WO2019127019A9 - 无人飞行器路径规划方法、装置和飞行管理方法、装置 - Google Patents

无人飞行器路径规划方法、装置和飞行管理方法、装置 Download PDF

Info

Publication number
WO2019127019A9
WO2019127019A9 PCT/CN2017/118647 CN2017118647W WO2019127019A9 WO 2019127019 A9 WO2019127019 A9 WO 2019127019A9 CN 2017118647 W CN2017118647 W CN 2017118647W WO 2019127019 A9 WO2019127019 A9 WO 2019127019A9
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
flight
aerial vehicle
height
obstacle
Prior art date
Application number
PCT/CN2017/118647
Other languages
English (en)
French (fr)
Other versions
WO2019127019A1 (zh
Inventor
张柯
臧波
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP17832182.4A priority Critical patent/EP3531222A4/en
Priority to PCT/CN2017/118647 priority patent/WO2019127019A1/zh
Priority to CN201780002622.XA priority patent/CN108351652A/zh
Priority to US15/886,316 priority patent/US20190196507A1/en
Publication of WO2019127019A1 publication Critical patent/WO2019127019A1/zh
Publication of WO2019127019A9 publication Critical patent/WO2019127019A9/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • Embodiments of the present invention relate to the technical field of unmanned aerial vehicles, for example, to a method, a device, and a flight management method and device for path planning of an unmanned aerial vehicle, and an unmanned aerial vehicle and a flight management system.
  • unmanned aerial vehicles have been widely used in military and civilian fields.
  • unmanned aerial vehicles can achieve autonomous flight according to the lines planned by the two-dimensional map.
  • autonomous flight it is necessary to continuously detect the height of the obstacle in front, and then use the method of maintaining the horizontal projection position unchanged and increasing the flight height to avoid obstacle.
  • the related technology has at least the following problems: Since the two-dimensional map only includes the horizontal projection information of the obstacles and does not include the height information, it is impossible to fly the unmanned aerial vehicle according to the height information of the obstacles. For precise control.
  • An object of the embodiments of the present invention is to provide an unmanned aerial vehicle path planning method, device, and flight management method, device, and unmanned aerial vehicle and flight management system, which can realize an unmanned aerial vehicle according to the height of an obstacle on the flight path of the unmanned aerial vehicle. Precise control.
  • an embodiment of the present invention provides a path planning method for an unmanned aerial vehicle.
  • the method includes:
  • the unmanned aerial vehicle flies at an altitude higher than the obstacle according to the flight path.
  • the determining a flight route of the unmanned aerial vehicle based on the starting point and the ending point includes:
  • the acquiring a user to design a flight route of the unmanned aerial vehicle on the flight map according to the starting point and the ending point includes:
  • the flight route is determined according to the starting point, the ending point, and the flight trajectory.
  • the acquiring a user to design a flight route of the unmanned aerial vehicle based on the starting point and the information on the flight map includes:
  • the method further includes:
  • the UAV flies around the special flight area.
  • flying around the special flight area by the unmanned aerial vehicle includes:
  • the unmanned aerial vehicle is flying at an altitude higher or lower than the special flight area.
  • flying around the special flight area by the unmanned aerial vehicle includes:
  • the UAV flies around the border of the special flight area.
  • the method further includes:
  • the obtaining the height of an obstacle on the flight path includes:
  • the determining a flight route of the unmanned aerial vehicle based on the starting point and the ending point includes:
  • a flight route of the unmanned aerial vehicle is determined based on the starting point and the ending point.
  • the at least one path planning criterion includes at least one of the following criteria:
  • the most energy-saving standard the fastest flight speed standard, the highest flight safety standard, and the special flight area avoidance standard.
  • the at least one path planning criterion includes a special flight area avoidance criterion.
  • the special flight area includes any one of the following areas:
  • the determining whether the altitude that the unmanned aerial vehicle can fly is greater than the height of the obstacle includes:
  • the determining whether the altitude that the unmanned aerial vehicle can fly is greater than the height of the obstacle includes:
  • the maximum altitude at which the UAV flies is determined by the lift provided by the power unit of the UAV.
  • the method further includes:
  • the unmanned aerial vehicle If the height that the unmanned aerial vehicle can fly is smaller than the height of the obstacle, the unmanned aerial vehicle flies around the obstacle from the side.
  • the obstacle includes at least one of the following:
  • an embodiment of the present invention further provides an unmanned aerial vehicle path planning device, including:
  • a determining module for determining a start point and an end point of the unmanned aerial vehicle flight
  • An acquisition module configured to acquire the height of an obstacle on the flight path
  • a judging module for judging whether the altitude that the unmanned aerial vehicle can fly is greater than the height of the obstacle
  • a control module configured to control the unmanned aerial vehicle to fly at a height higher than the obstacle according to the flight route.
  • the determining module is specifically configured to:
  • the determining module is configured to:
  • the flight route is determined according to the starting point, the ending point, and the flight trajectory.
  • the determining module is configured to:
  • the determining module is further configured to:
  • control module controls the UAV to fly around the special flight area.
  • the acquisition module is further configured to acquire a flight altitude of the special flight area; and the control module is configured to control the unmanned aerial vehicle to fly at a height higher or lower than the special flight area.
  • the acquisition module is further configured to acquire a boundary of the special flight area; and the control module is configured to control the unmanned aerial vehicle to fly around the boundary of the special flight area.
  • the determination module determines that a special flight area exists on the flight route, it sends a prompt warning to the control terminal.
  • the acquisition module acquires height information of obstacles on the flight path through a three-dimensional map.
  • the determining module is configured to:
  • a flight route of the unmanned aerial vehicle is determined based on the starting point and the ending point.
  • the at least one path planning criterion includes at least one of the following criteria:
  • the most energy-saving standard the fastest flight speed standard, the highest flight safety standard, and the special flight area avoidance standard.
  • the at least one path planning criterion includes a special flight area avoidance criterion.
  • the special flight area includes any one of the following areas:
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the maximum altitude at which the UAV flies is determined by the lift provided by the power unit of the UAV.
  • the control module controls the unmanned aerial vehicle to fly around the obstacle from the side.
  • the obstacle includes at least one of the following:
  • an embodiment of the present invention further provides a flight management method.
  • the method includes:
  • the acquiring flight paths of at least two unmanned aerial vehicles in the management range includes:
  • the method further includes:
  • the receiving signals sent by the at least two unmanned aerial vehicles includes:
  • the performing coordinated control on at least two unmanned aerial vehicles includes:
  • the speed of the at least two unmanned aerial vehicles is coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • the performing coordinated control on at least two unmanned aerial vehicles includes:
  • the speed directions of the at least two unmanned aerial vehicles are coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • the flight status information includes position information and speed information.
  • an embodiment of the present invention further provides a flight management device, where the device includes:
  • An acquisition module configured to acquire flight status information and flight routes of at least two unmanned aerial vehicles within a management range
  • a determining module configured to determine that an interference area exists on the flight paths of the at least two unmanned aerial vehicles
  • a judging module configured to judge whether a time difference between the at least two unmanned aerial vehicles reaching the interference area is less than a preset threshold
  • a control module is configured to perform coordinated control on the at least two unmanned aerial vehicles to prevent a time difference between the at least two unmanned aerial vehicles reaching the interference area being less than a preset threshold.
  • the acquisition module further includes a receiving module, which is configured to receive a flight route sent by each of the at least two unmanned aerial vehicles.
  • the obtaining module is further configured to:
  • the obtaining module is specifically configured to:
  • control module is configured to:
  • the speed of the at least two unmanned aerial vehicles is coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • control module is configured to:
  • the speed directions of the at least two unmanned aerial vehicles are coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • the flight status information includes position information and speed information.
  • an embodiment of the present invention further provides an unmanned aerial vehicle, including:
  • a machine arm connected to the casing
  • a processor provided in the housing or the arm;
  • a memory that is communicatively connected with the processor, and the memory is provided in the housing or the arm; wherein,
  • the memory stores instructions executable by the processor, and when the processor executes the instructions, the path planning method of the unmanned aerial vehicle as described above is implemented.
  • an embodiment of the present invention further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by an unmanned aerial vehicle To make the unmanned aerial vehicle execute the path planning method of the unmanned aerial vehicle as described above.
  • an embodiment of the present invention further provides a flight management device, including:
  • a processor disposed in the main body
  • a transceiver in communication with the processor
  • a memory connected in communication with the processor; wherein,
  • the memory stores instructions executable by the processor.
  • the processor executes the instructions, the flight management method as described above is implemented.
  • an embodiment of the present invention further provides a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by the flight management system, the flight management system is caused to execute the flight management method as described above.
  • the path planning method, device, and flight management method, device, and unmanned aerial vehicle and flight management system obtained the height information of obstacles on the flight path of the unmanned aerial vehicle, and determine whether the unmanned aerial vehicle can fly. Whether the altitude of the vehicle is greater than the height of the obstacle, and if it is greater than the height of the obstacle, the UAV is caused to fly at a height higher than the obstacle according to the flight path. As a result, precise control of the UAV is achieved.
  • FIG. 1 is a schematic diagram of an application scenario of an unmanned aerial vehicle path planning method and device, or a flight management method or device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an embodiment of a path planning method for an unmanned aerial vehicle according to the present invention
  • FIG. 3 is a flowchart of an embodiment of a step of determining a flight route in the method for planning an unmanned aerial vehicle shown in FIG. 2;
  • FIG. 3 is a flowchart of an embodiment of a step of determining a flight route in the method for planning an unmanned aerial vehicle shown in FIG. 2;
  • FIG. 4 is a flowchart of another embodiment of the steps of determining a flight route in the method of planning an unmanned aerial vehicle shown in FIG. 2;
  • FIG. 4 is a flowchart of another embodiment of the steps of determining a flight route in the method of planning an unmanned aerial vehicle shown in FIG. 2;
  • FIG. 5 is a flowchart of an embodiment of a method for avoiding a special flight area in the path planning method of the UAV shown in FIG. 2 according to the invention
  • FIG. 6 is a structural block diagram of an embodiment of an unmanned aerial vehicle path planning device according to the present invention.
  • FIG. 7 is a flowchart of an embodiment of a flight management method according to the present invention.
  • FIG. 8 is a structural block diagram of an embodiment of a flight management device according to the present invention.
  • FIG. 9 is a structural block diagram of another embodiment of a flight management device according to the present invention.
  • FIG. 10 is a schematic diagram of a hardware structure of an embodiment of an unmanned aerial vehicle according to the present invention.
  • FIG. 11 is a schematic diagram of a hardware structure of an embodiment of a flight management device according to the present invention.
  • the application scenario shown in FIG. 1 includes an unmanned aerial vehicle 10, an electronic device 20, a user 30, and a smart terminal 40.
  • the unmanned aerial vehicle 10 may be any suitable type of high-altitude or low-altitude aircraft, including a typical quadcopter, a hovering remote-control helicopter, or a fixed-wing aircraft with a certain moving speed.
  • the electronic device 20 may be, for example, a large server, a personal computer, a laptop computer, a smart phone, a tablet computer, or the like.
  • the smart terminal 40 is, for example, a remote controller, a smart phone, a tablet computer, or the like.
