952658B2 (en) IPS LCD device having a wider viewing angle
KR101112543B1 (ko) 다중 도메인 박막 트랜지스터 표시판
KR20160131961A (ko) 박막트랜지스터 기판 및 이를 포함하는 디스플레이 장치
KR102127545B1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
US10288954B2 (en) Display device
KR101112544B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
US11022853B2 (en) Display panel
WO2021208198A1 (zh) 一种显示面板及其制备方法
WO2019192039A1 (zh) 液晶面板及其制作方法
KR20150033822A (ko) 표시기판 및 이를 포함하는 표시패널
WO2012043375A1 (ja) 液晶表示装置
US8023073B2 (en) Color filter display panel, thin film transistor array panel, liquid crystal display thereof, and method thereof
KR102350035B1 (ko) 전도성 구조체 및 이의 제조방법
WO2021103105A1 (zh) 一种显示面板及电子装置
WO2022077560A1 (zh) 一种阵列基板及显示面板
WO2019127761A1 (zh) 低反射复合电极、tft阵列基板
US20200073183A1 (en) Display panel and display device
TW594247B (en) A structure of a color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931011

Country of ref document: EP

Kind code of ref document: A1