WO2019127446A1 - 电机及其制造方法、动力套装和无人飞行器 - Google Patents

电机及其制造方法、动力套装和无人飞行器 Download PDF

Info

Publication number
WO2019127446A1
WO2019127446A1 PCT/CN2017/120068 CN2017120068W WO2019127446A1 WO 2019127446 A1 WO2019127446 A1 WO 2019127446A1 CN 2017120068 W CN2017120068 W CN 2017120068W WO 2019127446 A1 WO2019127446 A1 WO 2019127446A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
assembly
bearing sleeve
stator
yoke
Prior art date
Application number
PCT/CN2017/120068
Other languages
English (en)
French (fr)
Inventor
陶志杰
李忠洪
崔杰
颜学力
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/120068 priority Critical patent/WO2019127446A1/zh
Priority to CN201780025201.9A priority patent/CN109155563A/zh
Publication of WO2019127446A1 publication Critical patent/WO2019127446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines

Definitions

  • the embodiment of the invention belongs to the technical field of electric motors, and in particular to a motor and a method for manufacturing the same, and a power package and an unmanned aerial vehicle using the same.
  • the brushless DC motor generally consists of three parts: a control part, an electromagnetic part and a structural part.
  • the structural part is further divided into a stator and a rotor.
  • the interaction between the rotor and the stator generates a magnetic field to cause the rotor to rotate, and the existing rotor shaft
  • it is mounted on the base of the motor through the ball bearing, which is limited by the structure of the ball bearing, resulting in limited motor size, and the ball bearing is easy to be damaged. It is easy to have impurities entering the bearing during assembly, which causes the bearing to rotate unsmoothly, affecting the motor. Performance, roller bearing manufacturing process and precision requirements are very high, resulting in higher motor production costs.
  • an embodiment of the present invention provides a novel motor having a compact structure, which has a smaller volume and a lower cost on the basis of ensuring performance. Further, an embodiment of the present invention provides a motor for manufacturing the motor. The method, as well as the power kit and the unmanned aerial vehicle using the motor.
  • an embodiment of the present invention provides an electric machine including an interengaging rotor assembly and a stator assembly, the rotor assembly including a rotating shaft, the rotor assembly and the stator assembly being coupled by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • the motor provided by the invention connects the rotor assembly and the stator assembly through the oil bearing with the bearing sleeve, and utilizes the structural characteristics of the oil bearing without inner and outer rings and self-lubricating, so as to ensure the smooth rotation of the rotating shaft of the rotor assembly, the structure of the motor is more compact and Fine, the motor is smaller, and the cost is lower compared to the use of ball bearings.
  • an embodiment of the present invention provides a power kit for an unmanned aerial vehicle, the power kit including a motor and a propeller, the motor driving the propeller to rotate;
  • the motor includes a rotor assembly and a stator assembly that cooperate with each other
  • the rotor assembly includes a rotating shaft, and the rotor assembly and the stator assembly are coupled by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • the motor used in the power package provided by the invention connects the rotor assembly and the stator assembly through the oil bearing with the bearing sleeve, and utilizes the structural characteristics of the oil bearing without the inner and outer rings and self-lubricating, while ensuring the smooth rotation of the rotating shaft of the rotor assembly, the motor
  • the structure is more compact and finer, and the volume is smaller, which makes the power package smaller and has a wider application field.
  • an embodiment of the present invention provides an unmanned aerial vehicle including a body, a plurality of arms extending outward from the body, and a power package disposed on the arm, the power
  • the apparatus includes a motor and a propeller that drives the propeller to rotate;
  • the electric machine includes an interengaging rotor assembly and a stator assembly, the rotor assembly including a rotating shaft, the rotor assembly and the stator assembly being coupled by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • the motor used in the unmanned aerial vehicle connects the rotor assembly and the stator assembly through the oil bearing with the bearing sleeve, and utilizes the structural characteristics of the oil bearing without the inner and outer rings and self-lubricating, while ensuring the smooth rotation of the rotating shaft of the rotor assembly, the motor
  • the structure is more compact and finer, and the volume is smaller, which is beneficial to the miniaturization and lightness of the unmanned aerial vehicle.
  • the maintenance frequency of the UAV can also be reduced.
  • an embodiment of the present invention provides a method of manufacturing a motor, the method of manufacturing comprising:
  • a rotor assembly, a subassembly and a bearing assembly are provided, the rotor assembly including a rotating shaft, the bearing assembly including an oil bearing and a bearing sleeve;
  • the rotating shaft is installed in the oil bearing.
  • the manufacturing method of the motor provided by the invention is simple to assemble, and the motor can be assembled quickly.
  • the obtained motor is connected with the bearing assembly through the oil bearing and the bearing sleeve to connect the rotor assembly and the stator assembly, and the oil bearing has no inner and outer rings and self-lubricating structural characteristics, and the rotor is ensured.
  • the smooth rotation of the shaft of the assembly makes the structure of the motor more compact and fine, and the motor is smaller.
  • FIG. 1 is a schematic diagram of a motor according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is an exploded view of a motor according to an embodiment of the present invention.
  • Figure 4 is an enlarged schematic view of A in Figure 2;
  • Figure 5 is an enlarged schematic view of B in Figure 2;
  • Figure 6 is an enlarged schematic view of C in Figure 2;
  • FIG. 7 is a schematic diagram of a power package according to an embodiment of the present invention.
  • FIG. 8 is a partial schematic diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • Embodiments of the present invention provide an electric motor including an interengaging rotor assembly and a stator assembly, the rotor assembly including a rotating shaft, the rotor assembly and the stator assembly being coupled by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • an embodiment of the present invention further provides a power package including a motor and a propeller, the motor driving the propeller to rotate;
  • the motor includes a mating rotor assembly and a stator assembly, the rotor assembly Including a rotating shaft, the rotor assembly and the stator assembly are connected by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • An embodiment of the present invention provides an unmanned aerial vehicle, the unmanned aerial vehicle including a fuselage, a plurality of arms extending outward from the fuselage, and a power kit disposed on the arm,
  • the power unit includes a motor and a propeller that drives the propeller to rotate;
  • the electric machine includes an interengaging rotor assembly and a stator assembly, the rotor assembly including a rotating shaft, the rotor assembly and the stator assembly being coupled by a bearing assembly;