  • the user 30 may interact with the smart terminal 40 through any suitable type of one or more input devices, and these input devices may be a mouse, a button, a touch screen, or the like.
  • these input devices may be a mouse, a button, a touch screen, or the like.
  • wireless communication modules such as signal receivers, Transmitter, etc. to establish a communication connection, upload or send data / instruction.
  • the application scenario may further include more unmanned aerial vehicles 10, electronic devices 20, and smart terminals 40.
  • the user 30 can input the start point and the end point of the unmanned aerial vehicle 10 to the smart terminal 40 through the input device, and the smart terminal 40 sends the start point and the end point to the electronic device 20 or the unmanned aerial vehicle 10.
  • the electronic device 20, the smart terminal 40, or the unmanned aerial vehicle 10 determines the flight route of the unmanned aerial vehicle 10 according to the starting point and the ending point, and obtains the height of obstacles (such as buildings, mountains, trees, forests, and signal towers) on the flight route. Then, it is determined whether the altitude that the unmanned aerial vehicle 10 can fly is greater than the height of the obstacle. If it is greater than the height of the obstacle, the unmanned aerial vehicle 10 is caused to fly at a height higher than the obstacle according to the flight path.
  • obstacles such as buildings, mountains, trees, forests, and signal towers
  • the height of the obstacle on the flight path may be obtained from a three-dimensional map.
  • the three-dimensional map may be loaded in the electronic device 20, the smart terminal 40, or the unmanned aerial vehicle 10 in advance, and the electronic device 20 or the smart terminal 40 may also obtain the three-dimensional map through the network in real time.
  • the electronic device 20 can also obtain flight status information (such as position information and speed information) and flight routes of multiple unmanned aerial vehicles 10, and confirm whether the unmanned aerial vehicles 10 interfere with the flight.
  • the aircraft 10 performs coordinated control to avoid a collision event of the unmanned aircraft 10.
  • An embodiment of the present invention provides a path planning method for an unmanned aerial vehicle.
  • the electronic device 20, the smart terminal 40, and the unmanned aerial vehicle 10 in FIG. 1 can execute the method.
  • the planning method includes:
  • the starting point and the ending point may be input by the user 30 to the smart terminal 40 through an input device (such as a keyboard, a touch screen, etc.), and then sent by the smart terminal 40 to the electronic device 20 or the unmanned aerial vehicle 10.
  • an input device such as a keyboard, a touch screen, etc.
  • the flight path of the unmanned aerial vehicle 10 may also be set by a user. As shown in FIG. 3, determining the flight path of the aircraft based on the starting point and the end point further includes:
  • the flight map may be a three-dimensional map.
  • the three-dimensional map may be loaded on the electronic device 20, the smart terminal 40, or the unmanned aerial vehicle 10 in advance, or may be the electronic device 20 or the smart terminal 40 in real time. Obtained from the network.
  • the three-dimensional map may be a map of a certain city or an area, and includes three-dimensional information of each obstacle (ie, a building).
  • the three-dimensional information includes position information (such as horizontal coordinates such as longitude and latitude), height information, and horizontal projection. Information (such as length, width, etc.).
  • the start point, the end point, and the flight map may be displayed to the user 30 on the screen of the smart terminal 40, and the user 30 may draw at least one between the start point and the end point on the flight map.
  • the intelligent terminal 40 converts each point in the flight trajectory depicted by the user on the display screen, or the screen position of each flight waypoint into coordinates in the flight map, and then forms the flight of the unmanned aerial vehicle 10 according to each coordinate point in the flight map. route.
  • the UAV 10 or the electronic device 20 can obtain the flight route through the smart terminal 40.
  • the flight path of the unmanned aerial vehicle 10 may be autonomously planned by the electronic device 20, the intelligent terminal 40, or the unmanned aerial vehicle 10, as shown in FIG. 4, determining the based on the starting point and the ending point.
  • the flight path of the aircraft includes:
  • the electronic device 20, the smart terminal 40, or the unmanned aerial vehicle 10 may plan a flight route of the unmanned aerial vehicle 10 based on a three-dimensional map. In other words, based on the starting point and the ending point, a path planning method using three-dimensional space According to each path planning standard, a flight path under each path planning standard is planned for the unmanned aerial vehicle 10 so that the planned flight path meets the corresponding path planning standard.
  • the path planning standard includes at least one of the most energy-saving standard, the fastest flight speed standard, the highest flight safety standard, and the standard for avoiding special flight areas.
  • the special flight area includes at least one or a combination of at least two of the following areas: a no-fly area, a height limit area, a flight noise sensitive area, and an area (such as a strong electromagnetic area) that affects the flight mission of the UAV 10. Understandably, only one of the exclusive standards such as the most energy-saving standard, the fastest flight speed standard, and the highest flight safety standard can appear, while non-exclusive standards such as the standard for avoiding special flight areas can be combined with other standards.
  • the electronic device 20, the intelligent terminal 40, or the unmanned aerial vehicle 10 may plan a flight route for the unmanned aerial vehicle 10 based on only the most energy-saving standards, or may plan the flight route for the unmanned aerial vehicle 10 based on only the fastest speed standard, or At the same time, a flight route is planned for the unmanned aerial vehicle 10 based on the most energy-saving standards and the evasion of special flight area standards.
  • the selection of various standards can be set according to the actual use of the UAV 10, and the user 30 can set it on the smart terminal 40, and then the smart terminal 40 sends the setting result to the electronic device 20 or the UAV 10.
  • the fastest flight speed standard can be set on the smart terminal 40, or a combination of the least energy standard, the fastest flight speed standard, and a special flight area avoidance standard, and the fastest flight speed standard three route planning standards can be set at the same time.
  • the electronic device 20, the intelligent terminal 40, or the unmanned aerial vehicle 10 respectively plans three flight routes for the unmanned aerial vehicle 10 according to the above three route planning standards, and the user 30 can select one of them
  • the flight path is used as the flight path of the unmanned aerial vehicle 10.
  • the user can select one of the two modes of the self-designed flight route and the user-designed flight route on the smart terminal 40.
  • the height of the obstacle on the flight path may be obtained through a three-dimensional map, and the obstacle may be one or more.
  • the unmanned aerial vehicle 10 will be unable to complete the flight if the safe altitude over obstacles is greater than the height limit. Therefore, to determine whether the altitude that the UAV 10 can fly is greater than the height of the obstacle, it is necessary to determine whether the height limit is greater than the maximum height of each obstacle. Specifically, first determine whether there is a height limit area on the flight route. In the height-limiting area, it is determined whether the height of the height-limiting area is higher than the highest height of the obstacle on the flight path, and if it is higher than the maximum height, it is determined that the altitude that the unmanned aerial vehicle 10 can fly is greater than the height of the obstacle.
  • determining whether the power of the UAV can support the UAV 10 to fly at a height higher than the obstacle is greater than the height of the obstacle, and further includes:
  • the maximum altitude at which the UAV flies is determined by the lift provided by the power unit of the UAV 10 and / or the remaining power of the battery.
  • the unmanned aerial vehicle 10 follows the flight route at a height higher than the obstacle.
  • the unmanned aerial vehicle 10 flies around the obstacle from the side.
  • the embodiment of the present invention provides information about obstacle heights on the flight path of an unmanned aerial vehicle, and determines whether the altitude that the unmanned aerial vehicle can fly is greater than the height of the obstacle. Fly above the obstacle. As a result, fine control of the UAV is achieved.
  • this method is not only applicable to the occasion of autonomous flight of the unmanned aerial vehicle 10, but also applicable to the occasion of controlling flight. This method is particularly applicable to the occasion where the unmanned aerial vehicle 10 needs to fly near the ground, and is also applicable to the occasion of flying at high altitude.
  • the method further includes:
  • the special flight area includes at least one or a combination of at least two of the following areas:
  • No-fly areas, height-limit areas, and areas that affect the unmanned aerial vehicle mission such as strong electromagnetic areas.
  • the unmanned aerial vehicle 10 flies around the special flight area.
  • the special flight area when the special flight area is a no-fly area, if the no-fly area is a low-altitude area, the height of the no-fly area can be obtained and the flight is higher than the no-fly area. If the no-fly area is At high altitudes, they fly at altitudes below the no-fly zone. In other embodiments of the present invention, the unmanned aerial vehicle 10 may also obtain the boundary of the special flying area, and then fly around the boundary of the special flying area.
  • the unmanned aerial vehicle 10 sends a prompt warning to the smart terminal 40 or the smart terminal 40 actively displays a prompt warning to the user 30 to remind the user 30 of the flight route.
  • the user 30 can choose to re-plan or choose another flight path to bypass the special flight area. If the number of warnings exceeds the preset number or the duration reaches the preset time threshold, the unmanned aerial vehicle 10 automatically adjusts the flight The strategy avoids the special flight area.
  • An embodiment of the present invention further provides an unmanned aerial vehicle path planning device, which is used in the electronic device 20, the intelligent terminal 40, or the unmanned aerial vehicle 10 in FIG. 1, as shown in FIG. 6, the device 200 includes:
  • a determining module 201 configured to determine a start point and an end point of the unmanned aerial vehicle flight
  • An obtaining module 202 configured to obtain the height of an obstacle on the flight path
  • a determining module 203 configured to determine whether an altitude at which the unmanned aerial vehicle can fly is greater than an altitude of the obstacle
  • a control module 204 is configured to control the unmanned aerial vehicle to fly at a height higher than the obstacle according to the flight route.
  • the foregoing determining module 201, obtaining module 202, and determining module 203 may be processors in the unmanned aerial vehicle, and the control module 204 may be a flight control chip of the unmanned aerial vehicle.
  • the embodiment of the present invention provides information about obstacle heights on the flight path of an unmanned aerial vehicle, and determines whether the altitude that the unmanned aerial vehicle can fly is greater than the height of the obstacle. Fly above the obstacle. As a result, precise control of the UAV is achieved.
  • the determining module 201 is specifically configured to:
  • the determining module 201 is configured to:
  • the flight route is determined according to the starting point, the ending point, and the flight trajectory.
  • the determining module 201 is configured to:
  • the determination module 203 is further configured to determine whether a special flight area exists on the flight path;
  • control module 204 controls the unmanned aerial vehicle to fly around the special flight area.
  • the obtaining module 202 is further configured to obtain the flying height of the special flying area; the control module 204 is used to control the unmanned aerial vehicle to be higher or lower than the height of the special flying area flight.
  • the obtaining module 202 is further configured to obtain the boundary of the special flight area; the control module 204 is used to control the unmanned aerial vehicle to fly around the boundary of the special flight area.
  • the determination module 203 determines that a special flight area exists on the flight route, it sends a prompt warning to the control terminal.
  • the obtaining module 202 obtains height information of obstacles on the flight route through a three-dimensional map.
  • the determining module 201 is configured to:
  • a flight route of the unmanned aerial vehicle is determined based on the starting point and the ending point.
  • the at least one path planning criterion includes at least one of the following criteria:
  • the most energy-saving standard the fastest flight speed standard, the highest flight safety standard, and the special flight area avoidance standard.
  • the at least one path planning criterion includes a circumvention of a special flight area criterion.
  • the special flight area includes any one of the following areas:
  • the determining module 203 is specifically configured to:
  • the determining module 203 is specifically configured to:
  • the maximum altitude at which the UAV flies is determined by the lift provided by the power unit in the UAV.
  • the control module 204 controls the unmanned aerial vehicle to bypass from the side The obstacle is flying.
  • the obstacle includes at least one of the following:
  • An embodiment of the present invention further provides a flight management method.
  • the management method may be executed by the electronic device 20 in FIG. 1. As shown in FIG. 7, the method includes:
  • 301 Obtain flight status information and flight routes of at least two unmanned aerial vehicles in the management range.
  • the unmanned aerial vehicle 10 above the ground when the height of the unmanned aerial vehicle 10 above the ground is greater than a preset height threshold, it automatically enters the management range of the electronic device 20.
  • a signal is sent to the electronic device 20.
  • the electronic device 20 receives the signal and obtains the control authority for the unmanned aerial vehicle 10. It can be understood that the drones in the above management range need to be supported by hardware to be detected by electronic equipment. Once the drone 10 reaches a certain height above the ground, the function of the detected module on the drone 10 is automatically turned on, so that its Automatically enters the management range of the electronic device 20. Within the management range, the electronic device has the control authority for all unmanned aerial vehicles 10.
  • the flight path of the unmanned aerial vehicle 10 may be a flight path planned according to the unmanned aerial vehicle path planning method described in the embodiment of the present invention.
  • the electronic device 20 may receive the flight status information and / or flight route of the unmanned aerial vehicle 10 sent by the unmanned aerial vehicle 10 through the smart terminal 40 through a signal transceiver. In some embodiments, the flight status information and / or flight route may also be It is directly sent by the drone 10 to the electronic device 20.
  • the flight status information includes position information and speed information of the unmanned aerial vehicle 10, and the position information and speed information can be obtained through an onboard inertial device provided on the unmanned aerial vehicle 10.
  • the position information of the unmanned aerial vehicle 10 includes horizontal coordinate information (longitude, latitude, etc.) and altitude information.
  • the flight route may be sent by the unmanned aerial vehicle 10 or the intelligent terminal 40 to the electronic device 20, or may be obtained by the electronic device 20 according to the flight state information prediction of the unmanned aerial vehicle 10.
  • the flight route may be obtained by the electronic device 20, the unmanned aerial vehicle 10, or the smart terminal 40 based on a three-dimensional map.
  • the electronic device 20 may determine whether there is an unmanned aerial vehicle 10 with a risk of collision in at least two unmanned aerial vehicles 10 by judging whether there are flight paths that intersect or the flying paths are close. .
  • the safety distance of each unmanned aerial vehicle 10 can also be determined in combination with the volume of the unmanned aerial vehicle 10 (the volume information of the unmanned aerial vehicle 10 can be sent to the electronic device 20).
  • the interference area may combine the volume of the unmanned aerial vehicle 10 and the flight control error. And other factors to determine.
  • the time when each unmanned aerial vehicle 10 reaches the interference area along its flight path is obtained according to the position information and velocity information of the unmanned aerial vehicle 10. If the time differences between the two arrivals are close to each other and less than a preset threshold, the two unmanned aerial vehicles 10 are at risk of collision, that is, the flight interferes with each other.
  • the preset threshold is a minimum time interval that ensures that the two or more unmanned aerial vehicles 10 do not appear in the interference area at the same time.
  • performing coordinated control on the at least two unmanned aerial vehicles 10 may be an early warning prompt for two or more unmanned aerial vehicles 10 that interfere with each other in flight. If the unmanned aerial vehicle 10 is operated by a user, the user may be prompted to be careful in handling, so as to increase the awareness of safe flight. If the early warning does not work, the electronic device 20 may also adjust the flight speed or direction of one or more of the unmanned aerial vehicles 10 so that the time difference between the time of reaching the interference area is greater than or equal to a preset threshold to avoid a collision event. . The electronic device 20 may also directly adjust the flying speed or the flying direction of the unmanned aerial vehicle 10 without warning. Among them, the flight speed or flight direction of the unmanned aerial vehicle 10 using the autonomous flight mode is preferentially adjusted. Because the flight direction changes the flight path of the unmanned aerial vehicle 10, the flight speed of the unmanned aerial vehicle 10 is preferentially adjusted.
  • the flight speed of the two or more unmanned aerial vehicles 10 can be controlled at the same time so that the time difference between the two reaching the interference area satisfies Safe preset threshold. If two or more unmanned aerial vehicles 10 that interfere with each other in flight adopt an autonomous flight mode, and some are controlled by the user 30 in real time, only the flight speed of the unmanned aerial vehicle 10 in the autonomous flight mode is adjusted.
  • the embodiments of the present invention can largely avoid the collision event of the unmanned aerial vehicle 10, and improve the flight safety of the aircraft.
  • the above-mentioned planning device 200 can execute the corresponding planning method provided by the embodiment of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • the planning method provided in the embodiment of the present invention can execute the corresponding planning method provided by the embodiment of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • An embodiment of the present invention further provides a flight management device.
  • the management device 400 is used for the electronic device 20 in FIG. 1. As shown in FIG. 8, the management device 400 includes:
  • An acquisition module 401 configured to acquire flight status information and flight routes of at least two unmanned aerial vehicles within a management range
  • a determining module 402 configured to determine that an interference area exists on the flight paths of the at least two unmanned aerial vehicles
  • a determining module 403, configured to determine whether a time difference between the at least two unmanned aerial vehicles reaching the interference area is less than a preset threshold
  • a control module 404 is configured to perform coordinated control on the at least two unmanned aerial vehicles to prevent a time difference between the at least two unmanned aerial vehicles reaching the interference area being less than a preset threshold.
  • the embodiments of the present invention can largely avoid the collision event of the unmanned aerial vehicle 10, and improve the flight safety of the aircraft.
  • the obtaining module 401 further includes a receiving module 4011, which is configured to receive each of the at least two unmanned aerial vehicles. Flight route.
  • the acquisition module 401 includes a prediction module 4012, and the prediction module 4012 is configured to predict the flight status information of the at least two unmanned aerial vehicles.
  • the obtaining module 401 is further configured to:
  • the obtaining module 401 is specifically configured to:
  • control module 404 is configured to:
  • the speed of the at least two unmanned aerial vehicles is coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • control module 404 is configured to:
  • the speed directions of the at least two unmanned aerial vehicles are coordinated and controlled, so that the time difference between the at least two unmanned aerial vehicles reaching the interference area is greater than or equal to a preset threshold.
  • the flight status information includes position information and speed information.
  • the management device 400 for the electronic device 20 described above can execute the corresponding management method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the management method provided in the embodiment of the present invention can execute the corresponding management method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 10 is a schematic diagram of a hardware structure of an unmanned aerial vehicle 10 according to an embodiment of the present invention. As shown in FIG. 10, the unmanned aerial vehicle 10 includes:
  • a machine arm 14 connected to the housing
  • a processor 11 provided in the housing or the arm;
  • the processor 11 and the memory 12 may be connected through a bus or other manners.
  • the memory 12 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules, such as program instructions corresponding to the planning method in the embodiment of the present invention.
  • Unit for example, the determination module 201, the acquisition module 202, the determination module 203, and the control module 204 shown in FIG. 6.
  • the processor 11 executes various functional applications and data processing of the unmanned aerial vehicle 10 by running the non-volatile software programs, instructions, and units stored in the memory 12, that is, the path planning of the unmanned aerial vehicle described in the foregoing embodiments is implemented. method.
  • the memory 12 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the unmanned aerial vehicle 10, and the like.
  • the memory 12 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 12 may optionally include a memory remotely disposed with respect to the processor 11, and these remote memories may be connected to the unmanned aerial vehicle 10 through a network.
  • the one or more modules are stored in the memory 12, and when executed by the one or more processors 11, the planning method in any of the above method embodiments is executed, for example, the above described FIG. 2 is executed.
  • Method steps 101 to 105, method steps 1021a-1022a in FIG. 3, method steps 1021b-1022b in FIG. 4, and method steps 107-108 in FIG. 5 implement the functions of modules 201-204 in FIG.
  • the above-mentioned unmanned aerial vehicle 10 can execute the planning method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the planning method provided in the embodiment of the present invention For technical details not described in detail in the embodiment of the aircraft 10, reference may be made to the planning method provided in the embodiment of the present invention.
  • An embodiment of the present invention provides a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors.
  • the described method steps 101 to 105 in FIG. 2, method steps 1021a-1022a in FIG. 3, method steps 1021b-1022b in FIG. 4, and method steps 107-108 in FIG. 5 implement module 201 in FIG. 6. -204 features.
  • FIG. 11 is a schematic diagram of a hardware structure of a flight management device 20 (such as the electronic device 20 in FIG. 1) according to an embodiment of the present invention. As shown in FIG. 11, the flight management device 20 includes:
  • a display screen 24 provided on the main body
  • a processor 21 provided in the main body
  • a transceiver 23 in communication with the processor 21;
  • a memory 22 in communication with the processor 21.
  • the processor 21 and the memory 22 may be connected through a bus or in other manners.
  • the memory 22 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules, such as program instructions corresponding to the management method in the embodiment of the present invention.
  • Unit for example, the acquisition module 401, the determination module 402, the determination module 403, and the control module 404 shown in FIG. 8.
  • the processor 21 executes various functional applications and data processing of the flight management system 20 by running non-volatile software programs, instructions, and units stored in the memory 22, that is, to implement the flight management methods described in the foregoing embodiments.
  • the memory 22 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the flight management system 20 and the like.
  • the memory 22 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 22 may optionally include a memory remotely disposed with respect to the processor 21, and these remote memories may be connected to the flight management system through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more units are stored in the memory 22, and when executed by the one or more processors 21, the management method in any of the above method embodiments is executed, for example, the above-mentioned FIG. 7 is executed.
  • Method steps 301-304 implement the functions of modules 401-404 in FIG. 8, modules 401-404 and 4011-4012 in FIG. 9.
  • the above-mentioned flight management system 20 can execute the management method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the management method provided in the embodiment of the present invention can execute the management method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the flight management device 20 in the embodiment of the present invention exists in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communication.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, feature phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has mobile Internet access characteristics.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content. These devices include audio and video players (such as iPods), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • the composition of the server includes a processor, hard disk, memory, and system bus.
  • the server is similar to a general-purpose computer architecture. , Reliability, security, scalability, manageability and other aspects of higher requirements.
  • An embodiment of the present invention further provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, executing
  • the method steps 301-304 in FIG. 7 described above implement the functions of modules 401-404 in FIG. 8, modules 401-404 and 4011-4012 in FIG. 9.
  • the device embodiments described above are only schematic, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or it can be distributed across multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, they can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the method of the foregoing embodiment can be implemented by a computer program instructing related hardware.
  • the program can be stored in a computer-readable storage medium. When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明实施例涉及无人飞行器路径规划方法、装置和飞行管理方法、装置以及无人飞行器,所述方法包括:确定所述无人飞行器飞行的起点和终点;基于所述起点和所述终点确定所述无人飞行器的飞行路线;获取所述飞行路线上的障碍物的高度;判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;若是,则所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。本发明实施例通过获取无人飞行器飞行路线上的障碍物高度信息,并判断无人飞行器能够飞行的高度是否大于障碍物的高度,如果大于障碍物的高度,则使无人飞行器按照飞行路线以高于障碍物的高度飞行。从而实现了对无人飞行器的精确控制。