  • the bearing assembly includes a bearing sleeve and at least two bearings, the bearing sleeve is matingly coupled to the stator assembly, the bearing sleeve is sleeved with the bearing, and at least two of the bearings are spaced apart from each other and sleeved with the rotating shaft
  • the bearing is an oil bearing.
  • the motor used in the unmanned aerial vehicle connects the rotor assembly and the stator assembly through the oil bearing with the bearing sleeve, and utilizes the structural characteristics of the oil bearing without the inner and outer rings and self-lubricating, while ensuring the smooth rotation of the rotating shaft of the rotor assembly, the motor
  • the structure is more compact and finer, and the volume is smaller, which is beneficial to the miniaturization and lightness of the unmanned aerial vehicle.
  • the maintenance frequency of the UAV can also be reduced.
  • the embodiment of the invention further provides a manufacturing method of the above motor, the manufacturing method comprising:
  • the rotor assembly including a rotating shaft, the bearing assembly including an oil bearing and a bearing sleeve;
  • the rotating shaft is installed in the oil bearing.
  • Embodiments of the present invention provide a motor that can be applied to an unmanned aerial vehicle, but is not limited to being applied to an unmanned aerial vehicle.
  • the motor includes a rotor assembly 10 and a stator assembly 20 that cooperate with each other.
  • the rotor assembly 10 includes a rotating shaft 11, and the rotor assembly 10 and the stator assembly 20 are connected by a bearing assembly 30, and a certain gap is provided between the rotor assembly 10 and the stator assembly 20, so that the rotation of the rotor group is smoother;
  • the bearing assembly 30 includes a bearing sleeve 32 and at least two bearings 31, and the bearing sleeve 32 is sleeved with the bearing 31, and at least two of the bearings 31 are spaced apart from each other and sleeved with the rotating shaft 11;
  • the bearing 31 is an oil-impregnated bearing, and the oil-impregnated bearing has self-lubricating structural characteristics, and has no inner and outer ring structure, and the single-turn structure makes the motor have a small volume, which is advantageous for miniaturization of the motor, and in addition, compared with the ball bearing, Oil-impregnated bearings are not easy to wear, which can extend the service life of the motor and reduce the maintenance cost of the motor.
  • the inner diameter or the outer diameter of the bearing 31 disposed at both ends of the bearing sleeve 32 may be different.
  • the rotating shaft 11 may include a plurality of portions having different thicknesses, so that the bearing sleeve 32 and the bearing 31 can cooperate with each other. And the bearing 31 and the rotating shaft 11 can be matched with each other.
  • the bearing assembly 30 further includes one or more spacers 33 disposed in the axial direction, the spacers 33 being located on one side of the bearing 31 and affixed to the bearing 31 Specifically, a spacer 33 may be disposed on one side or both sides of the bearing 31.
  • the spacer 33 may be a material for buffering or sealing or preventing wear, and may be an elastic material or a rigid material.
  • the bearing sleeve 32 is provided with a bearing portion at both ends in the axial direction.
  • the bearing portion may be disposed in the bearing sleeve 32 .
  • the first bearing step 321 of the bearing 31 is carried in the hole to realize the positioning and fixing of the bearing sleeve 32.
  • the bearing portion at both ends of the bearing sleeve 32 may further include a hole disposed in the inner hole of the bearing sleeve 32.
  • a second load-bearing step 322 carrying the spacer 33.
  • the rotor assembly 10 further includes a rotor magnet 12 and a yoke 13 .
  • the yoke 13 is a hollow cylinder that is open at one end, and the rotor magnet 12 is disposed inside the yoke 13 .
  • One end of the yoke 13 is provided with an axial through hole, and the rotating shaft 11 is fixedly disposed in the axial through hole; in some embodiments, the rotating shaft 11 and the yoke 13 are fixed by riveting.
  • the yoke 13 can be obtained by stamping, which is relatively simple in process, has high processing efficiency and low processing cost.
  • the rotor assembly 10 further includes a support member 14 disposed inside the yoke 13, and the rotor magnet 12 is fixed to the support On the piece 14, wherein the rotor magnet 12 and the support member 14 can be fixed by gluing; in other embodiments, the rotor assembly 10 may also not include the support member 14, but in the A support portion is provided on the inner wall of the yoke 13, and the rotor magnet 12 is fixed to the support portion.
  • the support member 14 can be obtained by injection molding, which is relatively simple in process, has high processing efficiency and low processing cost.
  • the stator assembly 20 includes a stator core 21 and a stator base 22 .
  • the bearing sleeve 32 is fixedly connected to the stator base 22 , and the stator core 21 is sleeved on the bearing sleeve 32 . external.
  • the stator core 21 is located inside the yoke 13 and the stator core 21 is located between the bearing sleeve 32 and the rotor magnet 12.
  • the stator base 22 can be obtained by stamping, and the process is relatively simple, with high processing efficiency and low processing cost.
  • one end of the rotating shaft 11 near the stator base 22 is provided with a rotationally formed annular groove 111
  • the bearing assembly 30 further includes a collar 34, and the collar 34 is sleeved. It is disposed in the annular groove 111 to restrict the axial movement of the rotating shaft 11, and prevent the rotating shaft 11 and the bearing 31 from sliding relative to each other to cause the bearing 31 to wear.
  • the collar 34 needs to be made of a wear-resistant material.
  • the outer ring of the collar 34 can be snapped into the limiting portion 323 disposed on the bearing sleeve 32 such that the collar 34 is located between the rotating shaft 11 and the bearing sleeve 32.
  • the limiting portion may be a limiting ring groove.
  • stator core 21 and the bearing sleeve 32 may be fixed by gluing, and the bearing sleeve 32 and the stator base 22 may be fixed by riveting.
  • a portion of the bearing sleeve 32 connected to the stator base 22 is further provided with a first annular engagement groove 324 , and a rubber band can be disposed in the first annular engagement groove 324 .
  • the connection between the bearing sleeve 32 and the stator base 22 is made more stable.
  • FIG. 5 shows that is made more stable.
  • the portion of the bearing sleeve 32 that is connected to the stator core 21 is further provided with a second annular engagement groove 325, and a rubber band can be disposed in the second annular engagement groove 325.
  • the connection between the bearing sleeve 32 and the stator core 21 is made more stable.
  • the illustrated rotor assembly 10 further includes a rotor cover plate 15 that is disposed on one side of the opening of the yoke 13 and that is coupled to the yoke 13 while the rotor cover plate 15 is also sleeved On the bearing sleeve 32, the rotor cover 15 is used to seal the yoke 13.
  • the illustrated stator assembly 20 further includes a stator cover (not shown) for sealing the stator base 22 that is coupled to the stator base 22 and sleeved over the bearing sleeve 32.
  • the motor provided by the embodiment of the invention has at least the following beneficial effects:
  • the rotor assembly 10 and the stator assembly 20 are coupled by the oil bearing with the bearing sleeve 32, and the structure of the motor is ensured while ensuring the smooth rotation of the rotating shaft 11 of the rotor assembly 10 by utilizing the structural characteristics of the oil bearing without the inner and outer rings and self-lubricating. More compact and finer, because the oil-impregnated bearing is simple in structure, small in size, does not take up space, and the motor is smaller in size;
  • the embodiment of the present invention further provides a power package, which is applied to an unmanned aerial vehicle.
  • the power package includes the motor 100 and the propeller 200 described in the above embodiments.
  • the motor 100 drives the propeller 200 to rotate.
  • the motor 100 used in the power kit provided by the present invention connects the rotor assembly 10 and the stator assembly 20 through the oil bearing with the bearing sleeve 32, and utilizes the structural characteristics of the oil-impregnated bearing without inner and outer rings and self-lubricating, thereby ensuring the smoothness of the rotating shaft 11 of the rotor assembly 10.
  • the structure of the motor 100 is more compact and finer, and the volume is smaller, so that the power package has a smaller volume and has a wider application field.
  • the embodiment of the present invention further provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a fuselage 1 , and a plurality of arms 2 extending outward from the fuselage 1 .
  • a power pack 3 disposed on the arm 2 the power unit includes a motor 100 and a propeller 200, and the motor 100 drives the propeller 200 to rotate, wherein the motor 100 in this embodiment is in the above embodiment
  • the structure of the motor 100 in this embodiment can be referred to the related content in the foregoing embodiment, and details are not described herein again.
  • the motor 100 used in the unmanned aerial vehicle connects the rotor assembly 10 and the stator assembly 20 through the oil bearing with the bearing sleeve 32, and utilizes the structural characteristics of the oil-impregnated bearing without inner and outer rings and self-lubricating, thereby ensuring the rotation shaft 11 of the rotor assembly 10.
  • the structure of the motor 100 is more compact and finer, and the volume is smaller, which is advantageous for miniaturization and lightness of the unmanned aerial vehicle.
  • the maintenance frequency of the unmanned aerial vehicle can also be reduced.
  • the embodiment of the present invention further provides a method for manufacturing a motor.
  • the manufacturing method provided by the embodiment of the present invention is described in conjunction with FIG. 1 to FIG. 6.
  • the manufacturing method includes:
  • a rotor assembly 10, a subassembly 20 and a bearing assembly 30 are provided.
  • the rotor assembly 10 includes a shaft 11 including a bearing 31 and a bearing sleeve 32, the bearing 31 being an oil bearing;
  • the bearing sleeve 32 carrying the bearing 31 is fixedly connected to the stator assembly 20;
  • the rotating shaft 11 is mounted in the bearing 31.
  • the loading of the bearing 31 at each end of the bearing sleeve 32 includes the steps of: providing a mandrel in the inner ring of the bearing 31, and the bearing 31 with a mandrel Loading in the bearing sleeve 32; correspondingly, the sleeveing the shaft 11 in the bearing 31 further includes the step of removing the mandrel.
  • the method of manufacturing further includes providing one or more spacers 33 on which the spacers 33 are mounted such that the spacers 33 conform to the bearings 31 steps.
  • the loading of the bearing 31 at each end of the bearing sleeve 32 includes the steps of: providing a bearing step at both ends of the bearing sleeve 32 in the axial direction, and placing the bearing 31 is loaded on the carrying step.
  • the method of manufacturing further includes the step of forming the bearing sleeve 32 by turning.
  • the rotor assembly 10 further includes a rotor magnet 12 and a yoke 13 that is a hollow cylinder that is open at one end; the manufacturing method further includes: closing the yoke 13 One end of the shaft is provided with an axial through hole, and the rotating shaft 11 is fixedly disposed in the axial through hole; the rotor magnet 12 is disposed inside the yoke 13.
  • the manufacturing method further includes the step of forming the yoke 13 by press working.
  • the step of fixing the rotating shaft 11 in the axial through hole includes the step of riveting and fixing the rotating shaft 11 and the yoke 13 .
  • a support member 14 is provided, and the step of providing the rotor magnet 12 inside the yoke 13 includes the steps of: disposing the support member 14 inside the yoke 13 and The rotor magnet 12 is fixed to the support member 14; wherein the manufacturing method further includes the step of forming the support member 14 by injection molding; the placing member 14 is disposed inside the yoke 13
  • the method includes the steps of fixing the rotor magnet 12 and the support member 14 in an adhesive manner. Specifically, the support member 14 is placed in the yoke 13, and then the inner yoke 13 is glued, and then the device is used.
  • the rotor magnet 12 is loaded, the position of the rotor magnet 12 is fixed by the support member 14, and the posture of the rotor magnet 12 is corrected by the jig, and then baked in an oven to adhere the rotor magnet 12.
  • the providing the rotor magnet 12 inside the yoke 13 includes the steps of: providing a support portion on the inner wall of the yoke 13 and fixing the rotor magnet 12 to the support portion .
  • the stator assembly 20 includes a stator core 21 and a stamped stator base 22, and the bearing sleeve 32 carrying the bearing 31 is fixedly coupled to the stator assembly 20 including steps
  • the bearing sleeve 32 is coupled to the stator base 22, and the stator core 21 is sleeved outside the bearing sleeve 32.
  • the manufacturing method further includes: providing an annular groove at an end of the rotating shaft 11 near the stator base 22; providing a collar 34 for mounting the collar 34 on the stator base 22 And the collar 34 is sleeved in the annular groove; wherein, in some embodiments, the providing an annular groove at an end of the rotating shaft 11 adjacent to the stator base 22 includes forming the The step of the annular groove.
  • the mounting of the collar 34 on the stator base 22 and the sleeve 34 in the annular groove include the steps of: placing the collar 34 in the Between the rotating shaft 11 and the bearing sleeve 32, a certain gap is maintained between the collar 34 and the bearing 31.
  • the coupling the bearing sleeve 32 to the stator base 22 includes the step of riveting the bearing sleeve 32 to the stator base 22.
  • the step of sleeveing the stator core 21 outside the bearing sleeve 32 includes the step of gluing and fixing the stator core 21 and the bearing sleeve 32.
  • the manufacturing method of the motor provided by the invention is simple to assemble, and the motor can be assembled quickly.
  • the obtained motor is connected to the rotor assembly 10 and the stator assembly 20 through the bearing 31 and the bearing sleeve 32, and the bearing 31 has no inner and outer rings and self-lubricating structural characteristics. While ensuring smooth rotation of the rotating shaft 11 of the rotor assembly 10, the resulting motor has a more compact and finer structure and a smaller volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电机(100)及其制造方法、动力套装和无人飞行器,所述电机(100)包括互相配合的转子组件(10)和定子组件(20),所述转子组件(10)包括转轴(11),所述转子组件(10)和定子组件(20)通过轴承组件(30)连接;所述轴承组件(30)包括轴承套(32)和至少二轴承(31),所述轴承套(32)与所述定子组件(20)配合连接,所述轴承套(32)内套接所述轴承(31),至少二所述轴承(31)相互间隔设置并与所述转轴(11)套接;所述轴承(31)为含油轴承。根据实施例提供的方案,可以在保证转子组件(10)的转轴(11)的顺畅旋转的同时,使得电机(100)的结构更加紧凑和精细,电机(100)体积更小。