Description

无人飞行器路径规划方法、装置和飞行管理方法、装置 技术领域
本发明实施例涉及无人飞行器技术领域,例如涉及无人飞行器路径规划方法、装置和飞行管理方法、装置以及无人飞行器、飞行管理系统。
背景技术
随着无人飞行器技术的发展,无人飞行器在军事及民用领域都得到了广泛的应用。当前无人飞行器已经能依照二维地图规划的线路实现自主飞行,其在自主飞行过程中,需不断检测前方障碍物的高度,然后采用保持水平投影位置不变,升高飞行高度的方式来躲避障碍物。
在实现本发明过程中,发明人发现相关技术中至少存在如下问题:由于二维地图中仅包括障碍物的水平投影信息,不包括高度信息,无法根据障碍物的高度信息对无人飞行器的飞行进行精确控制。
发明内容
本发明实施例的一个目的是提供一种无人飞行器路径规划方法、装置和飞行管理方法、装置以及无人飞行器、飞行管理系统,能根据无人飞行器飞行路线上的障碍物高度实现无人飞行器的精确控制。
第一方面,本发明实施例提供了一种无人飞行器路径规划方法,所述方法包括:
确定所述无人飞行器飞行的起点和终点;
基于所述起点和所述终点确定所述无人飞行器的飞行路线;
获取所述飞行路线上的障碍物的高度;
判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;
若是,则所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。
在一个实施例中,所述基于所述起点和所述终点确定所述无人飞行器的飞行路线,包括:
获取所述无人飞行器的飞行地图;
获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
在一个实施例中,所述获取用户在所述飞行地图上依据所述起点和所述终点设计所述无人飞行器的飞行路线,包括:
获取所述用户在所述飞行地图上描画的位于所述起点和所述终点之间的飞行轨迹;
根据所述起点、所述终点和所述飞行轨迹确定所述飞行路线。
在一个实施例中,所述获取用户在所述飞行地图上依据所述起点和所述信息设计所述无人飞行器的飞行路线,包括:
获取所述用户在所述飞行地图上选取的位于所述起点和所述终点之间的至少一个航点;
根据所述起点、所述终点以及所述至少一个航点确定所述飞行路线。
在一个实施例中,所述方法还包括:
判断所述飞行路线上是否存在特殊飞行区域;
若存在,则所述无人飞行器绕开所述特殊飞行区域飞行。
在一个实施例中,所述无人飞行器绕开所述特殊飞行区域飞行包括:
获取所述特殊飞行区域的高度;
所述无人飞行器以高于或低于所述特殊飞行区域的高度飞行。
在一个实施例中,所述无人飞行器绕开所述特殊飞行区域飞行包括:
获取所述特殊飞行区域的边界;
所述无人飞行器绕开所述特殊飞行区域的边界飞行。
在一个实施例中,所述方法还包括:
若所述飞行路线上存在特殊飞行区域,则向控制终端发送提示警告。
在一个实施例中,所述获取所述飞行路线上的障碍物的高度,包括:
通过三维地图获取所述飞行路线上障碍物的高度。
在一个实施例中,所述基于所述起点和所述终点确定所述无人飞行器的飞行路线,包括:
获取至少一个路径规划标准;
按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
在一个实施例中,所述至少一个路径规划标准包括以下标准中的至少一个:
能量最省标准、飞行速度最快标准、飞行安全程度最高标准以及避开特殊飞行区域标准。
在一个实施例中,所述至少一个路径规划标准包括避开特殊飞行区域标准。
在一个实施例中,所述特殊飞行区域包括以下区域中的任意一种:
禁飞区域、限高区域以及影响所述无人飞行器的飞行任务的区域。
在一个实施例中,所述判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度,包括:
判断所述飞行路线上是否存在限高区;
若是,则判断所述限高区的高度是否高于所述飞行路线上的障碍物的最高高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在一个实施例中,所述判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度,包括:
判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在一个实施例中,所述无人飞行器飞行的最大高度由所述无人飞行器的动力装置所提供的升力决定。
在一个实施例中,所述方法还包括:
若所述无人飞行器能够飞行的高度小于所述障碍物的高度,则所述无人飞行器从侧面绕开所述障碍物飞行。
在一个实施例中,所述障碍物包括以下中的至少一种:
建筑物、山体、树木、森林、信号塔。
第二方面,本发明实施例还提供了一种无人飞行器路径规划装置,包括:
确定模块,用于确定所述无人飞行器飞行的起点和终点;以及
用于基于所述起点和终点确定所述无人飞行器的飞行路线;
获取模块,用于获取所述飞行路线上的障碍物的高度;
判断模块,用于判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;以及
控制模块,用于控制所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。
在一个实施例中,所述确定模块具体用于:
获取所述无人飞行器的飞行地图;
获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
在一个实施例中,所述确定模块用于:
获取所述用户在所述飞行地图上描画的位于所述起点和所述终点之间的飞行轨迹;
根据所述起点、所述终点和所述飞行轨迹确定所述飞行路线。
在一个实施例中,所述确定模块用于:
获取所述用户在所述飞行地图上选取的位于所述起点和所述终点之间的至少一个航点;
根据所述起点、所述终点以及所述至少一个航点确定所述飞行路线。
在一个实施例中,所述判断模块还用于:
判断所述飞行路线上是否存在特殊飞行区域;
若存在,则所述控制模块控制所述无人飞行器绕开所述特殊飞行区域飞行。
在一个实施例中,所述获取模块还用于获取所述特殊飞行区域的飞行高度;所述控制模块用于控制所述无人飞行器以高于或低于所述特殊飞行区域的高度飞行。
在一个实施例中,所述获取模块还用于获取所述特殊飞行区域的边界;所述控制模块用于控制所述无人飞行器绕开所述特殊飞行区域的边界飞行。
在一个实施例中,若所述判断模块判断所述飞行路线上存在特殊飞行区域,则向控制终端发送提示警告。
在一个实施例中,所述获取模块通过三维地图获取所述飞行路线上障碍物的高度信息。
在一个实施例中,确定模块用于:
获取至少一个路径规划标准;
按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
在一个实施例中,所述至少一个路径规划标准包括以下标准中的至少一个:
能量最省标准、飞行速度最快标准、飞行安全程度最高标准以及避开特殊飞行区域标准。
在一个实施例中,所述至少一个路径规划标准包括避开特殊飞行区域标准。
在一个实施例中,所述特殊飞行区域包括以下区域中的任意一种:
禁飞区域、限高区域以及影响所述无人飞行器的飞行任务的区域。
在一个实施例中,所述判断模块具体用于:
判断所述飞行路线上是否存在限高区;
若是,则判断所述限高区的高度是否高于所述飞行路线上的障碍物的最高高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在一个实施例中,所述判断模块具体用于:
判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在一个实施例中,所述无人飞行器飞行的最大高度由所述无人飞行器的动力装置所提供的升力决定。
在一个实施例中,若所述判断模块判断所述无人飞行器能够飞行的高度小于所述障碍物的高度,则所述控制模块控制所述无人飞行器从侧面绕开所述障碍物飞行。
在一个实施例中,所述障碍物包括以下中的至少一种:
建筑物、山体、树木、森林、信号塔。
第三方面,本发明实施例还提供了一种飞行管理方法,该方法包括:
获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线;
确定所述至少两个无人飞行器的飞行路线上存在干涉区域;
判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值;
若是,则对所述至少两个无人飞行器进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
在一个实施例中,所述获取所述管理范围内至少两个无人飞行器的飞行路线,包括:
接收所述至少两个无人飞行器中每个无人飞行器发送的飞行路线。
在一个实施例中,所述方法还包括:
接收所述至少两个无人飞行器发送的信号;
获取对所述至少两个无人飞行器的控制权限。
在一个实施例中,所述接收所述至少两个无人飞行器发送的信号,包括:
接收所述至少两个无人飞行器在离地高度大于预设高度阈值时发送的信号。
在一个实施例中,所述对至少两个无人飞行器进行协调控制,包括:
对所述至少两个无人飞行器的速度大小进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在一个实施例中,所述对至少两个无人飞行器进行协调控制,包括:
对所述至少两个无人飞行器的速度方向进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在一个实施例中,所述飞行状态信息包括位置信息和速度信息。
第四方面,本发明实施例还提供了一种飞行管理装置,该装置包括:
获取模块,用于获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线;
确定模块,用于确定所述至少两个无人飞行器的飞行路线上存在干涉区域;
判断模块,用于判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值;以及
控制模块,用于对所述至少两个无人飞行器进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
在一个实施例中,所述获取模块还包括接收模块,所述接收模块用于接收所述至少两个无人飞行器中每个无人飞行器发送的飞行路线。
在一个实施例中,所述获取模块还用于:
接收所述至少两个无人飞行器发送的信号;
获取对所述至少两个无人飞行器的控制权限。
在一个实施例中,所述获取模块具体用于:
接收所述至少两个无人飞行器在离地高度大于预设高度阈值时发送的信号。
在一个实施例中,所述控制模块用于:
对所述至少两个无人飞行器的速度大小进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在一个实施例中,所述控制模块用于:
对所述至少两个无人飞行器的速度方向进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在一个实施例中,所述飞行状态信息包括位置信息和速度信息。
第五方面,本发明实施例还提供了一种无人飞行器,包括:
壳体;
与所述壳体连接的机臂;
设置在所述壳体或者机臂内的处理器;以及,
与所述处理器通信连接的存储器,所述存储器设在所述壳体或者机臂内;其中,
所述存储器存储有可被所述处理器执行的指令,所述处理器执行所述指令时,实现如上所述的无人飞行器的路径规划方法。
第六方面,本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人飞行器执行时,使所述无人飞行器执行如上所述的无人机飞行器的路径规划方法。
第七方面,本发明实施例还提供了一种飞行管理装置,包括:
主体;
设置在所述主体上的显示屏幕;
设置在所述主体内的处理器;
与所述处理器通信连接的收发器;以及
与所述处理器通信连接的存储器;其中,
所述存储器存储有可被所述处理器执行的指令,所述处理器执行所述指令时,实现如上所述的飞行管理方法。
第八方面,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被飞行管理系统执行时,使所述飞行管理系统执行如上所述的飞行管理方法。
本发明实施例提供的无人飞行器路径规划方法、装置和飞行管理方法、装置以及无人飞行器、飞行管理系统,通过获取无人飞行器飞行路线上的障碍物高度信息,并判断无人飞行器能够飞行的高度是否大于障碍物的高度,如果大于障碍物的高度,则使无人飞行器按照飞行路线以高于障碍物的高度飞行。从而实现了对无人飞行器的精确控制。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例一种无人飞行器路径规划方法和装置、或一种飞行管理方法或装置的应用场景示意图;
图2是本发明一种无人飞行器路径规划方法其中一实施例的流程图;
图3是发明图2所示的无人飞行器路径规划方法的中确定飞行路线的步骤其中一个实施例的流程图;
图4是发明图2所示的无人飞行器路径规划方法中确定飞行路线的步骤另一实施例的流程图;
图5是发明图2所示的无人机飞行器路径规划方法中躲避特殊飞行区域的步骤其中一实施例的流程图;
图6是本发明一种无人飞行器路径规划装置其中一实施例的结构框图;
图7是本发明一种飞行管理方法其中一实施例的流程图;
图8是本发明一种飞行管理装置的其中一实施例的结构框图;
图9是本发明一种飞行管理装置另一实施例的结构框图;
图10是本发明一种无人飞行器其中一实施例的硬件结构示意图;以及
图11是本发明一种飞行管理装置其中一实施例的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的一种无人飞行器路径规划方法及其装置、一种飞行管理方法及其装置,适用于图1所示的应用场景。图1所示的应用场景中,包括无人飞行器10、电子设备20、用户30和智能终端40。无人飞行器10可以是任何合适类型的高空或者低空飞行器,包括典型的四轴飞行器、可悬停的遥控直升机或者具有一定移动速度的固定翼飞行器等。电子设备20可以是例如大型服务器、个人电脑、手提电脑、智能手机、平板电脑等。智能终端40例如是遥控器、智能手机、平板电脑等。
用户30可以通过任何合适类型的、一种或者多种输入设备与智能终端40交互,这些输入设备可以是鼠标、按键、触摸屏等。无人飞行器10和智能终端40之间、智能终端40和电子设备20之间,无人飞行器10和电子设备20之间,可以通过分别设置在各自内部的无线通信模块(例如信号接收器、信号发送器等)建立通信连接,上传或者下发数据/指令。
需要说明的是,在实际应用过程中,该应用场景还可以包括更多的无人飞行器10、电子设备20和智能终端40。
用户30可以通过输入设备向智能终端40输入无人飞行器10的起点和终点,智能终端40将该起点和终点发送给电子设备20或无人飞行器10。电子设备20、智能终端40或无人飞行器10根据该起点和终点确定无人飞行器10的飞行路线,并获取飞行路线上障碍物(例如建筑物、山体、树木、森林和信号塔等)的高度,然后判断无人飞行器10能够飞行的高度是否大于障碍物的高度,如果大于障碍物的高度,则使无人飞行器10按照飞行路线以高于障碍物的高度飞行。在本发明的一实施例中,飞行路线上的障碍物的高度可以从三维地图中获取。三维地图可以事先加载在电子设备20、智能终端40或者无人飞行器10中,电子设备20或智能终端40也可以实时通过网络获取三维地图。
电子设备20还可以获取多个无人飞行器10的飞行状态信息(例如位置信息和速度信息等)和飞行路线,并确认多个无人飞行器10飞行是否干涉,如果干涉,则对多个无人飞行器10进行协调控制,以避免发生无人飞行器10碰撞事件。
本发明实施例提供了一种无人飞行器路径规划方法,图1中的电子设备20、智能终端40和无人飞行器10均可以执行该方法,如图2所示,所述规划方法包括:
101:确定无人飞行器10飞行的起点和终点。
其中,所述起点和终点可以由用户30通过输入设备(例如键盘、触摸屏等)输入智能终端40,然后由智能终端40发送给电子设备20或无人飞行器10。
102:基于所述起点和所述终点确定无人飞行器10的飞行路线。
在一些实施例中,无人飞行器10的飞行路线还可以是用户设置的,如图3所示,基于所述起点和所述终点确定所述飞行器的飞行路线进一步包括:
1021a:获取所述无人飞行器的飞行地图。
在本发明的一实施例中,该飞行地图可以为三维地图,三维地图可以是事先加载在电子设备20、智能终端40或无人飞行器10上的,也可以是电子设备20或智能终端40实时从网络获取的。三维地图可以是某一城市或者某一地区的地图,其包括各个障碍物(即建筑物)的三维信息,所述三维信息包括位置信息(例如经度、纬度等水平坐标)、高度信息以及水平投影信息(例如长度、宽度等)。
1022a:获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
在本发明的一实施例中,可以在智能终端40的屏幕上向用户30显示所述起点、所述终点和所述飞行地图,用户30可以在飞行地图上描画起点和终点之间的至少一个航点(waypoint),或者在飞行地图上描画起点和终点之间的飞行轨迹。智能终端40将用户在显示屏幕上描绘的飞行轨迹中的各个点,或者各个飞行航点的屏幕位置转换成飞行地图中的坐标,然后根据飞行地图中的各个坐标点形成无人飞行器10的飞行路线。无人飞行器10或电子设备20可以通过智能终端40获得该飞行路线。
在其他可能的实施例中,无人飞行器10的飞行路线可以是电子设备20、智能终端40或无人飞行器10自主规划的,如图4所示,基于所述起点和所述终点确定所述飞行器的飞行路线包括:
1021b:获取至少一个路径规划标准。
1022b:按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
在本发明的一实施例中,电子设备20、智能终端40或无人飞行器10可以基于三维地图规划无人飞行器10的飞行路线,换言之,基于所述起点和终点,利用三维空间的路径规划方法,按照各路径规划标准,为无人飞行器10规划出各路径规划标准下的飞行路线,以使规划的飞行路线满足相应的路径规划标准。
其中,路径规划标准包括能量最省标准、飞行速度最快标准、飞行安全程度最高标准和避开特殊飞行区域标准中的至少一个。其中特殊飞行区域包括下述区域中的至少一个或至少两个的组合:禁飞区域、限高区域、飞行噪声敏感区以及影响无人飞行器10飞行任务的区域(例如强电磁区)。可以理解的,能量最省标准、飞行速度最快标准和飞行安全程度最高标准等这样的排他标准中只能出现一个,而像躲避特殊飞行区域标准这样的不排他标准则可以和其他标准组合。例如,电子设备20、智能终端40或无人飞行器10可以只基于能量最省标准为无人飞行器10规划飞行路线,也可以只基于飞行速度最快标准为无人飞行器10规划飞行路线,也可以同时基于能量最省标准和躲避特殊飞行区域标准来为无人飞行器10规划飞行路线。
各种标准的选择可根据无人飞行器10的实际使用情况设置,可以由用户30在智能终端40上进行设置,然后智能终端40将设置结果发送给电子设备20或无人飞行器10。例如可以在智能终端40上只设置飞行速度最快标准,也可以同时设置能量最省标准、飞行速度最快标准和躲避特殊飞行区域标准的组合以及飞行速度最快标准三个路线规划标准。在包括上述三个路线规划标准的场合,电子设备20、智能终端40或无人飞行器10分别按照上述三个路线规划标准,为无人飞行器10规划出三条飞行路线,可以由用户30从中选择一条飞行路线作为无人飞行器10的飞行路线。
可选的,上述自主设计飞行路线与用户设计飞行路线的两种模式可以由用户30自由在智能终端40上选择其中一种模式。
103:获取所述飞行路线上的障碍物的高度。
在本发明的一实施例中,可以通过三维地图获取所述飞行路线上障碍物的高度,所述障碍物可以为一个或者多个。
104:判断所述无人飞行器10能够飞行的高度是否大于所述障碍物的高度。
由于当前许多城市对无人飞行器10的飞行高度提出限制要求,如果越过障碍物的安全高度大于限高高度,无人飞行器10将无法完成飞行。因此,判断无人飞行器10能够飞行的高度是否大于所述障碍物的高度,需判断限高高度是否大于各障碍物的最大高度,具体的,先判断飞行路线上是否存在限高区,如果存在限高区域,则判断所述限高区的高度是否高于飞行路线上的障碍物的最高高度,如果高于最高高度,则确定无人飞行器10能够飞行的高度大于所述障碍物的高度。
可选的,如果障碍物的高度较高还需进一步判断无人飞行器的动力是否能够支持无人飞行器10以高于障碍物的高度飞行。即判断无人飞行器10能够飞行的高度是否大于所述障碍物的高度,还包括:
判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
其中,所述无人飞行器飞行的最大高度由无人飞行器10的动力装置所提供的升力和/或电池的剩余电量决定。
105:如果无人飞行器10能够飞行的高度大于所述障碍物的高度,则所述无人飞行器10按照所述飞行路线以高于所述障碍物的高度飞行。
若无人飞行器10能够飞行的高度小于障碍物的高度,则无人飞行器10从侧面绕开所述障碍物飞行。
本发明实施例提供通过获取无人飞行器飞行路线上的障碍物高度信息,并判断无人飞行器能够飞行的高度是否大于障碍物的高度,如果大于障碍物的高度,则使无人飞行器按照飞行路线以高于障碍物的高度飞行。从而实现了对无人飞行器的精细控制。
需要说明的是,该方法除适用于无人飞行器10自主飞行的场合外,也同样适用于操控飞行的场合。该方法尤其适用于无人飞行器10需要近地飞行的场合,也同样适用于高空飞行的场合。
在飞行路线由用户30设置的场合,由于用户30在规划飞行路线时可能并不会考虑特殊飞行区域,因此用户30规划的飞行路线可能会经过一些特殊飞行区域。因此,在其他可能的实施例中,如图5所示,所述方法还包括:
107:判断所述飞行路线上是否存在特殊飞行区域。
其中,特殊飞行区域包含以下区域中的至少一种或至少两种的组合:
禁飞区域、限高区域以及影响所述无人飞行器飞行任务的区域(例如强电磁区域)等。
108:若存在特殊飞行区域,则无人飞行器10绕开所述特殊飞行区域飞行。
在本发明的一实施例中,当特殊飞行区域为禁飞区域的场合,如果禁飞区域为低空区域,可以获取禁飞区域的高度,以高于禁飞区域的高度飞行,如果禁飞区域为高空区域,则以低于禁飞区域的高度飞行。在本发明的其他实施例中,无人飞行器10还可以获取所述特殊飞行区域的边界,然后绕开所述特殊飞行区域的边界飞行。
在本发明的一实施例中,若所述飞行路线上存在特殊飞行区域,则无人飞行器10向智能终端40发送提示警告或智能终端40主动向用户30显示提示警告,以提醒用户30飞行路线上存在特殊飞行区域,用户30可以选择重新规划或选择其他飞行路径绕开特殊飞行区域,如果提示警告的次数超过预设次数或者持续时间达到预设时间阀值,则无人飞行器10自动调整飞行策略避开所述特殊飞行区域。
本发明实施例还提供了一种无人飞行器路径规划装置,用于图1中的电子设备20、智能终端40或无人飞行器10,如图6所示,所述装置200包括:
确定模块201,用于确定所述无人飞行器飞行的起点和终点;以及
用于基于所述起点和终点确定所述无人飞行器的飞行路线;
获取模块202,用于获取所述飞行路线上的障碍物的高度;
判断模块203,用于判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;以及
控制模块204,用于控制所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。
其中,所述装置用于无人飞行器时,上述确定模块201、获取模块202和判断模块203可以是无人飞行器中的处理器,控制模块204可以是无人飞行器的飞控芯片。
本发明实施例提供通过获取无人飞行器飞行路线上的障碍物高度信息,并判断无人飞行器能够飞行的高度是否大于障碍物的高度,如果大于障碍物的高度,则使无人飞行器按照飞行路线以高于障碍物的高度飞行。从而实现了对无人飞行器的精确控制。
在装置200的某些实施例中,确定模块201具体用于:
获取所述无人飞行器的飞行地图;
获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
在装置200的某些实施例中,确定模块201用于:
获取所述用户在所述飞行地图上描画的位于所述起点和所述终点之间的飞行轨迹;
根据所述起点、所述终点和所述飞行轨迹确定所述飞行路线。
在装置200的某些实施例中,确定模块201用于:
获取所述用户在所述飞行地图上选取的位于所述起点和所述终点之间的至少一个航点;
根据所述起点、所述终点以及所述至少一个航点确定所述飞行路线。
在装置200的某些实施例中,判断模块203还用于判断所述飞行路线上是否存在特殊飞行区域;
若存在,则所述控制模块204控制所述无人飞行器绕开所述特殊飞行区域飞行。
在装置200的某些实施例中,获取模块202还用于获取所述特殊飞行区域的飞行高度;控制模块204用于控制所述无人飞行器以高于或低于所述特殊飞行区域的高度飞行。
在装置200的某些实施例中,获取模块202还用于获取所述特殊飞行区域的边界;控制模块204用于控制所述无人飞行器绕开所述特殊飞行区域的边界飞行。
在装置200的某些实施例中,若所述判断模块203判断所述飞行路线上存在特殊飞行区域,则向控制终端发送提示警告。
在装置200的某些实施例中,所述获取模块202通过三维地图获取所述飞行路线上障碍物的高度信息。
在装置200的某些实施例中,确定模块201用于:
获取至少一个路径规划标准;
按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
在装置200的某些实施例中,所述至少一个路径规划标准包括以下标准中的至少一个:
能量最省标准、飞行速度最快标准、飞行安全程度最高标准以及避开特殊飞行区域标准。