Description

电机及其制造方法、动力套装和无人飞行器 【技术领域】
本发明实施例属于电机技术领域,尤其涉及一种电机和制造该电机的方法,以及采用该电机的动力套装和无人飞行器。
【背景技术】
无刷直流电机一般由控制部分、电磁部分、结构部分这三部分组成,其中的结构部分又分为定子和转子,转子和定子通电后产生磁场的相互作用使得转子旋转,现有的转子的转轴一般是通过滚珠轴承安装在电机的机座上,受限于滚珠轴承的结构,导致电机大小受限,且滚珠轴承容易损坏、组装过程中容易有杂质进入轴承内部导致轴承转动不顺畅,影响电机性能,滚轴轴承的制作工艺和精密程度要求非常高,导致电机生产成本较高。
【发明内容】
为了解决上述问题,本发明实施例提供一种结构紧凑的新型电机,该电机在保证性能的基础上具有更小的体积、更低的成本,此外,本发明实施例还提供了制造该电机的方法,以及采用该电机的动力套装和无人飞行器。
一方面,本发明实施例提供一种电机,包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
本发明提供的电机通过含油轴承配合轴承套连接转子组件与定子组件,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件的转轴的顺畅旋转的同时,使得电机的结构更加紧凑和精细,电机体积更小,相比于采用滚珠 轴承成本更加低。
另一方面,本发明实施例提供一种动力套装,应用于无人飞行器,所述动力套装包括电机以及螺旋桨,所述电机驱动所述螺旋桨旋转;所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
本发明提供的动力套装所采用的电机通过含油轴承配合轴承套连接转子组件与定子组件,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件的转轴的顺畅旋转的同时,电机的结构更加紧凑和精细、体积更小,使得动力套装具有更小的体积,具有更广的应用领域。
另一方面,本发明实施例提供一种无人飞行器,所述无人飞行器包括机身、由机身向外延伸的多个机臂和设置于所述机臂上的动力套装,所述动力装置包括电机以及螺旋桨,所述电机驱动所述螺旋桨旋转;
所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
本发明提供的无人飞行器所采用的电机通过含油轴承配合轴承套连接转子组件与定子组件,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件的转轴的顺畅旋转的同时,电机的结构更加紧凑和精细、体积更小,有利于无人飞行器小型化和轻便化,相比于采用滚珠轴承的电机,也可降低无人飞行器的维护频率。
另一方面,本发明实施例提供一种电机的制造方法,所述制造方法包括:
提供一转子组件、一定子组件和一轴承组件,所述转子组件包括转轴,所 述轴承组件包括含油轴承和轴承套;
在所述轴承套的两端各装载一所述含油轴承;
将装载所述含油轴承的所述轴承套与所述定子组件配合连接;
将所述转轴装设在所述含油轴承中。
本发明提供的电机的制造方法组装简单,可实现电机的快速组装,所得到电机通过含油轴承配合轴承套连接转子组件与定子组件,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件的转轴的顺畅旋转的同时,使得电机的结构更加紧凑和精细,电机体积更小。
【附图说明】
为了更清楚地说明本发明或现有技术中的方案,下面将对实施例或现有技术描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的电机的示意图;
图2为图1沿A-A线的剖视图;
图3为本发明实施例提供的电机的爆炸图;
图4为图2中A的放大示意图;
图5为图2中B的放大示意图;
图6为图2中C的放大示意图;
图7为本发明实施例提供的动力套装的示意图;
图8为本发明实施例提供的无人飞行器的局部示意图。
附图标记说明:
10            转子组件
11            转轴
111           环形槽
12            转子磁铁
13            磁轭
14            支撑件
15            转子盖板
20            定子组件
21            定子铁芯
22            定子底座
30            轴承组件
31            轴承
32            轴承套
321           第一承载台阶
322           第二承载台阶
323           限位部
324           第一环形配合槽
325           第二环形配合槽
33            垫片
34            卡圈
1             机身
2             机臂
3             动力套装
100           电机
200           螺旋桨
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面对本发明实施例中的技术方案进行清楚、完整地描述。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨 在于限制本发明。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例提供一种电机,包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
基于上述电机,本发明实施例还提供一种动力套装,所述动力套装包括电机以及螺旋桨,所述电机驱动所述螺旋桨旋转;所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
基于上述动力套装,本发明实施例提供一种无人飞行器,所述无人飞行器包括机身、由机身向外延伸的多个机臂和设置于所述机臂上的动力套装,所述动力装置包括电机以及螺旋桨,所述电机驱动所述螺旋桨旋转;
所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
本发明提供的无人飞行器所采用的电机通过含油轴承配合轴承套连接转子 组件与定子组件,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件的转轴的顺畅旋转的同时,电机的结构更加紧凑和精细、体积更小,有利于无人飞行器小型化和轻便化,相比于采用滚珠轴承的电机,也可降低无人飞行器的维护频率。
本发明实施例还提供一种上述电机的制造方法,所述制造方法包括:
提供一转子组件、一定子组件和一轴承组件,所述转子组件包括转轴,所述轴承组件包括含油轴承和轴承套;
在所述轴承套的两端各装载一所述含油轴承;
将装载所述含油轴承的所述轴承套与所述定子组件配合连接;
将所述转轴装设在所述含油轴承中。
下面结合附图详细说明本发明的一些具体实施方式。
本发明实施例提供一种电机,可应用于无人飞行器,但不限于应用于无人飞行器,参阅图1、图2和图3,所述电机包括互相配合的转子组件10和定子组件20,所述转子组件10包括转轴11,所述转子组件10和定子组件20通过轴承组件30连接,转子组件10和定子组件20之间设置有一定的间隙,使得转子组的转动更加顺畅;在本实施例中,所述轴承组件30包括轴承套32和至少二轴承31和,所述轴承套32内套接所述轴承31,至少二所述轴承31相互间隔设置并与所述转轴11套接;所述轴承31为含油轴承,含油轴承具有自润滑的结构特性,且没有内外圈结构,其单圈结构使得电机具有较小的体积,有利于电机的小型化,此外,相比于滚珠轴承,含油轴承不易磨损,可以延长电机的使用寿命,降低电机的维修成本。在本实施例中,所述轴承套32可以是通过车削成型的方式加工得到,加工过程相对简单,具有较高的加工效率和较低的加工成本。
在本发明一些实施例中,所述轴承套32两端设置的轴承31的内径或者外径可以不同,比如转轴11可包括多段粗细不等的部分,以轴承套32与轴承31能够互相配合、以及轴承31与转轴11能够互相配合为准。
在本发明一些实施例中,所述轴承组件30还包括在轴向上设置的一个或多 个垫片33,所述垫片33位于所述轴承31的一侧并与所述轴承31贴合;具体的,可在轴承31的一侧或者两侧设置垫片33,垫片33可以是用于缓冲或密封或者防止磨损的材料,可以是弹性材料,也可以是刚性材料。
在本发明一些实施例中,所述轴承套32沿轴向的两端设置有承载部,在本实施例中,如图4所示,所述承载部可包括设置于所述轴承套32内孔中、承载轴承31的第一承载台阶321,以实现轴承套32的定位以及固定,在一些实施例中,轴承套32两端的承载部还可以包括设置于所述轴承套32内孔中、承载垫片33的第二承载台阶322。
在本发明实施例中,所述转子组件10还包括转子磁铁12和磁轭13,所述磁轭13为一端开口的中空柱体,所述转子磁铁12设于所述磁轭13内部,所述磁轭13封闭的一端设置有轴向通孔,所述转轴11固定设置于所述轴向通孔中;在一些实施例中,所述转轴11与所述磁轭13通过铆接的方式固定。在一些实施例中,磁轭13可采用冲压成型的方式得到,加工过程相对简单,具有较高的加工效率和较低的加工成本。