在装置200的某些实施例中,所述至少一个路径规划标准包括避开特殊飞行区域标准。
在装置200的某些实施例中,所述特殊飞行区域包括以下区域中的任意一种:
禁飞区域、限高区域以及影响所述无人飞行器的飞行任务的区域。
在装置200的某些实施例中,所述判断模块203具体用于:
判断所述飞行路线上是否存在限高区;
若是,则判断所述限高区的高度是否高于所述飞行路线上的障碍物的最高高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在装置200的某些实施例中,所述判断模块203具体用于:
判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
在装置200的某些实施例中,所述无人飞行器飞行的最大高度由所述无人飞行器中动力装置所提供的升力决定。
在装置200的某些实施例中,若所述判断模块203判断所述无人飞行器能够飞行的高度小于所述障碍物的高度,则所述控制模块204控制所述无人飞行器从侧面绕开所述障碍物飞行。
在装置200的某些实施例中,所述障碍物包括以下中的至少一种:
建筑物、山体、树木、森林、信号塔。
有关该装置中各模块的详细描述可以参考前述的描述,在此不再赘述
本发明实施例还提供了一种飞行管理方法,所述管理方法可以由图1中的电子设备20执行,如图7所示,所述方法包括:
301:获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线。
在本发明的一实施例中,当无人飞行器10的离地高度大于预设高度阈值时自动进入电子设备20的管理范围。当无人飞行器10的离地高度大于预设高度阈值时发送信号给电子设备20,电子设备20接收到该信号后获得对无人飞行器10的控制权限。可以理解的,上述管理范围内的无人机飞行器需在硬件上支持被电子设备检测,一旦无人飞行器10达到一定离地高度,无人机飞行器10搭载的被检测模块功能自动开启,从而其自动进入电子设备20管理范围,在管理范围内,电子设备拥有对所有无人飞行器10的控制权限。
在本发明的一实施例中,无人飞行器10的飞行路线可以是按照本发明实施例中描述的无人飞行器路径规划方法规划的飞行路线。
电子设备20可以通过信号收发器接收无人飞行器10通过智能终端40发送的无人飞行器10的飞行状态信息和/或飞行路线,在一些实施例中,该飞行状态信息和/或飞行路线也可以是无人飞行器10直接发送给电子设备20的。其中,飞行状态信息包括无人飞行器10的位置信息和速度信息等,位置信息和速度信息可以通过无人飞行器10上设置的机载惯性设备获取。其中,无人飞行器10的位置信息包括水平坐标信息(经度、纬度等)和高度信息。飞行路线可以是无人飞行器10或智能终端40发送给电子设备20的,也可以是电子设备20根据无人飞行器10的飞行状态信息预测获得的。可选的,该飞行路线可以是电子设备20、无人飞行器10或智能终端40基于三维地图获得的。
302:确定所述至少两个无人飞行器的飞行路线上存在干涉区域。
即确定电子设备20监测的至少两个无人飞行器10中存在具有撞击风险的无人飞行器10。在本发明的一实施例中,电子设备20可以通过判断是否存在飞行路线相交,或者飞行路线接近的无人飞行器10来确定至少两个无人飞行器10中是否存在具有撞击风险的无人飞行器10。同时,也可以结合无人飞行器10的体积来确定每个无人飞行器10的安全距离(无人飞行器10的体积信息可以发送给电子设备20)。如果两个无人飞行器10的飞行路线的距离小于其中一个无人飞行器10的安全距离,则该两个无人飞行器10存在干涉区域,该干涉区域可以结合无人飞行器10的体积和飞行控制误差等因素来确定。
303:判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值。
如果存在干涉区域,则根据无人飞行器10的位置信息和速度信息,获得各个无人飞行器10沿着其飞行路线到达干涉区域的时间。如果各自到达的时间差比较接近,小于预设阈值,则该两个无人飞行器10存在撞击风险,即飞行互相干涉。该预设阈值为保证上述两个或者多个无人飞行器10不同时出现在上述干涉区域内的最小时间间隔。
304:若是,则对所述至少两个无人飞行器10进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
在本发明的一实施例中,对所述至少两个无人飞行器10进行协调控制,可以是对飞行互相干涉的两个或者两个以上无人飞行器10进行预警提示。如果无人飞行器10是由用户操纵的,可以提示用户小心操纵,提高安全飞行意识。如果预警没有起到作用,电子设备20还可以调整其中一架或者多架无人飞行器10的飞行速度或者飞行方向,使其到达干涉区域的时间差大于或者等于预设阈值,以避免撞机事件发生。电子设备20也可以不进行预警而直接调整无人飞行器10飞行速度或者飞行方向。其中,优先调整采用自主飞行模式的无人飞行器10的飞行速度或者飞行方向,因为飞行方向会改变无人飞行器10的飞行路线,所以优先调整无人飞行器10的飞行速度。
例如,如果飞行互相干涉的两个或者两个以上无人飞行器10均采用自主飞行模式,则可以同时控制上述两个或者两个以上无人飞行器10的飞行速度,使其到达干涉区域的时间差满足安全的预设阈值。如果飞行互相干涉的两个或者两个以上无人飞行器10中有的采用自主飞行模式,有的由用户30实时控制,则只调整自主飞行模式下的无人飞行器10的飞行速度。
本发明实施例能够在很大程度上避免无人飞行器10的撞机事件,提升了飞行器的飞行安全性。
需要说明的是,上述规划装置200可执行本发明实施例所提供的对应的规划方法,具备执行方法相应的功能模块和有益效果。未在规划装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的规划方法。
本发明实施例还提供了一种飞行管理装置,所述管理装置400用于图1中的电子设备20,如图8所示,所述管理装置400包括:
获取模块401,用于获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线;
确定模块402,用于确定所述至少两个无人飞行器的飞行路线上存在干涉区域;
判断模块403,用于判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值;以及
控制模块404,用于对所述至少两个无人飞行器进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
本发明实施例能够在很大程度上避免无人飞行器10的撞机事件,提升了飞行器的飞行安全性。
在管理装置400的某些实施例中,请参照图9,所述获取模块401还包括接收模块4011,所述接收模块4011用于接收所述至少两个无人飞行器中每个无人飞行器发送的飞行路线。
在管理装置400的某些实施例中,请参照图9,所述获取模块401包括预测模块4012,所述预测模块4012用于根据所述至少两个无人飞行器的飞行状态信息,预测所述至少两个无人飞行器中每个无人飞行器的飞行路线。
在管理装置400的某些实施例中,所述获取模块401还用于:
接收所述至少两个无人飞行器发送的信号;
获取对所述至少两个无人飞行器的控制权限。
在管理装置400的某些实施例中,所述获取模块401具体用于:
接收所述至少两个无人飞行器在离地高度大于预设高度阈值时发送的信号。
在管理装置400的某些实施例中,所述控制模块404用于:
对所述至少两个无人飞行器的速度大小进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在管理装置400的某些实施例中,所述控制模块404用于:
对所述至少两个无人飞行器的速度方向进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
在管理装置400的某些实施例中,所述飞行状态信息包括位置信息和速度信息。
需要说明的是,上述用于电子设备20的管理装置400可执行本发明实施例所提供的对应的管理方法,具备执行方法相应的功能模块和有益效果。未在管理装置实施例中详尽描述的技术细节,可参见本发明实施例所提供的管理方法。
图10是本发明实施例提供的无人飞行器10的硬件结构示意图,如图10所示,无人飞行器10包括:
壳体13;
与所述壳体连接的机臂14;
设置在所述壳体或者机臂内的处理器11;以及,
与所述处理器通信连接的存储器12,所述存储器12设在所述壳体13或者机臂14内。
其中,处理器11和存储器12可以通过总线或者其他方式连接。
存储器12作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的规划方法对应的程序指令/单元(例如,附图6所示的确定模块201、获取模块202、判断模块203和控制模块204)。处理器11通过运行存储在存储器12中的非易失性软件程序、指令以及单元,从而执行无人飞行器10的各种功能应用以及数据处理,即实现上述各实施例描述的无人飞行器路径规划方法。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据无人飞行器10使用所创建的数据等。此外,存储器12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器12可选包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。
所述一个或者多个模块存储在所述存储器12中,当被所述一个或者多个处理器11执行时,执行上述任意方法实施例中的规划方法,例如,执行以上描述的图2中的方法步骤101至步骤105、图3中的方法步骤1021a-1022a、图4中的方法步骤1021b-1022b、图5中的方法步骤107-108,实现图6中的模块201-204的功能。
上述无人飞行器10可执行本发明实施例所提供的规划方法,具备执行方法相应的功能模块和有益效果。未在飞行器10实施例中详尽描述的技术细节,可参见本发明实施例所提供的规划方法。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,执行以上描述的图2中的方法步骤101至步骤105、图3中的方法步骤1021a-1022a、图4中的方法步骤1021b-1022b、图5中的方法步骤107-108,实现图6中的模块201-204的功能。
图11是本发明实施例提供的飞行管理装置20(例如图1中的电子设备20)的硬件结构示意图,如图11所示,该飞行管理装置20包括:
主体;
设置在所述主体上的显示屏幕24;
设置在所述主体内的处理器21;
与所述处理器21通信连接的收发器23;以及
与所述处理器21通信连接的存储器22。
其中,处理器21和存储器22可以通过总线或者其他方式连接。
存储器22作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的管理方法对应的程序指令/单元(例如,附图8所示的获取模块401、确定模块402、判断模块403和控制模块404)。处理器21通过运行存储在存储器22中的非易失性软件程序、指令以及单元,从而执行飞行管理系统20的各种功能应用以及数据处理,即实现上述各实施例描述的飞行管理方法。
存储器22可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据飞行管理系统20使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器22可选包括相对于处理器21远程设置的存储器,这些远程存储器可以通过网络连接至飞行管理系统。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个单元存储在所述存储器22中,当被所述一个或者多个处理器21执行时,执行上述任意方法实施例中的管理方法,例如,执行以上描述的图7中的方法步骤301-304,实现图8中的模块401-404、图9中的模块401-404及4011-4012的功能。
上述飞行管理系统20可执行本发明实施例所提供的管理方法,具备执行方法相应的功能模块和有益效果。未在飞行管理系统20实施例中详尽描述的技术细节,可参见本发明实施例所提供的管理方法。
本发明实施例的飞行管理装置20以多种形式存在,包括但不限于:
 (1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,执行以上描述的图7中的方法步骤301-304,实现图8中的模块401-404、图9中的模块401-404及4011-4012的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM)或随机存储记忆体(Random Access Memory, RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (54)