在一些实施例中,如图2或图3所示,所述转子组件10还包括支撑件14,所述支撑件14设置于所述磁轭13内部,所述转子磁铁12固定在所述支撑件14上,其中所述转子磁铁12与所述支撑件14可以通过胶粘的方式固定;在另一些实施例中,所述转子组件10也可以是不包含支撑件14,而是在所述磁轭13内壁设置支撑部,所述转子磁铁12固定于所述支撑部。在一些实施例中,支撑件14可采用注塑成型的方式得到,加工过程相对简单,具有较高的加工效率和较低的加工成本。
在本发明实施例中,所述定子组件20包括定子铁芯21和定子底座22,所述轴承套32与所述定子底座22固定连接,所述定子铁芯21套设在所述轴承套32外部。在本实施例中,所述定子铁芯21位于所述磁轭13内部,且所述定子铁芯21位于所述轴承套32与所述转子磁铁12之间。在一些实施例中,定子底座22可以采用冲压成型的方式得到,加工过程相对简单,具有较高的加工效率和较低的加工成本。
在一些实施例中,如图5所示,所述转轴11靠近所述定子底座22的一端设置有车削成型的环形槽111,所述轴承组件30还包括卡圈34,所述卡圈34套设在所述环形槽111内,以限制所述转轴11的轴向运动,防止转轴11和轴承31相对滑动而导致轴承31磨损,在本实施例中,卡圈34需要采用耐磨的材料。在一些实施例中,所述卡圈34的外环可以卡接在所述轴承套32上设置的限位部323中,使得所述卡圈34位于所述转轴11和所述轴承套32之间,且所述卡圈34与所述轴承31之间存在一定的间隙,同时与临近的轴承31没有直接接触;在另一些实施例中,所述卡圈34的外环也可以卡接所述定子底座22上设置的限位部中(未图示),该限位部可以是限位环槽。
在一些实施例中,所述定子铁芯21与所述轴承套32可采用胶粘的方式固定,所述轴承套32与所述定子底座22可采用铆接的方式固定。在一些实施例中,如图5所示,所述轴承套32与所述定子底座22连接的部位还设置有第一环形配合槽324,可在该第一环形配合槽324中设置橡皮圈,使得轴承套32和定子底座22的连接更加稳定。在一些实施例中,如图6所示,所示轴承套32与所述定子铁芯21连接的部位还设置有第二环形配合槽325,可在该第二环形配合槽325中设置橡皮圈,使得轴承套32和定子铁芯21的连接更加稳定。
在一些实施例中,所示转子组件10还包括转子盖板15,所示转子盖板15设置在所述磁轭13开口的一侧,与磁轭13连接,同时转子盖板15还套设在轴承套32上,转子盖板15用于密封磁轭13。在一些实施例中,所示定子组件20还包括定子盖板(未图示),定子盖板用于密封定子底座22,其与定子底座22连接,并套设在所述轴承套32上。
与现有技术相比,本发明实施例提供的电机至少具有如下有益效果:
(1)通过含油轴承配合轴承套32连接转子组件10与定子组件20,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件10的转轴11的顺畅旋转的同时,使得电机的结构更加紧凑和精细,由于含油轴承结构简单,且尺寸小,不占空间,电机体积更小;
(2)由于电机结构更加精巧简单,组装工艺简单,便于提高加工效率;
(3)相比于采用滚珠轴承,含油轴承不易磨损,可以延长电机的使用寿命,降低电机的维修成本;
(4)电机的各结构件的加工和组装更多地采用冲压工艺、铆接工艺以及简单的车削加工,大大的简化了电机结构件的加工过程,提高了加工效率,降低了加工成本。
(5)通过设置垫片33,可以保证颗粒状物质无法进行含油轴承内部,保证电机的稳定工作。
基于上述实施例提供的电机,本发明实施例还提供一种动力套装,应用于无人飞行器,如图7所示,所述动力套装包括上述实施例所述的电机100以及螺旋桨200,所述电机100驱动所述螺旋桨200旋转。本实施例中所述电机100的结构可以参考上述实施例中的相关内容,在此不再赘述。本发明提供的动力套装所采用的电机100通过含油轴承配合轴承套32连接转子组件10与定子组件20,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件10的转轴11的顺畅旋转的同时,电机100的结构更加紧凑和精细、体积更小,使得动力套装具有更小的体积,具有更广的应用领域。
基于上述实施例提供的动力套装,本发明实施例还提供一种无人飞行器,如图8所示,所述无人飞行器包括机身1、由机身1向外延伸的多个机臂2和设置于所述机臂2上的动力套装3,所述动力装置包括电机100以及螺旋桨200,所述电机100驱动所述螺旋桨200旋转,其中本实施例中的电机100为上述实施例中所述的电机100,本实施例中所述电机100的结构可以参考上述实施例中的相关内容,在此不再赘述。本发明提供的无人飞行器所采用的电机100通过含油轴承配合轴承套32连接转子组件10与定子组件20,利用含油轴承没有内外圈且自润滑的结构特性,在保证转子组件10的转轴11的顺畅旋转的同时,电机100的结构更加紧凑和精细、体积更小,有利于无人飞行器小型化和轻便化,相比于采用滚珠轴承的电机100,也可降低无人飞行器的维护频率。
本发明实施例还提供一种电机的制造方法,结合图1至图6对本发明实施例提供的制造方法进行相关说明,在本实施例中,所述制造方法包括:
提供一转子组件10、一定子组件20和一轴承组件30,所述转子组件10包括转轴11,所述轴承组件30包括轴承31和轴承套32,所述轴承31为含油轴承;
在所述轴承套32的两端各装载一所述轴承31;
将装载所述轴承31的所述轴承套32与所述定子组件20固定连接;
将所述转轴11装设在所述轴承31中。
在本发明一些实施例中,所述在所述轴承套32的两端各装载一所述轴承31包括步骤:在所述轴承31内圈设置芯轴,将带有芯轴的所述轴承31装载在所述轴承套32中;相应的,所述将所述转轴11套接在所述轴承31中还包括移除所述芯轴的步骤。通过设置芯轴,在将轴承31装载在轴承套32的过程中可以防止轴承31因受到挤压而导致内孔变小,有利于后续载轴承31中装配转轴11。
在本发明一些实施例中,所述制造方法还包括提供一个或多个垫片33,将所述垫片33装设在所述轴承套32上,使所述垫片33贴合所述轴承31步骤。
在本发明一些实施例中,所述在所述轴承套32的两端各装载一所述轴承31包括步骤:在所述轴承套32沿轴向的两端设置承载台阶,并将所述轴承31装载于所述承载台阶上。在一些实施例中,所述制造方法还包括通过车削加工形成所述轴承套32的步骤。
在本发明一些实施例中,所述转子组件10还包括转子磁铁12和磁轭13,所述磁轭13为一端开口的中空柱体;所述制造方法还包括:在所述磁轭13封闭的一端设置轴向通孔,将所述转轴11固定设置于所述轴向通孔中;将所述转子磁铁12设于所述磁轭13内部。在一些实施例中,所述制造方法还包括通过冲压加工形成所述磁轭13的步骤。在一些实施例中,所述将所述转轴11固定设置于所述轴向通孔中包括将所述转轴11与所述磁轭13铆接固定的步骤。
在本发明一些实施例中,提供一支撑件14,所述将所述转子磁铁12设于所述磁轭13内部包括步骤:将所述支撑件14设置于所述磁轭13内部,并将所述 转子磁铁12固定在所述支撑件14上;其中,所述制造方法还包括通过注塑加工形成所述支撑件14的步骤;所述将所述支撑件14设置于所述磁轭13内部包括将所述转子磁铁12与所述支撑件14以胶粘的方式固定的步骤,具体的,将支撑件14放入磁轭13内,然后在磁轭13内圈打胶,再利用设备把转子磁铁12装进去,利用支撑件14固定转子磁铁12的位置,再利用治具矫正转子磁铁12的位姿之后放入烤箱烘烤以粘牢转子磁铁12。在另一些实施例中,所述将所述转子磁铁12设于所述磁轭13内部包括步骤:在所述磁轭13内壁设置支撑部,并将所述转子磁铁12固定于所述支撑部。
在本发明一些实施例中,所述定子组件20包括定子铁芯21和冲压成型的定子底座22,所述将装载所述轴承31的所述轴承套32与所述定子组件20固定连接包括步骤:将所述轴承套32与所述定子底座22连接,并将所述定子铁芯21套设在所述轴承套32外部。在一些实施例中,所述制造方法还包括:在所述转轴11靠近所述定子底座22的一端设置环形槽;提供一卡圈34,将所述卡圈34安装在所述定子底座22上,并将所述卡圈34套设在所述环形槽内;其中,在一些实施例中,所述在所述转轴11靠近所述定子底座22的一端设置环形槽包括通过车削加工形成所述环形槽的步骤。在一些实施例中,所述将所述卡圈34安装在所述定子底座22上,并将所述卡圈34套设在所述环形槽内包括步骤:将所述卡圈34设置于所述转轴11和所述轴承套32之间,并使所述卡圈34与所述轴承31之间保持一定的间隙。在本发明一些实施例中,所述将所述轴承套32与所述定子底座22连接包括将所述轴承套32与所述定子底座22铆接固定的步骤。在本发明一些实施例中,将所述定子铁芯21套设在所述轴承套32外部包括将所述定子铁芯21与所述轴承套32胶粘固定的步骤。
本发明提供的电机的制造方法组装简单,可实现电机的快速组装,所得到电机通过轴承31配合轴承套32连接转子组件10与定子组件20,利用轴承31没有内外圈且自润滑的结构特性,在保证转子组件10的转轴11的顺畅旋转的同时,得到的电机的结构更加紧凑和精细,体积更小。
显然,以上所描述的实施例仅仅是本发明一部分实施例,而不是全部的实 施例,附图中给出了本发明的较佳实施例,但并不限制本发明的专利范围。本发明可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。

Claims (57)

  1. 一种电机,包括互相配合的转子组件和定子组件,所述转子组件包括转轴,其特征在于,所述转子组件和定子组件通过轴承组件连接;
    所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
  2. 根据权利要求1所述的电机,其特征在于,所述轴承组件还包括在轴向上设置的一个或多个垫片,所述垫片位于所述轴承的一侧并与所述轴承贴合。
  3. 根据权利要求1所述的电机,其特征在于,所述轴承套沿轴向的两端设置有承载台阶,所述承载台阶对应设置一个所述轴承。
  4. 根据权利要求1所述的电机,其特征在于,所述转子组件还包括转子磁铁和冲压成型的磁轭,所述磁轭为一端开口的中空柱体,所述转子磁铁设于所述磁轭内部,所述磁轭封闭的一端设置有轴向通孔,所述转轴固定设置于所述轴向通孔中。
  5. 根据权利要求4所述的电机,其特征在于,所述转轴与所述磁轭通过铆接的方式固定。
  6. 根据权利要求4所述的电机,其特征在于,所述磁轭内壁设置有支撑部,所述转子磁铁固定于所述支撑部。
  7. 根据权利要求4所述的电机,其特征在于,所述转子组件还包括注塑成型的支撑件,所述支撑件设置于所述磁轭内部,所述转子磁铁固定在所述支撑件上。
  8. 根据权利要求7所述的电机,其特征在于,所述转子磁铁与所述支撑件以胶粘的方式固定。
  9. 根据权利要求1所述的电机,其特征在于,所述定子组件包括定子铁芯和冲压成型的定子底座,所述轴承套与所述定子底座固定连接,所述定子铁芯套设在所述轴承套外部。
  10. 根据权利要求9所述的电机,其特征在于,所述转轴靠近所述定子底座的一端设置有车削成型的环形槽,所述轴承组件还包括卡圈,所述卡圈套设在所述环形槽内,以限制所述转轴的轴向运动。
  11. 根据权利要求10所述的电机,其特征在于,所述卡圈位于所述转轴和所述轴承套之间,且所述卡圈与所述轴承之间存在一定的间隙。
  12. 根据权利要求9所述的电机,其特征在于,所述轴承套与所述定子底座采用铆接的方式固定。
  13. 根据权利要求9所述的电机,其特征在于,所述定子铁芯与所述轴承套以胶粘的方式固定。
  14. 一种动力套装,应用于无人飞行器,其特征在于,所述动力套装包括螺旋桨和电机,所述电机驱动所述螺旋桨旋转;
    所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
    所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
  15. 根据权利要求14所述的动力套装,其特征在于,所述轴承组件还包括在轴向上设置的一个或多个垫片,所述垫片位于所述轴承的一侧并与所述轴承贴合。
  16. 根据权利要求14所述的动力套装,其特征在于,所述轴承套沿轴向的两端设置有承载台阶,所述承载台阶对应设置一个所述轴承。
  17. 根据权利要求14所述的动力套装,其特征在于,所述转子组件还包括转子磁铁和冲压成型的磁轭,所述磁轭为一端开口的中空柱体,所述转子磁铁设于所述磁轭内部,所述磁轭封闭的一端设置有轴向通孔,所述转轴固定设置于所述轴向通孔中。
  18. 根据权利要求17所述的动力套装,其特征在于,所述转轴与所述磁轭通过铆接的方式固定。
  19. 根据权利要求17所述的动力套装,其特征在于,所述磁轭内壁设置有支撑部,所述转子磁铁固定于所述支撑部。
  20. 根据权利要求17所述的动力套装,其特征在于,所述转子组件还包括注塑成型的支撑件,所述支撑件设置于所述磁轭内部,所述转子磁铁固定在所述支撑件上。
  21. 根据权利要求20所述的动力套装,其特征在于,所述转子磁铁与所述支撑件以胶粘的方式固定。
  22. 根据权利要求14所述的动力套装,其特征在于,所述定子组件包括定子铁芯和冲压成型的定子底座,所述轴承套与所述定子底座固定连接,所述定子铁芯套设在所述轴承套外部。
  23. 根据权利要求22所述的动力套装,其特征在于,所述转轴靠近所述定子底座的一端设置有车削成型的环形槽,所述轴承组件还包括卡圈,所述卡圈套设在所述环形槽内,以限制所述转轴的轴向运动。
  24. 根据权利要求23所述的动力套装,其特征在于,所述卡圈位于所述转轴和所述轴承套之间,且所述卡圈与所述轴承之间存在一定的间隙。
  25. 根据权利要求22所述的动力套装,其特征在于,所述轴承套与所述定子底座采用铆接的方式固定。
  26. 根据权利要求22所述的动力套装,其特征在于,所述定子铁芯与所述轴承套以胶粘的方式固定。
  27. 一种无人飞行器,其特征在于,所述无人飞行器包括机身、由机身向外延伸的多个机臂和设置于所述机臂上的动力套装,所述动力装置包括螺旋桨和电机,所述电机驱动所述螺旋桨旋转;
    所述电机包括互相配合的转子组件和定子组件,所述转子组件包括转轴,所述转子组件和定子组件通过轴承组件连接;
    所述轴承组件包括轴承套和至少二轴承,所述轴承套与所述定子组件配合连接,所述轴承套内套接所述轴承,至少二所述轴承相互间隔设置并与所述转轴套接;所述轴承为含油轴承。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述轴承组件还包括在轴向上设置的一个或多个垫片,所述垫片位于所述轴承的一侧并与所述轴承贴合。
  29. 根据权利要求27所述的无人飞行器,其特征在于,所述轴承套沿轴向的两端设置有承载台阶,所述承载台阶对应设置一个所述轴承。
  30. 根据权利要求27所述的无人飞行器,其特征在于,所述转子组件还包括转子磁铁和冲压成型的磁轭,所述磁轭为一端开口的中空柱体,所述转子磁铁设于所述磁轭内部,所述磁轭封闭的一端设置有轴向通孔,所述转轴固定设置于所述轴向通孔中。
  31. 根据权利要求30所述的无人飞行器,其特征在于,所述转轴与所述磁轭通过铆接的方式固定。
  32. 根据权利要求30所述的无人飞行器,其特征在于,所述磁轭内壁设置有支撑部,所述转子磁铁固定于所述支撑部。
  33. 根据权利要求30所述的无人飞行器,其特征在于,所述转子组件还包括注塑成型的支撑件,所述支撑件设置于所述磁轭内部,所述转子磁铁固定在所述支撑件上。
  34. 根据权利要求33所述的无人飞行器,其特征在于,所述转子磁铁与所述支撑件以胶粘的方式固定。
  35. 根据权利要求27所述的无人飞行器,其特征在于,所述定子组件包括定子铁芯和冲压成型的定子底座,所述轴承套与所述定子底座固定连接,所述定子铁芯套设在所述轴承套外部。
  36. 根据权利要求35所述的无人飞行器,其特征在于,所述转轴靠近所述定子底座的一端设置有车削成型的环形槽,所述轴承组件还包括卡圈,所述卡圈套设在所述环形槽内,以限制所述转轴的轴向运动。
  37. 根据权利要求36所述的无人飞行器,其特征在于,所述卡圈位于所述转轴和所述轴承套之间,且所述卡圈与所述轴承之间存在一定的间隙。
  38. 根据权利要求35所述的无人飞行器,其特征在于,所述轴承套与所述 定子底座采用铆接的方式固定。
  39. 根据权利要求35所述的无人飞行器,其特征在于,所述定子铁芯与所述轴承套以胶粘的方式固定。
  40. 一种电机的制造方法,其特征在于,所述制造方法包括:
    提供一转子组件、一定子组件和一轴承组件,所述转子组件包括转轴,所述轴承组件包括含油轴承和轴承套;
    在所述轴承套的两端各装载一所述含油轴承;
    将装载所述含油轴承的所述轴承套与所述定子组件配合连接;
    将所述转轴装设在所述含油轴承中。
  41. 根据权利要求40所述的制造方法,其特征在于,所述在所述轴承套的两端各装载一所述含油轴承包括步骤:
    在所述含油轴承内圈设置芯轴,将带有芯轴的所述含油轴承装载在所述轴承套中;
    所述将所述转轴套接在所述含油轴承中还包括移除所述芯轴的步骤。
  42. 根据权利要求40所述的制造方法,其特征在于,所述制造方法还包括提供一个或多个垫片,将所述垫片装设在所述轴承套上,使所述垫片贴合所述含油轴承步骤。
  43. 根据权利要求40所述的制造方法,其特征在于,所述在所述轴承套的两端各装载一所述含油轴承包括步骤:
    在所述轴承套沿轴向的两端设置承载台阶,并将所述含油轴承装载于所述承载台阶上。
  44. 根据权利要求40所述的制造方法,其特征在于,所述制造方法还包括通过车削加工形成所述轴承套的步骤。
  45. 根据权利要求40所述的制造方法,其特征在于,所述转子组件还包括转子磁铁和磁轭,所述磁轭为一端开口的中空柱体;
    所述制造方法还包括:
    在所述磁轭封闭的一端设置轴向通孔,将所述转轴固定设置于所述轴向通 孔中;
    将所述转子磁铁设于所述磁轭内部。
  46. 根据权利要求45所述的制造方法,其特征在于,所述制造方法还包括通过冲压加工形成所述磁轭的步骤。
  47. 根据权利要求45所述的制造方法,其特征在于,所述将所述转轴固定设置于所述轴向通孔中包括步骤:
    将所述转轴与所述磁轭铆接固定。
  48. 根据权利要求45所述的制造方法,其特征在于,所述将所述转子磁铁设于所述磁轭内部包括步骤:
    在所述磁轭内壁设置支撑部,并将所述转子磁铁固定于所述支撑部。
  49. 根据权利要求45所述的制造方法,其特征在于,提供一支撑件,所述将所述转子磁铁设于所述磁轭内部包括步骤:
    将所述支撑件设置于所述磁轭内部,并将所述转子磁铁固定在所述支撑件上。
  50. 根据权利要求49所述的制造方法,其特征在于,所述制造方法还包括通过注塑加工形成所述支撑件的步骤。
  51. 根据权利要求45所述的制造方法,其特征在于,所述将所述支撑件设置于所述磁轭内部包括步骤:
    将所述转子磁铁与所述支撑件以胶粘的方式固定。
  52. 根据权利要求40所述的制造方法,其特征在于,所述定子组件包括定子铁芯和冲压成型的定子底座,所述将装载所述含油轴承的所述轴承套与所述定子组件固定连接包括步骤:
    将所述轴承套与所述定子底座连接,并将所述定子铁芯套设在所述轴承套外部。
  53. 根据权利要求52所述的制造方法,其特征在于,还包括:
    在所述转轴靠近所述定子底座的一端设置环形槽;
    提供一卡圈,将所述卡圈安装在所述定子底座上,并将所述卡圈套设在所 述环形槽内。
  54. 根据权利要求53所述的制造方法,其特征在于,所述在所述转轴靠近所述定子底座的一端设置环形槽包括步骤:
    通过车削加工形成所述环形槽。
  55. 根据权利要求53所述的制造方法,其特征在于,所述将所述卡圈安装在所述定子底座上,并将所述卡圈套设在所述环形槽内包括步骤:
    将所述卡圈设置于所述转轴和所述轴承套之间,并使所述卡圈与所述轴承之间保持一定的间隙。
  56. 根据权利要求52所述的制造方法,其特征在于,所述将所述轴承套与所述定子底座连接包括步骤:
    将所述轴承套与所述定子底座铆接固定。
  57. 根据权利要求52所述的制造方法,其特征在于,将所述定子铁芯套设在所述轴承套外部包括步骤:
    将所述定子铁芯与所述轴承套胶粘固定。
PCT/CN2017/120068 2017-12-29 2017-12-29 电机及其制造方法、动力套装和无人飞行器 WO2019127446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/120068 WO2019127446A1 (zh) 2017-12-29 2017-12-29 电机及其制造方法、动力套装和无人飞行器
CN201780025201.9A CN109155563A (zh) 2017-12-29 2017-12-29 电机及其制造方法、动力套装和无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/120068 WO2019127446A1 (zh) 2017-12-29 2017-12-29 电机及其制造方法、动力套装和无人飞行器

Publications (1)

Publication Number Publication Date
WO2019127446A1 true WO2019127446A1 (zh) 2019-07-04

Family

ID=64803467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120068 WO2019127446A1 (zh) 2017-12-29 2017-12-29 电机及其制造方法、动力套装和无人飞行器

Country Status (2)

Country Link
CN (1) CN109155563A (zh)
WO (1) WO2019127446A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245873A1 (en) * 2003-06-03 2004-12-09 Ideal Elethermal Inc. Motor having magnetic oil seal structure
CN201290059Y (zh) * 2008-09-12 2009-08-12 瑞声声学科技(深圳)有限公司 柱状振动电机
CN204408228U (zh) * 2014-12-17 2015-06-17 南京沃特电机有限公司 一种无刷直流电机水泵
CN105099108A (zh) * 2014-05-22 2015-11-25 华为技术有限公司 风扇电机及风扇
CN205469814U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 电机以及具有该电机的动力装置、无人飞行器
CN106516143A (zh) * 2016-12-22 2017-03-22 深圳市万至达电机制造有限公司 高性能云台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294345A (ja) * 1996-04-25 1997-11-11 Tokyo Parts Ind Co Ltd ファンモータ及びその製造方法
JP2000324751A (ja) * 1999-05-14 2000-11-24 Matsushita Electric Ind Co Ltd 直流ブラシレスファンモータ
JP6263325B2 (ja) * 2011-10-19 2018-01-17 ミネベアミツミ株式会社 ディスク回転用モータおよびこれを備えたディスク駆動装置
CN105673715B (zh) * 2016-03-30 2018-09-04 重庆齿轮箱有限责任公司 一种滚子轴承轴向游隙的预紧工装、预紧方法和调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040245873A1 (en) * 2003-06-03 2004-12-09 Ideal Elethermal Inc. Motor having magnetic oil seal structure
CN201290059Y (zh) * 2008-09-12 2009-08-12 瑞声声学科技(深圳)有限公司 柱状振动电机
CN105099108A (zh) * 2014-05-22 2015-11-25 华为技术有限公司 风扇电机及风扇
CN204408228U (zh) * 2014-12-17 2015-06-17 南京沃特电机有限公司 一种无刷直流电机水泵
CN205469814U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 电机以及具有该电机的动力装置、无人飞行器
CN106516143A (zh) * 2016-12-22 2017-03-22 深圳市万至达电机制造有限公司 高性能云台

Also Published As

Publication number Publication date
CN109155563A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN106253573B (zh) 集成减速器的一体电机
US7339299B2 (en) Electric actuator and motor used therein
US10554089B2 (en) Electric motor and gimbal applied with such electric motor
CN104753217B (zh) 一种电动机用拼装减震转子结构
US9899889B2 (en) Motor structure with frame structure having bearing housing formed integrally therewith
JP2017192290A (ja) 固定子を高速電気モータに固定する方法
WO2019127446A1 (zh) 电机及其制造方法、动力套装和无人飞行器
JP2012500617A5 (zh)
CN207939310U (zh) 电机、动力套装和无人飞行器
WO2018029741A1 (ja) アウターロータ型モータ、防水リング部材、および無人航空機
CN111064312B (zh) 同轴双输出机构
CN208955767U (zh) 一种外转子无刷电机
US10137727B1 (en) Wheel fastening system for mobile robot with wheels
WO2023023989A1 (zh) 电机、动力机构及无人机
CN209105010U (zh) 免调整磁力联轴器
CN206948043U (zh) 一种电机
CN202520570U (zh) 一种内设永磁式轴承的磁力泵
CN208971302U (zh) 一种永磁同步伺服电机
CN2856511Y (zh) 小型填料密封多级离心油泵轴承部件的改进
CN208369384U (zh) 轴向力可调的电机
US20120285022A1 (en) Reciprocation driving device for a hair clipper blade assembly
CN208021179U (zh) 一种驱动轮装置及其电动搬运车
CN219041522U (zh) 一种外转子无刷直流电机及通风设备
CN209419352U (zh) 一种小型化直流马达
CN205265444U (zh) 驱动机构及使用该驱动机构的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936891

Country of ref document: EP

Kind code of ref document: A1