  1. 一种无人飞行器路径规划方法,其特征在于,所述方法包括:
    确定所述无人飞行器飞行的起点和终点;
    基于所述起点和所述终点确定所述无人飞行器的飞行路线;
    获取所述飞行路线上的障碍物的高度;
    判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;
    若是,则所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述起点和所述终点确定所述无人飞行器的飞行路线,包括:
    获取所述无人飞行器的飞行地图;
    获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
  3. 根据权利要求2所述的方法,其特征在于,所述获取用户在所述飞行地图上依据所述起点和所述终点设计所述无人飞行器的飞行路线,包括:
    获取所述用户在所述飞行地图上描画的位于所述起点和所述终点之间的飞行轨迹;
    根据所述起点、所述终点和所述飞行轨迹确定所述飞行路线。
  4. 根据权利要求2所述的方法,其特征在于,所述获取用户在所述飞行地图上依据所述起点和所述信息设计所述无人飞行器的飞行路线,包括:
    获取所述用户在所述飞行地图上选取的位于所述起点和所述终点之间的至少一个航点;
    根据所述起点、所述终点以及所述至少一个航点确定所述飞行路线。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    判断所述飞行路线上是否存在特殊飞行区域;
    若存在,则所述无人飞行器绕开所述特殊飞行区域飞行。
  6. 根据权利要求5所述的方法,其特征在于,所述无人飞行器绕开所述特殊飞行区域飞行包括:
    获取所述特殊飞行区域的高度;
    所述无人飞行器以高于或低于所述特殊飞行区域的高度飞行。
  7. 根据权利要求5所述的方法,其特征在于,所述无人飞行器绕开所述特殊飞行区域飞行包括:
    获取所述特殊飞行区域的边界;
    所述无人飞行器绕开所述特殊飞行区域的边界飞行。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    若所述飞行路线上存在特殊飞行区域,则向控制终端发送提示警告。
  9. 根据权利要求1所述的方法,其特征在于,所述获取所述飞行路线上的障碍物的高度,包括:
    通过三维地图获取所述飞行路线上障碍物的高度。
  10. 根据权利要求1所述的方法,其特征在于,所述基于所述起点和所述终点确定所述无人飞行器的飞行路线,包括:
    获取至少一个路径规划标准;
    按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
  11. 根据权利要求10所述的方法,其特征在于,所述至少一个路径规划标准包括以下标准中的至少一个:
    能量最省标准、飞行速度最快标准、飞行安全程度最高标准以及避开特殊飞行区域标准。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个路径规划标准包括避开特殊飞行区域标准。
  13. 根据权利要求5-8,11-12中任一项所述的方法,其特征在于,所述特殊飞行区域包括以下区域中的任意一种:
    禁飞区域、限高区域以及影响所述无人飞行器的飞行任务的区域。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度,包括:
    判断所述飞行路线上是否存在限高区;
    若是,则判断所述限高区的高度是否高于所述飞行路线上的障碍物的最高高度;
    若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度,包括:
    判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
    若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
  16. 根据权利要求15所述的方法,其特征在于,所述无人飞行器飞行的最大高度由所述无人飞行器的动力装置所提供的升力决定。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述方法还包括:
    若所述无人飞行器能够飞行的高度小于所述障碍物的高度,则所述无人飞行器从侧面绕开所述障碍物飞行。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述障碍物包括以下中的至少一种:
    建筑物、山体、树木、森林、信号塔。
  19. 一种无人飞行器的路径规划装置,其特征在于,包括:
    确定模块,用于确定所述无人飞行器飞行的起点和终点;以及
    用于基于所述起点和终点确定所述无人飞行器的飞行路线;
    获取模块,用于获取所述飞行路线上的障碍物的高度;
    判断模块,用于判断所述无人飞行器能够飞行的高度是否大于所述障碍物的高度;以及
    控制模块,用于控制所述无人飞行器按照所述飞行路线以高于所述障碍物的高度飞行。
  20. 根据权利要求19所述的装置,其特征在于,所述确定模块具体用于:
    获取所述无人飞行器的飞行地图;
    获取用户在所述飞行地图上依据所述起点和所述终点设计的所述无人飞行器的飞行路线。
  21. 根据权利要求20所述的装置,其特征在于,所述确定模块用于:
    获取所述用户在所述飞行地图上描画的位于所述起点和所述终点之间的飞行轨迹;
    根据所述起点、所述终点和所述飞行轨迹确定所述飞行路线。
  22. 根据权利要求20所述的装置,其特征在于,所述确定模块用于:
    获取所述用户在所述飞行地图上选取的位于所述起点和所述终点之间的至少一个航点;
    根据所述起点、所述终点以及所述至少一个航点确定所述飞行路线。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述判断模块还用于判断所述飞行路线上是否存在特殊飞行区域;
    若存在,则所述控制模块控制所述无人飞行器绕开所述特殊飞行区域飞行。
  24. 根据权利要求23所述的装置,其特征在于,所述获取模块还用于获取所述特殊飞行区域的飞行高度;所述控制模块用于控制所述无人飞行器以高于或低于所述特殊飞行区域的高度飞行。
  25. 根据权利要求23所述的装置,其特征在于,所述获取模块还用于获取所述特殊飞行区域的边界;所述控制模块用于控制所述无人飞行器绕开所述特殊飞行区域的边界飞行。
  26. 根据权利要求23-25任一项所述的装置,其特征在于,若所述判断模块判断所述飞行路线上存在特殊飞行区域,则向控制终端发送提示警告。
  27. 根据权利要求19所述的装置,其特征在于,所述获取模块通过三维地图获取所述飞行路线上障碍物的高度信息。
  28. 根据权利要求19所述的装置,其特征在于,确定模块用于:
    获取至少一个路径规划标准;
    按照所述至少一个路径规划标准,基于所述起点和所述终点确定所述无人飞行器的飞行路线。
  29. 根据权利要求28所述的装置,其特征在于,所述至少一个路径规划标准包括以下标准中的至少一个:
    能量最省标准、飞行速度最快标准、飞行安全程度最高标准以及避开特殊飞行区域标准。
  30. 根据权利要求29所述的装置,其特征在于,所述至少一个路径规划标准包括避开特殊飞行区域标准。
  31. 根据权利要求23-26,29-30中任一项所述的装置,其特征在于,所述特殊飞行区域包括以下区域中的任意一种:
    禁飞区域、限高区域以及影响所述无人飞行器的飞行任务的区域。
  32. 根据权利要求19-31任一项所述的装置,其特征在于,所述判断模块具体用于:
    判断所述飞行路线上是否存在限高区;
    若是,则判断所述限高区的高度是否高于所述飞行路线上的障碍物的最高高度;
    若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
  33. 根据权利要求19-32任一项所述的装置,其特征在于,所述判断模块具体用于:
    判断所述无人飞行器飞行的最大高度是否大于所述障碍物的高度;
    若是,则确定所述无人飞行器能够飞行的高度大于所述障碍物的高度。
  34. 根据权利要求33所述的装置,其特征在于,所述无人飞行器飞行的最大高度由所述无人飞行器的动力装置所提供的升力决定。
  35. 根据权利要求19-34任一项所述的装置,其特征在于,
    若所述判断模块判断所述无人飞行器能够飞行的高度小于所述障碍物的高度,则所述控制模块控制所述无人飞行器从侧面绕开所述障碍物飞行。
  36. 根据权利要求19-35任一项所述的装置,其特征在于,所述障碍物包括以下中的至少一种:
    建筑物、山体、树木、森林、信号塔。
  37. 一种飞行管理方法,其特征在于,该方法包括:
    获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线;
    确定所述至少两个无人飞行器的飞行路线上存在干涉区域;
    判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值;
    若是,则对所述至少两个无人飞行器进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
  38. 根据权利要求37所述的方法,其特征在于,所述获取所述管理范围内至少两个无人飞行器的飞行路线,包括:
    接收所述至少两个无人飞行器中每个无人飞行器发送的飞行路线。
  39. 根据权利要求37-38任一项所述的方法,其特征在于,所述方法还包括:
    接收所述至少两个无人飞行器发送的信号;
    获取对所述至少两个无人飞行器的控制权限。
  40. 根据权利要求39所述的方法,其特征在于,所述接收所述至少两个无人飞行器发送的信号,包括:
    接收所述至少两个无人飞行器在离地高度大于预设高度阈值时发送的信号。
  41. 根据权利要求37-40任一项所述的方法,其特征在于,所述对至少两个无人飞行器进行协调控制,包括:
    对所述至少两个无人飞行器的速度大小进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
  42. 根据权利要求37-40任一项所述的方法,其特征在于,所述对至少两个无人飞行器进行协调控制,包括:
    对所述至少两个无人飞行器的速度方向进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
  43. 根据权利要求37-42任一项所述的方法,其特征在于,所述飞行状态信息包括位置信息和速度信息。
  44. 一种飞行管理装置,其特征在于,该装置包括:
    获取模块,用于获取管理范围内至少两个无人飞行器的飞行状态信息和飞行路线;
    确定模块,用于确定所述至少两个无人飞行器的飞行路线上存在干涉区域;
    判断模块,用于判断所述至少两个无人飞行器到达所述干涉区域的时间差是否小于预设阈值;以及
    控制模块,用于对所述至少两个无人飞行器进行协调控制,以避免所述至少两个无人飞行器到达所述干涉区域的时间差小于预设阈值。
  45. 根据权利要求44所述的装置,其特征在于,所述获取模块还包括接收模块,所述接收模块用于接收所述至少两个无人飞行器中每个无人飞行器发送的飞行路线。
  46. 根据权利要求44-45任一项所述的装置,其特征在于,所述获取模块还用于:
    接收所述至少两个无人飞行器发送的信号;
    获取对所述至少两个无人飞行器的控制权限。
  47. 根据权利要求46所述的装置,其特征在于,所述获取模块具体用于:
    接收所述至少两个无人飞行器在离地高度大于预设高度阈值时发送的信号。
  48. 根据权利要求44-47任一项所述的装置,其特征在于,所述控制模块用于:
    对所述至少两个无人飞行器的速度大小进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
  49. 根据权利要求44-47任一项所述的装置,其特征在于,所述控制模块用于:
    对所述至少两个无人飞行器的速度方向进行协调控制,以使所述至少两个无人飞行器到达所述干涉区域的时间差大于或者等于预设阈值。
  50. 根据权利要求44-49任一项所述的装置,其特征在于,所述飞行状态信息包括位置信息和速度信息。
  51. 一种无人飞行器,其特征在于,包括:
    壳体;
    与所述壳体连接的机臂;
    设置在所述壳体或者机臂内的处理器;以及,
    与所述处理器通信连接的存储器,所述存储器设在所述壳体或者机臂内;其中,
    所述存储器存储有可被所述处理器执行的指令,所述处理器执行所述指令时,实现如权利要求1-18任意一项所述的方法。
  52. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人飞行器执行时,使所述无人飞行器执行权利要求1-18任意一项所述的方法。
  53. 一种飞行管理装置,其特征在于,包括
    主体;
    设置在所述主体上的显示屏幕;
    设置在所述主体内的处理器;
    与所述处理器通信连接的收发器;以及
    与所述处理器通信连接的存储器;其中,
    所述存储器存储有可被所述处理器执行的指令,所述处理器执行所述指令时,实现如权利要求37-43任意一项所述的方法。
  54. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被飞行管理系统执行时,使所述飞行管理系统执行权利要求37-43任意一项所述的方法。
PCT/CN2017/118647 2017-12-26 2017-12-26 无人飞行器路径规划方法、装置和飞行管理方法、装置 WO2019127019A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17832182.4A EP3531222A4 (en) 2017-12-26 2017-12-26 PLANNING METHOD AND DEVICE FOR UNMANUFACTURED AIRCRAFT AND FLIGHT MANAGEMENT METHOD AND DEVICE
PCT/CN2017/118647 WO2019127019A1 (zh) 2017-12-26 2017-12-26 无人飞行器路径规划方法、装置和飞行管理方法、装置
CN201780002622.XA CN108351652A (zh) 2017-12-26 2017-12-26 无人飞行器路径规划方法、装置和飞行管理方法、装置
US15/886,316 US20190196507A1 (en) 2017-12-26 2018-02-01 Path planning method and apparatus for unmanned aerial vehicle and flight management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118647 WO2019127019A1 (zh) 2017-12-26 2017-12-26 无人飞行器路径规划方法、装置和飞行管理方法、装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/886,316 Continuation US20190196507A1 (en) 2017-12-26 2018-02-01 Path planning method and apparatus for unmanned aerial vehicle and flight management method and apparatus

Publications (2)

Publication Number Publication Date
WO2019127019A1 WO2019127019A1 (zh) 2019-07-04
WO2019127019A9 true WO2019127019A9 (zh) 2020-01-02

Family

ID=62960790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118647 WO2019127019A1 (zh) 2017-12-26 2017-12-26 无人飞行器路径规划方法、装置和飞行管理方法、装置

Country Status (4)

Country Link
US (1) US20190196507A1 (zh)
EP (1) EP3531222A4 (zh)
CN (1) CN108351652A (zh)
WO (1) WO2019127019A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435257B (zh) * 2019-01-14 2022-04-05 华为技术有限公司 一种移动路线确定方法及相关设备
CN109945867B (zh) * 2019-03-04 2021-02-19 中国科学院深圳先进技术研究院 无人机的路径规划方法、装置和计算机设备
CN110118557A (zh) * 2019-04-24 2019-08-13 深圳市道通智能航空技术有限公司 一种航线拼接方法、系统及用户终端
CN110108982A (zh) * 2019-04-30 2019-08-09 广州供电局有限公司 高压验电系统、方法以及装置
CN110113094B (zh) * 2019-05-09 2021-08-13 西安爱生技术集团公司 一种升空通信中继无人机通视计算方法
JP7293934B2 (ja) * 2019-07-17 2023-06-20 コベルコ建機株式会社 作業機械および作業機械支援サーバ
CN112309175A (zh) * 2019-07-29 2021-02-02 中国移动通信有限公司研究院 一种无人机飞行空间信息的指示方法及设备
CN111752297A (zh) * 2019-09-30 2020-10-09 广州极飞科技有限公司 无人机飞行控制方法及相关装置
CN110750106B (zh) * 2019-10-16 2023-06-02 深圳市道通智能航空技术股份有限公司 无人机的安全航线生成方法、装置、控制终端和无人机
CN110823223A (zh) * 2019-10-16 2020-02-21 中国人民解放军国防科技大学 一种无人机群的路径规划方法及装置
CN112189175A (zh) * 2019-10-22 2021-01-05 深圳市大疆创新科技有限公司 无人飞行器的防破解方法、用户终端以及无人飞行器
CN112937888B (zh) * 2019-12-10 2022-12-27 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
WO2022255508A1 (ko) * 2021-06-01 2022-12-08 주식회사 클로버스튜디오 드론 관제 시스템 및 그의 지능형 비행계획 수립방법
KR102266235B1 (ko) * 2020-03-02 2021-06-17 주식회사 클로버스튜디오 지능형 드론 비행계획 수립방법 및 이를 이용한 드론 관제 시스템
CN112382134B (zh) * 2020-04-26 2021-07-30 北京三快在线科技有限公司 生成飞行路径的方法、装置、存储介质和电子设备
CN113874804A (zh) * 2020-05-26 2021-12-31 深圳市大疆创新科技有限公司 无人飞行器的限高方法、装置、无人飞行器及存储介质
CN112076467B (zh) * 2020-09-17 2023-03-10 腾讯科技(深圳)有限公司 控制虚拟对象使用虚拟道具的方法、装置、终端及介质
CN112357100B (zh) * 2020-10-27 2022-06-28 苏州臻迪智能科技有限公司 一种显示障碍物信息的方法、装置和计算机可读存储介质
CN112650276B (zh) * 2020-12-01 2023-04-07 一飞智控(天津)科技有限公司 整体返航路径规划方法、规划系统、储存介质及无人机
CN114578843A (zh) * 2020-12-01 2022-06-03 中移(成都)信息通信科技有限公司 飞行路径规划方法、装置、飞行器及存储介质
CN113406963A (zh) * 2020-12-21 2021-09-17 苏州流昴飞行器技术有限公司 一种基于区块链的无人机航线管理系统
CN112783198B (zh) * 2020-12-23 2022-07-29 武汉量宇智能科技有限公司 一种飞行器控制起点的判断方法
CN112904896B (zh) * 2021-01-21 2022-11-04 中国南方电网有限责任公司超高压输电公司柳州局 一种无人机自主驾驶航线复用方法
CN112947515B (zh) * 2021-02-02 2022-07-26 中国民用航空飞行学院 基于优化巡航高度层的飞行器城市空中交通能耗控制方法
CN113064447B (zh) * 2021-03-19 2023-02-28 深圳市道通智能航空技术股份有限公司 安全检测方法、装置、系统、无人飞行器及其控制设备
CN113589838B (zh) * 2021-05-31 2023-08-01 南京航空航天大学 一种基于圆柱位置离散化的三维轨迹调度方法
CN113504791B (zh) * 2021-07-08 2022-06-14 中国南方电网有限责任公司超高压输电公司大理局 一种无人机飞行路线的确定方法及装置
CN113721653B (zh) * 2021-08-09 2024-01-19 陕西工业职业技术学院 一种飞行器航迹实时规划系统
CN114550508A (zh) * 2022-02-10 2022-05-27 北方天途航空技术发展(北京)有限公司 训练机智能位置管理系统、方法、装置及存储介质
CN115061498A (zh) * 2022-07-11 2022-09-16 北京中航世科电子技术有限公司 基于地理信息的实时领航方法、系统、设备及存储介质
CN115793715B (zh) * 2023-01-05 2023-04-28 雄安雄创数字技术有限公司 一种无人机辅助飞行方法、系统、装置及存储介质
CN116723487B (zh) * 2023-08-11 2023-11-07 四川腾盾科技有限公司 基于随机运动模型及拓扑预测的抗干扰群拓扑优化方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167126B2 (en) * 2004-09-01 2007-01-23 The Boeing Company Radar system and method for determining the height of an object
CN101118622A (zh) * 2007-05-25 2008-02-06 清华大学 在城市环境下微型飞行器三维轨迹仿真方法
US8580902B2 (en) * 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
FR2990290B1 (fr) * 2012-05-02 2015-04-03 Sagem Defense Securite Procede d'evitement d'un aeronef et drone equipe d'un systeme mettant en oeuvre ce procede
CN103116360B (zh) * 2013-01-31 2015-06-17 南京航空航天大学 一种无人机避障控制方法
CA3161755A1 (en) * 2014-01-10 2015-07-16 Pictometry International Corp. Unmanned aircraft structure evaluation system and method
CN103697896A (zh) * 2014-01-13 2014-04-02 西安电子科技大学 一种无人机路径规划方法
US9334052B2 (en) * 2014-05-20 2016-05-10 Verizon Patent And Licensing Inc. Unmanned aerial vehicle flight path determination, optimization, and management
CN108132678B (zh) * 2014-09-15 2021-06-04 深圳市大疆创新科技有限公司 一种飞行器的飞行控制方法及相关装置
CN104597910B (zh) * 2014-11-27 2017-11-07 中国人民解放军国防科学技术大学 一种基于瞬时碰撞点的无人机非协作式实时避障方法
US20160307447A1 (en) * 2015-02-13 2016-10-20 Unmanned Innovation, Inc. Unmanned aerial vehicle remote flight planning system
CN104808682B (zh) * 2015-03-10 2017-12-29 成都优艾维智能科技有限责任公司 小型旋翼无人机自主避障飞行控制方法
CN107430402B (zh) * 2015-03-31 2021-01-01 深圳市大疆创新科技有限公司 用于对地理围栏设备进行标识和认证的系统和方法
CN104807463B (zh) * 2015-04-13 2017-08-25 广东欧珀移动通信有限公司 一种路径规划的方法及装置
US9965964B2 (en) * 2015-08-11 2018-05-08 Here Global B.V. Multi-dimensional map
US20170103659A1 (en) * 2015-10-10 2017-04-13 Xin Jin Method and system for implementing and enforcing a no-fly zone or prohibitive zone for drones and unmanned vehicles
CN105388909A (zh) * 2015-12-11 2016-03-09 谭圆圆 一种航线规划方法及设备
CN107368084A (zh) * 2016-05-11 2017-11-21 松下电器(美国)知识产权公司 飞行控制方法及无人飞行器
CN106501829A (zh) * 2016-09-26 2017-03-15 北京百度网讯科技有限公司 一种无人机导航方法和装置
CN106292708A (zh) * 2016-10-09 2017-01-04 北京国泰北斗科技有限公司 无人机避障控制方法及装置
CN107278262B (zh) * 2016-11-14 2021-03-30 深圳市大疆创新科技有限公司 飞行轨迹的生成方法、控制装置及无人飞行器
CN107223199A (zh) * 2016-11-15 2017-09-29 深圳市大疆创新科技有限公司 基于三维地图的导航方法和设备
CN106959702A (zh) * 2017-05-23 2017-07-18 广东容祺智能科技有限公司 一种无人机自主避让方法及系统
CN107314772B (zh) * 2017-07-25 2020-05-15 哈尔滨工业大学(威海) 一种无人机自学习航点轨迹飞行方法及其系统

Also Published As

Publication number Publication date
WO2019127019A1 (zh) 2019-07-04
CN108351652A (zh) 2018-07-31
EP3531222A1 (en) 2019-08-28
EP3531222A4 (en) 2019-08-28
US20190196507A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019127019A9 (zh) 无人飞行器路径规划方法、装置和飞行管理方法、装置
JP7465615B2 (ja) 航空機のスマート着陸
US11897607B2 (en) Unmanned aerial vehicle beyond visual line of sight control
US10671072B2 (en) Drone-relative geofence
US20200019189A1 (en) Systems and methods for operating unmanned aerial vehicle
KR101990886B1 (ko) 빅데이터 기반 자율 비행 드론 시스템 및 그 자율 비행 방법
EP3640921B1 (en) Adaptive sense and avoid system
US9581999B2 (en) Property preview drone system and method
US20180046177A1 (en) Motion Sensing Flight Control System Based on Smart Terminal and Terminal Equipment
WO2018218516A1 (zh) 无人机返航路径规划方法及装置
KR101117207B1 (ko) 스마트폰을 이용한 무인비행체 자동 및 수동 조종시스템
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
US20180025649A1 (en) Unmanned aerial vehicle privacy controls
WO2016138687A1 (zh) 多旋翼飞行器的控制系统、终端及机载飞控系统
CN105571588A (zh) 一种无人机三维空中航路地图构建及其航路显示方法
KR102096262B1 (ko) 무인 항공기의 비행 시뮬레이션 장치 및 이를 이용한 무인 항공기 비행 시뮬레이션 시스템
US10464669B2 (en) Unmanned aerial vehicle collision avoidance system
US20210325503A1 (en) Relay point generation method and apparatus, and unmanned aerial vehicle
CN106483980A (zh) 一种无人机跟随飞行的控制方法、装置及系统
US20210034052A1 (en) Information processing device, instruction method for prompting information, program, and recording medium
KR101788721B1 (ko) 무선통신망 기반의 무인비행체 자동운항 운영 방법 및 시스템
US20220392353A1 (en) Unmanned aerial vehicle privacy controls
CN108646781A (zh) 无人机控制方法、多旋翼的无人机及计算机可读存储介质
US20190317529A1 (en) Virtual force system for a drone
JP6891950B2 (ja) 装置、システム、方法、及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017832182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017832182

Country of ref document: EP

Effective date: 20180320

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE