WO2019124452A1 - Photosensitive resin laminate - Google Patents

Photosensitive resin laminate Download PDF

Info

Publication number
WO2019124452A1
WO2019124452A1 PCT/JP2018/046833 JP2018046833W WO2019124452A1 WO 2019124452 A1 WO2019124452 A1 WO 2019124452A1 JP 2018046833 W JP2018046833 W JP 2018046833W WO 2019124452 A1 WO2019124452 A1 WO 2019124452A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
support film
fine particles
photosensitive resin
less
Prior art date
Application number
PCT/JP2018/046833
Other languages
French (fr)
Japanese (ja)
Inventor
純 宮崎
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019560540A priority Critical patent/JP7068340B2/en
Priority to CN201880081747.0A priority patent/CN111492309B/en
Priority to KR1020207014783A priority patent/KR102471794B1/en
Priority to MYPI2020002762A priority patent/MY192613A/en
Publication of WO2019124452A1 publication Critical patent/WO2019124452A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a photosensitive resin laminate.
  • a printed wiring board or the like is used in electronic devices such as personal computers and mobile phones in order to mount components, semiconductors and the like.
  • a photosensitive resin composition layer is laminated on a support film, and a protective film is laminated on the photosensitive resin composition layer as required, as a resist for manufacturing printed wiring boards and the like.
  • Resin laminates so-called dry film photoresists (hereinafter sometimes referred to as DF) are used.
  • DF dry film photoresists
  • an alkali developing type using a weak alkaline aqueous solution as a developer is generally used. In order to manufacture a printed wiring board etc. using DF, it goes through the following processes, for example.
  • the protective film is first peeled off. Thereafter, DF is laminated on a substrate for producing a permanent circuit such as a copper-clad laminate or a flexible substrate using a laminator or the like, and exposure is performed through a wiring pattern mask film or the like. Next, the support film is peeled if necessary, and the photosensitive resin composition layer of the uncured portion (for example, the unexposed portion in the case of a negative type) is dissolved or dispersed and removed by a developer, and a cured resist pattern (described below) , Sometimes referred to as a resist pattern).
  • a photosensitive resin composition layer of the uncured portion for example, the unexposed portion in the case of a negative type
  • the process of forming a circuit can be roughly divided into two methods.
  • the first method is a method of etching away the substrate surface not covered by the resist pattern (for example, the copper surface of a copper clad laminate) and then removing the resist pattern portion with an alkaline aqueous solution stronger than the developer (etching method) It is.
  • the substrate surface is plated with copper, solder, nickel, tin or the like, and then the resist pattern portion is removed in the same manner as in the first method, and the substrate surface (for example, It is a method (plating method) of etching the copper surface of a copper clad laminate.
  • Cupric chloride, ferric chloride, a copper ammonia complex solution or the like is used for the etching.
  • miniaturization and weight reduction of electronic devices miniaturization and densification of printed wiring boards have progressed, and high resolution, good line width reproducibility, etc. are given in the above manufacturing steps.
  • High performance DF is required.
  • Patent Document 1 discloses a photosensitive element including a support film and a layer made of a photosensitive resin composition formed on the support film, wherein the haze of the support film is 0.01 to 2.0. % And the total number of particles having a diameter of 5 ⁇ m or more and aggregates having a diameter of 5 ⁇ m or more contained in the support film is 5 pieces / mm 2 or less, and the layer comprising the photosensitive resin composition is (A) Photosensitivity comprising a binder polymer, (B) a photopolymerizable compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator, and having a layer thickness of 3 to 30 ⁇ m consisting of the photosensitive resin composition. Sex elements have been described and are aimed at reducing defects in the resist.
  • Patent Document 1 focuses on the number of fine particles having a diameter of 5 ⁇ m or more in order to reduce defects in the resist.
  • optically abnormal regions for example, abnormal refractive index regions
  • Patent Document 1 focuses on the number of fine particles having a diameter of 5 ⁇ m or more, but does not focus on optically abnormal regions other than the fine particles in the support film. If there is a large number of optically abnormal areas in the support film, light scattering, diffraction, etc.
  • Patent Document 1 does not pay attention to the occurrence of such resist protrusions, and at present, no photosensitive resin laminate capable of avoiding the resist protrusions has been obtained.
  • One aspect of the present invention aims to solve the above-mentioned problems, to provide a photosensitive resin laminate that avoids resist protrusions and gives a good resist pattern shape.
  • a photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, and the photosensitive resin laminate includes a region in which the total area ratio of the optically abnormal region is 300 ppm or less when the support film is observed at an area of 13.5 mm 2 with an epi-illumination laser microscope .
  • a photosensitive resin laminate comprising a support film and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, In the support film, among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1,200 in number average
  • the photosensitive resin laminated body which has the area
  • the number of fine particles in contact with the area other than the fine particles of the optically abnormal area among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film is a number average
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 900
  • the photosensitive resin laminated body of the said aspect 6 which has the area
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 500
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 200
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 500
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 300
  • the photosensitive resin laminated body of the said aspect 11 which has the area
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 100
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 50
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 200
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 100
  • the photosensitive resin laminated body of the said aspect 15 which has the area
  • the number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 50
  • the number of the fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 of the support film is 10
  • the optically abnormal area includes an area different in orientation from the main area of the support film.
  • a photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
  • a resist pattern with a line width / space width of 8/8 ( ⁇ m) is formed on a substrate using a direct writing exposure machine, the surface on the photosensitive resin composition layer side of the support film is focused
  • the photosensitive resin laminated body whose difference of the line width and the line width at the time of shifting to the board
  • a photosensitive resin laminate can be provided which avoids resist protrusions and gives a good resist pattern shape.
  • FIG. 1 is a diagram for explaining a method of measuring the total area of the optical abnormality area.
  • FIG. 2 is a diagram for explaining measurement of the number of microparticles in the laser microscope mode.
  • FIG. 3 is a view for explaining measurement of the number of microparticles in the optical microscope mode.
  • the present embodiment provides a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film.
  • the total area ratio of the optically abnormal area is 300 ppm or less when the support film is observed with an area of 13.5 mm 2 with an incident-type laser microscope.
  • emitted from an exposure light source is preferable.
  • a support film for example, polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, A polystyrene film, a polyacrylonitrile film, a styrene copolymer film, a polyamide film, a cellulose derivative film etc. are mentioned. These films may be stretched if necessary.
  • the support film may have a single layer structure, or may have a multilayer structure in which resin layers formed of a plurality of compositions are laminated.
  • an antistatic layer may be present.
  • a resin layer containing fine particles is formed on one side A, and on the other side B
  • (2) contains a smaller amount of particles than surface A
  • (3) contains particles smaller than surface A
  • (4) does not contain particles.
  • the total area ratio of the optically abnormal area when observed in an area of 13.5 mm 2 with an incident type laser microscope is 300 ppm or less, more preferably 250 ppm or less, more preferably 200 ppm or less, more preferably Is 150 ppm or less, more preferably 100 ppm or less, more preferably 80 ppm or less, more preferably 70 ppm or less, more preferably 60 ppm or less, more preferably 50 ppm or less, more preferably 40 ppm or less, more preferably 20 ppm or less, more preferably 10 ppm It is below.
  • the resist projection causes a chipping of the wiring (especially in the semi-additive method (SAP)), and causes a deviation from the specified resistance value of the wiring and thus a reduction in the reliability of the circuit (that is, a disturbance of the signal (sinusoidal wave)). Avoiding resist protrusions is advantageous in obtaining good circuit reliability.
  • 1 ppm or more may be sufficient as the total area ratio of an optical abnormal area at the time of observing a support film by the incident type laser microscope in the area of 13.5 mm 2 , 5 ppm or more, 10 ppm or more, 20 ppm or more may be sufficient. .
  • the area of the optically abnormal area and the number of fine particles of the present disclosure mean the area of the optically abnormal area and the number of fine particles observed in the center 2 ⁇ m area of the thickness of the support film. It means the area of the optical anomaly area and the number of particles measured in the center 2 ⁇ m area of the thickness of the entire structure.
  • the optically abnormal region is a region having a different optical property from the main region of the support film (the resin constituting the support film) (specifically, the reflectance or the refractive index is different from the main region, or An area where optical phenomena such as scattering and diffraction occur more strongly than the main area.
  • the optically abnormal area may include both a light shielding portion by the fine particles and an optically abnormal area other than the fine particles (for example, an abnormal refractive index area having a refractive index different from that of the fine area and the main area of the support film).
  • an optically abnormal area are an area different in orientation and / or crystallinity from the main area of the support film, an area of air, an area of gas other than air, a hollow area where gas is substantially absent, and the like.
  • regions having stretching conditions different from other regions may occur in the vicinity of the particles because of the presence of the particles in the support film.
  • this region is different in orientation and / or crystallinity from other regions, it has a different refractive index from the other regions.
  • An optically abnormal region such as an abnormal refractive index region is often present in the vicinity of the fine particle, but is not necessarily present in the vicinity of the fine particle.
  • the optically abnormal area is different from the main area, for example, it looks bright because light is scattered and refracted between the optically abnormal area and the main area when viewed with an optical microscope etc. Show it.
  • the thickness center of the support film is 2 ⁇ m because in the present disclosure, the optical abnormality region is hard to be generated on the surface of the support film and is easily generated inside the support film due to the generation of the optical abnormality region (in particular, abnormal refractive index region). Measure the area of the optically abnormal area and the number of fine particles in the area.
  • thermocompression bonding As a method of reducing the optically abnormal area, a method of improving the affinity of the surface of the fine particle for the support film constituting material (for example, when the support film is a PET film, a method of coating the fine particle surface with an aromatic polymer), support After biaxial stretching of the film, a method of subjecting the film to thermocompression bonding at a temperature higher than the glass transition temperature of the support film again to eliminate the optically abnormal area (particularly, the abnormal refractive index area) is useful.
  • the temperature of the thermocompression bonding process may be, for example, about 180 to 250.degree.
  • the measurement method of the total area of the optically abnormal area is as follows.
  • a polarizing filter (OLS4000-QWP) is inserted above the objective lens of the incident type laser microscope (OLS-4100 manufactured by Olympus).
  • a support film sample cut to 30 mm ⁇ 30 mm is suctioned and fixed horizontally on a stage of a laser microscope using a porous adsorption plate (65F-HG manufactured by Universal Giken) and a vacuum pump.
  • the suction-fixed support film is observed with a laser light amount 60 (laser wavelength is 405 nm) of 50 times the objective lens.
  • the light amount difference between the pixel of the maximum light amount and the pixel of the minimum light amount in the measured image is divided into 4096 gradations (the maximum light amount is 4095 and the minimum light amount is 0).
  • a histogram horizontal axis: gradation of light quantity (minimum value 0, maximum value 4095), vertical axis: number of pixels) graphing the light quantity distribution of pixels in the image is created.
  • the measured image is binarized using the gradation obtained by adding 400 gradations from the value of the larger one of the two base values in the created histogram as the threshold value, and the areas of the pixels whose light amounts are larger than the threshold are summed.
  • the total area thereof is the total area of the optical anomaly region.
  • the ratio of the total area of the optical abnormality area to the measurement area is calculated.
  • FIG. 1 is a diagram for explaining a method of measuring the total area of the optical abnormality area.
  • An exemplary histogram is shown in FIG.
  • the points of ⁇ and ⁇ of the histogram are ⁇ pixels of the light amount ⁇ (normalized with 4096 gradations so that the value of the maximum light amount is 4095 and the value of the minimum light amount is 0) in the measurement screen Indicates that it exists.
  • a gray scale obtained by adding 400 gradations from the large bottom of the histogram (since one of the two bottoms is at the light quantity 0 because the light quantity 0 is also counted as the foot) is used as a threshold.
  • This white point corresponds to the light shielding portion, that is, the portion where the laser of the incident type laser microscope is reflected by the fine particles in the support film and other optically abnormal regions (for example, abnormal refractive index regions).
  • the above measurement is taken as a measurement by OLS-4100 made by Olympus in a laser microscope mode.
  • the method of measuring the number of microparticles is as follows. After measuring the total area of the optically abnormal area, the incident type laser microscope (OLS-4100 manufactured by Olympus) is switched to the optical microscope mode. Thereafter, the number of particles in contact with an optically abnormal area (for example, an abnormal refractive index area) other than the microparticles corresponding to the position of the light shielding portion (that is, the position of the microparticles) visually confirmed in the laser microscope mode in the measurement area 259 ⁇ m ⁇ 260 ⁇ m Measure the diameter.
  • OLS-4100 manufactured by Olympus
  • a portion counted as a white point (light shielding portion) in the laser microscope mode is visually observed in the optical microscope mode, and it is determined whether the white point is a particle in contact with an optical abnormality area (for example, an abnormal refractive index area) other than the microparticles.
  • an optical abnormality area for example, an abnormal refractive index area
  • Check and also measure the diameter visually. The same measurement is carried out at 200 measurement points (that is, carried out with an area of 0.259 mm ⁇ 0.26 mm ⁇ 200 13.5 mm 2 ), and the total number is calculated for each particle diameter. If the particle is not a perfect sphere, the longest width of the particle is taken as the particle diameter.
  • FIG. 2 is a diagram for explaining measurement of the number of particles in the laser microscope mode, and a white point corresponds to a light shielding portion.
  • FIG. 3 is a figure explaining the measurement by the optical microscope mode of the number of microparticles
  • the location of the white dotted area in FIG. 2 corresponds to the location of the white dotted area in FIG.
  • fine particles in contact with an optical abnormal area (for example, an abnormal refractive index area) other than one fine particle are present.
  • an optical abnormal area for example, an abnormal refractive index area
  • the white point (light-shielded area) observed in the laser microscope mode is not a fine particle in contact with an optical abnormal area (for example, an abnormal refractive index area) other than the fine particles.
  • the support film does not contain any particulates, it is difficult to obtain sufficient windability when the photosensitive resin laminate is wound on a roll, and in the present embodiment, the support film contains particulates.
  • the content of the fine particles is not particularly limited, but is preferably 5 to 1,000 ppm, more preferably 10 to 800 ppm, particularly preferably 20 to 500 ppm by mass ratio to the support film.
  • the fine particles contained in the support film include, for example, inorganic fine particles or organic fine particles, such as lubricants, aggregates of additives, foreign matter mixed in the raw material, foreign matter mixed in the manufacturing process, and the like.
  • specific examples of fine particles include inorganic particles such as calcium carbonate, calcium phosphate, silica (silicon dioxide), kaolin, talc, titanium dioxide, alumina (aluminum oxide), barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide and the like
  • cross-linked polymer particles organic particles such as calcium oxalate, and the like. These may be alone or in combination of two or more.
  • the fine particles are blended into the support film according to a conventional method.
  • a method of filtering the material resin with a filter for example, an eye filter of 2.0 ⁇ m or less
  • the finer the filter eyes, and the greater the number of passes of the material resin through the filter the smaller the number of fine particles in the material resin, the smaller the fine particles, and the smaller the total area of the light shielding portion.
  • the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is preferably 0.2 or less, more preferably 0.18 or less, and more preferably 0 from the viewpoint of suppressing the generation of resist protrusions. .15 or less, more preferably 0.12 or less, more preferably 0.1 or less, more preferably 0.08 or less, more preferably 0.05 or less, more preferably 0.04 or less, more preferably 0. It is at most 03, more preferably at most 0.02, particularly preferably at most 0.01. When the difference in refractive index between the fine particles and the support film is small, light scattering tends to be reduced.
  • main region of support film means a region that occupies most of the support film in the region other than the optical abnormality region of the support film. Since the refractive index of the support film for the photosensitive resin laminate is typically about 1.4 to 1.7, as a means for reducing the difference in refractive index between the fine particles and the support film, the fine particles may be used as fine particles. And using the same refractive index.
  • the refractive index of the support film is preferably 1.4 to 1.7, more preferably 1.5 to 1.7.
  • the refractive index in the present specification means the refractive index at a wavelength of 589 nm.
  • a method of producing a support film using a film material passing through a filter for removing fine particles can be exemplified.
  • a filter that removes particles having a diameter of 0.5 ⁇ m or more may be used.
  • the number of particles may be adjusted by increasing the number of particles to a desired range by post-adding the particles after using such a filter.
  • the optically abnormal region is a region that particularly scatters or diffracts light, if the fine particles and the optically abnormal region other than the fine particles are close to each other, the light scattering becomes remarkable, which is not preferable. Therefore, it is preferable that the number of fine particles present in the vicinity of an optically abnormal area (for example, an abnormal refractive index area) other than the fine particles be reduced.
  • an optically abnormal area for example, an abnormal refractive index area
  • optical properties different from the main region of the support film is preferably 1500 or less, preferably 1200 or less, preferably 1000 or less, preferably 900 or less, preferably There are 800 or less, preferably 700 or less, preferably 600 or less, preferably 500 or less, preferably 400 or less, preferably 300 or less, more preferably 200 or less, more preferably 100 or less, more preferably Preferably not more than 80, more preferably not more than 50, still more preferably not more than 30, particularly preferably It is preferable to have a region of 10 or less.
  • the diameter of the fine particles having a diameter of 0.5 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • a preferred embodiment is a photosensitive resin laminate comprising a support film and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, and includes a region in which the total area ratio of the optically abnormal region is 300 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident-type laser microscope, Among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1200 or less in the support film.
  • a photosensitive resin laminate having a region.
  • the line width / space width formed the resist pattern of 8/8 (micrometer) on the board
  • the difference between the line width when focusing on the surface of the support film on the photosensitive resin composition layer side and the line width when shifted from the surface toward the inner side of the 400 ⁇ m substrate in the thickness direction is 1.8 ⁇ m or less is there.
  • fine particles having a specific value of diameter mean that primary particles having a specific value of the diameter and primary particle aggregates having a specific value of the aggregate of primary particles are included.
  • the longest width of the primary particles is taken as the diameter of the primary particles.
  • the primary particle aggregate is not a complete sphere, the longest width of the primary particle aggregate is taken as the diameter of the primary particle aggregate.
  • the fine particles having a diameter of 0.5 ⁇ m or more include primary particles having a diameter of 0.5 ⁇ m or more, and aggregates of primary particles having a diameter of 0.5 ⁇ m or less and include primary particle aggregates having a diameter of 0.5 ⁇ m or more.
  • the appearance (transmission and reflection) of the main area around it is different from that of the surrounding area. As shown in FIG. It can be observed visually with an optical microscope whether it is in contact with the region.
  • the photosensitive resin laminate is photosensitive according to the specific aspect. It is included in a resin laminate. That is, even if the specified number of fine particles is not satisfied when measured at a certain place, when the specified number of fine particles is satisfied when measured at another place, the photosensitive resin laminate is exposed to the light according to the specific aspect. Is included in the conductive resin laminate.
  • the total area of the support film is preferably 5% or more, preferably 10% or more, preferably 20% or more, preferably 30% or more, preferably 50% or more, more preferably 60% or more.
  • the support film contains fine particles.
  • the support film is an optically abnormal area other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film
  • the number of fine particles in contact with the extraordinary refractive index region may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more.
  • the diameter of the fine particles having a diameter of 0.5 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the support film is an optical component other than the fine particles having optical properties (for example, refractive index) different from the main region of the support film.
  • the number of fine particles in contact with the abnormal area is preferably 500 or less, more preferably 400 or less, more preferably 300 or less, more preferably 200 or less, still more preferably 100 or less. It is possible to have a region which is more preferably 80 or less, more preferably 50 or less, still more preferably 30 or less, particularly preferably 10 or less.
  • the diameter of the fine particles having a diameter of 1.0 ⁇ m or more, but may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the support film contains fine particles. Further, among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, a fine particle other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film)
  • the number of fine particles in contact with the extraordinary refractive index region may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more.
  • the diameter of the fine particles having a diameter of 1.0 ⁇ m or more, but may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the support film is an optical component other than fine particles having optical properties (for example, refractive index) different from the main region of the support film.
  • the number of fine particles in contact with the abnormal region is preferably 200 or less, more preferably 180 or less, more preferably 150 or less, more preferably 120 or less, at a number average of 10 locations. It is possible to have a region of 100 or less, more preferably 80 or less, still more preferably 50 or less, still more preferably 30 or less, particularly preferably 10 or less.
  • the diameter of the particles having a diameter of 2.0 ⁇ m or more there is no particular upper limit to the diameter of the particles having a diameter of 2.0 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the support film contains fine particles. Further, among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 , the support film is an optically abnormal area other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film
  • the number of fine particles in contact with the extraordinary refractive index region may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more.
  • the diameter of the particles having a diameter of 2.0 ⁇ m or more there is no particular upper limit to the diameter of the particles having a diameter of 2.0 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, Among the fine particles having a diameter of 0.5 ⁇ m or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film.
  • a photosensitive resin laminate is provided which has an area in which the number of fine particles in contact with the ratio area is 1,500 or less on a number average of ten.
  • the number of fine particles in contact with the optically abnormal area may be 1200 or less, 1000 or less, 800 or less, 500 or less, 300 or less, or 100 or less in number average at 10 locations. May be.
  • the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable.
  • the number of fine particles having a diameter of 0.5 ⁇ m or more may be one or more, ten or more, or fifty or more. The smaller the number of fine particles in contact with the abnormal refractive index region, the better. However, if the fine particles have a small difference in refractive index from the main region of the support film, the problem of light scattering is small. Further, the presence of the fine particles provides the advantage of improving the slipperiness of the photosensitive resin laminate, and can contribute to the excellent winding property when the photosensitive resin laminate is wound on a roll.
  • the diameter of the fine particles having a diameter of 0.5 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, Among the fine particles having a diameter of 1.0 ⁇ m or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film.
  • the photosensitive resin laminate has a region in which the number of fine particles in contact with the ratio region is 500 or less.
  • the number of particles in contact with the optically abnormal area may be 400 or less, 300 or less, 250 or less, 200 or less, 150 or less, 100 or less, or 80 or less. It may be 50 or less, 30 or less, 10 or less, or 5 or less.
  • the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable.
  • the number of fine particles having a diameter of 1.0 ⁇ m or more which is the following, may be one or more, five or more, or ten or more in a number average of ten places.
  • the diameter of the fine particles having a diameter of 1.0 ⁇ m or more, but may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
  • the support film contains fine particles, Among the fine particles having a diameter of 2.0 ⁇ m or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film.
  • the photosensitive resin laminate has a region in which the number of fine particles in contact with the ratio region is 200 or less.
  • the number of fine particles in contact with the optically abnormal region is more preferably 180 or less, more preferably 150 or less, more preferably 120 or less, still more preferably 100 or less, still more preferably 80 or less, still more preferably 50 Or less, more preferably 30 or less, particularly preferably 10 or less.
  • the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable.
  • the number of fine particles having a diameter of 2.0 ⁇ m or more, which is the following, may be one or more, five or more, or ten or more in a number average of ten places.
  • the diameter of the particles having a diameter of 2.0 ⁇ m or more there is no particular upper limit to the diameter of the particles having a diameter of 2.0 ⁇ m or more, but it may be 10 ⁇ m or less, 8 ⁇ m or less, 5 ⁇ m or less, or 4.5 ⁇ m or less It may be 4 ⁇ m or less, 3.5 ⁇ m or less, or 3 ⁇ m or less.
  • the support film preferably has a haze of 5% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably 1.0% or less, from the viewpoint of suppressing light scattering during exposure.
  • the surface roughness Ra of the surface in contact with the photosensitive layer is preferably 30 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less.
  • the protective layer used in the photosensitive resin laminate is that the adhesion to the photosensitive resin composition layer is sufficiently smaller than that of the carrier layer, and the layer can be easily peeled off.
  • polyethylene film or polypropylene film can be preferably used as a protective layer. Further, it is also possible to use a film with excellent releasability disclosed in JP-A-59-202457.
  • the thickness of the protective layer is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 10 ⁇ m to 50 ⁇ m.
  • a gel called a fish eye may be present on the polyethylene film surface.
  • the fish eye may be transferred to the photosensitive resin composition layer.
  • the fish eye is transferred to the photosensitive resin composition layer, air may be taken in during lamination to form a void, which leads to a defect in the resist pattern.
  • stretched polypropylene is preferable as a material of the protective layer.
  • Alphan E-200A manufactured by Oji Paper Co., Ltd. can be mentioned.
  • the thickness of the photosensitive resin composition layer in the photosensitive resin laminate varies depending on the application, but is preferably 1 ⁇ m to 300 ⁇ m, more preferably 3 ⁇ m to 100 ⁇ m, particularly preferably 5 ⁇ m to 60 ⁇ m, and most preferably 10 ⁇ m to 30 ⁇ m. The thinner the thickness of the photosensitive resin composition layer, the higher the resolution, and the thicker the layer, the higher the film strength.
  • a known method can be adopted as a method of producing a photosensitive resin laminate by sequentially laminating a support film and a photosensitive resin composition layer, and, if necessary, a protective layer.
  • the photosensitive resin composition used for the photosensitive resin composition layer is mixed with a solvent that dissolves the photosensitive resin composition layer to form a uniform solution, first coated on a support film using a bar coater or a roll coater, and then dried By removing the solvent, a photosensitive resin composition layer composed of the photosensitive resin composition can be laminated on the support film. Subsequently, the photosensitive resin laminated body can be produced by laminating a protective layer on the photosensitive resin composition layer as needed.
  • the photosensitive resin composition preferably contains (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator.
  • the photosensitive resin composition comprises (A) an alkali-soluble polymer: 10% by mass to 90% by mass, based on the total solid content mass of the photosensitive resin composition; and (B) a compound having an ethylenically unsaturated double bond.
  • C a photopolymerization initiator: 0.01% by mass to 20% by mass.
  • the (A) alkali-soluble polymer includes a polymer that is easily soluble in an alkaline substance. More specifically, the amount of carboxyl groups contained in the (A) alkali-soluble polymer is 100 to 600, preferably 250 to 450 in acid equivalent.
  • the acid equivalent refers to the mass (unit: gram) of a polymer having one equivalent of carboxyl group in the molecule.
  • the carboxyl group in the (A) alkali-soluble polymer is required to give the photosensitive resin composition layer developability and releasability to an aqueous alkali solution. Increasing the acid equivalent to 100 or more is preferable from the viewpoint of improving the development resistance, the resolution and the adhesion.
  • the acid equivalent is a value measured by potentiometric titration with a 0.1 mol / L aqueous solution of NaOH using a potentiometric titrator.
  • the weight average molecular weight of the (A) alkali-soluble polymer is preferably 5,000 to 500,000. It is preferable from the viewpoint of improving resolution and developability to make the weight average molecular weight 500,000 or less.
  • the weight average molecular weight is more preferably 100,000 or less, still more preferably 60,000 or less, and particularly preferably 50,000 or less.
  • setting the weight average molecular weight to 5,000 or more is a viewpoint of controlling the properties of development aggregate and the properties of unexposed film such as edge fuse property and cut tip property in the case of forming a photosensitive resin laminate. It is preferable from The weight average molecular weight is more preferably 10,000 or more, and still more preferably 20,000 or more.
  • the cut tip property refers to the degree of the chip's flyability when the unexposed film is cut by a cutter. When this chip adheres to the upper surface or the like of the photosensitive resin laminate, it is transferred to a mask in a later exposure process or the like to cause defective products.
  • the dispersion degree of the alkali soluble polymer (A) is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, and 1.0 to 4.0. More preferably, it is more preferably 1.0 to 3.0.
  • the photosensitive resin composition contains an aromatic hydrocarbon group as the (A) alkali-soluble polymer. It is preferable to contain the monomer component which it has.
  • an aromatic hydrocarbon group a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group are mentioned, for example.
  • the content ratio of the monomer component having an aromatic hydrocarbon group in the (A) alkali-soluble polymer is preferably 20% by mass or more based on the total mass of all the monomer components, and 40% by mass
  • the content is more preferably 50% by mass or more, particularly preferably 55% by mass or more, and most preferably 60% by mass or more.
  • the upper limit is not particularly limited, but is preferably 95% by mass or less, more preferably 80% by mass or less.
  • the content rate of the monomer component which has an aromatic hydrocarbon group in, when containing multiple types of (A) alkali-soluble polymer was calculated
  • the monomer having an aromatic hydrocarbon group for example, a monomer having an aralkyl group, styrene, and a polymerizable styrene derivative (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinyl Benzoic acid, styrene dimer, styrene trimer etc. may be mentioned.
  • monomers having an aralkyl group or styrene are preferable.
  • a substituted or unsubstituted phenylalkyl group except for a benzyl group
  • a substituted or unsubstituted benzyl group and the like can be mentioned, and a substituted or unsubstituted benzyl group is preferable.
  • Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate and the like.
  • (meth) acrylates having a benzyl group such as benzyl (meth) acrylate, chlorobenzyl (meth) acrylate etc .
  • vinyl monomers having a benzyl group such as vinyl benzyl chloride, vinyl benzyl alcohol etc
  • benzyl (meth) acrylate is preferred.
  • the (A) alkali-soluble polymer containing a monomer component having an aromatic hydrocarbon group is a monomer having an aromatic hydrocarbon group and / or at least one of a first monomer described later and / or It is preferably obtained by polymerizing with at least one of the second monomers described later.
  • the (A) alkali-soluble polymer which does not contain a monomer component having an aromatic hydrocarbon group is preferably obtained by polymerizing at least one of the first monomers described later, and It is more preferable to be obtained by copolymerizing at least one of the monomers and at least one of the second monomers described later.
  • the first monomer is a monomer having a carboxyl group in the molecule.
  • the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, maleic acid half ester and the like.
  • (meth) acrylic acid is preferable.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acryloyl group means acryloyl group or methacryloyl group
  • (meth) acrylate” means “acrylate” or “methacrylate”.
  • the copolymerization ratio of the first monomer is preferably 10 to 50% by mass based on the total mass of all the monomer components. Making the copolymerization ratio 10% by mass or more is preferable from the viewpoint of expressing good developability, controlling edge fuse property, etc., preferably 15% by mass or more, and more preferably 20% by mass or more. . Setting the copolymerization ratio to 50% by mass or less is preferable from the viewpoints of high resolution and shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern, and in these aspects, 35% by mass The following is more preferable, 30 mass% or less is further preferable, and 27 mass% or less is particularly preferable.
  • the second monomer is a non-acidic monomer having at least one polymerizable unsaturated group in the molecule.
  • the second monomer for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate , (Meth) acrylates such as tert-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; vinyl acetate And esters of vinyl alcohol, and (meth) acrylonitrile and the like.
  • methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate 2-
  • a monomer having an aralkyl group and / or styrene as a monomer from the viewpoint of suppressing the line width thickening and resolution deterioration when the focal position at the time of exposure shifts.
  • a copolymer containing methacrylic acid, benzyl methacrylate and styrene, a copolymer containing methacrylic acid, methyl methacrylate, benzyl methacrylate and styrene, and the like are preferable.
  • the (A) alkali-soluble polymer can be used singly or in combination of two or more.
  • two kinds of alkali-soluble polymers containing a monomer component having an aromatic hydrocarbon group may be mixedly used, or a monomer component having an aromatic hydrocarbon group It is preferable to use a mixture of an alkali-soluble polymer containing at least one alkali-soluble polymer and an alkali-soluble polymer not containing a monomer component having an aromatic hydrocarbon group.
  • the proportion of the alkali-soluble polymer containing the monomer component having an aromatic hydrocarbon group is preferably 50% by mass or more based on the total of (A) the alkali-soluble polymer, and 70 It is more preferable that it is mass% or more, It is preferable that it is 80 mass% or more, It is more preferable that it is 90 mass% or more.
  • the synthesis of the alkali-soluble polymer can be carried out by using benzoyl peroxide, azoisobutyronitrile or the like in a solution obtained by diluting one or more of the monomers described above with a solvent such as acetone, methyl ethyl ketone or isopropanol. It is preferable to be carried out by adding a suitable amount of a radical polymerization initiator and heating and stirring. In some cases, synthesis is performed while a portion of the mixture is dropped into the reaction solution. After completion of the reaction, a solvent may be further added to adjust to a desired concentration. As a synthesis means, bulk polymerization, suspension polymerization, or emulsion polymerization may be used other than solution polymerization.
  • Weight average Tg total glass transition temperature Tg of the (A) alkali-soluble polymer is preferably at 30 ° C. or higher 135 ° C. or less. Tg total is calculated by the method described in the examples described later.
  • the Tg total of the (A) alkali-soluble polymer is more preferably 120 ° C. or less, still more preferably 115 ° C. or less, still more preferably 110 ° C. or less, and 105 ° C.
  • the Tg total of the (A) alkali-soluble polymer is more preferably 40 ° C. or more, still more preferably 50 ° C. or more, and particularly preferably 60 ° C. or more.
  • the ratio of the (A) alkali-soluble polymer to the total solid content mass of the photosensitive resin composition is preferably in the range of 10% by mass to 90% by mass, and more preferably 30% by mass to 70% by mass. More preferably, it is 40% by mass to 60% by mass. It is preferable from the viewpoint of controlling the development time that the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition is 90% by mass or less. On the other hand, it is preferable from the viewpoint of improving the edge fuse resistance that the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition is 10% by mass or more.
  • the compound which has (B) an ethylenically unsaturated double bond contains the compound which has a (meth) acryloyl group in a molecule
  • the number of (meth) acryloyl groups in the compound (B) may be one or more.
  • the (B) compound having one (meth) acryloyl group for example, a compound obtained by adding (meth) acrylic acid to one end of a polyalkylene oxide, or (meth) acrylic at one end of a polyalkylene oxide
  • examples thereof include compounds obtained by adding an acid and alkyl etherifying or allyl etherifying the other end, phthalic acid compounds and the like, which are preferable from the viewpoint of peelability and flexibility of a cured film.
  • Phenoxyhexaethylene glycol mono (meth) acrylate which is a (meth) acrylate of a compound in which polyethylene glycol is added to a phenyl group
  • 4-normalnonylphenoxyheptaethylene glycol dipropylene glycol which is a (meth) acrylate of a compound obtained by adding polypropylene glycol to which 2 mol of propylene oxide is added and polyethylene glycol to which 7 mol of ethylene oxide is added to nonylphenol on average (Meth) acrylate
  • 4-normalnonylphenoxypentaethylene glycol monopropylene glycol which is a (meth) acrylate of a compound obtained by adding polypropylene glycol to which 1 mol of propylene oxide is added and polyethylene glycol to which 5 mol of ethylene oxide is added to nonylphenol on average (Meth) acrylate
  • 4-normalnonylphenoxyoctaethylene glycol (meth) acrylate e
  • a compound having two (meth) acryloyl groups in the molecule for example, a compound having a (meth) acryloyl group at both ends of the alkylene oxide chain, or an alkylene in which an ethylene oxide chain and a propylene oxide chain are bound by random or block
  • the compound etc. which have a (meth) acryloyl group in the both ends of an oxide chain can be mentioned.
  • tetraethylene glycol di (meth) acrylate pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, octaethylene glycol di
  • Polyethylene glycol (meth) acrylates such as (meth) acrylates, nonaethylene glycol di (meth) acrylates, decaethylene glycol di (meth) acrylates, and compounds having (meth) acryloyl groups at both ends of a 12 mol ethylene oxide chain
  • Polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate and the like can be mentioned.
  • polyalkylene oxide di (meth) acrylate compound containing an ethylene oxide group and a propylene oxide group in the compound for example, an average of 3 moles of ethylene oxide is further added to both ends of polypropylene glycol to which an average of 12 moles of propylene oxide is added.
  • diethylene glycol, and dimethacrylate of glycol in which 15 mol of ethylene oxide is further added on average to both ends of polypropylene glycol added with 18 mol of propylene oxide on average FA-023 M, FA-024 M, FA-027 M (product name) And Hitachi Chemical Co., Ltd.). These are preferable in terms of flexibility, resolution, adhesion and the like.
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • A is C 2 H 4
  • B is C 3 H 6
  • n 1 and n 3 are each independently 1 to -(AO)-is an integer of 39
  • n1 + n3 is an integer of 2 to 40
  • n2 and n4 are each independently an integer of 0 to 29
  • n2 + n4 is an integer of 0 to 30,
  • the arrangement of repeating units of and-(BO)- may be random or block. And in the case of a block, either-(A-O)-or-(B-O)-may be on the side of the bisphenyl group.
  • the compounds represented by can be used.
  • polyethylene glycol dimethacrylate of polyethylene glycol in which ethylene oxide is added in an average of 5 moles at each end of bisphenol A polyethylene glycol in which ethylene oxide is added at an average of 2 moles in each end of bisphenol A
  • Polyethylene glycol dimethacrylate in which ethylene oxide is added on average at 1 mole each to both ends of dimethacrylate and bisphenol A is preferable in view of resolution and adhesion.
  • hetero atom examples include a halogen atom and the like, and examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, and a phenacyl group Amino group, alkylamino group having 1 to 10 carbon atoms, dialkylamino group having 2 to 20 carbon atoms, nitro group, cyano group, cyano group, carbonyl group, mercapto group, alkyl mercapto group having 1 to 10 carbon atoms, aryl group, hydroxyl group A hydroxyalkyl group having 1 to 20 carbon atoms, a carboxyl group, a carboxyalkyl group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms for the alkyl group, an alkoxy group having 1 to 20 carbon atoms, Alkoxycarbonyl group having 1 to 20 carbon atoms,
  • substituents may form a condensed ring, or hydrogen atoms in these substituents may be substituted with a heteroatom such as a halogen atom.
  • the aromatic ring in the general formula (I) has a plurality of substituents, the plurality of substituents may be the same or different.
  • the compound having three or more (meth) acryloyl groups in the molecule has, as a central skeleton, three or more moles of a group to which an alkylene oxide group can be added in the molecule, and ethyleneoxy group, propyleneoxy group, etc. It can be obtained by converting an alcohol obtained by adding an alkyleneoxy group such as a butyleneoxy group to (meth) acrylate.
  • examples of the compound capable of becoming a central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, isocyanurate ring and the like.
  • tri (meth) acrylates such as ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate (for example, Trimethacrylate obtained by adding an average of 21 moles of ethylene oxide to trimethylolpropane, and trimethacrylate obtained by adding an average of 30 moles of ethylene oxide to trimethylolpropane are preferable from the viewpoint of flexibility, adhesion and suppression of bleed out), etc .; (Meth) acrylates, such as ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate ; Penta (meth) acrylate, for
  • pentaerythritol tetra (meth) acrylate is preferable.
  • the pentaerythritol tetra (meth) acrylate may be tetra (meth) acrylate or the like in which a total of 1 to 40 moles of alkylene oxide is added to the four terminals of pentaerythritol.
  • hexa (meth) acrylate in which a total of 1 to 40 moles of ethylene oxide is added to the six ends of dipentaerythritol, and a total of 1 to 20 moles of ⁇ at the six ends of dipentaerythritol Hexa (meth) acrylates to which caprolactone is added are preferred.
  • the (meth) acrylate compounds described above can be used independently or in combination.
  • the photosensitive resin composition may also contain other compounds as a compound having (B) an ethylenically unsaturated bond.
  • Other compounds include (meth) acrylate having a urethane bond, a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, and a glycidyl group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid And compounds obtained by reaction, 1,6-hexanediol di (meth) acrylate and the like.
  • the ratio of the compound (B) having an ethylenically unsaturated double bond to the total solid content mass of the photosensitive resin composition is preferably 5% by mass to 70% by mass. It is preferable to make this proportion 5% by mass or more from the viewpoint of sensitivity, resolution and adhesion. The proportion is more preferably 20% by mass or more, and still more preferably 30% by mass or more. On the other hand, it is preferable to make this ratio 70% by mass or less from the viewpoint of suppressing the peeling delay of the edge fuse and the cured resist. It is more preferable to make this ratio 50 mass% or less.
  • a photoinitiator is a compound which polymerizes a monomer by light.
  • the photosensitive resin composition contains a compound generally known in the art as a (C) photopolymerization initiator.
  • the total content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.01 to 20% by mass, more preferably 0.05% to 10% by mass, and still more preferably 0.1% by mass. % To 7% by mass, particularly preferably 0.1% to 6% by mass.
  • the total content of the photopolymerization initiator (C) is preferably 0.01% by mass or more from the viewpoint of obtaining sufficient sensitivity, and light is sufficiently transmitted to the bottom of the resist to obtain good high resolution. It is preferable that it is 20 mass% or less from a viewpoint of obtaining.
  • quinones, aromatic ketones, acetophenones, acyl phosphine oxides, benzoin or benzoin ethers, dialkyl ketals, thioxanthones, dialkyl aminobenzoic acid esters, oxime esters And acridines eg, 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, 9- (m-methylphenyl) acridine are preferred in terms of sensitivity, resolution and adhesion
  • coumarin compounds eg, 7-diethylamino-4-methyl Coumarins are preferred in terms of
  • aromatic ketones examples include benzophenone, Michler's ketone [4,4'-bis (dimethylamino) benzophenone], 4,4'-bis (diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone Can. These can be used singly or in combination of two or more. Among these, from the viewpoint of adhesion, 4,4'-bis (diethylamino) benzophenone is preferable. Furthermore, from the viewpoint of transmittance, the content of the aromatic ketone in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass, and more preferably 0.02% by mass to 0.3%. It is in the range of mass%.
  • hexaarylbiimidazole examples include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole and 2,2 ', 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-Diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl) ) -Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2'-bis- (2-fluorophenyl) -4,4 ' 5,5'-tetrakis- (3-methoxyphenyl) -biimidazo
  • the content of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass or more from the viewpoint of improving the peeling characteristics and / or the sensitivity of the photosensitive resin composition layer. It is in the range of 7% by mass, more preferably 0.1% by mass to 6% by mass, and still more preferably 1% by mass to 5% by mass.
  • the photosensitive resin composition also contains a pyrazoline compound as a photosensitizer from the viewpoints of peeling characteristics or sensitivity, resolution, and adhesiveness of the photosensitive resin composition layer.
  • a pyrazoline compound for example, 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazoline, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl) Phenyl) -pyrazoline, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl)
  • the content of the photosensitizer in the photosensitive resin composition is preferably 0.05% by mass to 5% from the viewpoint of improving the peeling characteristics and / or the sensitivity of the photosensitive resin composition layer.
  • the content is preferably in the range of 0.1% by mass to 3% by mass.
  • the photosensitive resin composition preferably further includes (D) a phenol derivative.
  • (D) phenol derivatives include p-methoxyphenol, hydroquinone, pyrogallol, tert-butyl catechol, 2,6-di-tert-butyl-p-cresol, and 2,2'-methylenebis (4-methyl-6-) tert-Butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-amylhydroquinone, 2 , 5-Di-tert-butylhydroquinone, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), bis (2-hydroxy-3-t-butyl-5-ethylphenyl) methane, triethylene glycol -Bis [3- (3-t-butyl-5-
  • the inclusion of the (D) phenol derivative is preferable from the viewpoint of suppressing the line width thickening and the deterioration of resolution when the focal position at the time of exposure shifts, and from the same viewpoint, a hindered phenol or biphenol is preferable. Further, from the same viewpoint, it is preferable that the (D) phenol derivative has two or more phenol nuclei.
  • the ratio of the (D) phenol derivative to the total solid content mass of the photosensitive resin composition is preferably 0.001 mass% to 10 mass%. This ratio is preferably 0.001% by mass or more, and 0.005% by mass or more from the viewpoint of suppressing the line width thickening and the deterioration of resolution when the focal position at the time of exposure shifts. Is more preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more. On the other hand, this ratio is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, from the viewpoint of little decrease in sensitivity and improvement in resolution. Is more preferable, 2% by mass or less is particularly preferable, and 1.5% by mass or less is most preferable.
  • the photosensitive resin composition may optionally contain additives such as a dye, a plasticizer, an antioxidant, and a stabilizer.
  • additives listed in Japanese Patent Application Laid-Open No. 2013-156369 may be used.
  • the photosensitive resin composition may further optionally contain at least one selected from the group consisting of dyes (for example, leuco dyes, fluoran dyes and the like) and coloring substances.
  • coloring substances examples include fuchsin, phthalocyanine green, auramine base, paramagienta, crystal violet, methyl orange, Nile blue 2B, Victoria blue, malachite green (for example, Hoedagaya Chemical Co., Ltd. Eisen (registered trademark) MALACITE GREEN), Basic Blue 20, diamond green (for example, Eiden (registered trademark) DIAMOND GREEN GH manufactured by Hodogaya Chemical Co., Ltd.) can be mentioned.
  • the content of the coloring substance in the photosensitive resin composition is preferably 0.001% by mass to 1% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. Setting the content to 0.001% by mass or more is preferable from the viewpoint of improving the handleability of the photosensitive resin composition. On the other hand, making the content 1% by mass or less is preferable from the viewpoint of maintaining the storage stability of the photosensitive resin composition.
  • the photosensitive resin composition is preferable from the viewpoint of visibility because the exposed portion is colored by containing the dye, and when the inspection machine or the like reads the alignment marker for exposure, the exposed portion and the unexposed portion The larger the contrast of the image, the easier it is to recognize.
  • Preferred dyes in this regard include leuco dyes and fluoran dyes.
  • leuco dyes examples include tris (4-dimethylaminophenyl) methane [leuco crystal violet], bis (4-dimethylaminophenyl) phenylmethane [leucomalachite green] and the like.
  • leuco crystal violet is preferably used as the leuco dye, from the viewpoint of achieving good contrast.
  • the content of the leuco dye in the photosensitive resin composition is preferably 0.1% by mass to 10% by mass with respect to the total solid content mass of the photosensitive resin composition. Making this content 0.1% by mass or more is preferable from the viewpoint of improving the contrast between the exposed part and the unexposed part.
  • the content is more preferably 0.2% by mass or more, and particularly preferably 0.4% by mass or more.
  • the content is more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
  • the content of the halogen compound in the photosensitive resin composition is 0.01 mass based on 100% by mass of the total solid content of the photosensitive resin composition. % To 3% by mass is preferable from the viewpoint of maintaining the storage stability of the hue in the photosensitive layer.
  • the photosensitive resin composition further contains at least one compound selected from the group consisting of radical polymerization inhibitors, benzotriazoles, and carboxybenzotriazoles in order to improve thermal stability and storage stability. It is also good.
  • radical polymerization inhibitor examples include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine and the like. In order not to impair the sensitivity of the photosensitive resin composition, nitrosophenylhydroxyamine aluminum salt is preferred.
  • benzotriazoles include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis (N-2-ethylhexyl) aminomethylene-1,2,3-benzotriazole, Bis (N-2-ethylhexyl) aminomethylene-1,2,3-tolyltriazole, bis (N-2-hydroxyethyl) aminomethylene-1,2,3-benzotriazole and the like can be mentioned.
  • carboxybenzotriazoles for example, 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, N- (N, N-di-2-ethylhexyl) aminomethylene
  • carboxybenzotriazole N- (N, N-di-2-hydroxyethyl) aminomethylene carboxybenzotriazole, N- (N, N-di-2-ethylhexyl) aminoethylene carboxybenzotriazole and the like.
  • the total content of the radical polymerization inhibitor, benzotriazoles, and carboxybenzotriazoles is preferably 0.01% by mass or less, based on 100% by mass of the total solid content of the photosensitive resin composition. It is 3% by mass, more preferably 0.05% by mass to 1% by mass. The content of 0.01% by mass or more is preferable from the viewpoint of imparting storage stability to the photosensitive resin composition. On the other hand, setting the content to 3% by mass or less is preferable from the viewpoint of maintaining the sensitivity and suppressing the decolorization of the dye.
  • the photosensitive resin composition may further contain epoxy compounds of bisphenol A.
  • epoxy compounds of bisphenol A include, for example, compounds obtained by modifying bisphenol A with polypropylene glycol and epoxidizing the end.
  • the photosensitive resin composition may further contain a plasticizer.
  • a plasticizer for example, phthalic acid esters (eg, diethylflate etc.), o-toluenesulfonic acid amide, p-toluenesulfonic acid amide, tributyl citrate, triethyl citrate, triethyl acetyl citrate, triethyl acetyl citrate And n-propyl, acetyl tri-n-butyl acetyl citrate, polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether, polypropylene glycol alkyl ether and the like.
  • adecanol SDX-1569, adecanol SDX-1570, adecanol SDX-1571, adecanol SDX-479 (manufactured by Asahi Denka Co., Ltd.), Newpol BP-23P, Newpol BP-3P, Newpol BP-5P, New Paul BPE-20T, New Paul BPE-60, New Paul BPE-100, New Paul BPE-180 (manufactured by Sanyo Chemical Industries, Ltd.), Uniol DB-400, Uniol DAB-800, Uniol DA-350F, Uniol DA- And compounds having a bisphenol skeleton, such as 400, Uniol DA-700 (manufactured by Nippon Oil and Fats Co., Ltd.), BA-P4U glycol, BA-P8 glycol (manufactured by Nippon Emulsifier Co., Ltd.), and the like.
  • the content of the plasticizer in the photosensitive resin composition is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, with respect to the total solid content mass of the photosensitive resin composition. It is. It is preferable to make the content 1% by mass or more from the viewpoint of suppressing the delay of development time and imparting flexibility to the cured film. On the other hand, making the content 50% by mass or less is preferable from the viewpoint of suppressing insufficient curing and cold flow.
  • the photosensitive resin composition can be dissolved in a solvent and used in the form of a photosensitive resin composition preparation liquid for producing a photosensitive resin laminate.
  • the solvent include ketones and alcohols.
  • the ketones are represented by methyl ethyl ketone (MEK) and acetone.
  • the alcohols are represented by methanol, ethanol and isopropanol.
  • the solvent is used in an amount such that the viscosity at 25 ° C. of the photosensitive resin composition preparation liquid applied onto the support layer is 500 mPa ⁇ s to 4,000 mPa ⁇ s during the production of the photosensitive resin laminate. Preferably, it is added to the resin composition.
  • the method comprises a laminating step of laminating a photosensitive resin laminate on a substrate, an exposing step of exposing a photosensitive resin composition layer of the photosensitive resin laminate, and developing an unexposed portion of the photosensitive resin composition layer. It can include a developing step to be removed.
  • the resist pattern for example, printed wiring board, semiconductor element, printing plate, liquid crystal display panel, flexible substrate, lead frame substrate, substrate for COF (chip on film), substrate for semiconductor package, transparent electrode for liquid crystal, TFT for liquid crystal And wiring patterns, electrodes for PDP (plasma display panel) and the like.
  • the photosensitive resin laminate of the present embodiment has an advantage of avoiding the resist protrusions well, and for example, the line width / space width is 20/20 ( ⁇ m or less) or the line width / space width is 10 /. It is particularly useful for the formation of fine wiring of less than 10 ( ⁇ m).
  • the line width / space width ( ⁇ m) to which the photosensitive resin laminate of the present embodiment can be applied is not particularly limited, and for example, 15/15 ( ⁇ m) or less, preferably 10/10 ( ⁇ m) or less, and further Preferably it is 9.5 / 9.5 ( ⁇ m) or less, particularly preferably 9.0 / 9.0 ( ⁇ m) or less.
  • the lower limit value of the line width / space width ( ⁇ m) is not particularly limited, but may be 3/3 ( ⁇ m) or more, 4/4 ( ⁇ m) or more, or 5/5 ( ⁇ m) or more.
  • the photosensitive resin laminate of the present embodiment is particularly useful for wiring formation by the semi-additive method (SAP) from the above advantages.
  • SAP method can be carried out by a conventional method, and for example, wiring can be formed by a known plating method using a laminate of an insulating resin layer and a copper layer (for example, an electroless copper plating layer containing palladium as a catalyst).
  • a method of manufacturing a printed wiring board will be described as follows.
  • the printed wiring board is manufactured through the following steps.
  • the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO) and the like.
  • the photosensitive resin composition layer may be laminated only on one side of the substrate surface, or may be laminated on both sides as needed.
  • the heating temperature during lamination is generally 40.degree. C. to 160.degree.
  • the adhesion of the obtained resist pattern to the substrate can be improved by performing the thermocompression bonding twice or more at the time of lamination.
  • a two-stage laminator provided with dual rolls may be used, or the laminate of the substrate and the photosensitive resin composition layer may be crimped by being repeatedly passed through the roll several times.
  • Exposure step In this step, a mask film having a desired wiring pattern is brought into close contact with the support layer and an exposure method is performed using an active light source, an exposure method by direct drawing of a drawing pattern which is a desired wiring pattern, The photosensitive resin composition layer is exposed by an exposure method by projecting an image of a photomask through a lens.
  • the advantage of the photosensitive resin composition according to the present embodiment is more remarkable in an exposure method by direct drawing of a drawing pattern or an exposure method in which an image of a photomask is projected through a lens, and exposure by direct drawing of a drawing pattern It is particularly remarkable in the method.
  • An aqueous solution of Na 2 CO 3 or K 2 CO 3 is used as the alkaline aqueous solution.
  • the alkaline aqueous solution is appropriately selected in accordance with the characteristics of the photosensitive resin composition layer, and an aqueous Na 2 CO 3 solution having a concentration of about 0.2% by mass to about 2% by mass and a temperature of about 20 ° C to about 40 ° C is used. preferable.
  • a resist pattern can be obtained through the above steps (1) to (3). After these steps, optionally, a heating step of about 100 ° C. to about 300 ° C. can also be performed. By performing this heating step, it is possible to further improve the chemical resistance. For heating, a heating furnace of a hot air, infrared or far infrared type can be used. Also, this heating process may be performed after the exposure process.
  • a substrate surface for example, a copper surface of a copper clad laminate exposed by development is etched or plated to manufacture a conductor pattern.
  • the resist pattern is peeled from the substrate by an aqueous solution having a stronger alkalinity than the developer.
  • the aqueous alkaline solution for peeling is not particularly limited, but an aqueous solution of NaOH or KOH having a concentration of about 2% by mass to about 5% by mass and a temperature of about 40 to about 70 ° C. is preferable.
  • a small amount of water-soluble solvent can also be added to the stripping solution.
  • the photosensitive resin laminate of the present embodiment is a resist pattern of a printed wiring board, a flexible substrate, a lead frame substrate, a substrate for COF, a substrate for semiconductor package, a transparent electrode for liquid crystal, a wiring for TFT for liquid crystal, an electrode for PDP, etc. Or it is a photosensitive resin laminated body suitable for manufacture of a conductor pattern.
  • Examples 1 to 3 and Comparative Example 1 Preparation of photosensitive resin composition
  • A 47 parts by mass of methacrylic acid / benzyl methacrylate copolymer (polymerization ratio 20/80 (mass ratio), acid equivalent 430, weight average molecular weight 50,000) as an alkali soluble polymer
  • B 0.1 parts by mass of 4,4′-bis (diethylamino) benzophenone and 3 parts by mass of 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer as a photopolymerization initiator
  • C 14 parts by mass of tetraacrylate in which an average of 15 moles of ethylene oxide is added to four ends of pentaerythritol as a compound having an ethylenic double bond, and 0.05 parts by mass of diamond green and leuco as a dye
  • a photosensitive resin composition was prepared by dissolving 0.3 parts by mass of crystal violet in a solvent.
  • PET polyethylene terephthalate
  • the total area ratio of the optically abnormal area in each support film is as described in Table 1.
  • the number of particulates in the support film was adjusted by the fineness of the filter and the number of times the material constituting the support film was passed through the filter and the number of particulates added.
  • the adjustment of the area of the optically abnormal area is carried out by thermocompression bonding of the film under the conditions of 180 to 250 ° C. as appropriate after biaxial stretching of the PET film. It was carried out by eliminating the region (that is, the cavity or the region having different orientation or crystallinity).
  • the photosensitive resin composition prepared above is coated on one surface of a polyethylene terephthalate (PET) support film (12 ⁇ m in thickness) with a bar coater, and it is 2.5 in a dryer at 95 ° C.
  • a photosensitive resin laminate was obtained by drying for a minute to form a photosensitive resin composition layer.
  • the dry thickness of the photosensitive resin composition layer was 20 ⁇ m.
  • a 19 ⁇ m thick polyethylene film (manufactured by Tamapoly Co., Ltd., GF-818) is laminated as a protective layer to form a photosensitive resin laminate. I got a body.
  • a 0.4 mm thick copper-clad laminate obtained by laminating 18 ⁇ m rolled copper foil is treated with a soft etching agent (CPE-900, manufactured by Hishie Kagaku Co., Ltd.), and 10 mass% H 2 SO The substrate surface was washed with 4 .
  • a soft etching agent CPE-900, manufactured by Hishie Kagaku Co., Ltd.
  • the photosensitive resin laminate While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, the photosensitive resin laminate is rolled with a hot roll laminator (AL-700 manufactured by Asahi Kasei Co., Ltd.) on a copper-clad laminate preheated to 60 ° C. It laminated at the temperature of 105 degreeC. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
  • a hot roll laminator AL-700 manufactured by Asahi Kasei Co., Ltd.
  • Exposure was carried out with a direct drawing exposure apparatus (FDi-3 manufactured by Oak Manufacturing Co., Ltd., main wavelength 405 ⁇ 5 nm) using a stofer 41-step tablet or a mask pattern for predetermined direct imaging (DI) exposure.
  • the exposure was performed with an exposure amount such that the maximum number of remaining film steps was 14 when exposed and developed using the Stoffer 41-step tablet as a mask.
  • a polarizing filter (OLS4000-QWP) was inserted above the objective lens of the incident-type laser microscope (OLS-4100 manufactured by Olympus).
  • OLS-4100 manufactured by Olympus
  • a support film sample cut to 30 mm ⁇ 30 mm was suctioned and fixed horizontally on a stage of a laser microscope using a porous adsorption plate (65F-HG manufactured by Universal Giken) and a vacuum pump.
  • the suction-fixed support film was observed with a 50 ⁇ laser light amount 60 (laser wavelength is 405 nm) of an objective lens.
  • the difference in light amount between the pixel of the maximum light amount and the pixel of the minimum light amount in the measured image was divided into 4096 gradations (the maximum light amount is 4095 and the minimum light amount is 0).
  • a histogram horizontal axis: gradation of light quantity (minimum value 0, maximum value 4095), vertical axis: number of pixels) graphing the light quantity distribution of the pixels in the image was created.
  • the measured image is binarized using the gradation obtained by adding 400 gradations from the value of the larger one of the two base values in the created histogram as the threshold value, and the areas of the pixels whose light amounts are larger than the threshold are summed.
  • the total area thereof is the total area of the optical anomaly region.
  • the ratio of the total area of the optically abnormal area portion to the measurement area is calculated.
  • Examples 4 to 6 and Comparative Example 2 Polyethylene terephthalate (PET) was produced as a support film of each of Examples 4 to 6 and Comparative Example 2.
  • the number of microparticles in each support film is as described in Table 2.
  • the number of particulates in the support film was adjusted by the fineness of the filter and the number of times the material constituting the support film was passed through the filter and the number of particulates added.
  • the film is subjected to thermocompression bonding treatment again under the conditions of 180 to 250 ° C. after biaxial stretching of the PET film, so that an optically abnormal area around the fine particles (that is, a cavity or an area having different orientation or crystallinity) Disappeared.
  • fine-particles was adjusted by changing the refractive index of microparticles
  • the photosensitive resin laminate of the present invention avoids resist pattern defects (protrusions) caused by foreign matter on the support film, and gives a good resist pattern shape. Therefore, a printed wiring board, a flexible substrate, a lead frame substrate, COF (COF It can be suitably used for manufacturing conductor patterns such as a substrate for chip on film, a substrate for semiconductor package, a transparent electrode for liquid crystal, a wiring for TFT for liquid crystal, and an electrode for PDP (plasma display panel).
  • conductor patterns such as a substrate for chip on film, a substrate for semiconductor package, a transparent electrode for liquid crystal, a wiring for TFT for liquid crystal, and an electrode for PDP (plasma display panel).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

Provided is a photosensitive resin laminate which prevents generation of resist projection, which provides a preferable resist pattern shape, and with which good productivity can be obtained. A photosensitive resin laminate according to one embodiment of the present invention is provided with a support film and a photosensitive resin composition layer formed on the support film, wherein the support film contains fine particles, and includes a region where the total area ratio of optical anomaly regions is not more than 300 ppm when observation is made in an area of 13.5 mm2 of the support film using an epi-illumination-type laser microscope.

Description

感光性樹脂積層体Photosensitive resin laminate
 本発明は感光性樹脂積層体に関する。 The present invention relates to a photosensitive resin laminate.
 パソコン、携帯電話等の電子機器には、部品、半導体等を実装するためにプリント配線板等が用いられる。プリント配線板等の製造用レジストとしては、従来、支持フィルム上に感光性樹脂組成物層を積層し、更に該感光性樹脂組成物層上に必要に応じて保護フィルムを積層して成る感光性樹脂積層体、いわゆるドライフィルムフォトレジスト(以下、DFと呼ぶこともある)が用いられている。感光性樹脂組成物層としては、現在、現像液として弱アルカリ水溶液を用いるアルカリ現像型のものが一般的である。DFを用いてプリント配線板等を作製するには、例えば、以下の工程を経由する。DFが保護フィルムを有する場合には、まず保護フィルムを剥離する。その後、銅張積層板又はフレキシブル基板等の永久回路作製用基板上にラミネーター等を用いてDFをラミネートし、配線パターンマスクフィルム等を通して露光を行う。次に、必要に応じて支持フィルムを剥離し、現像液により未硬化部分(例えばネガ型では未露光部分)の感光性樹脂組成物層を溶解又は分散除去し、基板上に硬化レジストパターン(以下、単にレジストパターンと呼ぶこともある)を形成させる。 A printed wiring board or the like is used in electronic devices such as personal computers and mobile phones in order to mount components, semiconductors and the like. Conventionally, a photosensitive resin composition layer is laminated on a support film, and a protective film is laminated on the photosensitive resin composition layer as required, as a resist for manufacturing printed wiring boards and the like. Resin laminates, so-called dry film photoresists (hereinafter sometimes referred to as DF) are used. As the photosensitive resin composition layer, at the present time, an alkali developing type using a weak alkaline aqueous solution as a developer is generally used. In order to manufacture a printed wiring board etc. using DF, it goes through the following processes, for example. If the DF has a protective film, the protective film is first peeled off. Thereafter, DF is laminated on a substrate for producing a permanent circuit such as a copper-clad laminate or a flexible substrate using a laminator or the like, and exposure is performed through a wiring pattern mask film or the like. Next, the support film is peeled if necessary, and the photosensitive resin composition layer of the uncured portion (for example, the unexposed portion in the case of a negative type) is dissolved or dispersed and removed by a developer, and a cured resist pattern (described below) , Sometimes referred to as a resist pattern).
 レジストパターン形成後、回路を形成させるプロセスは、大きく2つの方法に分かれる。第一の方法は、レジストパターンによって覆われていない基板面(例えば銅張積層板の銅面)をエッチング除去した後、レジストパターン部分を現像液よりも強いアルカリ水溶液で除去する方法(エッチング法)である。第二の方法は、上記基板面に、銅、半田、ニッケル、スズ等のメッキ処理を行った後、第一の方法と同様にしてレジストパターン部分を除去し、更に、現れた基板面(例えば銅張積層板の銅面)をエッチングする方法(メッキ法)である。エッチングには塩化第二銅、塩化第二鉄、銅アンモニア錯体溶液等が用いられる。近年では、電子機器の小型化及び軽量化に伴い、プリント配線板の微細化及び高密度化が進んでおり、上記のような製造工程において高解像性、良好な線幅再現性等を与える高性能DFが求められている。 After forming a resist pattern, the process of forming a circuit can be roughly divided into two methods. The first method is a method of etching away the substrate surface not covered by the resist pattern (for example, the copper surface of a copper clad laminate) and then removing the resist pattern portion with an alkaline aqueous solution stronger than the developer (etching method) It is. In the second method, the substrate surface is plated with copper, solder, nickel, tin or the like, and then the resist pattern portion is removed in the same manner as in the first method, and the substrate surface (for example, It is a method (plating method) of etching the copper surface of a copper clad laminate. Cupric chloride, ferric chloride, a copper ammonia complex solution or the like is used for the etching. In recent years, with the miniaturization and weight reduction of electronic devices, miniaturization and densification of printed wiring boards have progressed, and high resolution, good line width reproducibility, etc. are given in the above manufacturing steps. High performance DF is required.
 特許文献1には、支持フィルムと、該支持フィルム上に形成された感光性樹脂組成物からなる層と、を備える感光性エレメントであって、前記支持フィルムのヘイズが0.01~2.0%であり、かつ該支持フィルム中に含まれる直径5μm以上の粒子及び直径5μm以上の凝集物の総数が5個/mm2以下であり、前記感光性樹脂組成物からなる層が、(A)バインダーポリマー、(B)エチレン性不飽和結合を有する光重合性化合物及び(C)光重合開始剤を含有し、かつ、前記感光性樹脂組成物からなる層の厚さが3~30μmである感光性エレメントが記載されており、レジストの欠損を低減することを目的としている。 Patent Document 1 discloses a photosensitive element including a support film and a layer made of a photosensitive resin composition formed on the support film, wherein the haze of the support film is 0.01 to 2.0. % And the total number of particles having a diameter of 5 μm or more and aggregates having a diameter of 5 μm or more contained in the support film is 5 pieces / mm 2 or less, and the layer comprising the photosensitive resin composition is (A) Photosensitivity comprising a binder polymer, (B) a photopolymerizable compound having an ethylenically unsaturated bond, and (C) a photopolymerization initiator, and having a layer thickness of 3 to 30 μm consisting of the photosensitive resin composition. Sex elements have been described and are aimed at reducing defects in the resist.
国際公開第2008/093643号WO 2008/093643
 上記特許文献1は、レジストの欠損を低減するために直径5μm以上の微粒子の数に着目している。しかし本願の発明者が鋭意検討した結果、レジストの形状異常の原因としては、微粒子そのものに加え、支持フィルム内の微粒子以外の光学異常領域(例えば異常屈折率領域)も考えられることを見出した。特許文献1は、直径5μm以上の微粒子の数には着目しているが、支持フィルム内の微粒子以外の光学異常領域には着目していない。支持フィルム中の光学異常領域が多いと、光の散乱、回折等が起こり、本来光を当てたくない部分に光が当たってしまったり、異物が露光光を遮ってしまい、本来露光光を当てたい場所に露光光が当たらなくなったりといった露光制御不良が生じる。このような露光制御不良が原因で、レジスト突起が発生し、所望のレジストパターン形状を得ることができなくなることがある。特許文献1は、このようなレジスト突起の発生について着目しておらず、レジスト突起を回避可能な感光性樹脂積層体は得られていないのが現状である。 The Patent Document 1 focuses on the number of fine particles having a diameter of 5 μm or more in order to reduce defects in the resist. However, as a result of intensive investigations by the inventor of the present application, it has been found that in addition to the fine particles themselves, optically abnormal regions (for example, abnormal refractive index regions) other than the fine particles in the support film can be considered. Patent Document 1 focuses on the number of fine particles having a diameter of 5 μm or more, but does not focus on optically abnormal regions other than the fine particles in the support film. If there is a large number of optically abnormal areas in the support film, light scattering, diffraction, etc. will occur, and light will strike the part where light is not originally desired, or foreign matter will block the exposure light, and it is desirable to apply the exposure light Exposure control defects such as the fact that exposure light does not reach the place occur. Such exposure control defects may cause resist protrusions, making it impossible to obtain a desired resist pattern shape. Patent Document 1 does not pay attention to the occurrence of such resist protrusions, and at present, no photosensitive resin laminate capable of avoiding the resist protrusions has been obtained.
 本発明の一態様は、上記の課題を解決し、レジスト突起を回避し、良好なレジストパターン形状を与える感光性樹脂積層体の提供を目的とする。 One aspect of the present invention aims to solve the above-mentioned problems, to provide a photosensitive resin laminate that avoids resist protrusions and gives a good resist pattern shape.
 本発明者は、上記課題を解決すべく鋭意研究し実験を重ねた。その結果、一態様において、以下の技術的手段により、係る課題を解決することができることを見出した。 The present inventors diligently studied and experimented in order to solve the above problems. As a result, in one aspect, it has been found that such problems can be solved by the following technical means.
 すなわち、本発明は、以下の態様を包含する。
[1] 支持フィルムと、前記支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 前記支持フィルムは微粒子を含み、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が300ppm以下である領域を含む、感光性樹脂積層体。
[2] 前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が200ppm以下である領域を含む、上記態様1に記載の感光性樹脂積層体。
[3] 前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が100ppm以下である領域を含む、上記態様1に記載の感光性樹脂積層体。
[4] 前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が50ppm以下である領域を含む、上記態様1に記載の感光性樹脂積層体。
[5] 前記支持フィルムは、質量基準で、微粒子を10ppm以上で含む、上記態様1~4のいずれかに記載の感光性樹脂積層体。
[6] 支持フィルムと、前記支持フィルム上に形成された感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 前記支持フィルムは微粒子を含み、
 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、数平均で1200個以下となる領域を有する感光性樹脂積層体。
[7] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、数平均で1000個以下となる領域を有する、上記態様6に記載の感光性樹脂積層体。
[8] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、900個以下となる領域を有する、上記態様6に記載の感光性樹脂積層体。
[9] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、500個以下となる領域を有する、上記態様6に記載の感光性樹脂積層体。
[10] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、200個以下となる領域を有する、上記態様6に記載の感光性樹脂積層体。
[11] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、500個以下となる領域を有する、上記態様6~10のいずれかに記載の感光性樹脂積層体。
[12] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、300個以下となる領域を有する、上記態様11に記載の感光性樹脂積層体。
[13] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、100個以下となる領域を有する、上記態様11に記載の感光性樹脂積層体。
[14] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、50個以下となる領域を有する、上記態様11に記載の感光性樹脂積層体。
[15] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、200個以下となる領域を有する、上記態様6~14のいずれかに記載の感光性樹脂積層体。
[16] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、100個以下となる領域を有する、上記態様15に記載の感光性樹脂積層体。
[17] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、50個以下となる領域を有する、上記態様15に記載の感光性樹脂積層体。
[18] 前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、10個以下となる領域を有する、上記態様15に記載の感光性樹脂積層体。
[19] 前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.2以下である、上記態様1~18のいずれかに記載の感光性樹脂積層体。
[20] 前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.1以下である、上記態様19に記載の感光性樹脂積層体。
[21] 前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.05以下である、上記態様19に記載の感光性樹脂積層体。
[22] 前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.02以下である、上記態様19に記載の感光性樹脂積層体。
[23] 前記光学異常領域は空洞を含む、上記態様1~22のいずれかに記載の感光性樹脂積層体。
[24] 前記光学異常領域は前記支持フィルムの主領域と配向性が異なる領域を含む、上記態様1~23のいずれかに記載の感光性樹脂積層体。
[25] 前記光学異常領域は前記支持フィルムの主領域と結晶性が異なる領域を含む、上記態様1~24のいずれかに記載の感光性樹脂積層体。
[26] ライン幅/スペース幅が20/20(μm)以下の配線形成用である、上記態様1~25のいずれかに記載の感光性樹脂積層体。
[27] ライン幅/スペース幅が10/10(μm)未満の配線形成用である、上記態様26に記載の感光性樹脂積層体。
[28] 上記態様1~27のいずれかに記載の感光性樹脂積層体を用いる、プリント配線板におけるレジストパターンの製造方法。
[29] セミアディティブ法による、上記態様28に記載の方法。
[30] 前記レジストパターンのライン幅/スペース幅が10/10(μm)未満である、上記態様28又は29に記載の方法。
[31] 支持フィルムと、前記支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 直接描画露光機を用いてライン幅/スペース幅が8/8(μm)のレジストパターンを基板上に形成した場合に、支持フィルムの感光性樹脂組成物層側の表面に焦点を合わせた際の線幅と、当該表面から厚み方向に400μm基板内側にずらした際の線幅の差が1.8μm以下である、感光性樹脂積層体。
That is, the present invention includes the following aspects.
[1] A photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles, and the photosensitive resin laminate includes a region in which the total area ratio of the optically abnormal region is 300 ppm or less when the support film is observed at an area of 13.5 mm 2 with an epi-illumination laser microscope .
[2] The support film according to the above mode 1, wherein the support film includes a region in which the total area ratio of the optically abnormal region is 200 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident laser microscope. Photosensitive resin laminate.
[3] The support film described in the above mode 1, wherein the support film includes a region in which the total area ratio of the optically abnormal region is 100 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident laser microscope. Photosensitive resin laminate.
[4] The support film described in the above mode 1, wherein the support film includes a region having a total area ratio of 50 ppm or less of an optically abnormal region when the support film is observed at an area of 13.5 mm 2 by an epi-illumination laser microscope Photosensitive resin laminate.
[5] The photosensitive resin laminate according to any one of the above aspects 1 to 4, wherein the support film contains 10 ppm or more of fine particles on a mass basis.
[6] A photosensitive resin laminate comprising a support film and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles,
In the support film, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1,200 in number average The photosensitive resin laminated body which has the area | region which becomes the following.
[7] The number of fine particles in contact with the area other than the fine particles of the optically abnormal area among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film is a number average The photosensitive resin laminate according to the above-mentioned aspect 6, having a region of 1000 or less.
[8] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film is 900 The photosensitive resin laminated body of the said aspect 6 which has the area | region which becomes the following.
[9] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film is 500 The photosensitive resin laminated body of the said aspect 6 which has the area | region which becomes the following.
[10] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film is 200 The photosensitive resin laminated body of the said aspect 6 which has the area | region which becomes the following.
[11] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film is 500 The photosensitive resin laminate according to any one of the above Embodiments 6 to 10, having a region to be the following.
[12] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film is 300 The photosensitive resin laminated body of the said aspect 11 which has the area | region which becomes the following.
[13] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film is 100 The photosensitive resin laminated body of the said aspect 11 which has the area | region which becomes the following.
[14] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film is 50 The photosensitive resin laminated body of the said aspect 11 which has the area | region which becomes the following.
[15] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film is 200 The photosensitive resin laminate according to any one of the above aspects 6 to 14, which has a region to be the following.
[16] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film is 100 The photosensitive resin laminated body of the said aspect 15 which has the area | region which becomes the following.
[17] The number of fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film is 50 The photosensitive resin laminated body of the said aspect 15 which has the area | region which becomes the following.
[18] The number of the fine particles in contact with the area other than the fine particles in the optically abnormal area among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film is 10 The photosensitive resin laminated body of the said aspect 15 which has the area | region which becomes the following.
[19] The photosensitive resin laminate according to any one of the above embodiments, wherein the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is 0.2 or less.
[20] The photosensitive resin laminate according to the above-mentioned aspect 19, wherein the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is 0.1 or less.
[21] The photosensitive resin laminate according to the above-mentioned aspect 19, wherein the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is 0.05 or less.
[22] The photosensitive resin laminate according to the above-mentioned aspect 19, wherein the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is 0.02 or less.
[23] The photosensitive resin laminate according to any one of the above aspects 1 to 22, wherein the optically abnormal region includes a cavity.
[24] The photosensitive resin laminate according to any one of the above-mentioned aspects 1 to 23, wherein the optically abnormal area includes an area different in orientation from the main area of the support film.
[25] The photosensitive resin laminate according to any one of the above aspects 1 to 24, wherein the optically abnormal region includes a region different in crystallinity from the main region of the support film.
[26] The photosensitive resin laminate according to any one of the above aspects 1 to 25, which is for forming a wiring having a line width / space width of 20/20 (μm) or less.
[27] The photosensitive resin laminate according to the above-mentioned aspect 26, which is for forming a wiring having a line width / space width of less than 10/10 (μm).
[28] A method for producing a resist pattern in a printed wiring board, which uses the photosensitive resin laminate according to any one of the above-mentioned aspects 1 to 27.
[29] The method according to the above aspect 28, by a semi-additive method.
[30] The method according to Aspect 28 or 29, wherein the line width / space width of the resist pattern is less than 10/10 (μm).
[31] A photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
When a resist pattern with a line width / space width of 8/8 (μm) is formed on a substrate using a direct writing exposure machine, the surface on the photosensitive resin composition layer side of the support film is focused The photosensitive resin laminated body whose difference of the line width and the line width at the time of shifting to the board | substrate inner side 400 micrometers in the thickness direction from the said surface is 1.8 micrometers or less.
 本発明の一態様によれば、レジスト突起を回避し、良好なレジストパターン形状を与える感光性樹脂積層体が提供され得る。 According to one aspect of the present invention, a photosensitive resin laminate can be provided which avoids resist protrusions and gives a good resist pattern shape.
図1は、光学異常領域の合計面積の測定方法について説明する図である。FIG. 1 is a diagram for explaining a method of measuring the total area of the optical abnormality area. 図2は、微粒子数のレーザー顕微鏡モードによる測定について説明する図である。FIG. 2 is a diagram for explaining measurement of the number of microparticles in the laser microscope mode. 図3は、微粒子数の光学顕微鏡モードによる測定ついて説明する図である。FIG. 3 is a view for explaining measurement of the number of microparticles in the optical microscope mode.
 以下、本発明を実施するための例示の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, exemplary embodiments for carrying out the present invention (hereinafter abbreviated as “embodiments”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
[感光性樹脂積層体]
 本実施の形態は、支持フィルムと、該支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体を提供する。本実施の形態は、支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が300ppm以下である。
[Photosensitive resin laminate]
The present embodiment provides a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film. In the present embodiment, the total area ratio of the optically abnormal area is 300 ppm or less when the support film is observed with an area of 13.5 mm 2 with an incident-type laser microscope.
 支持フィルムとしては、露光光源から放射される光を透過する透明な支持フィルムが好ましい。このような支持フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、セルロース誘導体フィルム等が挙げられる。これらのフィルムは、必要に応じて延伸されたものも使用可能である。 As a support film, the transparent support film which permeate | transmits the light radiated | emitted from an exposure light source is preferable. As such a support film, for example, polyethylene terephthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, A polystyrene film, a polyacrylonitrile film, a styrene copolymer film, a polyamide film, a cellulose derivative film etc. are mentioned. These films may be stretched if necessary.
 また、支持フィルムは単層構造であってもよく、複数の組成から形成される樹脂層を積層した多層構造であってもよい。多層構造の場合、帯電防止層があってもよい。2層構造や3層構造のような多層構造の場合、例えば、一方の面Aに微粒子を含有する樹脂層を形成し、もう一方の面Bには、(1)面Aと同じように微粒子を含有、(2)面Aより少量の微粒子を含有、(3)面Aより細かい微粒子を含有、(4)微粒子を含有しない、といった構造をとることができる。(2)、(3)、(4)の構造の場合は、面B側に感光性樹脂組成物層を形成することが好ましい。このとき、面A側に微粒子を含有する樹脂層があると、フィルムの滑り性等の観点から好ましい。 In addition, the support film may have a single layer structure, or may have a multilayer structure in which resin layers formed of a plurality of compositions are laminated. In the case of a multilayer structure, an antistatic layer may be present. In the case of a multilayer structure such as a two-layer structure or a three-layer structure, for example, a resin layer containing fine particles is formed on one side A, and on the other side B And (2) contains a smaller amount of particles than surface A, (3) contains particles smaller than surface A, and (4) does not contain particles. In the case of the structures of (2), (3) and (4), it is preferable to form a photosensitive resin composition layer on the surface B side. At this time, if there is a resin layer containing fine particles on the surface A side, it is preferable from the viewpoint of slipperiness of the film and the like.
 支持フィルムにおいては、落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が、300ppm以下であり、より好ましくは250ppm以下、より好ましくは200ppm以下、より好ましくは150ppm以下、より好ましくは100ppm以下、より好ましくは80ppm以下、より好ましくは70ppm以下、より好ましくは60ppm以下、より好ましくは50ppm以下、より好ましくは40ppm以下、より好ましくは20ppm以下、より好ましくは10ppm以下である。上記合計面積比率が小さい程、遮光、異常な屈折又は回折等が低減されるためレジスト突起の回避において有利である。レジスト突起は(特にセミアディティブ法(SAP)において)配線の欠けをもたらし、配線の規定抵抗値からのずれ、ひいては回路の信頼性低下(すなわち信号(正弦波)の乱れ)の原因となることから、レジスト突起を回避することは回路の良好な信頼性を得る点で有利である。支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率は、1ppm以上であってもよく、5ppm以上、10ppm以上、20ppm以上であってもよい。 In the support film, the total area ratio of the optically abnormal area when observed in an area of 13.5 mm 2 with an incident type laser microscope is 300 ppm or less, more preferably 250 ppm or less, more preferably 200 ppm or less, more preferably Is 150 ppm or less, more preferably 100 ppm or less, more preferably 80 ppm or less, more preferably 70 ppm or less, more preferably 60 ppm or less, more preferably 50 ppm or less, more preferably 40 ppm or less, more preferably 20 ppm or less, more preferably 10 ppm It is below. As the total area ratio is smaller, light shielding, abnormal refraction, diffraction, and the like are reduced, which is advantageous in avoiding the resist protrusions. The resist projection causes a chipping of the wiring (especially in the semi-additive method (SAP)), and causes a deviation from the specified resistance value of the wiring and thus a reduction in the reliability of the circuit (that is, a disturbance of the signal (sinusoidal wave)). Avoiding resist protrusions is advantageous in obtaining good circuit reliability. 1 ppm or more may be sufficient as the total area ratio of an optical abnormal area at the time of observing a support film by the incident type laser microscope in the area of 13.5 mm 2 , 5 ppm or more, 10 ppm or more, 20 ppm or more may be sufficient. .
 本開示の光学異常領域の面積と微粒子の数は、支持フィルムの厚みの中心2μmの領域で観測される光学異常領域の面積と微粒子の数を意味し、支持フィルムが多層構造の場合は、多層構造全体の厚みの中心2μmの領域で測定される光学異常領域の面積と微粒子の数を意味する。 The area of the optically abnormal area and the number of fine particles of the present disclosure mean the area of the optically abnormal area and the number of fine particles observed in the center 2 μm area of the thickness of the support film. It means the area of the optical anomaly area and the number of particles measured in the center 2 μm area of the thickness of the entire structure.
 以下、支持フィルムの厚み中心2μmの領域で光学異常領域の面積及び微粒子の数を測定する理由について説明する。
 本件発明者が鋭意検討した結果、光の散乱、回折、遮光等の主な要因は光学異常領域であることを見出した。本開示で、光学異常領域とは、支持フィルムの主領域(支持フィルムを構成する樹脂)とは光学物性が異なる領域(具体的には、反射率若しくは屈折率が主領域と異なるか、又は、散乱、回折等の光学的現象が主領域よりも強く生じる領域)である。光学異常領域は、微粒子による遮光部分と、微粒子以外の光学異常領域(例えば、微粒子及び支持フィルムの主領域とは異なる屈折率を有する異常屈折率領域)との両者を含み得る。光学異常領域の例は、支持フィルムの主領域と配向性及び/又は結晶性が異なる領域、空気の領域、空気以外の気体の領域、気体がほぼ存在しない空洞領域等である。例えば、支持フィルムの製造工程において延伸が行われる場合、支持フィルム内に微粒子がある等の理由により、延伸条件が微粒子の付近で他の領域と異なる領域が発生することがある。この領域は配向性及び/又は結晶性が他の領域と異なるため、他の領域と屈折率が異なる。また、支持フィルムの製造工程において、支持フィルム内に微粒子がある等の理由により、空気の領域、空気以外の気体の領域、空洞領域が生じる可能性がある。この領域は他の領域と屈折率が異なる。異常屈折率領域等の光学異常領域は微粒子の近傍に存在することが多いが、必ずしも微粒子の近傍に存在するとは限らない。光学異常領域は周りの主領域と屈折率等が異なるため、光学顕微鏡等で視認した際に光学異常領域と主領域との間で光が散乱、屈折するため、明るく見える等、主領域と異なる見え方をする。光学異常領域(特に異常屈折率領域)の発生原因上、支持フィルムの表面には光学異常領域は発生しにくく、支持フィルムの内部で発生しやすいため、本開示では、支持フィルムの厚み中心2μmの領域で光学異常領域の面積及び微粒子の数を測定する。
Hereinafter, the reason for measuring the area of the optically abnormal region and the number of fine particles in the region of 2 μm in the thickness center of the support film will be described.
As a result of intensive investigations by the inventor of the present invention, it has been found that the main factor such as light scattering, diffraction, light shielding and the like is an optical abnormality region. In the present disclosure, the optically abnormal region is a region having a different optical property from the main region of the support film (the resin constituting the support film) (specifically, the reflectance or the refractive index is different from the main region, or An area where optical phenomena such as scattering and diffraction occur more strongly than the main area. The optically abnormal area may include both a light shielding portion by the fine particles and an optically abnormal area other than the fine particles (for example, an abnormal refractive index area having a refractive index different from that of the fine area and the main area of the support film). Examples of the optically abnormal area are an area different in orientation and / or crystallinity from the main area of the support film, an area of air, an area of gas other than air, a hollow area where gas is substantially absent, and the like. For example, when stretching is performed in the manufacturing process of the support film, regions having stretching conditions different from other regions may occur in the vicinity of the particles because of the presence of the particles in the support film. Since this region is different in orientation and / or crystallinity from other regions, it has a different refractive index from the other regions. Further, in the process of producing the support film, there may be a region of air, a region of a gas other than air, or a cavity region due to the presence of fine particles in the support film. This region is different in refractive index from the other regions. An optically abnormal region such as an abnormal refractive index region is often present in the vicinity of the fine particle, but is not necessarily present in the vicinity of the fine particle. The optically abnormal area is different from the main area, for example, it looks bright because light is scattered and refracted between the optically abnormal area and the main area when viewed with an optical microscope etc. Show it. In the present disclosure, the thickness center of the support film is 2 μm because in the present disclosure, the optical abnormality region is hard to be generated on the surface of the support film and is easily generated inside the support film due to the generation of the optical abnormality region (in particular, abnormal refractive index region). Measure the area of the optically abnormal area and the number of fine particles in the area.
 光学異常領域を低減する方法としては、微粒子表面の支持フィルム構成材料に対する親和性を向上させる方法(例えば、支持フィルムがPETフィルムである場合、微粒子表面を芳香族系ポリマーでコーティングする方法)、支持フィルムの二軸延伸後に再度フィルムを支持フィルムのガラス転移温度以上の温度で熱圧着処理し、光学異常領域(特に異常屈折率領域)を消失させる方法等が有用である。支持フィルムがPETフィルムである場合、熱圧着処理の温度は、例えば約180~250℃でもよい。 As a method of reducing the optically abnormal area, a method of improving the affinity of the surface of the fine particle for the support film constituting material (for example, when the support film is a PET film, a method of coating the fine particle surface with an aromatic polymer), support After biaxial stretching of the film, a method of subjecting the film to thermocompression bonding at a temperature higher than the glass transition temperature of the support film again to eliminate the optically abnormal area (particularly, the abnormal refractive index area) is useful. When the support film is a PET film, the temperature of the thermocompression bonding process may be, for example, about 180 to 250.degree.
 光学異常領域の合計面積の測定方法は下記のとおりである。落射型レーザー顕微鏡(Olympus製OLS-4100)の対物レンズの上部に偏光フィルター(OLS4000-QWP)を挿入する。次にレーザー顕微鏡のステージ上に多孔質吸着板(ユニバーサル技研製65F-HG)及び真空ポンプを用いて30mm×30mmに切断した支持フィルムサンプルを水平に吸引固定する。吸引固定した支持フィルムを、対物レンズ50倍のレーザー光量60(レーザー波長は405nm)にて観測する。この際、支持フィルムの厚み方向の中心2μmの領域を測定領域に定め、測定領域259μm×260μmで測定箇所数200点で計測を行う(したがって、測定領域は合計で0.259mm×0.26mm×200=13.5mm2となる)。 The measurement method of the total area of the optically abnormal area is as follows. A polarizing filter (OLS4000-QWP) is inserted above the objective lens of the incident type laser microscope (OLS-4100 manufactured by Olympus). Next, a support film sample cut to 30 mm × 30 mm is suctioned and fixed horizontally on a stage of a laser microscope using a porous adsorption plate (65F-HG manufactured by Universal Giken) and a vacuum pump. The suction-fixed support film is observed with a laser light amount 60 (laser wavelength is 405 nm) of 50 times the objective lens. At this time, an area of 2 μm at the center in the thickness direction of the support film is defined as a measurement area, and measurement is performed at 200 measurement points at 259 μm × 260 μm (therefore, the measurement area is a total of 2.259 mm × 0.26 mm × It becomes 200 = 13.5 mm 2 ).
 計測された画像内の最大光量のピクセルと最小光量のピクセルとの光量差を4096階調(最大光量の値が4095で、最小光量の値が0になる)に分ける。画像内のピクセルの光量分布をグラフ化したヒストグラム(横軸:光量の階調(最小値0、最大値4095)、縦軸:ピクセルの個数)を作成する。作成したヒストグラムの2つある裾野の値の大きい方の裾野の値から400階調プラスした階調を閾値として、計測された画像を二値化し、閾値よりも光量が大きいピクセルの面積を合計し、その合計面積を光学異常領域の合計面積とする。計測面積に対する光学異常領域の合算面積の比率を算出する。 The light amount difference between the pixel of the maximum light amount and the pixel of the minimum light amount in the measured image is divided into 4096 gradations (the maximum light amount is 4095 and the minimum light amount is 0). A histogram (horizontal axis: gradation of light quantity (minimum value 0, maximum value 4095), vertical axis: number of pixels) graphing the light quantity distribution of pixels in the image is created. The measured image is binarized using the gradation obtained by adding 400 gradations from the value of the larger one of the two base values in the created histogram as the threshold value, and the areas of the pixels whose light amounts are larger than the threshold are summed. , And the total area thereof is the total area of the optical anomaly region. The ratio of the total area of the optical abnormality area to the measurement area is calculated.
 図1は、光学異常領域の合計面積の測定方法について説明する図である。図1では例示のヒストグラムを示している。ヒストグラムのα、βの点は、計測画面内に光量α(最大光量の値が4095で、最小光量の値が0になるとなるように4096階調で規格化されている)のピクセルがβ個存在していることを示す。ヒストグラムの大きい方の裾野(光量0のところも裾野とカウントするため、2つある裾野の一方は光量0のところとなる。)から400階調プラスした階調を閾値とする。閾値以上の光量を有するピクセル(典型的には、数ピクセル程度と極めて少ない)を閾値で二値化する(すなわち、閾値より低い光量のピクセルを黒、閾値より高い光量のピクセルを白とする)と、黒い計測画面の中に数ピクセル白い点が存在する。この白い点が遮光部分、すなわち、支持フィルム内の微粒子やその他の光学異常領域(例えば異常屈折率領域)により落射型レーザー顕微鏡のレーザーが反射された部分に対応する。上記測定をOlympus製OLS-4100のレーザー顕微鏡モードによる測定とする。 FIG. 1 is a diagram for explaining a method of measuring the total area of the optical abnormality area. An exemplary histogram is shown in FIG. The points of α and β of the histogram are β pixels of the light amount α (normalized with 4096 gradations so that the value of the maximum light amount is 4095 and the value of the minimum light amount is 0) in the measurement screen Indicates that it exists. A gray scale obtained by adding 400 gradations from the large bottom of the histogram (since one of the two bottoms is at the light quantity 0 because the light quantity 0 is also counted as the foot) is used as a threshold. Binarize pixels with light intensity above the threshold (typically, as few as several pixels) with the threshold (that is, pixels with light intensity below the threshold are black and pixels with light intensity above the threshold are white) And, a few pixels white point exists in the black measurement screen. This white point corresponds to the light shielding portion, that is, the portion where the laser of the incident type laser microscope is reflected by the fine particles in the support film and other optically abnormal regions (for example, abnormal refractive index regions). The above measurement is taken as a measurement by OLS-4100 made by Olympus in a laser microscope mode.
 次に、微粒子の数の測定方法は下記のとおりである。
 光学異常領域の合計面積を測定した後、落射型レーザー顕微鏡(Olympus製OLS-4100)を光学顕微鏡モードに切り替える。その後、測定領域259μm×260μmで目視によりレーザー顕微鏡モードで確認された遮光部分の位置(すなわち微粒子の位置)に対応する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数及びその直径を測定する。即ち、レーザー顕微鏡モードで白い点(遮光部分)としてカウントされた箇所を光学顕微鏡モードで目視で観察し、白い点が微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子であったかどうかを確認し、更に、その直径を目視で測定する。
 同様の測定を測定箇所数200点で実施し(即ち、0.259mm×0.26mm×200=13.5mm2の面積で実施し)、微粒子の直径毎にその合計数を算出する。微粒子が完全な球体ではない場合は、微粒子の最も長い幅をその微粒子の径とする。
 図2は、微粒子数のレーザー顕微鏡モードによる測定について説明する図であり、白い点が遮光部分に該当する。また、図3は、微粒子数の光学顕微鏡モードによる測定について説明する図である。
 仮に図2の白点線領域の場所が図3の白点線領域の場所に対応しているとする。この場合、図2の白点線領域に該当する領域に1つの微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子が存在することとなる。これをレーザー顕微鏡モードで観測した白い点(遮光領域)全ての箇所で光学顕微鏡モードにより観測を行い、微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数及びその直径を測定する。レーザー顕微鏡モードで観測した白い点(遮光領域)が微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子ではない場合もある。
Next, the method of measuring the number of microparticles is as follows.
After measuring the total area of the optically abnormal area, the incident type laser microscope (OLS-4100 manufactured by Olympus) is switched to the optical microscope mode. Thereafter, the number of particles in contact with an optically abnormal area (for example, an abnormal refractive index area) other than the microparticles corresponding to the position of the light shielding portion (that is, the position of the microparticles) visually confirmed in the laser microscope mode in the measurement area 259 μm × 260 μm Measure the diameter. That is, a portion counted as a white point (light shielding portion) in the laser microscope mode is visually observed in the optical microscope mode, and it is determined whether the white point is a particle in contact with an optical abnormality area (for example, an abnormal refractive index area) other than the microparticles. Check and also measure the diameter visually.
The same measurement is carried out at 200 measurement points (that is, carried out with an area of 0.259 mm × 0.26 mm × 200 = 13.5 mm 2 ), and the total number is calculated for each particle diameter. If the particle is not a perfect sphere, the longest width of the particle is taken as the particle diameter.
FIG. 2 is a diagram for explaining measurement of the number of particles in the laser microscope mode, and a white point corresponds to a light shielding portion. Moreover, FIG. 3 is a figure explaining the measurement by the optical microscope mode of the number of microparticles | fine-particles.
Suppose that the location of the white dotted area in FIG. 2 corresponds to the location of the white dotted area in FIG. In this case, in the area corresponding to the white dotted area in FIG. 2, fine particles in contact with an optical abnormal area (for example, an abnormal refractive index area) other than one fine particle are present. This is observed in the light microscope mode at all white points (light shielding area) observed in the laser microscope mode, and the number and diameter of the microparticles in contact with the optical abnormality area (for example, the abnormal refractive index area) other than the microparticles are measured. . In some cases, the white point (light-shielded area) observed in the laser microscope mode is not a fine particle in contact with an optical abnormal area (for example, an abnormal refractive index area) other than the fine particles.
 支持フィルムが微粒子を全く含まないと、感光性樹脂積層体をロールに巻取る場合に十分な巻取り性を得るのが難しいことから、本実施の形態において、支持フィルムは微粒子を含む。微粒子の含有量は、特に制限はないが、支持フィルムに対して、質量比で、好ましくは5~1,000ppm、より好ましくは10~800ppm、特に好ましくは20~500ppmである。 If the support film does not contain any particulates, it is difficult to obtain sufficient windability when the photosensitive resin laminate is wound on a roll, and in the present embodiment, the support film contains particulates. The content of the fine particles is not particularly limited, but is preferably 5 to 1,000 ppm, more preferably 10 to 800 ppm, particularly preferably 20 to 500 ppm by mass ratio to the support film.
 支持フィルムに含まれる微粒子としては、例えば無機微粒子又は有機微粒子があり、滑剤、添加剤の凝集物、原料に混入している異物、製造工程上混入する異物等がある。微粒子の具体例としては、炭酸カルシウム、リン酸カルシウム、シリカ(二酸化ケイ素)、カオリン、タルク、二酸化チタン、アルミナ(酸化アルミニウム)、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子、架橋高分子粒子、シュウ酸カルシウム等の有機粒子等が挙げられる。これらは単独であっても、二種以上の組み合わせであってもよい。 The fine particles contained in the support film include, for example, inorganic fine particles or organic fine particles, such as lubricants, aggregates of additives, foreign matter mixed in the raw material, foreign matter mixed in the manufacturing process, and the like. Specific examples of fine particles include inorganic particles such as calcium carbonate, calcium phosphate, silica (silicon dioxide), kaolin, talc, titanium dioxide, alumina (aluminum oxide), barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide and the like And cross-linked polymer particles, organic particles such as calcium oxalate, and the like. These may be alone or in combination of two or more.
 微粒子は常法に従って支持フィルムに配合される。遮光部分の合計面積が特定範囲とされた支持フィルムを製造するには、例えば、材料樹脂をフィルター(例えば2.0μm以下の目のフィルター)で濾過する等の方法が挙げられる。フィルターの目を細かくするほど、また、材料樹脂をフィルターに通す回数を多くするほど、材料樹脂中の微粒子の数が少なく、微粒子の大きさが小さくなり遮光部分の合計面積が小さくなる。 The fine particles are blended into the support film according to a conventional method. In order to manufacture a support film in which the total area of the light shielding portion is in the specific range, for example, a method of filtering the material resin with a filter (for example, an eye filter of 2.0 μm or less) may be mentioned. The finer the filter eyes, and the greater the number of passes of the material resin through the filter, the smaller the number of fine particles in the material resin, the smaller the fine particles, and the smaller the total area of the light shielding portion.
 レジスト突起の発生を抑制するとの観点から、微粒子の屈折率と支持フィルムの主領域の屈折率との屈折率差は、好ましくは0.2以下、より好ましくは0.18以下、より好ましくは0.15以下、より好ましくは0.12以下、より好ましくは0.1以下、より好ましくは、0.08以下、より好ましくは0.05以下、より好ましくは0.04以下、より好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.01以下である。微粒子と支持フィルムとの屈折率差が小さいと光の散乱が低減される傾向がある。本開示で、「支持フィルムの主領域」とは、支持フィルムの光学異常領域以外の領域で支持フィルムの大部分を占める領域を意味する。感光性樹脂積層体用の支持フィルムの屈折率は、典型的には、1.4~1.7程度であることから、微粒子と支持フィルムとの屈折率差を小さくする手段としては、微粒子として、屈折率が同程度のものを用いることが挙げられる。支持フィルムの屈折率は好ましくは1.4~1.7で、より好ましくは1.5~1.7である。
尚、本願明細書における屈折率は波長589nmにおける屈折率を意味する。
The refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is preferably 0.2 or less, more preferably 0.18 or less, and more preferably 0 from the viewpoint of suppressing the generation of resist protrusions. .15 or less, more preferably 0.12 or less, more preferably 0.1 or less, more preferably 0.08 or less, more preferably 0.05 or less, more preferably 0.04 or less, more preferably 0. It is at most 03, more preferably at most 0.02, particularly preferably at most 0.01. When the difference in refractive index between the fine particles and the support film is small, light scattering tends to be reduced. In the present disclosure, “main region of support film” means a region that occupies most of the support film in the region other than the optical abnormality region of the support film. Since the refractive index of the support film for the photosensitive resin laminate is typically about 1.4 to 1.7, as a means for reducing the difference in refractive index between the fine particles and the support film, the fine particles may be used as fine particles. And using the same refractive index. The refractive index of the support film is preferably 1.4 to 1.7, more preferably 1.5 to 1.7.
The refractive index in the present specification means the refractive index at a wavelength of 589 nm.
 支持フィルム内の微粒子の数を減らす方法としては、微粒子を取り除くフィルターを通したフィルム材料を用いて支持フィルムを製造する方法等を例示できる。例えば、直径0.5μm以上の微粒子の数を少なくしたい場合は、直径0.5μm以上の微粒子を取り除くフィルターを使用すればよい。なお、このようなフィルターの使用後に、微粒子を後添加することで、微粒子の数を所望の範囲内まで増加させて微粒子数を調整してもよい。 As a method of reducing the number of fine particles in the support film, a method of producing a support film using a film material passing through a filter for removing fine particles can be exemplified. For example, when it is desired to reduce the number of particles having a diameter of 0.5 μm or more, a filter that removes particles having a diameter of 0.5 μm or more may be used. The number of particles may be adjusted by increasing the number of particles to a desired range by post-adding the particles after using such a filter.
 光学異常領域は光を特に散乱、回折等させる領域であることから、微粒子と微粒子以外の光学異常領域とが近接して存在すると光の散乱が顕著になり好ましくない。従って、微粒子以外の光学異常領域(例えば異常屈折率領域)の近傍に存在する微粒子数が低減されていることが好ましい。 Since the optically abnormal region is a region that particularly scatters or diffracts light, if the fine particles and the optically abnormal region other than the fine particles are close to each other, the light scattering becomes remarkable, which is not preferable. Therefore, it is preferable that the number of fine particles present in the vicinity of an optically abnormal area (for example, an abnormal refractive index area) other than the fine particles be reduced.
 支持フィルム中の微粒子による遮光の影響を少なくするとの観点から、支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、好ましくは1500個以下、好ましくは1200個以下、好ましくは1000個以下、好ましくは900個以下、好ましくは800個以下、好ましくは700個以下、好ましくは600個以下、好ましくは500個以下、好ましくは400個以下、好ましくは300個以下、より好ましくは200個以下、より好ましくは100個以下、更に好ましくは80個以下、更に好ましくは50個以下、更に好ましくは30個以下、特に好ましくは10個以下となる領域を有することが好ましい。この直径0.5μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 From the viewpoint of reducing the influence of light shielding by the fine particles in the support film, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, optical properties different from the main region of the support film (for example, The number of fine particles in contact with an optically abnormal area (for example, an abnormal refractive index area) other than the fine particles having a refractive index) is preferably 1500 or less, preferably 1200 or less, preferably 1000 or less, preferably 900 or less, preferably There are 800 or less, preferably 700 or less, preferably 600 or less, preferably 500 or less, preferably 400 or less, preferably 300 or less, more preferably 200 or less, more preferably 100 or less, more preferably Preferably not more than 80, more preferably not more than 50, still more preferably not more than 30, particularly preferably It is preferable to have a region of 10 or less. There is no upper limit to the diameter of the fine particles having a diameter of 0.5 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 好ましい一態様は、支持フィルムと、該支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 支持フィルムは、微粒子を含み、該支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が300ppm以下である領域を含み、かつ、
 支持フィルムは、該支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の微粒子のうち、光学異常領域の微粒子以外の領域と接する微粒子の数が、数平均で1200個以下となる領域を有する、感光性樹脂積層体を提供する。
 また、上記態様の代替又は上記態様との組合せに係る感光性樹脂積層体においては、直接描画露光機を用いてライン幅/スペース幅が8/8(μm)のレジストパターンを基板上に形成した場合に、支持フィルムの感光性樹脂組成物層側の表面に焦点を合わせた際の線幅と、当該表面から厚み方向に400μm基板内側にずらした際の線幅の差が1.8μm以下である。
A preferred embodiment is a photosensitive resin laminate comprising a support film and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles, and includes a region in which the total area ratio of the optically abnormal region is 300 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident-type laser microscope,
Among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1200 or less in the support film. Provided is a photosensitive resin laminate having a region.
Moreover, in the photosensitive resin laminated body which concerns on the combination of the alternative of the said aspect, or the said aspect, the line width / space width formed the resist pattern of 8/8 (micrometer) on the board | substrate using direct drawing exposure machine. In this case, the difference between the line width when focusing on the surface of the support film on the photosensitive resin composition layer side and the line width when shifted from the surface toward the inner side of the 400 μm substrate in the thickness direction is 1.8 μm or less is there.
 なお本開示で、直径が特定値の微粒子とは、直径が当該特定値の一次粒子と、一次粒子の凝集物の直径が当該特定値の一次粒子凝集物とを包含することを意味する。尚、一次粒子が完全なる球体ではない場合は、一次粒子の最も長い幅をその一次粒子の径とする。また、一次粒子凝集物が完全なる球体ではない場合は、一次粒子凝集物の最も長い幅をその一次粒子凝集物の径とする。例えば、直径0.5μm以上の微粒子には、直径が0.5μm以上の一次粒子と、直径0.5μm以下の一次粒子の凝集物で直径が0.5μm以上の一次粒子凝集物が含まれる。 In the present disclosure, fine particles having a specific value of diameter mean that primary particles having a specific value of the diameter and primary particle aggregates having a specific value of the aggregate of primary particles are included. When the primary particles are not perfect spheres, the longest width of the primary particles is taken as the diameter of the primary particles. Also, when the primary particle aggregate is not a complete sphere, the longest width of the primary particle aggregate is taken as the diameter of the primary particle aggregate. For example, the fine particles having a diameter of 0.5 μm or more include primary particles having a diameter of 0.5 μm or more, and aggregates of primary particles having a diameter of 0.5 μm or less and include primary particle aggregates having a diameter of 0.5 μm or more.
 光学異常領域は光学顕微鏡モードで観測した際に、その周囲の主領域と見え方(光の透過、反射)が異なるため、図3のように微粒子が微粒子以外の光学異常領域(例えば異常屈折率領域)と接するか否かは光学顕微鏡で目視で観測が可能である。 When the optically abnormal area is observed in the optical microscope mode, the appearance (transmission and reflection) of the main area around it is different from that of the surrounding area. As shown in FIG. It can be observed visually with an optical microscope whether it is in contact with the region.
 なお、支持フィルム中で微粒子の数を測定したときに、本実施の形態の特定の態様に規定される微粒子数を有する箇所があれば、感光性樹脂積層体は当該特定の態様に係る感光性樹脂積層体に包含される。すなわち、ある箇所で測定したときには規定の微粒子数を満たさないとしても、別の箇所で測定したときに規定の微粒子数を満たす場合には、その感光性樹脂積層体は当該特定の態様に係る感光性樹脂積層体に包含される。 In addition, when the number of fine particles in the support film is measured, if there is a place having the number of fine particles defined in the specific aspect of the present embodiment, the photosensitive resin laminate is photosensitive according to the specific aspect. It is included in a resin laminate. That is, even if the specified number of fine particles is not satisfied when measured at a certain place, when the specified number of fine particles is satisfied when measured at another place, the photosensitive resin laminate is exposed to the light according to the specific aspect. Is included in the conductive resin laminate.
 好ましい態様においては、支持フィルムの総面積のうち好ましくは5%以上、好ましくは10%以上、好ましくは20%以上、好ましくは30%以上、好ましくは50%以上、より好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、特に好ましくは約100%(すなわち実質的に全域)が、本実施の形態の特定の態様に規定される特定の光学異常領域、又は特定の微粒子(遮光面積、直径及び微粒子数)を有する領域である。 In a preferred embodiment, the total area of the support film is preferably 5% or more, preferably 10% or more, preferably 20% or more, preferably 30% or more, preferably 50% or more, more preferably 60% or more. Preferably, 70% or more, more preferably 80% or more, more preferably 90% or more, particularly preferably about 100% (ie substantially all the area) of the particular optical defined in the specific aspect of the present embodiment. It is an abnormal area or an area having a specific particle (light blocking area, diameter and number of particles).
 感光性樹脂積層体のロール巻取り性を良好に得る観点から、支持フィルムは微粒子を含む。また、支持フィルムは、13.5mm2の面積に含まれる直径0.5μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、好ましくは1個以上、より好ましくは3個以上、更に好ましくは5個以上となる領域を有することができる。この直径0.5μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 From the viewpoint of obtaining the rollability of the photosensitive resin laminate well, the support film contains fine particles. In addition, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 , the support film is an optically abnormal area other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film The number of fine particles in contact with the extraordinary refractive index region) may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more. There is no upper limit to the diameter of the fine particles having a diameter of 0.5 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 本実施の形態において、支持フィルムは、13.5mm2の面積に含まれる直径1.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域と)接する微粒子の数が、好ましくは500個以下、より好ましくは400個以下、より好ましくは300個以下、より好ましくは200個以下、更に好ましくは100個以下、更に好ましくは80個以下、更に好ましくは50個以下、更に好ましくは30個以下、特に好ましくは10個以下となる領域を有することができる。この直径1.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 In the present embodiment, among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 , the support film is an optical component other than the fine particles having optical properties (for example, refractive index) different from the main region of the support film. The number of fine particles in contact with the abnormal area (for example, the abnormal refractive index area) is preferably 500 or less, more preferably 400 or less, more preferably 300 or less, more preferably 200 or less, still more preferably 100 or less. It is possible to have a region which is more preferably 80 or less, more preferably 50 or less, still more preferably 30 or less, particularly preferably 10 or less. There is no particular upper limit to the diameter of the fine particles having a diameter of 1.0 μm or more, but may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 感光性樹脂積層体のロール巻取り性を良好に得る観点から、支持フィルムは微粒子を含む。また、支持フィルムは、13.5mm2の面積に含まれる直径1.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、好ましくは1個以上、より好ましくは3個以上、更に好ましくは5個以上となる領域を有することができる。この直径1.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 From the viewpoint of obtaining the rollability of the photosensitive resin laminate well, the support film contains fine particles. Further, among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, a fine particle other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film) The number of fine particles in contact with the extraordinary refractive index region) may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more. There is no particular upper limit to the diameter of the fine particles having a diameter of 1.0 μm or more, but may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 本実施の形態において、支持フィルムは、13.5mm2の面積に含まれる直径2.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、10箇所の数平均で、好ましくは200個以下、より好ましくは180個以下、より好ましくは150個以下、より好ましくは120個以下、更に好ましくは100個以下、更に好ましくは80個以下、更に好ましくは50個以下、更に好ましくは30個以下、特に好ましくは10個以下となる領域を有することができる。この直径2.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 In the present embodiment, among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 , the support film is an optical component other than fine particles having optical properties (for example, refractive index) different from the main region of the support film. The number of fine particles in contact with the abnormal region (for example, the abnormal refractive index region) is preferably 200 or less, more preferably 180 or less, more preferably 150 or less, more preferably 120 or less, at a number average of 10 locations. It is possible to have a region of 100 or less, more preferably 80 or less, still more preferably 50 or less, still more preferably 30 or less, particularly preferably 10 or less. There is no particular upper limit to the diameter of the particles having a diameter of 2.0 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 感光性樹脂積層体のロール巻取り性を良好に得る観点から、支持フィルムは微粒子を含む。また、支持フィルムは、13.5mm2の面積に含まれる直径2.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、好ましくは1個以上、より好ましくは3個以上、更に好ましくは5個以上となる領域を有することができる。この直径2.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。 From the viewpoint of obtaining the rollability of the photosensitive resin laminate well, the support film contains fine particles. Further, among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 , the support film is an optically abnormal area other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film The number of fine particles in contact with the extraordinary refractive index region) may be preferably 1 or more, more preferably 3 or more, and still more preferably 5 or more. There is no particular upper limit to the diameter of the particles having a diameter of 2.0 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 本実施の形態はまた、支持フィルムと、該支持フィルム上に形成された感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 支持フィルムは微粒子を含んでおり、
 支持フィルムは、13.5mm2の面積に含まれる直径0.5μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、10箇所の数平均で1500個以下となる領域を有する感光性樹脂積層体を提供する。この光学異常領域と接する微粒子の数は、10箇所の数平均で1200個以下でもよく、1000個以下でもよく、800個以下でもよく、500個以下でもよく、300個以下でもよく、100個以下でもよい。
 この感光性樹脂積層体においては、上記13.5mm2の面積に含まれる、微粒子以外の光学異常領域としての異常屈折率領域と接し、且つ、支持フィルムの主領域との屈折率差が、好ましくは0.2以下、好ましくは0.15以下、好ましくは0.10以下、より好ましくは0.05以下、より好ましくは0.03以下、より好ましくは0.02以下、より好ましくは0.01以下である直径0.5μm以上の微粒子の数が、1個以上であってもよく、10個以上であってもよく、50個以上であってもよい。
 異常屈折率領域と接している微粒子の数は少ない方が好ましいが、支持フィルムの主領域との屈折率差が小さい微粒子であれば光の散乱の不都合が小さい。また、微粒子の存在は感光性樹脂積層体の滑り性の向上という利点を与え、感光性樹脂積層体をロールに巻取る場合の優れた巻取り性に寄与できる。
 この直径0.5μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。
The present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles,
Among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film. A photosensitive resin laminate is provided which has an area in which the number of fine particles in contact with the ratio area is 1,500 or less on a number average of ten. The number of fine particles in contact with the optically abnormal area may be 1200 or less, 1000 or less, 800 or less, 500 or less, 300 or less, or 100 or less in number average at 10 locations. May be.
In this photosensitive resin laminate, it is in contact with the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable. Is 0.2 or less, preferably 0.15 or less, preferably 0.10 or less, more preferably 0.05 or less, more preferably 0.03 or less, more preferably 0.02 or less, more preferably 0.01 The number of fine particles having a diameter of 0.5 μm or more, which is the following, may be one or more, ten or more, or fifty or more.
The smaller the number of fine particles in contact with the abnormal refractive index region, the better. However, if the fine particles have a small difference in refractive index from the main region of the support film, the problem of light scattering is small. Further, the presence of the fine particles provides the advantage of improving the slipperiness of the photosensitive resin laminate, and can contribute to the excellent winding property when the photosensitive resin laminate is wound on a roll.
There is no upper limit to the diameter of the fine particles having a diameter of 0.5 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 本実施の形態はまた、支持フィルムと、該支持フィルム上に形成された感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 支持フィルムは微粒子を含んでおり、
 支持フィルムは、13.5mm2の面積に含まれる直径1.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、500個以下となる領域を有する感光性樹脂積層体を提供する。この光学異常領域と接する微粒子の数は、400個以下でもよく、300個以下でもよく、250個以下でもよく、200個以下でもよく、150個以下でもよく、100個以下でもよく、80個以下でもよく、50個以下でもよく、30個以下でもよく、10個以下でもよく、5個以下でもよい。
The present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles,
Among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film. The photosensitive resin laminate has a region in which the number of fine particles in contact with the ratio region is 500 or less. The number of particles in contact with the optically abnormal area may be 400 or less, 300 or less, 250 or less, 200 or less, 150 or less, 100 or less, or 80 or less. It may be 50 or less, 30 or less, 10 or less, or 5 or less.
 この感光性樹脂積層体においては、上記13.5mm2の面積に含まれる、微粒子以外の光学異常領域としての異常屈折率領域と接し、且つ、支持フィルムの主領域との屈折率差が、好ましくは0.2以下、好ましくは0.15以下、好ましくは0.10以下、より好ましくは0.05以下、より好ましくは0.03以下、より好ましくは0.02以下、より好ましくは0.01以下である直径1.0μm以上の微粒子の数が、10箇所の数平均で1個以上であってもよく、5個以上であってもよく、10個以上であってもよい。
 この直径1.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。
In this photosensitive resin laminate, it is in contact with the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable. Is 0.2 or less, preferably 0.15 or less, preferably 0.10 or less, more preferably 0.05 or less, more preferably 0.03 or less, more preferably 0.02 or less, more preferably 0.01 The number of fine particles having a diameter of 1.0 μm or more, which is the following, may be one or more, five or more, or ten or more in a number average of ten places.
There is no particular upper limit to the diameter of the fine particles having a diameter of 1.0 μm or more, but may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 本実施の形態はまた、支持フィルムと、該支持フィルム上に形成された感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
 支持フィルムは微粒子を含んでおり、
 支持フィルムは、13.5mm2の面積に含まれる直径2.0μm以上の微粒子のうち、支持フィルムの主領域とは異なる光学物性(例えば屈折率)を有する微粒子以外の光学異常領域(例えば異常屈折率領域)と接する微粒子の数が、200個以下となる領域を有する感光性樹脂積層体を提供する。この光学異常領域と接する微粒子の数は、より好ましくは180個以下、より好ましくは150個以下、より好ましくは120個以下、更に好ましくは100個以下、更に好ましくは80個以下、更に好ましくは50個以下、更に好ましくは30個以下、特に好ましくは10個以下であってもよい。
The present embodiment is also a photosensitive resin laminate including a support film and a photosensitive resin composition layer formed on the support film,
The support film contains fine particles,
Among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 , the support film is an optical abnormal area (for example, anomalous refraction) other than the fine particles having optical properties (for example, refractive index) different from the main area of the support film. The photosensitive resin laminate has a region in which the number of fine particles in contact with the ratio region is 200 or less. The number of fine particles in contact with the optically abnormal region is more preferably 180 or less, more preferably 150 or less, more preferably 120 or less, still more preferably 100 or less, still more preferably 80 or less, still more preferably 50 Or less, more preferably 30 or less, particularly preferably 10 or less.
 この感光性樹脂積層体においては、上記13.5mm2の面積に含まれる、微粒子以外の光学異常領域としての異常屈折率領域と接し、且つ、支持フィルムの主領域との屈折率差が、好ましくは0.2以下、好ましくは0.15以下、好ましくは0.10以下、より好ましくは0.05以下、より好ましくは0.03以下、より好ましくは0.02以下、より好ましくは0.01以下である直径2.0μm以上の微粒子の数が、10箇所の数平均で1個以上であってもよく、5個以上であってもよく、10個以上であってもよい。
 この直径2.0μm以上の微粒子の直径については特に上限はないが、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよく、4.5μm以下であってもよく、4μm以下であってもよく、3.5μm以下であってもよく、3μm以下であってもよい。
In this photosensitive resin laminate, it is in contact with the abnormal refractive index area as an optical abnormal area other than the fine particles, which is included in the area of 13.5 mm 2 , and the difference in refractive index with the main area of the support film is preferable. Is 0.2 or less, preferably 0.15 or less, preferably 0.10 or less, more preferably 0.05 or less, more preferably 0.03 or less, more preferably 0.02 or less, more preferably 0.01 The number of fine particles having a diameter of 2.0 μm or more, which is the following, may be one or more, five or more, or ten or more in a number average of ten places.
There is no particular upper limit to the diameter of the particles having a diameter of 2.0 μm or more, but it may be 10 μm or less, 8 μm or less, 5 μm or less, or 4.5 μm or less It may be 4 μm or less, 3.5 μm or less, or 3 μm or less.
 支持フィルムは、露光時の光散乱を抑制する観点からヘイズ5%以下のものであることが好ましく、2%以下がより好ましく、1.5%以下が更に好ましく、1.0%以下が特に好ましい。同様の観点から、感光層と接する面の表面粗さRaは30nm以下が好ましく、20nm以下がより好ましく、10nm以下が特に好ましい。 The support film preferably has a haze of 5% or less, more preferably 2% or less, still more preferably 1.5% or less, and particularly preferably 1.0% or less, from the viewpoint of suppressing light scattering during exposure. . From the same viewpoint, the surface roughness Ra of the surface in contact with the photosensitive layer is preferably 30 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less.
 支持フィルムの厚みは、薄いほど画像形成性及び経済性を向上させるため有利であるが、感光性樹脂積層体の強度を維持するために、10μm~30μmのものが好ましく用いられる。 The smaller the thickness of the support film is, the more advantageous it is to improve the image forming property and the economic efficiency, but in order to maintain the strength of the photosensitive resin laminate, one having a thickness of 10 μm to 30 μm is preferably used.
 感光性樹脂積層体に用いられる保護層の重要な特性は、感光性樹脂組成物層との密着力が持層よりも充分小さく、容易に剥離できることである。例えば、ポリエチレンフィルム又はポリプロピレンフィルムが、保護層として好ましく使用されることができる。また、特開昭59-202457号公報に示された剥離性の優れたフィルムを用いることもできる。保護層の膜厚は10μm~100μmが好ましく、10μm~50μmがより好ましい。 An important characteristic of the protective layer used in the photosensitive resin laminate is that the adhesion to the photosensitive resin composition layer is sufficiently smaller than that of the carrier layer, and the layer can be easily peeled off. For example, polyethylene film or polypropylene film can be preferably used as a protective layer. Further, it is also possible to use a film with excellent releasability disclosed in JP-A-59-202457. The thickness of the protective layer is preferably 10 μm to 100 μm, and more preferably 10 μm to 50 μm.
 ポリエチレンフィルム表面には、フィッシュアイと呼ばれるゲルが存在する場合がある。フィッシュアイを有するポリエチレンフィルムを保護層として用いた場合には、該フィッシュアイが感光性樹脂組成物層に転写されることがある。フィッシュアイが感光性樹脂組成物層に転写されると、ラミネート時に空気を巻き込んで空隙になることがあり、レジストパターンの欠損につながる。フィッシュアイを防ぐ観点から、保護層の材質としては、延伸ポリプロピレンが好ましい。具体例としては王子製紙(株)製 アルファンE-200Aを挙げることができる。 On the polyethylene film surface, a gel called a fish eye may be present. When a polyethylene film having a fish eye is used as a protective layer, the fish eye may be transferred to the photosensitive resin composition layer. When the fish eye is transferred to the photosensitive resin composition layer, air may be taken in during lamination to form a void, which leads to a defect in the resist pattern. From the viewpoint of preventing fish eyes, as a material of the protective layer, stretched polypropylene is preferable. As a specific example, Alphan E-200A manufactured by Oji Paper Co., Ltd. can be mentioned.
 感光性樹脂積層体における感光性樹脂組成物層の厚みは、用途において異なるが、好ましくは1μm~300μm、より好ましくは3μm~100μm、特に好ましくは5μm~60μm、最も好ましくは10μm~30μmである。感光性樹脂組成物層の厚みは、薄いほど解像度が向上し、また厚いほど膜強度が向上する。 The thickness of the photosensitive resin composition layer in the photosensitive resin laminate varies depending on the application, but is preferably 1 μm to 300 μm, more preferably 3 μm to 100 μm, particularly preferably 5 μm to 60 μm, and most preferably 10 μm to 30 μm. The thinner the thickness of the photosensitive resin composition layer, the higher the resolution, and the thicker the layer, the higher the film strength.
 次に、感光性樹脂積層体の製造方法について説明する。 Next, a method of manufacturing the photosensitive resin laminate will be described.
 支持フィルム及び感光性樹脂組成物層、並びに必要により保護層を順次積層して感光性樹脂積層体を作製する方法としては、既知の方法を採用することができる。例えば、感光性樹脂組成物層に用いる感光性樹脂組成物を、これを溶解する溶剤と混ぜ合わせ均一な溶液にし、まず支持フィルム上にバーコーター又はロールコーターを用いて塗布し、次いで乾燥して前記溶剤を除去することにより、支持フィルム上に感光性樹脂組成物から成る感光性樹脂組成物層を積層することができる。次いで必要により、感光性樹脂組成物層上に保護層をラミネートすることにより、感光性樹脂積層体を作製することができる。 A known method can be adopted as a method of producing a photosensitive resin laminate by sequentially laminating a support film and a photosensitive resin composition layer, and, if necessary, a protective layer. For example, the photosensitive resin composition used for the photosensitive resin composition layer is mixed with a solvent that dissolves the photosensitive resin composition layer to form a uniform solution, first coated on a support film using a bar coater or a roll coater, and then dried By removing the solvent, a photosensitive resin composition layer composed of the photosensitive resin composition can be laminated on the support film. Subsequently, the photosensitive resin laminated body can be produced by laminating a protective layer on the photosensitive resin composition layer as needed.
[感光性樹脂組成物]
 本実施の形態では、感光性樹脂組成物は、(A)アルカリ可溶性高分子、(B)エチレン性不飽和二重結合を有する化合物、及び(C)光重合開始剤を含むことが好ましい。感光性樹脂組成物は、該感光性樹脂組成物の全固形分質量基準で、(A)アルカリ可溶性高分子:10質量%~90質量%;(B)エチレン性不飽和二重結合を有する化合物:5質量%~70質量%;及び(C)光重合開始剤:0.01質量%~20質量%を含むことが好ましい。以下、各成分を順に説明する。
[Photosensitive resin composition]
In the present embodiment, the photosensitive resin composition preferably contains (A) an alkali-soluble polymer, (B) a compound having an ethylenically unsaturated double bond, and (C) a photopolymerization initiator. The photosensitive resin composition comprises (A) an alkali-soluble polymer: 10% by mass to 90% by mass, based on the total solid content mass of the photosensitive resin composition; and (B) a compound having an ethylenically unsaturated double bond. And (C) a photopolymerization initiator: 0.01% by mass to 20% by mass. Hereinafter, each component will be described in order.
<(A)アルカリ可溶性高分子>
 本開示で、(A)アルカリ可溶性高分子は、アルカリ物質に溶け易い高分子を包含する。より具体的には、(A)アルカリ可溶性高分子に含まれるカルボキシル基の量は、酸当量で100~600であり、好ましくは250~450である。酸当量とは、その分子中に1当量のカルボキシル基を有する重合体の質量(単位:グラム)を言う。(A)アルカリ可溶性高分子中のカルボキシル基は、感光性樹脂組成物層に、アルカリ水溶液に対する現像性及び剥離性を与えるために必要である。酸当量を100以上にすることは、現像耐性、解像性、及び密着性を向上させる観点から好ましい。そして酸当量を250以上にすることがより好ましい。一方で、酸当量を600以下にすることは、現像性及び剥離性を向上させる観点から好ましい。そして酸当量を450以下にすることがより好ましい。本開示で、酸当量は、電位差滴定装置を用い、0.1mol/LのNaOH水溶液で滴定する電位差滴定法により測定される値である。
<(A) Alkali-soluble polymer>
In the present disclosure, the (A) alkali-soluble polymer includes a polymer that is easily soluble in an alkaline substance. More specifically, the amount of carboxyl groups contained in the (A) alkali-soluble polymer is 100 to 600, preferably 250 to 450 in acid equivalent. The acid equivalent refers to the mass (unit: gram) of a polymer having one equivalent of carboxyl group in the molecule. The carboxyl group in the (A) alkali-soluble polymer is required to give the photosensitive resin composition layer developability and releasability to an aqueous alkali solution. Increasing the acid equivalent to 100 or more is preferable from the viewpoint of improving the development resistance, the resolution and the adhesion. And it is more preferable to make an acid equivalent 250 or more. On the other hand, setting the acid equivalent to 600 or less is preferable from the viewpoint of improving the developability and the releasability. And it is more preferable to make an acid equivalent 450 or less. In the present disclosure, the acid equivalent is a value measured by potentiometric titration with a 0.1 mol / L aqueous solution of NaOH using a potentiometric titrator.
 (A)アルカリ可溶性高分子の重量平均分子量は、5,000~500,000であることが好ましい。重量平均分子量を500,000以下にすることは、解像性及び現像性を向上させる観点から好ましい。重量平均分子量を100,000以下にすることがより好ましく、60,000以下にすることが更に好ましく、50,000以下にすることが特に好ましい。一方で、重量平均分子量を5,000以上にすることは、現像凝集物の性状、並びに感光性樹脂積層体とした場合のエッジフューズ性及びカットチップ性等の未露光膜の性状を制御する観点から好ましい。重量平均分子量を10,000以上にすることがより好ましく、20,000以上にすることが更に好ましい。エッジフューズ性とは、感光性樹脂積層体としてロール状に巻き取った場合に、ロールの端面からの、感光性樹脂組成物層(すなわち感光性樹脂組成物から成る層)のはみ出し易さの程度をいう。カットチップ性とは、未露光膜をカッターで切断した場合に、チップの飛び易さの程度をいう。このチップが感光性樹脂積層体の上面等に付着すると、後の露光工程等でマスクに転写して、不良品の原因となる。(A)アルカリ可溶性高分子の分散度は、1.0~6.0であることが好ましく、1.0~5.0であることがより好ましく、1.0~4.0であることが更に好ましく、1.0~3.0であることが更に好ましい。 The weight average molecular weight of the (A) alkali-soluble polymer is preferably 5,000 to 500,000. It is preferable from the viewpoint of improving resolution and developability to make the weight average molecular weight 500,000 or less. The weight average molecular weight is more preferably 100,000 or less, still more preferably 60,000 or less, and particularly preferably 50,000 or less. On the other hand, setting the weight average molecular weight to 5,000 or more is a viewpoint of controlling the properties of development aggregate and the properties of unexposed film such as edge fuse property and cut tip property in the case of forming a photosensitive resin laminate. It is preferable from The weight average molecular weight is more preferably 10,000 or more, and still more preferably 20,000 or more. With edge fuse property, when it winds up in roll shape as a photosensitive resin laminated body, it is a grade of the ease of protrusion of the photosensitive resin composition layer (namely, layer which consists of photosensitive resin compositions) from the end face of a roll. Say The cut tip property refers to the degree of the chip's flyability when the unexposed film is cut by a cutter. When this chip adheres to the upper surface or the like of the photosensitive resin laminate, it is transferred to a mask in a later exposure process or the like to cause defective products. The dispersion degree of the alkali soluble polymer (A) is preferably 1.0 to 6.0, more preferably 1.0 to 5.0, and 1.0 to 4.0. More preferably, it is more preferably 1.0 to 3.0.
 本実施形態では、感光性樹脂組成物は、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制する観点から、(A)アルカリ可溶性高分子として、芳香族炭化水素基を有する単量体成分を含むものであることが好ましい。なお、このような芳香族炭化水素基としては、例えば、置換又は非置換のフェニル基や、置換又は非置換のアラルキル基が挙げられる。この(A)アルカリ可溶性高分子における芳香族炭化水素基を有する単量体成分の含有割合は、全単量体成分の合計質量を基準として、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、55質量%以上であることが特に好ましく、60質量%以上であることが最も好ましい。上限としては特に限定されないが、好ましくは95質量%以下、より好ましくは80質量%以下である。なお、(A)アルカリ可溶性高分子を複数種類含有する場合における、芳香族炭化水素基を有する単量体成分の含有割合は、重量平均値として求めた。 In the present embodiment, from the viewpoint of suppressing the line width thickening and the deterioration in resolution when the focal position at the time of exposure shifts, the photosensitive resin composition contains an aromatic hydrocarbon group as the (A) alkali-soluble polymer. It is preferable to contain the monomer component which it has. In addition, as such an aromatic hydrocarbon group, a substituted or unsubstituted phenyl group and a substituted or unsubstituted aralkyl group are mentioned, for example. The content ratio of the monomer component having an aromatic hydrocarbon group in the (A) alkali-soluble polymer is preferably 20% by mass or more based on the total mass of all the monomer components, and 40% by mass The content is more preferably 50% by mass or more, particularly preferably 55% by mass or more, and most preferably 60% by mass or more. The upper limit is not particularly limited, but is preferably 95% by mass or less, more preferably 80% by mass or less. In addition, the content rate of the monomer component which has an aromatic hydrocarbon group in, when containing multiple types of (A) alkali-soluble polymer was calculated | required as a weight average value.
 前記芳香族炭化水素基を有する単量体としては、例えば、アラルキル基を有するモノマー、スチレン、及び重合可能なスチレン誘導体(例えば、メチルスチレン、ビニルトルエン、tert-ブトキシスチレン、アセトキシスチレン、4-ビニル安息香酸、スチレンダイマー、スチレントリマー等)が挙げられる。中でも、アラルキル基を有するモノマー、又はスチレンが好ましい。 As the monomer having an aromatic hydrocarbon group, for example, a monomer having an aralkyl group, styrene, and a polymerizable styrene derivative (for example, methylstyrene, vinyltoluene, tert-butoxystyrene, acetoxystyrene, 4-vinyl Benzoic acid, styrene dimer, styrene trimer etc. may be mentioned. Among them, monomers having an aralkyl group or styrene are preferable.
 アラルキル基としては、置換又は非置換のフェニルアルキル基(ベンジル基を除く)や、置換又は非置換のベンジル基等が挙げられ、置換又は非置換のベンジル基が好ましい。 As an aralkyl group, a substituted or unsubstituted phenylalkyl group (except for a benzyl group), a substituted or unsubstituted benzyl group and the like can be mentioned, and a substituted or unsubstituted benzyl group is preferable.
 フェニルアルキル基を有するコモノマーとしては、フェニルエチル(メタ)アクリレート等が挙げられる。 Examples of the comonomer having a phenylalkyl group include phenylethyl (meth) acrylate and the like.
 ベンジル基を有するコモノマーとしては、ベンジル基を有する(メタ)アクリレート、例えば、ベンジル(メタ)アクリレート、クロロベンジル(メタ)アクリレート等;ベンジル基を有するビニルモノマー、例えば、ビニルベンジルクロライド、ビニルベンジルアルコール等が挙げられる。中でもベンジル(メタ)アクリレートが好ましい。 As a comonomer having a benzyl group, (meth) acrylates having a benzyl group, such as benzyl (meth) acrylate, chlorobenzyl (meth) acrylate etc .; vinyl monomers having a benzyl group such as vinyl benzyl chloride, vinyl benzyl alcohol etc Can be mentioned. Among them, benzyl (meth) acrylate is preferred.
 芳香族炭化水素基を有する単量体成分を含有する(A)アルカリ可溶性高分子は、芳香族炭化水素基を有する単量体と、後述する第一の単量体の少なくとも1種及び/又は後述する第二の単量体の少なくとも1種とを重合することにより得られることが好ましい。 The (A) alkali-soluble polymer containing a monomer component having an aromatic hydrocarbon group is a monomer having an aromatic hydrocarbon group and / or at least one of a first monomer described later and / or It is preferably obtained by polymerizing with at least one of the second monomers described later.
 芳香族炭化水素基を有する単量体成分を含有しない(A)アルカリ可溶性高分子は、後述する第一の単量体の少なくとも1種を重合することにより得られることが好ましく、第一の単量体の少なくとも1種と後述する第二の単量体の少なくとも1種とを共重合することにより得られることがより好ましい。 The (A) alkali-soluble polymer which does not contain a monomer component having an aromatic hydrocarbon group is preferably obtained by polymerizing at least one of the first monomers described later, and It is more preferable to be obtained by copolymerizing at least one of the monomers and at least one of the second monomers described later.
 第一の単量体は、分子中にカルボキシル基を有する単量体である。第一の単量体としては、例えば、(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、4-ビニル安息香酸、マレイン酸無水物、マレイン酸半エステル等が挙げられる。これらの中でも、(メタ)アクリル酸が好ましい。 The first monomer is a monomer having a carboxyl group in the molecule. Examples of the first monomer include (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, 4-vinylbenzoic acid, maleic anhydride, maleic acid half ester and the like. Among these, (meth) acrylic acid is preferable.
 なお、本明細書において「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味し、かつ「(メタ)アクリレート」とは、「アクリレート」又は「メタクリレート」を意味する。 In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, “(meth) acryloyl group” means acryloyl group or methacryloyl group, and “(meth) acrylate” "" Means "acrylate" or "methacrylate".
 第一の単量体の共重合割合は、全単量体成分の合計質量を基準として、10~50質量%であることが好ましい。該共重合割合を10質量%以上にすることは、良好な現像性を発現させる観点、エッジフューズ性を制御するなどの観点から好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。該共重合割合を50質量%以下にすることは、レジストパターンの高解像性及びスソ形状の観点から、更にはレジストパターンの耐薬品性の観点から好ましく、これらの観点においては、35質量%以下がより好ましく、30質量%以下が更に好ましく、27質量%以下が特に好ましい。 The copolymerization ratio of the first monomer is preferably 10 to 50% by mass based on the total mass of all the monomer components. Making the copolymerization ratio 10% by mass or more is preferable from the viewpoint of expressing good developability, controlling edge fuse property, etc., preferably 15% by mass or more, and more preferably 20% by mass or more. . Setting the copolymerization ratio to 50% by mass or less is preferable from the viewpoints of high resolution and shape of the resist pattern, and further from the viewpoint of chemical resistance of the resist pattern, and in these aspects, 35% by mass The following is more preferable, 30 mass% or less is further preferable, and 27 mass% or less is particularly preferable.
 第二の単量体は、非酸性であり、かつ分子中に重合性不飽和基を少なくとも1個有する単量体である。第二の単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート類;酢酸ビニル等のビニルアルコールのエステル類;並びに(メタ)アクリロニトリル等が挙げられる。中でも、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、及びn-ブチル(メタ)アクリレートが好ましい。 The second monomer is a non-acidic monomer having at least one polymerizable unsaturated group in the molecule. As the second monomer, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate , (Meth) acrylates such as tert-butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; vinyl acetate And esters of vinyl alcohol, and (meth) acrylonitrile and the like. Among them, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and n-butyl (meth) acrylate are preferable.
 アラルキル基を有する単量体、及び/又はスチレンを単量体として含有することが、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制する観点から好ましい。例えば、メタクリル酸とベンジルメタクリレートとスチレンを含む共重合体、メタクリル酸とメチルメタクリレートとベンジルメタクリレートとスチレンを含む共重合体等が好ましい。 It is preferable to contain a monomer having an aralkyl group and / or styrene as a monomer from the viewpoint of suppressing the line width thickening and resolution deterioration when the focal position at the time of exposure shifts. For example, a copolymer containing methacrylic acid, benzyl methacrylate and styrene, a copolymer containing methacrylic acid, methyl methacrylate, benzyl methacrylate and styrene, and the like are preferable.
 (A)アルカリ可溶性高分子は、1種単独で使用することができ、或いは2種以上を混合して使用してもよい。2種以上を混合して使用する場合には、芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子を2種類混合使用すること、又は芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子と、芳香族炭化水素基を有する単量体成分を含まないアルカリ可溶性高分子と、を混合使用することが好ましい。後者の場合、芳香族炭化水素基を有する単量体成分を含むアルカリ可溶性高分子の使用割合は、(A)アルカリ可溶性高分子の全部に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 The (A) alkali-soluble polymer can be used singly or in combination of two or more. In the case where two or more kinds are mixed and used, two kinds of alkali-soluble polymers containing a monomer component having an aromatic hydrocarbon group may be mixedly used, or a monomer component having an aromatic hydrocarbon group It is preferable to use a mixture of an alkali-soluble polymer containing at least one alkali-soluble polymer and an alkali-soluble polymer not containing a monomer component having an aromatic hydrocarbon group. In the latter case, the proportion of the alkali-soluble polymer containing the monomer component having an aromatic hydrocarbon group is preferably 50% by mass or more based on the total of (A) the alkali-soluble polymer, and 70 It is more preferable that it is mass% or more, It is preferable that it is 80 mass% or more, It is more preferable that it is 90 mass% or more.
 (A)アルカリ可溶性高分子の合成は、上記で説明された単数又は複数の単量体を、アセトン、メチルエチルケトン、イソプロパノール等の溶剤で希釈した溶液に、過酸化ベンゾイル、アゾイソブチロニトリル等のラジカル重合開始剤を適量添加し、加熱攪拌することにより行われることが好ましい。混合物の一部を反応液に滴下しながら合成を行う場合もある。反応終了後、さらに溶剤を加えて、所望の濃度に調整する場合もある。合成手段としては、溶液重合以外に、塊状重合、懸濁重合、又は乳化重合を用いてもよい。 (A) The synthesis of the alkali-soluble polymer can be carried out by using benzoyl peroxide, azoisobutyronitrile or the like in a solution obtained by diluting one or more of the monomers described above with a solvent such as acetone, methyl ethyl ketone or isopropanol. It is preferable to be carried out by adding a suitable amount of a radical polymerization initiator and heating and stirring. In some cases, synthesis is performed while a portion of the mixture is dropped into the reaction solution. After completion of the reaction, a solvent may be further added to adjust to a desired concentration. As a synthesis means, bulk polymerization, suspension polymerization, or emulsion polymerization may be used other than solution polymerization.
 (A)アルカリ可溶性高分子のガラス転移温度Tgの重量平均値Tgtotalが、30℃以上135℃以下であることが好ましい。Tgtotalは、後述される実施例に記載の方法により算出される。感光性樹脂組成物において、135℃以下のTgtotalを有する(A)アルカリ可溶性高分子を使用することによって、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制することができる。この観点から、(A)アルカリ可溶性高分子のTgtotalは、120℃以下であることがより好ましく、115℃以下であることが更に好ましく、110℃以下であることがもっと好ましく、105℃以下であることが更に好ましく、110℃以下であることが特に好ましい。また、30℃以上のTgtotalを有する(A)アルカリ可溶性高分子を使用することは、耐エッジフューズ性を向上させる観点から好ましい。この観点から、(A)アルカリ可溶性高分子のTgtotalは、40℃以上であることがより好ましく、50℃以上であることが更に好ましく、60℃以上であることが特に好ましい。 Weight average Tg total glass transition temperature Tg of the (A) alkali-soluble polymer is preferably at 30 ° C. or higher 135 ° C. or less. Tg total is calculated by the method described in the examples described later. In the photosensitive resin composition, by using the (A) alkali-soluble polymer having a Tg total of 135 ° C. or less, it is possible to suppress the line width thickening and the deterioration of resolution when the focal position at the time of exposure shifts. it can. From this viewpoint, the Tg total of the (A) alkali-soluble polymer is more preferably 120 ° C. or less, still more preferably 115 ° C. or less, still more preferably 110 ° C. or less, and 105 ° C. or less C., more preferably 110.degree. C. or less. Moreover, it is preferable to use (A) an alkali-soluble polymer having a Tg total of 30 ° C. or more from the viewpoint of improving the edge fuse resistance. From this viewpoint, the Tg total of the (A) alkali-soluble polymer is more preferably 40 ° C. or more, still more preferably 50 ° C. or more, and particularly preferably 60 ° C. or more.
 (A)アルカリ可溶性高分子の、感光性樹脂組成物の全固形分質量に対する割合は、好ましくは10質量%~90質量%の範囲であり、より好ましくは30質量%~70質量%であり、更に好ましくは40質量%~60質量%である。感光性樹脂組成物に対する(A)アルカリ可溶性高分子の割合を90質量%以下にすることは、現像時間を制御する観点から好ましい。一方で、感光性樹脂組成物に対する(A)アルカリ可溶性高分子の割合を10質量%以上にすることは、耐エッジフューズ性を向上させる観点から好ましい。 The ratio of the (A) alkali-soluble polymer to the total solid content mass of the photosensitive resin composition is preferably in the range of 10% by mass to 90% by mass, and more preferably 30% by mass to 70% by mass. More preferably, it is 40% by mass to 60% by mass. It is preferable from the viewpoint of controlling the development time that the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition is 90% by mass or less. On the other hand, it is preferable from the viewpoint of improving the edge fuse resistance that the ratio of the (A) alkali-soluble polymer to the photosensitive resin composition is 10% by mass or more.
<(B)エチレン性不飽和二重結合を有する化合物>
 (B)エチレン性不飽和二重結合を有する化合物は、硬化性及び(A)アルカリ可溶性高分子との相溶性の観点から、分子内に(メタ)アクリロイル基を有する化合物を含むことが好ましい。(B)化合物中の(メタ)アクリロイル基の数は、1個以上であればよい。
<(B) Compound Having Ethylenically Unsaturated Double Bond>
It is preferable that the compound which has (B) an ethylenically unsaturated double bond contains the compound which has a (meth) acryloyl group in a molecule | numerator from a curable viewpoint and compatibility with (A) alkali-soluble polymer. The number of (meth) acryloyl groups in the compound (B) may be one or more.
 (メタ)アクリロイル基を1個有する(B)化合物としては、例えば、ポリアルキレンオキシドの片方の末端に(メタ)アクリル酸を付加した化合物、又は、ポリアルキレンオキシドの片方の末端に(メタ)アクリル酸を付加し、他方の末端をアルキルエーテル化若しくはアリルエーテル化した化合物、フタル酸系化合物等を挙げることができ、剥離性や硬化膜柔軟性の観点で好ましい。 As the (B) compound having one (meth) acryloyl group, for example, a compound obtained by adding (meth) acrylic acid to one end of a polyalkylene oxide, or (meth) acrylic at one end of a polyalkylene oxide Examples thereof include compounds obtained by adding an acid and alkyl etherifying or allyl etherifying the other end, phthalic acid compounds and the like, which are preferable from the viewpoint of peelability and flexibility of a cured film.
 このような化合物としては、例えば、
ポリエチレングリコールをフェニル基に付加した化合物の(メタ)アクリレートであるフェノキシヘキサエチレングリコールモノ(メタ)アクリレート、
平均2モルのプロピレンオキサイドを付加したポリプロピレングリコールと、平均7モルのエチレンオキサイドを付加したポリエチレングリコールと、をノニルフェノールに付加した化合物の(メタ)アクリレートである4-ノルマルノニルフェノキシヘプタエチレングリコールジプロピレングリコール(メタ)アクリレート、
平均1モルのプロピレンオキサイドを付加したポリプロピレングリコールと、平均5モルのエチレンオキサイドを付加したポリエチレングリコールと、をノニルフェノールに付加した化合物の(メタ)アクリレートである4-ノルマルノニルフェノキシペンタエチレングリコールモノプロピレングリコール(メタ)アクリレート、
平均8モルのエチレンオキサイドを付加したポリエチレングリコールをノニルフェノールに付加した化合物のアクリレートである4-ノルマルノニルフェノキシオクタエチレングリコール(メタ)アクリレート(例えば東亞合成(株)製、M-114)等が挙げられる。
As such a compound, for example,
Phenoxyhexaethylene glycol mono (meth) acrylate which is a (meth) acrylate of a compound in which polyethylene glycol is added to a phenyl group
4-normalnonylphenoxyheptaethylene glycol dipropylene glycol which is a (meth) acrylate of a compound obtained by adding polypropylene glycol to which 2 mol of propylene oxide is added and polyethylene glycol to which 7 mol of ethylene oxide is added to nonylphenol on average (Meth) acrylate,
4-normalnonylphenoxypentaethylene glycol monopropylene glycol which is a (meth) acrylate of a compound obtained by adding polypropylene glycol to which 1 mol of propylene oxide is added and polyethylene glycol to which 5 mol of ethylene oxide is added to nonylphenol on average (Meth) acrylate,
4-normalnonylphenoxyoctaethylene glycol (meth) acrylate (eg, Toagosei Co., Ltd. M-114), which is an acrylate of a compound obtained by adding polyethylene glycol added with ethylene oxide on average to 8 moles to nonylphenol .
 また、γ-クロロ-β-ヒドロキシプロピル-β'-メタクリロイルオキシエチル-о-フタレートを含むと、上記観点に加えて、感度、解像性、密着性の観点でも好ましい。 In addition to the above viewpoints, it is preferable to include γ-chloro-β-hydroxypropyl-β′-methacryloyloxyethyl-о-phthalate from the viewpoints of sensitivity, resolution and adhesion.
 分子内に(メタ)アクリロイル基を2個有する化合物としては、例えば、アルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物、又はエチレンオキシド鎖とプロピレンオキシド鎖とがランダム若しくはブロックで結合したアルキレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物等を挙げることができる。 As a compound having two (meth) acryloyl groups in the molecule, for example, a compound having a (meth) acryloyl group at both ends of the alkylene oxide chain, or an alkylene in which an ethylene oxide chain and a propylene oxide chain are bound by random or block The compound etc. which have a (meth) acryloyl group in the both ends of an oxide chain can be mentioned.
 このような化合物としては、例えば、テトラエチレングリコールジ(メタ)アクリレート、ペンタエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート、ヘプタエチレングリコールジ(メタ)アクリレート、オクタエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、12モルのエチレンオキシド鎖の両末端に(メタ)アクリロイル基を有する化合物等のポリエチレングリコ-ル(メタ)アクリレ-ト等の他、
ポリプロピレングリコ-ルジ(メタ)アクリレ-ト、ポリブチレングリコ-ルジ(メタ)アクリレ-ト等を挙げることができる。化合物中にエチレンオキシド基とプロピレンオキシド基とを含むポリアルキレンオキシドジ(メタ)アクリレート化合物としては、例えば、平均12モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均3モルのエチレンオキシドを更に付加したグリコールのジメタクリレート、平均18モルのプロピレンオキシドを付加したポリプロピレングリコールの両末端にそれぞれ平均15モルのエチレンオキシドを更に付加したグリコールのジメタクリレート、FA-023M、FA-024M、FA-027M(製品名、日立化成工業製)等が挙げられる。これらは柔軟性、解像性、密着性等の観点で好ましい。
As such compounds, for example, tetraethylene glycol di (meth) acrylate, pentaethylene glycol di (meth) acrylate, hexaethylene glycol di (meth) acrylate, heptaethylene glycol di (meth) acrylate, octaethylene glycol di ( Polyethylene glycol (meth) acrylates such as (meth) acrylates, nonaethylene glycol di (meth) acrylates, decaethylene glycol di (meth) acrylates, and compounds having (meth) acryloyl groups at both ends of a 12 mol ethylene oxide chain In addition to
Polypropylene glycol di (meth) acrylate, polybutylene glycol di (meth) acrylate and the like can be mentioned. As a polyalkylene oxide di (meth) acrylate compound containing an ethylene oxide group and a propylene oxide group in the compound, for example, an average of 3 moles of ethylene oxide is further added to both ends of polypropylene glycol to which an average of 12 moles of propylene oxide is added. Of diethylene glycol, and dimethacrylate of glycol in which 15 mol of ethylene oxide is further added on average to both ends of polypropylene glycol added with 18 mol of propylene oxide on average, FA-023 M, FA-024 M, FA-027 M (product name) And Hitachi Chemical Co., Ltd.). These are preferable in terms of flexibility, resolution, adhesion and the like.
 分子内に(メタ)アクリロイル基を2個有する化合物の別の例として、ビスフェノールAをアルキレンオキシド変性することにより両末端に(メタ)アクリロイル基を有している化合物が、解像性及び密着性の観点では好ましい。
具体的には下記一般式(I):
As another example of a compound having two (meth) acryloyl groups in the molecule, a compound having (meth) acryloyl groups at both ends by alkylene oxide modification of bisphenol A has resolution and adhesion. From the point of view of
Specifically, the following general formula (I):
Figure JPOXMLDOC01-appb-C000001
{式中、R1及びR2は、それぞれ独立に、水素原子又はメチル基を表し、AはC24であり、BはC36であり、n1及びn3は各々独立に1~39の整数であり、かつn1+n3は2~40の整数であり、n2及びn4は各々独立に0~29の整数であり、かつn2+n4は0~30の整数であり、-(A-O)-及び-(B-O)-の繰り返し単位の配列は、ランダムであってもブロックであってもよい。そして、ブロックの場合、-(A-O)-と-(B-O)-とのいずれがビスフェニル基側でもよい。}
で表される化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000001
Wherein R 1 and R 2 each independently represent a hydrogen atom or a methyl group, A is C 2 H 4 , B is C 3 H 6 , and n 1 and n 3 are each independently 1 to -(AO)-is an integer of 39, n1 + n3 is an integer of 2 to 40, n2 and n4 are each independently an integer of 0 to 29, and n2 + n4 is an integer of 0 to 30, The arrangement of repeating units of and-(BO)-may be random or block. And in the case of a block, either-(A-O)-or-(B-O)-may be on the side of the bisphenyl group. }
The compounds represented by can be used.
 例えば、ビスフェノ-ルAの両端にそれぞれ平均5モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均2モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-ト、ビスフェノ-ルAの両端にそれぞれ平均1モルずつのエチレンオキサイドを付加したポリエチレングリコ-ルのジメタクリレ-トが、解像性、密着性の点で好ましい。 For example, polyethylene glycol dimethacrylate of polyethylene glycol in which ethylene oxide is added in an average of 5 moles at each end of bisphenol A, polyethylene glycol in which ethylene oxide is added at an average of 2 moles in each end of bisphenol A Polyethylene glycol dimethacrylate in which ethylene oxide is added on average at 1 mole each to both ends of dimethacrylate and bisphenol A is preferable in view of resolution and adhesion.
 また、上記一般式(I)中の芳香環が、ヘテロ原子及び/又は置換基を有する化合物を用いてもよい。 Moreover, you may use the compound in which the aromatic ring in the said General formula (I) has a hetero atom and / or a substituent.
 ヘテロ原子としては、例えば、ハロゲン原子等が挙げられ、そして置換基としては、炭素数1~20のアルキル基、炭素数3~10のシクロアルキル基、炭素数6~18のアリール基、フェナシル基、アミノ基、炭素数1~10のアルキルアミノ基、炭素数2~20のジアルキルアミノ基、ニトロ基、シアノ基、カルボニル基、メルカプト基、炭素数1~10のアルキルメルカプト基、アリール基、水酸基、炭素数1~20のヒドロキシアルキル基、カルボキシル基、アルキル基の炭素数が1~10のカルボキシアルキル基、アルキル基の炭素数が1~10のアシル基、炭素数1~20のアルコキシ基、炭素数1~20のアルコキシカルボニル基、炭素数2~10のアルキルカルボニル基、炭素数2~10のアルケニル基、炭素数2~10のN-アルキルカルバモイル基若しくは複素環を含む基、又はこれらの置換基で置換されたアリール基等が挙げられる。これらの置換基は縮合環を形成しているか、又はこれらの置換基中の水素原子がハロゲン原子等のヘテロ原子に置換されていてもよい。一般式(I)中の芳香環が複数の置換基を有する場合には、複数の置換基は同一であるか、又は異なっていてよい。 Examples of the hetero atom include a halogen atom and the like, and examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, and a phenacyl group Amino group, alkylamino group having 1 to 10 carbon atoms, dialkylamino group having 2 to 20 carbon atoms, nitro group, cyano group, cyano group, carbonyl group, mercapto group, alkyl mercapto group having 1 to 10 carbon atoms, aryl group, hydroxyl group A hydroxyalkyl group having 1 to 20 carbon atoms, a carboxyl group, a carboxyalkyl group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms for the alkyl group, an alkoxy group having 1 to 20 carbon atoms, Alkoxycarbonyl group having 1 to 20 carbon atoms, alkyl carbonyl group having 2 to 10 carbon atoms, alkenyl group having 2 to 10 carbon atoms, 2 to 10 carbon atoms N- alkylcarbamoyl group or a group containing a heterocyclic ring, or an aryl group substituted by these substituents. These substituents may form a condensed ring, or hydrogen atoms in these substituents may be substituted with a heteroatom such as a halogen atom. When the aromatic ring in the general formula (I) has a plurality of substituents, the plurality of substituents may be the same or different.
 分子内に(メタ)アクリロイル基を3個以上有する化合物としては、中心骨格として分子内にアルキレンオキシド基を付加させることができる基を3モル以上有し、これにエチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基等のアルキレンオキシ基を付加させて得られたアルコールを(メタ)アクリレートとすることにより得られる。この場合、中心骨格になることができる化合物としては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、イソシアヌレート環等を挙げることができる。これら化合物としては、トリ(メタ)アクリレート、例えば、エトキシ化グリセリントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート(例えばトリメチロールプロパンに平均21モルのエチレンオキサイドを付加したトリメタクリレート、トリメチロールプロパンに平均30モルのエチレンオキサイドを付加したトリメタクリレートが、柔軟性、密着性、ブリードアウト抑制の観点で好ましい)等;テトラ(メタ)アクリレート、例えば、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート等;ペンタ(メタ)アクリレート、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等;ヘキサ(メタ)アクリレート、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。(メタ)アクリロイル基を3個以上有する化合物は解像性、密着性、レジストスソ形状の観点で好ましく、メタクリル基を3個以上有する化合物であるとより好ましい。 The compound having three or more (meth) acryloyl groups in the molecule has, as a central skeleton, three or more moles of a group to which an alkylene oxide group can be added in the molecule, and ethyleneoxy group, propyleneoxy group, etc. It can be obtained by converting an alcohol obtained by adding an alkyleneoxy group such as a butyleneoxy group to (meth) acrylate. In this case, examples of the compound capable of becoming a central skeleton include glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, isocyanurate ring and the like. As these compounds, tri (meth) acrylates, such as ethoxylated glycerin tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate (for example, Trimethacrylate obtained by adding an average of 21 moles of ethylene oxide to trimethylolpropane, and trimethacrylate obtained by adding an average of 30 moles of ethylene oxide to trimethylolpropane are preferable from the viewpoint of flexibility, adhesion and suppression of bleed out), etc .; (Meth) acrylates, such as ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate ; Penta (meth) acrylate, for example, dipentaerythritol penta (meth) acrylate; hexa (meth) acrylate, for example, dipentaerythritol hexa (meth) acrylate. Compounds having three or more (meth) acryloyl groups are preferable from the viewpoint of resolution, adhesion, and resist shape, and compounds having three or more methacryl groups are more preferable.
 テトラ(メタ)アクリレートとしては、ペンタエリスリトールテトラ(メタ)アクリレートが好ましい。ペンタエリスリトールテトラ(メタ)アクリレートは、ペンタエリスリトールの4つの末端に合計1~40モルのアルキレンオキサイドが付加されているテトラ(メタ)アクリレート等でよい。 As tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate is preferable. The pentaerythritol tetra (meth) acrylate may be tetra (meth) acrylate or the like in which a total of 1 to 40 moles of alkylene oxide is added to the four terminals of pentaerythritol.
 ヘキサ(メタ)アクリレートとしては、ジペンタエリスリトールの6つの末端に合計1~40モルのエチレンオキサイドが付加されているヘキサ(メタ)アクリレート、ジペンタエリスリトールの6つの末端に合計1~20モルのε-カプロラクトンが付加されているヘキサ(メタ)アクリレートが好ましい。 As the hexa (meth) acrylate, hexa (meth) acrylate in which a total of 1 to 40 moles of ethylene oxide is added to the six ends of dipentaerythritol, and a total of 1 to 20 moles of ε at the six ends of dipentaerythritol Hexa (meth) acrylates to which caprolactone is added are preferred.
 上記で説明された(メタ)アクリレート化合物は、それぞれ独立に、又は組み合わせて使用されることができる。感光性樹脂組成物は、(B)エチレン性不飽和結合を有する化合物として、その他の化合物も含んでよい。その他の化合物としては、ウレタン結合を有する(メタ)アクリレート、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。 The (meth) acrylate compounds described above can be used independently or in combination. The photosensitive resin composition may also contain other compounds as a compound having (B) an ethylenically unsaturated bond. Other compounds include (meth) acrylate having a urethane bond, a compound obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid, and a glycidyl group-containing compound with an α, β-unsaturated carboxylic acid And compounds obtained by reaction, 1,6-hexanediol di (meth) acrylate and the like.
 (B)エチレン性不飽和二重結合を有する化合物の感光性樹脂組成物の全固形分質量に対する割合は、好ましくは5質量%~70質量%である。この割合を5質量%以上にすることは、感度、解像性及び密着性の観点から好ましい。この割合を20質量%以上にすることがより好ましく、30質量%以上にすることが更に好ましい。一方で、この割合を70質量%以下にすることは、エッジフューズ及び硬化レジストの剥離遅延を抑えるという観点から好ましい。この割合を50質量%以下にすることがより好ましい。 The ratio of the compound (B) having an ethylenically unsaturated double bond to the total solid content mass of the photosensitive resin composition is preferably 5% by mass to 70% by mass. It is preferable to make this proportion 5% by mass or more from the viewpoint of sensitivity, resolution and adhesion. The proportion is more preferably 20% by mass or more, and still more preferably 30% by mass or more. On the other hand, it is preferable to make this ratio 70% by mass or less from the viewpoint of suppressing the peeling delay of the edge fuse and the cured resist. It is more preferable to make this ratio 50 mass% or less.
<(C)光重合開始剤>
 (C)光重合開始剤は、光によりモノマーを重合させる化合物である。感光性樹脂組成物は、(C)光重合開始剤として本技術分野において一般に知られている化合物を含む。
<(C) Photopolymerization initiator>
(C) A photoinitiator is a compound which polymerizes a monomer by light. The photosensitive resin composition contains a compound generally known in the art as a (C) photopolymerization initiator.
 感光性樹脂組成物中の(C)光重合開始剤の総含有量は、好ましくは0.01~20質量%、より好ましくは0.05質量%~10質量%、さらに好ましくは0.1質量%~7質量%、特に好ましくは0.1質量%~6質量%の範囲内である。(C)光重合開始剤の総含有量は、十分な感度を得るという観点から0.01質量%以上であることが好ましく、レジスト底面まで光を充分に透過させて、良好な高解像性を得るという観点から20質量%以下であることが好ましい。 The total content of the photopolymerization initiator (C) in the photosensitive resin composition is preferably 0.01 to 20% by mass, more preferably 0.05% to 10% by mass, and still more preferably 0.1% by mass. % To 7% by mass, particularly preferably 0.1% to 6% by mass. The total content of the photopolymerization initiator (C) is preferably 0.01% by mass or more from the viewpoint of obtaining sufficient sensitivity, and light is sufficiently transmitted to the bottom of the resist to obtain good high resolution. It is preferable that it is 20 mass% or less from a viewpoint of obtaining.
 (C)光重合開始剤としては、キノン類、芳香族ケトン類、アセトフェノン類、アシルフォスフィンオキサイド類、ベンゾイン又はベンゾインエーテル類、ジアルキルケタール類、チオキサントン類、ジアルキルアミノ安息香酸エステル類、オキシムエステル類、アクリジン類(例えば9-フェニルアクリジン、ビスアクリジニルヘプタン、9-(p-メチルフェニル)アクリジン、9-(m-メチルフェニル)アクリジンが感度、解像性、密着性の点で好ましい)が挙げられ、更にヘキサアリールビイミダゾール、ピラゾリン化合物、アントラセン化合物(例えば9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセンが感度、解像性、密着性の点で好ましい)、クマリン化合物(例えば7-ジエチルアミノ-4-メチルクマリンが感度、解像性、密着性の点で好ましい)、N-アリールアミノ酸又はそのエステル化合物(例えばN-フェニルグリシンが感度、解像性、密着性の点で好ましい)、及びハロゲン化合物(例えばトリブロモメチルフェニルスルホン)などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。その他、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2,4,6-トリメチルベンゾイルージフェニルーホスフィンオキサイド、トリフェニルホスフィンオキシドを用いてもよい。 (C) As a photopolymerization initiator, quinones, aromatic ketones, acetophenones, acyl phosphine oxides, benzoin or benzoin ethers, dialkyl ketals, thioxanthones, dialkyl aminobenzoic acid esters, oxime esters And acridines (eg, 9-phenylacridine, bisacridinylheptane, 9- (p-methylphenyl) acridine, 9- (m-methylphenyl) acridine are preferred in terms of sensitivity, resolution and adhesion) Further, hexaarylbiimidazole, pyrazoline compounds, anthracene compounds (eg, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene are preferable in terms of sensitivity, resolution and adhesion), coumarin compounds (eg, 7-diethylamino-4-methyl Coumarins are preferred in terms of sensitivity, resolution and adhesion), N-aryl amino acids or ester compounds thereof (eg, N-phenylglycine is preferred in terms of sensitivity, resolution and adhesion), and halogen compounds (eg, such as Tribromomethyl phenyl sulfone) and the like. These can be used singly or in combination of two or more. In addition, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2,4,6-trimethylbenzo It is also possible to use yl-diphenyl-phosphine oxide and triphenyl phosphine oxide.
 芳香族ケトン類としては、例えば、ベンゾフェノン、ミヒラーズケトン[4,4’-ビス(ジメチルアミノ)ベンゾフェノン]、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノンを挙げることができる。これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。これらの中でも、密着性の観点から、4,4’-ビス(ジエチルアミノ)ベンゾフェノンが好ましい。さらに、透過率の観点から、感光性樹脂組成物中の芳香族ケトン類の含有量は、好ましくは0.01質量%~0.5質量%、さらに好ましくは0.02質量%~0.3質量%の範囲内である。 Examples of aromatic ketones include benzophenone, Michler's ketone [4,4'-bis (dimethylamino) benzophenone], 4,4'-bis (diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone Can. These can be used singly or in combination of two or more. Among these, from the viewpoint of adhesion, 4,4'-bis (diethylamino) benzophenone is preferable. Furthermore, from the viewpoint of transmittance, the content of the aromatic ketone in the photosensitive resin composition is preferably 0.01% by mass to 0.5% by mass, and more preferably 0.02% by mass to 0.3%. It is in the range of mass%.
 ヘキサアリールビイミダゾールの例としては、2-(o-クロロフェニル)-4,5-ジフェニルビイミダゾール、2,2’,5-トリス-(o-クロロフェニル)-4-(3,4-ジメトキシフェニル)-4’,5’-ジフェニルビイミダゾール、2,4-ビス-(o-クロロフェニル)-5-(3,4-ジメトキシフェニル)-ジフェニルビイミダゾール、2,4,5-トリス-(o-クロロフェニル)-ジフェニルビイミダゾール、2-(o-クロロフェニル)-ビス-4,5-(3,4-ジメトキシフェニル)-ビイミダゾール、2,2’-ビス-(2-フルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3-ジフルオロメチルフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,5-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,6-ジフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,5-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,4,6-トリフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,5-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、2,2’-ビス-(2,3,4,6-テトラフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール、及び2,2’-ビス-(2,3,4,5,6-ペンタフルオロフェニル)-4,4’,5,5’-テトラキス-(3-メトキシフェニル)-ビイミダゾール等が挙げられ、これらは、1種を単独で又は2種以上を組み合わせて使用されることができる。高感度、解像性及び密着性の観点から、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体が好ましい。 Examples of hexaarylbiimidazole include 2- (o-chlorophenyl) -4,5-diphenylbiimidazole and 2,2 ', 5-tris- (o-chlorophenyl) -4- (3,4-dimethoxyphenyl) -4 ', 5'-Diphenylbiimidazole, 2,4-bis- (o-chlorophenyl) -5- (3,4-dimethoxyphenyl) -diphenylbiimidazole, 2,4,5-tris- (o-chlorophenyl) ) -Diphenylbiimidazole, 2- (o-chlorophenyl) -bis-4,5- (3,4-dimethoxyphenyl) -biimidazole, 2,2'-bis- (2-fluorophenyl) -4,4 ' 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3-difluoromethylphenyl) -4,4 ', , 5'-Tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,4-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -Biimidazole, 2,2'-bis- (2,5-difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- ( 2,6-Difluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4-trifluorophenyl) -4 4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,5-trifluorophenyl) -4,4', 5,5'- Tetrakis- (3-methoxyphenyl -Biimidazole, 2,2'-bis- (2,3,6-trifluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'- Bis- (2,4,5-trifluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,4,6- Trifluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4,5-tetrafluorophenyl) -4, 4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole, 2,2'-bis- (2,3,4,6-tetrafluorophenyl) -4,4', 5,5 ' -Tetrakis- (3-methoxyphenyl) -biimidazo And 2,2'-bis- (2,3,4,5,6-pentafluorophenyl) -4,4 ', 5,5'-tetrakis- (3-methoxyphenyl) -biimidazole etc. These can be used alone or in combination of two or more. From the viewpoint of high sensitivity, resolution and adhesion, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer is preferred.
 本実施形態では、感光性樹脂組成物中のヘキサアリールビスイミダゾール化合物の含有量は、感光性樹脂組成物層の剥離特性及び/又は感度を向上させるという観点から、好ましくは0.05質量%~7質量%、より好ましくは0.1質量%~6質量%、さらに好ましくは1質量%~5質量%の範囲内である。 In the present embodiment, the content of the hexaarylbisimidazole compound in the photosensitive resin composition is preferably 0.05% by mass or more from the viewpoint of improving the peeling characteristics and / or the sensitivity of the photosensitive resin composition layer. It is in the range of 7% by mass, more preferably 0.1% by mass to 6% by mass, and still more preferably 1% by mass to 5% by mass.
 感光性樹脂組成物層の剥離特性又は感度、解像性、密着性の観点から、感光性樹脂組成物は、光増感剤としてピラゾリン化合物も含むことが好ましい。 It is preferable that the photosensitive resin composition also contains a pyrazoline compound as a photosensitizer from the viewpoints of peeling characteristics or sensitivity, resolution, and adhesiveness of the photosensitive resin composition layer.
 ピラゾリン化合物としては、例えば、1-フェニル-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-(4-(ベンゾオキサゾール-2-イル)フェニル)-3-(4-tert-ブチル-スチリル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリン、1-フェニル-3-(4-ビフェニル)-5-(4-tert-オクチル-フェニル)-ピラゾリン、1-フェニル-3-(4-イソプロピルスチリル)-5-(4-イソプロピルフェニル)-ピラゾリン、1-フェニル-3-(4-メトキシスチリル)-5-(4-メトキシフェニル)-ピラゾリン、1-フェニル-3-(3,5-ジメトキシスチリル)-5-(3,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(3,4-ジメトキシスチリル)-5-(3,4-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,6-ジメトキシスチリル)-5-(2,6-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,5-ジメトキシスチリル)-5-(2,5-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,3-ジメトキシスチリル)-5-(2,3-ジメトキシフェニル)-ピラゾリン、1-フェニル-3-(2,4-ジメトキシスチリル)-5-(2,4-ジメトキシフェニル)-ピラゾリン等が上記の観点から好ましく、挙げられる。これらの中でも、1-フェニル-3-(4-ビフェニル)-5-(4-tert-ブチル-フェニル)-ピラゾリンがより好ましい。 As a pyrazoline compound, for example, 1-phenyl-3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1- (4- (benzoxazol-2-yl) Phenyl) -3- (4-tert-butyl-styryl) -5- (4-tert-butyl-phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl- Phenyl) -pyrazoline, 1-phenyl-3- (4-biphenyl) -5- (4-tert-octyl-phenyl) -pyrazoline, 1-phenyl-3- (4-isopropylstyryl) -5- (4-isopropyl) Phenyl) -pyrazoline, 1-phenyl-3- (4-methoxystyryl) -5- (4-methoxyphenyl) -pyrazoline, 1-phenyl-3 (3,5-Dimethoxystyryl) -5- (3,5-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (3,4-dimethoxystyryl) -5- (3,4-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,6-dimethoxystyryl) -5- (2,6-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,5-dimethoxystyryl) -5- (2,5-) Dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,3-dimethoxystyryl) -5- (2,3-dimethoxyphenyl) -pyrazoline, 1-phenyl-3- (2,4-dimethoxystyryl) -5 -(2,4-dimethoxyphenyl) -pyrazoline and the like are preferable from the above-mentioned viewpoint, and can be mentioned. Among these, 1-phenyl-3- (4-biphenyl) -5- (4-tert-butyl-phenyl) -pyrazoline is more preferable.
 本実施形態では、感光性樹脂組成物中の光増感剤の含有量は、感光性樹脂組成物層の剥離特性及び/又は感度を向上させるという観点から、好ましくは0.05質量%~5質量%、より好ましくは0.1質量%~3質量%の範囲内である。 In the present embodiment, the content of the photosensitizer in the photosensitive resin composition is preferably 0.05% by mass to 5% from the viewpoint of improving the peeling characteristics and / or the sensitivity of the photosensitive resin composition layer. The content is preferably in the range of 0.1% by mass to 3% by mass.
<(D)フェノール誘導体>
 本実施の形態では、感光性樹脂組成物は(D)フェノール誘導体を更に含むことが好ましい。(D)フェノール誘導体としては例えば、p-メトキシフェノール、ハイドロキノン、ピロガロール、tert-ブチルカテコール、2,6-ジ-tert-ブチル-p-クレゾール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2,6-ジ-tert-ブチル-4-メチルフェノール、2,5-ジ-tert-アミルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、ビス(2-ヒドロキシ-3-t-ブチル-5-エチルフェニル)メタン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、スチレン化フェノール(例えば川口化学工業(株)製、アンテージSP)、トリベンジルフェノール(例えば川口化学工業(株)製、TBP、ベンジル基を1~3個有するフェノール)、ビフェノール等が挙げられる。(D)フェノール誘導体を含有することは露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制することができる観点で好ましく、同様の観点からヒンダードフェノール又はビフェノールが好ましい。また、同様の観点から、(D)フェノール誘導体はフェノール核を2核以上有していることが好ましい。
<(D) phenol derivative>
In the present embodiment, the photosensitive resin composition preferably further includes (D) a phenol derivative. Examples of (D) phenol derivatives include p-methoxyphenol, hydroquinone, pyrogallol, tert-butyl catechol, 2,6-di-tert-butyl-p-cresol, and 2,2'-methylenebis (4-methyl-6-) tert-Butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-amylhydroquinone, 2 , 5-Di-tert-butylhydroquinone, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), bis (2-hydroxy-3-t-butyl-5-ethylphenyl) methane, triethylene glycol -Bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) pro Onate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], pentaerythrityl tetrakis [3- (3,5-di-t-) Butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di) -T-Butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylene bis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 3,5-di-t-butyl -4-hydroxybenzyl phosphonate diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxyben) B) Benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, 4,4'-thiobis (6-tert-butyl-m-cresol), 4,4'-butylidene bis (3-methyl-6-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, styrenated phenol (eg, manufactured by Kawaguchi Chemical Industry Co., Ltd.) Antage SP), tribenzylphenol (eg, Kawaguchi Chemical Industry Co., Ltd., TBP, phenol having 1 to 3 benzyl groups), biphenol and the like can be mentioned. The inclusion of the (D) phenol derivative is preferable from the viewpoint of suppressing the line width thickening and the deterioration of resolution when the focal position at the time of exposure shifts, and from the same viewpoint, a hindered phenol or biphenol is preferable. Further, from the same viewpoint, it is preferable that the (D) phenol derivative has two or more phenol nuclei.
 (D)フェノール誘導体の、感光性樹脂組成物の全固形分質量に対する割合は、0.001質量%~10質量%であることが好ましい。この割合は、露光時の焦点位置がずれたときの線幅太りや解像度の悪化を抑制することができる観点で0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることが更に好ましく、0.05質量%以上であることがもっと好ましく、0.1質量%以上であることが特に好ましい。一方で、この割合は、感度低下が少ない点及び解像性の向上の点で、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましく、2質量%以下であることが特に好ましく、1.5質量%以下であることが最も好ましい。 The ratio of the (D) phenol derivative to the total solid content mass of the photosensitive resin composition is preferably 0.001 mass% to 10 mass%. This ratio is preferably 0.001% by mass or more, and 0.005% by mass or more from the viewpoint of suppressing the line width thickening and the deterioration of resolution when the focal position at the time of exposure shifts. Is more preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more. On the other hand, this ratio is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less, from the viewpoint of little decrease in sensitivity and improvement in resolution. Is more preferable, 2% by mass or less is particularly preferable, and 1.5% by mass or less is most preferable.
<添加剤>
 感光性樹脂組成物は、所望により、染料、可塑剤、酸化防止剤、安定化剤等の添加剤を含んでよい。例えば、特開2013-156369号公報に列挙されている添加剤を使用してよい。
<Additives>
The photosensitive resin composition may optionally contain additives such as a dye, a plasticizer, an antioxidant, and a stabilizer. For example, additives listed in Japanese Patent Application Laid-Open No. 2013-156369 may be used.
(染料及び着色物質)
 本実施の形態では、感光性樹脂組成物は、所望により、染料(例えばロイコ染料、フルオラン染料等)及び着色物質から成る群より選ばれる少なくとも1種を更に含有してもよい。
(Dye and colored substance)
In the present embodiment, the photosensitive resin composition may further optionally contain at least one selected from the group consisting of dyes (for example, leuco dyes, fluoran dyes and the like) and coloring substances.
 着色物質としては、例えば、フクシン、フタロシアニングリーン、オーラミン塩基、パラマジエンタ、クリスタルバイオレット、メチルオレンジ、ナイルブルー2B、ビクトリアブルー、マラカイトグリーン(例えば、保土ヶ谷化学(株)製 アイゼン(登録商標) MALACHITE GREEN)、ベイシックブルー20、ダイアモンドグリーン(例えば保土ヶ谷化学(株)製 アイゼン(登録商標) DIAMOND GREEN GH)が挙げられる。感光性樹脂組成物中の着色物質の含有量は、感光性樹脂組成物の全固形分質量を100質量%としたとき、0.001質量%~1質量%であることが好ましい。該含有量を0.001質量%以上にすることは、感光性樹脂組成物の取扱い性を向上させるという観点から好ましい。一方で、該含有量を1質量%以下にすることは、感光性樹脂組成物の保存安定性を維持するという観点から好ましい。 Examples of coloring substances include fuchsin, phthalocyanine green, auramine base, paramagienta, crystal violet, methyl orange, Nile blue 2B, Victoria blue, malachite green (for example, Hoedagaya Chemical Co., Ltd. Eisen (registered trademark) MALACITE GREEN), Basic Blue 20, diamond green (for example, Eiden (registered trademark) DIAMOND GREEN GH manufactured by Hodogaya Chemical Co., Ltd.) can be mentioned. The content of the coloring substance in the photosensitive resin composition is preferably 0.001% by mass to 1% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. Setting the content to 0.001% by mass or more is preferable from the viewpoint of improving the handleability of the photosensitive resin composition. On the other hand, making the content 1% by mass or less is preferable from the viewpoint of maintaining the storage stability of the photosensitive resin composition.
 感光性樹脂組成物は、染料を含有することにより露光部分が発色するので視認性の点で好ましく、また、検査機等が露光のための位置合わせマーカーを読み取る場合、露光部と未露光部とのコントラストが大きい方が認識し易く有利である。この観点で好ましい染料としては、ロイコ染料及びフルオラン染料が挙げられる。 The photosensitive resin composition is preferable from the viewpoint of visibility because the exposed portion is colored by containing the dye, and when the inspection machine or the like reads the alignment marker for exposure, the exposed portion and the unexposed portion The larger the contrast of the image, the easier it is to recognize. Preferred dyes in this regard include leuco dyes and fluoran dyes.
 ロイコ染料としては、トリス(4-ジメチルアミノフェニル)メタン[ロイコクリスタルバイオレット]、ビス(4-ジメチルアミノフェニル)フェニルメタン[ロイコマラカイトグリーン]等が挙げられる。とりわけ、コントラストが良好となる観点から、ロイコ染料としては、ロイコクリスタルバイオレットを用いることが好ましい。感光性樹脂組成物中のロイコ染料の含有量は、感光性樹脂組成物の全固形分質量に対して0.1質量%~10質量%であることが好ましい。この含有量を0.1質量%以上にすることは、露光部分と未露光部分とのコントラストを良好にする観点から好ましい。この含有量は、0.2質量%以上にすることがより好ましく、0.4質量%以上にすることが特に好ましい。一方で、この含有量を10質量%以下にすることが保存安定性を維持するという観点から好ましい。この含有量は、5質量%以下にすることがより好ましく、2質量%以下にすることが特に好ましい。 Examples of leuco dyes include tris (4-dimethylaminophenyl) methane [leuco crystal violet], bis (4-dimethylaminophenyl) phenylmethane [leucomalachite green] and the like. In particular, leuco crystal violet is preferably used as the leuco dye, from the viewpoint of achieving good contrast. The content of the leuco dye in the photosensitive resin composition is preferably 0.1% by mass to 10% by mass with respect to the total solid content mass of the photosensitive resin composition. Making this content 0.1% by mass or more is preferable from the viewpoint of improving the contrast between the exposed part and the unexposed part. The content is more preferably 0.2% by mass or more, and particularly preferably 0.4% by mass or more. On the other hand, it is preferable to make this content 10% by mass or less from the viewpoint of maintaining storage stability. The content is more preferably 5% by mass or less, and particularly preferably 2% by mass or less.
 また、感光性樹脂組成物中に、ロイコ染料と、(C)光重合開始剤において前述したハロゲン化合物とを組み合わせて用いることは、密着性及びコントラストを最適化する観点から好ましい。ロイコ染料を該ハロゲン化合物と併用する場合には、感光性樹脂組成物中の該ハロゲン化合物の含有量は、感光性樹脂組成物の全固形分質量を100質量%としたとき、0.01質量%~3質量%であることが、感光層における色相の保存安定性を維持するという観点から好ましい。 Moreover, it is preferable from a viewpoint of optimizing adhesiveness and contrast to use combining a leuco dye and the halogen compound mentioned above in (C) photoinitiator in photosensitive resin composition. When a leuco dye is used in combination with the halogen compound, the content of the halogen compound in the photosensitive resin composition is 0.01 mass based on 100% by mass of the total solid content of the photosensitive resin composition. % To 3% by mass is preferable from the viewpoint of maintaining the storage stability of the hue in the photosensitive layer.
(その他の添加剤)
 感光性樹脂組成物は、熱安定性及び保存安定性を向上させるために、ラジカル重合禁止剤、ベンゾトリアゾール類、及びカルボキシベンゾトリアゾール類から成る群より選ばれる少なくとも1種の化合物を更に含有してもよい。
(Other additives)
The photosensitive resin composition further contains at least one compound selected from the group consisting of radical polymerization inhibitors, benzotriazoles, and carboxybenzotriazoles in order to improve thermal stability and storage stability. It is also good.
 ラジカル重合禁止剤としては、例えば、ナフチルアミン、塩化第一銅、ニトロソフェニルヒドロキシアミンアルミニウム塩、ジフェニルニトロソアミン等が挙げられる。感光性樹脂組成物の感度を損なわないために、ニトロソフェニルヒドロキシアミンアルミニウム塩が好ましい。 Examples of the radical polymerization inhibitor include naphthylamine, cuprous chloride, nitrosophenylhydroxyamine aluminum salt, diphenylnitrosamine and the like. In order not to impair the sensitivity of the photosensitive resin composition, nitrosophenylhydroxyamine aluminum salt is preferred.
 ベンゾトリアゾール類としては、例えば、1,2,3-ベンゾトリアゾール、1-クロロ-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-ベンゾトリアゾール、ビス(N-2-エチルヘキシル)アミノメチレン-1,2,3-トリルトリアゾール、ビス(N-2-ヒドロキシエチル)アミノメチレン-1,2,3-ベンゾトリアゾール等が挙げられる。 Examples of benzotriazoles include 1,2,3-benzotriazole, 1-chloro-1,2,3-benzotriazole, bis (N-2-ethylhexyl) aminomethylene-1,2,3-benzotriazole, Bis (N-2-ethylhexyl) aminomethylene-1,2,3-tolyltriazole, bis (N-2-hydroxyethyl) aminomethylene-1,2,3-benzotriazole and the like can be mentioned.
 カルボキシベンゾトリアゾール類としては、例えば、4-カルボキシ-1,2,3-ベンゾトリアゾール、5-カルボキシ-1,2,3-ベンゾトリアゾール、N-(N,N-ジ-2-エチルヘキシル)アミノメチレンカルボキシベンゾトリアゾール、N-(N,N-ジ-2-ヒドロキシエチル)アミノメチレンカルボキシベンゾトリアゾール、N-(N,N-ジ-2-エチルヘキシル)アミノエチレンカルボキシベンゾトリアゾール等が挙げられる。 As carboxybenzotriazoles, for example, 4-carboxy-1,2,3-benzotriazole, 5-carboxy-1,2,3-benzotriazole, N- (N, N-di-2-ethylhexyl) aminomethylene Examples thereof include carboxybenzotriazole, N- (N, N-di-2-hydroxyethyl) aminomethylene carboxybenzotriazole, N- (N, N-di-2-ethylhexyl) aminoethylene carboxybenzotriazole and the like.
 ラジカル重合禁止剤、ベンゾトリアゾ-ル類、及びカルボキシベンゾトリアゾ-ル類の合計含有量は、感光性樹脂組成物の全固形分質量を100質量%としたとき、好ましくは0.01質量%~3質量%であり、より好ましくは0.05質量%~1質量%である。該含有量を0.01質量%以上にすることは、感光性樹脂組成物に保存安定性を付与するという観点から好ましい。一方で、該含有量を3質量%以下にすることは、感度を維持し、染料の脱色を抑える観点から好ましい。 The total content of the radical polymerization inhibitor, benzotriazoles, and carboxybenzotriazoles is preferably 0.01% by mass or less, based on 100% by mass of the total solid content of the photosensitive resin composition. It is 3% by mass, more preferably 0.05% by mass to 1% by mass. The content of 0.01% by mass or more is preferable from the viewpoint of imparting storage stability to the photosensitive resin composition. On the other hand, setting the content to 3% by mass or less is preferable from the viewpoint of maintaining the sensitivity and suppressing the decolorization of the dye.
 本実施の形態では、感光性樹脂組成物は、ビスフェノールAのエポキシ化合物類を更に含有してもよい。ビスフェノールAのエポキシ化合物類としては、例えば、ビスフェノールAをポリプロピレングリコールで修飾し末端をエポキシ化した化合物等が挙げられる。 In the present embodiment, the photosensitive resin composition may further contain epoxy compounds of bisphenol A. Examples of epoxy compounds of bisphenol A include, for example, compounds obtained by modifying bisphenol A with polypropylene glycol and epoxidizing the end.
 本実施の形態では、感光性樹脂組成物は、可塑剤を更に含有してもよい。可塑剤としては、例えば、フタル酸エステル類(例えば、ジエチルフレート等)、o-トルエンスルホン酸アミド、p-トルエンスルホン酸アミド、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリ-n-プロピル、アセチルクエン酸トリ-n-ブチル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールアルキルエ-テル、ポリプロプレンレングリコールアルキルエーテル等が挙げられる。また、アデカノールSDX-1569、アデカノールSDX-1570、アデカノールSDX-1571、アデカノールSDX-479(以上旭電化(株)製)、ニューポールBP-23P、ニューポールBP-3P、ニューポールBP-5P、ニューポールBPE-20T、ニューポールBPE-60、ニューポールBPE-100、ニューポールBPE-180(以上三洋化成(株)製)、ユニオールDB-400、ユニオールDAB-800、ユニオールDA-350F、ユニオールDA-400、ユニオールDA-700 (以上日本油脂(株)製)、BA-P4Uグリコール、BA-P8グリコール(以上日本乳化剤(株)製)等のビスフェノール骨格を有する化合物も挙げられる。 In the present embodiment, the photosensitive resin composition may further contain a plasticizer. As a plasticizer, for example, phthalic acid esters (eg, diethylflate etc.), o-toluenesulfonic acid amide, p-toluenesulfonic acid amide, tributyl citrate, triethyl citrate, triethyl acetyl citrate, triethyl acetyl citrate And n-propyl, acetyl tri-n-butyl acetyl citrate, polyethylene glycol, polypropylene glycol, polyethylene glycol alkyl ether, polypropylene glycol alkyl ether and the like. In addition, adecanol SDX-1569, adecanol SDX-1570, adecanol SDX-1571, adecanol SDX-479 (manufactured by Asahi Denka Co., Ltd.), Newpol BP-23P, Newpol BP-3P, Newpol BP-5P, New Paul BPE-20T, New Paul BPE-60, New Paul BPE-100, New Paul BPE-180 (manufactured by Sanyo Chemical Industries, Ltd.), Uniol DB-400, Uniol DAB-800, Uniol DA-350F, Uniol DA- And compounds having a bisphenol skeleton, such as 400, Uniol DA-700 (manufactured by Nippon Oil and Fats Co., Ltd.), BA-P4U glycol, BA-P8 glycol (manufactured by Nippon Emulsifier Co., Ltd.), and the like.
 感光性樹脂組成物中の可塑剤の含有量は、感光性樹脂組成物の全固形分質量に対して、好ましくは1質量%~50質量%であり、より好ましくは1質量%~30質量%である。該含有量を1質量%以上にすることは、現像時間の遅延を抑え、かつ硬化膜に柔軟性を付与するという観点から好ましい。一方で、該含有量を50質量%以下にすることは、硬化不足及びコールドフローを抑えるという観点から好ましい。 The content of the plasticizer in the photosensitive resin composition is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, with respect to the total solid content mass of the photosensitive resin composition. It is. It is preferable to make the content 1% by mass or more from the viewpoint of suppressing the delay of development time and imparting flexibility to the cured film. On the other hand, making the content 50% by mass or less is preferable from the viewpoint of suppressing insufficient curing and cold flow.
[溶剤]
 感光性樹脂組成物は、溶剤に溶解させて感光性樹脂組成物調合液の形態で、感光性樹脂積層体の製造に使用できる。溶剤としては、ケトン類、アルコール類等が挙げられる。前記ケトン類は、メチルエチルケトン(MEK)、アセトンに代表される。前記アルコール類は、メタノール、エタノール、及びイソプロパノールに代表される。溶剤は、感光性樹脂積層体の製造に際して、支持層上に塗布する感光性樹脂組成物調合液の25℃における粘度が、500mPa・s~4,000mPa・sとなるような量で、感光性樹脂組成物に添加されることが好ましい。
[solvent]
The photosensitive resin composition can be dissolved in a solvent and used in the form of a photosensitive resin composition preparation liquid for producing a photosensitive resin laminate. Examples of the solvent include ketones and alcohols. The ketones are represented by methyl ethyl ketone (MEK) and acetone. The alcohols are represented by methanol, ethanol and isopropanol. The solvent is used in an amount such that the viscosity at 25 ° C. of the photosensitive resin composition preparation liquid applied onto the support layer is 500 mPa · s to 4,000 mPa · s during the production of the photosensitive resin laminate. Preferably, it is added to the resin composition.
<レジストパターンの形成方法>
 次に、本実施の形態の感光性樹脂積層体を用いてレジストパターンを製造する方法の一例を説明する。該方法は、感光性樹脂積層体を基板に積層するラミネート工程、該感光性樹脂積層体の感光性樹脂組成物層を露光する露光工程、及び該感光性樹脂組成物層の未露光部を現像除去する現像工程を含むことができる。レジストパターンとしては、例えば、プリント配線板、半導体素子、印刷版、液晶ディスプレイパネル、フレキシブル基板、リードフレーム基板、COF(チップオンフィルム)用基板、半導体パッケージ用基板、液晶用透明電極、液晶用TFT用配線、PDP(プラズマディスプレイパネル)用電極等のパターンが挙げられる。本実施の形態の感光性樹脂積層体は、レジスト突起の良好な回避という利点を有することから、例えば、ライン幅/スペース幅が20/20(μm)以下、又はライン幅/スペース幅が10/10(μm)未満といった高精細の配線形成用に特に有用である。本実施の形態の感光性樹脂積層体が適用できるライン幅/スペース幅(μm)としては、特に制限はないが、例えば15/15(μm)以下、好ましくは10/10(μm)以下、さらに好ましくは9.5/9.5(μm)以下、特に好ましくは9.0/9.0(μm)以下である。ライン幅/スペース幅(μm)の下限値としては特に制限はないが、3/3(μm)以上、4/4(μm)以上、若しくは5/5(μm)以上であってよい。また、本実施の形態の感光性樹脂積層体は、上記利点から特にセミアディティブ法(SAP)による配線形成用に有用である。SAP法は常法で実施でき、例えば絶縁樹脂層と銅層(例えば触媒としてパラジウムを含む無電解銅めっき層)との積層体を用い、既知のめっき法にて配線形成できる。一例として、プリント配線板の製造方法を、下記の通り説明する。
<Method of forming resist pattern>
Next, an example of a method of manufacturing a resist pattern using the photosensitive resin laminate of the present embodiment will be described. The method comprises a laminating step of laminating a photosensitive resin laminate on a substrate, an exposing step of exposing a photosensitive resin composition layer of the photosensitive resin laminate, and developing an unexposed portion of the photosensitive resin composition layer. It can include a developing step to be removed. As the resist pattern, for example, printed wiring board, semiconductor element, printing plate, liquid crystal display panel, flexible substrate, lead frame substrate, substrate for COF (chip on film), substrate for semiconductor package, transparent electrode for liquid crystal, TFT for liquid crystal And wiring patterns, electrodes for PDP (plasma display panel) and the like. The photosensitive resin laminate of the present embodiment has an advantage of avoiding the resist protrusions well, and for example, the line width / space width is 20/20 (μm or less) or the line width / space width is 10 /. It is particularly useful for the formation of fine wiring of less than 10 (μm). The line width / space width (μm) to which the photosensitive resin laminate of the present embodiment can be applied is not particularly limited, and for example, 15/15 (μm) or less, preferably 10/10 (μm) or less, and further Preferably it is 9.5 / 9.5 (μm) or less, particularly preferably 9.0 / 9.0 (μm) or less. The lower limit value of the line width / space width (μm) is not particularly limited, but may be 3/3 (μm) or more, 4/4 (μm) or more, or 5/5 (μm) or more. Further, the photosensitive resin laminate of the present embodiment is particularly useful for wiring formation by the semi-additive method (SAP) from the above advantages. The SAP method can be carried out by a conventional method, and for example, wiring can be formed by a known plating method using a laminate of an insulating resin layer and a copper layer (for example, an electroless copper plating layer containing palladium as a catalyst). As an example, a method of manufacturing a printed wiring board will be described as follows.
 プリント配線板は、以下の各工程を経て製造される。
(1)ラミネート工程
 先ず、ラミネート工程において、ラミネーターを用いて基板上に感光性樹脂組成物層を形成する。具体的には、感光性樹脂積層体が保護層を有する場合には保護層を剥離した後、ラミネーターで感光性樹脂組成物層を基板表面に加熱圧着しラミネートする。基板の材料としては、例えば、銅、ステンレス鋼(SUS)、ガラス、酸化インジウムスズ(ITO)等が挙げられる。
The printed wiring board is manufactured through the following steps.
(1) Laminating Step First, in the laminating step, a photosensitive resin composition layer is formed on a substrate using a laminator. Specifically, in the case where the photosensitive resin laminate has a protective layer, the protective layer is peeled off, and then the photosensitive resin composition layer is laminated by heating under pressure on the substrate surface with a laminator. Examples of the material of the substrate include copper, stainless steel (SUS), glass, indium tin oxide (ITO) and the like.
 本実施形態では、感光性樹脂組成物層は基板表面の片面だけにラミネートするか、又は必要に応じて両面にラミネートしてもよい。ラミネート時の加熱温度は一般的に40℃~160℃である。また、ラミネート時の加熱圧着を2回以上行うことにより、得られるレジストパターンの基板に対する密着性を向上させることができる。加熱圧着時には、二連のロールを備えた二段式ラミネーターを使用するか、又は基板と感光性樹脂組成物層との積層物を数回繰り返してロールに通すことにより圧着してもよい。 In the present embodiment, the photosensitive resin composition layer may be laminated only on one side of the substrate surface, or may be laminated on both sides as needed. The heating temperature during lamination is generally 40.degree. C. to 160.degree. In addition, the adhesion of the obtained resist pattern to the substrate can be improved by performing the thermocompression bonding twice or more at the time of lamination. At the time of thermocompression bonding, a two-stage laminator provided with dual rolls may be used, or the laminate of the substrate and the photosensitive resin composition layer may be crimped by being repeatedly passed through the roll several times.
(2)露光工程
 本工程では、所望の配線パターンを有するマスクフィルムを支持層上に密着させて活性光源を用いて行う露光方法、所望の配線パターンである描画パターンの直接描画による露光方法、又はフォトマスクの像を、レンズを通して投影させることによる露光方法によって、感光性樹脂組成物層を露光する。本実施の形態に係る感光性樹脂組成物の利点は、描画パターンの直接描画による露光方法、又はフォトマスクの像を、レンズを通して投影させる露光方法においてより顕著であり、描画パターンの直接描画による露光方法において特に顕著である。
(2) Exposure step In this step, a mask film having a desired wiring pattern is brought into close contact with the support layer and an exposure method is performed using an active light source, an exposure method by direct drawing of a drawing pattern which is a desired wiring pattern, The photosensitive resin composition layer is exposed by an exposure method by projecting an image of a photomask through a lens. The advantage of the photosensitive resin composition according to the present embodiment is more remarkable in an exposure method by direct drawing of a drawing pattern or an exposure method in which an image of a photomask is projected through a lens, and exposure by direct drawing of a drawing pattern It is particularly remarkable in the method.
(3)現像工程
 本工程では、露光後、感光性樹脂組成物層上の支持層を剥離し、続いてアルカリ水溶液の現像液を用いて未露光部を現像除去することにより、レジストパターンを基板上に形成する。
(3) Development Step In this step, after exposure, the support layer on the photosensitive resin composition layer is peeled off, and then the unexposed area is developed and removed using a developing solution of an alkaline aqueous solution to obtain a resist pattern as a substrate. Form on.
 アルカリ水溶液としては、Na2CO3又はK2CO3の水溶液を用いる。アルカリ水溶液は、感光性樹脂組成物層の特性に合わせて適宜選択されるが、約0.2質量%~約2質量%の濃度、かつ約20℃~約40℃のNa2CO3水溶液が好ましい。 An aqueous solution of Na 2 CO 3 or K 2 CO 3 is used as the alkaline aqueous solution. The alkaline aqueous solution is appropriately selected in accordance with the characteristics of the photosensitive resin composition layer, and an aqueous Na 2 CO 3 solution having a concentration of about 0.2% by mass to about 2% by mass and a temperature of about 20 ° C to about 40 ° C is used. preferable.
 上記の(1)~(3)の各工程を経てレジストパターンを得ることができる。これらの工程の後、場合により、さらに約100℃~約300℃の加熱工程を行うこともできる。この加熱工程を実施することにより、耐薬品性の更なる向上が可能となる。加熱には、熱風、赤外線、又は遠赤外線の方式の加熱炉を用いることができる。また、この加熱工程は露光工程後に実施しても良い。 A resist pattern can be obtained through the above steps (1) to (3). After these steps, optionally, a heating step of about 100 ° C. to about 300 ° C. can also be performed. By performing this heating step, it is possible to further improve the chemical resistance. For heating, a heating furnace of a hot air, infrared or far infrared type can be used. Also, this heating process may be performed after the exposure process.
(4)エッチング工程又はめっき工程
 現像により露出した基板表面(例えば銅張積層板の銅面)をエッチング又はめっきし、導体パターンを製造する。
(4) Etching Step or Plating Step A substrate surface (for example, a copper surface of a copper clad laminate) exposed by development is etched or plated to manufacture a conductor pattern.
(5)剥離工程
 その後、レジストパターンを、現像液よりも強いアルカリ性を有する水溶液により基板から剥離する。剥離用のアルカリ水溶液については、特に制限はないが、約2質量%~約5質量%の濃度、かつ約40~約70℃の温度のNaOH又はKOHの水溶液が好ましい。剥離液に、少量の水溶性溶媒を加えることもできる。
(5) Peeling Step Thereafter, the resist pattern is peeled from the substrate by an aqueous solution having a stronger alkalinity than the developer. The aqueous alkaline solution for peeling is not particularly limited, but an aqueous solution of NaOH or KOH having a concentration of about 2% by mass to about 5% by mass and a temperature of about 40 to about 70 ° C. is preferable. A small amount of water-soluble solvent can also be added to the stripping solution.
 本実施の形態の感光性樹脂積層体は、プリント配線板、フレキシブル基板、リードフレーム基板、COF用基板、半導体パッケージ用基板、液晶用透明電極、液晶用TFT用配線、PDP用電極等におけるレジストパターン又は導体パターンの製造に適した感光性樹脂積層体である。 The photosensitive resin laminate of the present embodiment is a resist pattern of a printed wiring board, a flexible substrate, a lead frame substrate, a substrate for COF, a substrate for semiconductor package, a transparent electrode for liquid crystal, a wiring for TFT for liquid crystal, an electrode for PDP, etc. Or it is a photosensitive resin laminated body suitable for manufacture of a conductor pattern.
 なお、上述した各種パラメータについては、特に断りのない限り、後述の実施例における測定方法又はこれと同等であることが当業者に理解される方法に準じて測定される。 In addition, about the various parameters mentioned above, unless otherwise indicated, it is measured according to the measuring method in the below-mentioned Example, or the method understood by those skilled in the art to be equivalent to this.
 次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明する。しかしながら、本実施の形態は、その要旨から逸脱しない限り、以下の実施例に限定されるものではない。実施例中の物性は以下の方法により測定した。 Next, the present embodiment will be more specifically described by way of examples and comparative examples. However, the present embodiment is not limited to the following embodiments unless it deviates from the gist of the present embodiment. Physical properties in the examples were measured by the following methods.
 実施例及び比較例の評価用サンプルの作製方法、並びに得られたサンプルについての評価方法及びその評価結果を示す。 The preparation method of the sample for evaluation of an Example and a comparative example, the evaluation method about the obtained sample, and its evaluation result are shown.
 <実施例1~3及び比較例1>
1.感光性樹脂組成物の調製
 (A)アルカリ可溶性高分子として、メタクリル酸/ベンジルメタクリレート共重合体(重合比20/80(質量比)、酸当量430、重量平均分子量5万)47質量部、
 (B)光重合開始剤として、4,4’-ビス(ジエチルアミノ)ベンゾフェノン0.1質量部及び2-(o―クロロフェニル)-4,5-ジフェニルイミダゾール二量体3質量部、
 (C)エチレン性二重結合を有する化合物として、ペンタエリストールの4つの末端に、平均15モルのエチレンオキサイドを付加したテトラアクリレート14質量部、並びに
 染料として、ダイアモンドグリーン0.05質量部及びロイコクリスタルバイオレット0.3質量部
を、溶媒に溶解することにより、感光性樹脂組成物を調製した。
Examples 1 to 3 and Comparative Example 1
1. Preparation of photosensitive resin composition (A) 47 parts by mass of methacrylic acid / benzyl methacrylate copolymer (polymerization ratio 20/80 (mass ratio), acid equivalent 430, weight average molecular weight 50,000) as an alkali soluble polymer,
(B) 0.1 parts by mass of 4,4′-bis (diethylamino) benzophenone and 3 parts by mass of 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer as a photopolymerization initiator,
(C) 14 parts by mass of tetraacrylate in which an average of 15 moles of ethylene oxide is added to four ends of pentaerythritol as a compound having an ethylenic double bond, and 0.05 parts by mass of diamond green and leuco as a dye A photosensitive resin composition was prepared by dissolving 0.3 parts by mass of crystal violet in a solvent.
2.支持フィルムの作製
 実施例1~3及び比較例1の各々の支持フィルムとして、ポリエチレンテレフタレート(PET)を作製した。各支持フィルム中の光学異常領域の合計面積比率は表1に記載の通りである。支持フィルム中の微粒子の数はフィルターの目の細かさ及び支持フィルムを構成する材料をフィルターに通す回数及び微粒子を添加した数で調整した。なお、光学異常領域(反射、散乱等が生じる部分)の面積の調整は、PETフィルムの二軸延伸後に、適宜、再度フィルムを180~250℃の条件で熱圧着処理して微粒子周囲の光学異常領域(すなわち、空洞、又は、配向性若しくは結晶性が異なる領域等)を消失させることで行った。
2. Preparation of Support Film As a support film of each of Examples 1 to 3 and Comparative Example 1, polyethylene terephthalate (PET) was prepared. The total area ratio of the optically abnormal area in each support film is as described in Table 1. The number of particulates in the support film was adjusted by the fineness of the filter and the number of times the material constituting the support film was passed through the filter and the number of particulates added. The adjustment of the area of the optically abnormal area (the part where reflection, scattering, etc. occur) is carried out by thermocompression bonding of the film under the conditions of 180 to 250 ° C. as appropriate after biaxial stretching of the PET film. It was carried out by eliminating the region (that is, the cavity or the region having different orientation or crystallinity).
3.感光性樹脂積層体の製造
 ポリエチレンテレフタレート(PET)製の支持フィルム(厚み12μm)の片面に、上記で調製した感光性樹脂組成物をバーコーターで塗布し、95℃の乾燥機中で2.5分間乾燥して感光性樹脂組成物層を形成することにより、感光性樹脂積層体を得た。感光性樹脂組成物層の乾燥厚みは20μmであった。次いで、感光性樹脂組成物層のポリエチレンテレフタレートフィルムを積層していない側の表面上に、保護層として19μm厚のポリエチレンフィルム(タマポリ(株)製、GF-818)を貼り合わせて感光性樹脂積層体を得た。
3. Production of Photosensitive Resin Laminate The photosensitive resin composition prepared above is coated on one surface of a polyethylene terephthalate (PET) support film (12 μm in thickness) with a bar coater, and it is 2.5 in a dryer at 95 ° C. A photosensitive resin laminate was obtained by drying for a minute to form a photosensitive resin composition layer. The dry thickness of the photosensitive resin composition layer was 20 μm. Next, on the surface of the photosensitive resin composition layer on the side where the polyethylene terephthalate film is not laminated, a 19 μm thick polyethylene film (manufactured by Tamapoly Co., Ltd., GF-818) is laminated as a protective layer to form a photosensitive resin laminate. I got a body.
 <基板整面>
 画像性の評価基板として、18μm圧延銅箔を積層した0.4mm厚の銅張積層板をソフトエッチング剤(菱江化学(株)製、CPE-900)で処理して、10質量%H2SO4で基板表面を洗浄した。
<Board surface cleaning>
As a substrate for evaluation of imageability, a 0.4 mm thick copper-clad laminate obtained by laminating 18 μm rolled copper foil is treated with a soft etching agent (CPE-900, manufactured by Hishie Kagaku Co., Ltd.), and 10 mass% H 2 SO The substrate surface was washed with 4 .
<ラミネート>
 感光性樹脂積層体のポリエチレンフィルム(保護層)を剥がしながら、60℃に予熱した銅張積層板に、ホットロールラミネーター(旭化成(株)製、AL-700)により、感光性樹脂積層体をロール温度105℃でラミネートした。エアー圧は0.35MPaとし、ラミネート速度は1.5m/minとした。
<Lamination>
While peeling off the polyethylene film (protective layer) of the photosensitive resin laminate, the photosensitive resin laminate is rolled with a hot roll laminator (AL-700 manufactured by Asahi Kasei Co., Ltd.) on a copper-clad laminate preheated to 60 ° C. It laminated at the temperature of 105 degreeC. The air pressure was 0.35 MPa, and the laminating speed was 1.5 m / min.
 <露光>
 直接描画露光機(オーク製作所製FDi-3、主波長405±5nm)により、ストーファー41段ステップタブレット又は所定のダイレクトイメージング(DI)露光用のマスクパターンを用いて、で露光した。露光は、前記ストーファー41段ステップタブレットをマスクとして露光、現像したときの最高残膜段数が14段となる露光量で行った。
<Exposure>
Exposure was carried out with a direct drawing exposure apparatus (FDi-3 manufactured by Oak Manufacturing Co., Ltd., main wavelength 405 ± 5 nm) using a stofer 41-step tablet or a mask pattern for predetermined direct imaging (DI) exposure. The exposure was performed with an exposure amount such that the maximum number of remaining film steps was 14 when exposed and developed using the Stoffer 41-step tablet as a mask.
<現像>
 ポリエチレンテレフタレートフィルム(支持フィルム)を剥離した後、アルカリ現像機(フジ機工製、ドライフィルム用現像機)を用いて、30℃の1質量%Na2CO3水溶液を所定時間に亘ってスプレーし、感光性樹脂組成物層の未露光部分を最小現像時間の2倍の時間で溶解除去した。この際、未露光部分の感光性樹脂組成物層が完全に溶解するのに要する最も少ない時間を最小現像時間とした。
<Development>
After peeling off the polyethylene terephthalate film (support film), a 1% by mass aqueous solution of Na 2 CO 3 at 30 ° C. is sprayed for a predetermined time using an alkali developing machine (developing machine for dry films made by Fuji Kiko) The unexposed part of the photosensitive resin composition layer was dissolved and removed in a time twice as much as the minimum development time. At this time, the minimum time required for complete dissolution of the photosensitive resin composition layer in the unexposed area was taken as the minimum development time.
<光学異常領域の合計面積の測定>
 落射型レーザー顕微鏡(Olympus製OLS-4100)の対物レンズの上部に偏光フィルター(OLS4000-QWP)を挿入した。次にレーザー顕微鏡のステージ上に多孔質吸着板(ユニバーサル技研製65F-HG)及び真空ポンプを用いて30mm×30mmに切断した支持フィルムサンプルを水平に吸引固定した。吸引固定した支持フィルムを、対物レンズ50倍のレーザー光量60(レーザー波長は405nm)にて観測した。この際、支持フィルムの厚み方向の中心2μmの領域を測定領域に定め、測定領域259μm×260μmで測定箇所数200点で計測を行った(したがって、測定領域は合計で0.259mm×0.26mm×200=13.5mm2となる)。
<Measurement of Total Area of Optical Anomaly Region>
A polarizing filter (OLS4000-QWP) was inserted above the objective lens of the incident-type laser microscope (OLS-4100 manufactured by Olympus). Next, a support film sample cut to 30 mm × 30 mm was suctioned and fixed horizontally on a stage of a laser microscope using a porous adsorption plate (65F-HG manufactured by Universal Giken) and a vacuum pump. The suction-fixed support film was observed with a 50 × laser light amount 60 (laser wavelength is 405 nm) of an objective lens. At this time, an area of 2 μm at the center in the thickness direction of the support film was defined as a measurement area, and measurement was performed at 200 measurement points at 259 μm × 260 μm (therefore, the measurement area is a total of 2.259 mm × 0.26 mm) X 200 = 13.5 mm 2 ).
 計測された画像内の最大光量のピクセルと最小光量のピクセルとの光量差を4096階調(最大光量の値が4095で、最小光量の値が0になる)に分けた。画像内のピクセルの光量分布をグラフ化したヒストグラム(横軸:光量の階調(最小値0、最大値4095)、縦軸:ピクセルの個数)を作成した。作成したヒストグラムの2つある裾野の値の大きい方の裾野の値から400階調プラスした階調を閾値として、計測された画像を二値化し、閾値よりも光量が大きいピクセルの面積を合計し、その合計面積を光学異常領域の合計面積とする。計測面積に対する光学異常領域部分の合算面積の比率を算出する。 The difference in light amount between the pixel of the maximum light amount and the pixel of the minimum light amount in the measured image was divided into 4096 gradations (the maximum light amount is 4095 and the minimum light amount is 0). A histogram (horizontal axis: gradation of light quantity (minimum value 0, maximum value 4095), vertical axis: number of pixels) graphing the light quantity distribution of the pixels in the image was created. The measured image is binarized using the gradation obtained by adding 400 gradations from the value of the larger one of the two base values in the created histogram as the threshold value, and the areas of the pixels whose light amounts are larger than the threshold are summed. , And the total area thereof is the total area of the optical anomaly region. The ratio of the total area of the optically abnormal area portion to the measurement area is calculated.
<光学異常領域と接する直径0.5μm以上の微粒子、直径1.0μm以上の微粒子、直径2.0μm以上の微粒子の数>
 光学異常領域部分の合計面積を測定した後、落射型レーザー顕微鏡(Olympus製OLS-4100)を光学顕微鏡モードに切り替えた。その後、測定領域259μm×260μmで目視によりレーザー顕微鏡モードで確認された光学異常領域のうち微粒子の位置に対応する光学異常領域と接する微粒子の数及びその直径を測定した。
同様の測定を測定箇所数200点で実施し(即ち、0.259mm×0.26mm×200=13.5mm2の面積で実施し)、微粒子の直径毎にその合計数を算出した。
<Number of fine particles having a diameter of 0.5 μm or more, fine particles having a diameter of 1.0 μm or more, and fine particles having a diameter of 2.0 μm or more in contact with the optically abnormal region>
After measuring the total area of the optically abnormal area portion, the incident type laser microscope (OLS-4100 manufactured by Olympus) was switched to the optical microscope mode. Thereafter, the number and the diameter of the fine particles in contact with the optically abnormal area corresponding to the position of the fine particles in the optically abnormal area which was visually confirmed in the laser microscope mode in the measurement area of 259 μm × 260 μm were measured.
The same measurement was carried out at 200 measurement points (that is, carried out with an area of 0.259 mm × 0.26 mm × 200 = 13.5 mm 2 ), and the total number was calculated for each diameter of the fine particles.
 <レジスト突起の評価>
 300mm角の評価用基板全面を、L(ライン)/S(スペース)=8μm/8μmとなるように露光した。このとき、露光時の焦点の位置を、ポリエチレンテレフタレートフィルム表面に合わせた。次に、ポリエチレンテレフタレートフィルム(支持フィルム)を剥離した後、最小現像時間の2倍の現像時間で現像した。そして、レジストパターンを光学顕微鏡によりレジスト表面に焦点を合わせて観察し2um以上のサイズの突起をカウントした。なお観察エリアは3mm角(9mm2)とした。
 結果を表1に示す。
<Evaluation of resist protrusions>
The entire surface of the 300 mm square evaluation substrate was exposed so that L (line) / S (space) = 8 μm / 8 μm. At this time, the position of the focal point at the time of exposure was aligned with the surface of the polyethylene terephthalate film. Next, the polyethylene terephthalate film (support film) was peeled off, and then development was carried out for a development time twice the minimum development time. Then, the resist pattern was observed by focusing on the surface of the resist with an optical microscope, and protrusions having a size of 2 um or more were counted. The observation area was 3 mm square (9 mm 2 ).
The results are shown in Table 1.
<線幅太りの評価>
 300mm角の評価用基板全面を、L(ライン)/S(スペース)=8μm/8μmとなるように露光した。このとき、露光時の焦点の位置を、ポリエチレンテレフタレートフィルムの感光層樹脂側の表面に合わせた。次に、ポリエチレンテレフタレートフィルム(支持フィルム)を剥離した後、最小現像時間の2倍の現像時間で現像した。ライン幅を測定し、最も幅が太い部分の線幅(焦点ずれ無し)を測定した。測定は30本のラインを各3mmの範囲について行い、各ラインで最も幅が太い部分の線幅を測定し、その平均値とした。次に、露光時の焦点の位置をポリエチレンテレフタレートフィルムの感光層樹脂側の表面から400μm基板内側にずらした以外は上記と同様の条件で測定を行い、30本のラインについて最も幅が太い部分の線幅を測定し、その平均値を得た。
<Evaluation of line width fatness>
The entire surface of the 300 mm square evaluation substrate was exposed so that L (line) / S (space) = 8 μm / 8 μm. At this time, the position of the focal point at the time of exposure was aligned with the surface of the polyethylene terephthalate film on the photosensitive layer resin side. Next, the polyethylene terephthalate film (support film) was peeled off, and then development was carried out for a development time twice the minimum development time. The line width was measured, and the line width (without defocus) of the thickest portion was measured. The measurement was performed on 30 lines for each 3 mm range, and the line width of the thickest portion in each line was measured and used as the average value. Next, measurement was carried out under the same conditions as above except that the position of the focal point at the time of exposure was shifted to the inner side of the 400 μm substrate from the surface of the photosensitive layer resin side of the polyethylene terephthalate film. The line width was measured and the average value was obtained.
<実施例4~6及び比較例2>
 実施例4~6及び比較例2の各々の支持フィルムとして、ポリエチレンテレフタレート(PET)を作製した。各支持フィルム中の微粒子の数は表2に記載の通りである。支持フィルム中の微粒子の数はフィルターの目の細かさ及び支持フィルムを構成する材料をフィルターに通す回数及び微粒子を添加した数で調整した。
 このとき、PETフィルムの二軸延伸後に再度フィルムを180~250℃の条件で熱圧着処理することで、微粒子周囲の光学異常領域(すなわち、空洞、又は、配向性若しくは結晶性が異なる領域等)を消失させた。また、支持フィルムの主領域と微粒子との屈折率差は、微粒子の屈折率を変えることで調整した。
 支持フィルムとして上記方法で作製したものを用いた他は実施例1と同様の手順で、感光性樹脂積層体の作製及びレジスト突起の測定を行った。
Examples 4 to 6 and Comparative Example 2
Polyethylene terephthalate (PET) was produced as a support film of each of Examples 4 to 6 and Comparative Example 2. The number of microparticles in each support film is as described in Table 2. The number of particulates in the support film was adjusted by the fineness of the filter and the number of times the material constituting the support film was passed through the filter and the number of particulates added.
At this time, the film is subjected to thermocompression bonding treatment again under the conditions of 180 to 250 ° C. after biaxial stretching of the PET film, so that an optically abnormal area around the fine particles (that is, a cavity or an area having different orientation or crystallinity) Disappeared. Moreover, the refractive index difference of the main area | region of a support film and microparticles | fine-particles was adjusted by changing the refractive index of microparticles | fine-particles.
Preparation of a photosensitive resin laminate and measurement of resist protrusions were performed in the same manner as in Example 1 except that the support film was manufactured by the above method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び2に示す結果から分かるように、光学異常領域の合計面積が低減されている実施例1~3においては、光学異常領域の合計面積が大きい比較例1と比べてレジスト突起が低減されており、微粒子以外の光学異常領域である異常屈折率領域と接する微粒子の数が低減されている実施例4~6においては、異常屈折率領域と接する微粒子が多い比較例2と比べてレジスト突起が低減されていた。 As can be seen from the results shown in Tables 1 and 2, in Examples 1 to 3 in which the total area of the optically abnormal area is reduced, the resist protrusion is reduced compared to Comparative Example 1 in which the total area of the optically abnormal area is large. In Examples 4 to 6 in which the number of fine particles in contact with the abnormal refractive index area which is an optical abnormal area other than the fine particles is reduced, the resist protrusion is compared with Comparative Example 2 in which the fine particles are in contact with the abnormal refractive index area. Was reduced.
 本発明の感光性樹脂積層体は、支持フィルムの異物に起因するレジストパターン欠点(突起)を回避し、良好なレジストパターン形状を与えることから、プリント配線板、フレキシブル基板、リードフレーム基板、COF(チップオンフィルム)用基板、半導体パッケージ用基板、液晶用透明電極、液晶用TFT用配線、PDP(プラズマディスプレイパネル)用電極等の導体パターンの製造に、好適に利用されることができる。 The photosensitive resin laminate of the present invention avoids resist pattern defects (protrusions) caused by foreign matter on the support film, and gives a good resist pattern shape. Therefore, a printed wiring board, a flexible substrate, a lead frame substrate, COF (COF It can be suitably used for manufacturing conductor patterns such as a substrate for chip on film, a substrate for semiconductor package, a transparent electrode for liquid crystal, a wiring for TFT for liquid crystal, and an electrode for PDP (plasma display panel).

Claims (31)

  1.  支持フィルムと、前記支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
     前記支持フィルムは微粒子を含み、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が300ppm以下である領域を含む、感光性樹脂積層体。
    A photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
    The support film contains fine particles, and the photosensitive resin laminate includes a region in which the total area ratio of the optically abnormal region is 300 ppm or less when the support film is observed at an area of 13.5 mm 2 with an epi-illumination laser microscope .
  2.  前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が200ppm以下である領域を含む、請求項1に記載の感光性樹脂積層体。 The photosensitivity according to claim 1, wherein the support film includes a region in which the total area ratio of the optically abnormal region is 200 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident-type laser microscope. Resin laminate.
  3.  前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が100ppm以下である領域を含む、請求項1に記載の感光性樹脂積層体。 The photosensitivity according to claim 1, wherein the support film includes a region in which the total area ratio of the optically abnormal region is 100 ppm or less when the support film is observed at an area of 13.5 mm 2 with an epi-illumination laser microscope. Resin laminate.
  4.  前記支持フィルムは、前記支持フィルムを落射型レーザー顕微鏡で13.5mm2の面積にて観測した際の光学異常領域の合計面積比率が50ppm以下である領域を含む、請求項1に記載の感光性樹脂積層体。 The photosensitivity according to claim 1, wherein the support film includes a region in which the total area ratio of the optically abnormal region is 50 ppm or less when the support film is observed at an area of 13.5 mm 2 with an incident-type laser microscope. Resin laminate.
  5.  前記支持フィルムは、質量基準で、微粒子を10ppm以上で含む、請求項1~4のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 4, wherein the support film contains fine particles of 10 ppm or more on a mass basis.
  6.  支持フィルムと、前記支持フィルム上に形成された感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
     前記支持フィルムは微粒子を含み、
     前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、数平均で1200個以下となる領域を有する感光性樹脂積層体。
    A photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
    The support film contains fine particles,
    In the support film, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1,200 in number average The photosensitive resin laminated body which has the area | region which becomes the following.
  7.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、数平均で1000個以下となる領域を有する、請求項6に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 1000 in number average The photosensitive resin laminated body of Claim 6 which has the area | region which becomes the following.
  8.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、900個以下となる領域を有する、請求項6に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the support film has 900 or less fine particles in contact with the area other than the fine particles in the optically abnormal area. The photosensitive resin laminated body of Claim 6 which has an area | region.
  9.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、500個以下となる領域を有する、請求項6に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the support film has 500 or less fine particles in contact with the area other than the fine particles in the optically abnormal area. The photosensitive resin laminated body of Claim 6 which has an area | region.
  10.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径0.5μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、200個以下となる領域を有する、請求項6に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 0.5 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 200 or less. The photosensitive resin laminated body of Claim 6 which has an area | region.
  11.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、500個以下となる領域を有する、請求項6~10のいずれか一項に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles contacting the area other than the fine particles in the optically abnormal area is 500 or less. The photosensitive resin laminate according to any one of claims 6 to 10, having a region.
  12.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、300個以下となる領域を有する、請求項11に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 300 or less. The photosensitive resin laminated body of Claim 11 which has an area | region.
  13.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、100個以下となる領域を有する、請求項11に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles contacting the area other than the fine particles in the optically abnormal area is 100 or less. The photosensitive resin laminated body of Claim 11 which has an area | region.
  14.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径1.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、50個以下となる領域を有する、請求項11に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 1.0 μm or more included in the area of 13.5 mm 2 of the support film, the support film has 50 or less fine particles in contact with the area other than the fine particles in the optically abnormal area. The photosensitive resin laminated body of Claim 11 which has an area | region.
  15.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、200個以下となる領域を有する、請求項6~14のいずれか一項に記載の感光性樹脂積層体。 In the support film, among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles contacting the area other than the fine particles in the optically abnormal area is 200 or less. The photosensitive resin laminate according to any one of claims 6 to 14, having a region.
  16.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、100個以下となる領域を有する、請求項15に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film, the number of fine particles in contact with the area other than the fine particles in the optically abnormal area is 100 or less. The photosensitive resin laminated body of Claim 15 which has an area | region.
  17.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、50個以下となる領域を有する、請求項15に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film, the support film has 50 or less fine particles in contact with the area other than the fine particles in the optically abnormal area. The photosensitive resin laminated body of Claim 15 which has an area | region.
  18.  前記支持フィルムは、前記支持フィルムの13.5mm2の面積に含まれる直径2.0μm以上の前記微粒子のうち、前記光学異常領域の微粒子以外の領域と接する微粒子の数が、10個以下となる領域を有する、請求項15に記載の感光性樹脂積層体。 Among the fine particles having a diameter of 2.0 μm or more included in the area of 13.5 mm 2 of the support film, the support film has 10 or less fine particles in contact with the area other than the fine particles in the optically abnormal area. The photosensitive resin laminated body of Claim 15 which has an area | region.
  19.  前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.2以下である、請求項1~18のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 18, wherein the refractive index difference between the refractive index of the fine particles and the refractive index of the main region of the support film is 0.2 or less.
  20.  前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.1以下である、請求項19に記載の感光性樹脂積層体。 The photosensitive resin laminated body of Claim 19 whose refractive index difference of the refractive index of the said microparticles | fine-particles and the refractive index of the main area | region of the said support film is 0.1 or less.
  21.  前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.05以下である、請求項19に記載の感光性樹脂積層体。 The photosensitive resin laminated body of Claim 19 whose refractive index difference of the refractive index of the said microparticles | fine-particles and the refractive index of the main area | region of the said support film is 0.05 or less.
  22.  前記微粒子の屈折率と前記支持フィルムの主領域の屈折率との屈折率差が0.02以下である、請求項19に記載の感光性樹脂積層体。 The photosensitive resin laminated body of Claim 19 whose refractive index difference of the refractive index of the said microparticles | fine-particles and the refractive index of the main area | region of the said support film is 0.02 or less.
  23.  前記光学異常領域は空洞を含む、請求項1~22のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 22, wherein the optically abnormal region includes a cavity.
  24.  前記光学異常領域は前記支持フィルムの主領域と配向性が異なる領域を含む、請求項1~23のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 23, wherein the optically abnormal area includes an area different in orientation from the main area of the support film.
  25.  前記光学異常領域は前記支持フィルムの主領域と結晶性が異なる領域を含む、請求項1~24のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 24, wherein the optically abnormal region includes a region different in crystallinity from the main region of the support film.
  26.  ライン幅/スペース幅が20/20(μm)以下の配線形成用である、請求項1~25のいずれか一項に記載の感光性樹脂積層体。 The photosensitive resin laminate according to any one of claims 1 to 25, which is for forming a wiring having a line width / space width of 20/20 (μm) or less.
  27.  ライン幅/スペース幅が10/10(μm)未満の配線形成用である、請求項26に記載の感光性樹脂積層体。 The photosensitive resin laminate according to claim 26, which is for forming a wiring having a line width / space width of less than 10/10 (μm).
  28.  請求項1~27のいずれか一項に記載の感光性樹脂積層体を用いる、プリント配線板におけるレジストパターンの製造方法。 A method for producing a resist pattern in a printed wiring board, using the photosensitive resin laminate according to any one of claims 1 to 27.
  29.  セミアディティブ法による、請求項28に記載の方法。 29. The method of claim 28, wherein the method is semi-additive.
  30.  前記レジストパターンのライン幅/スペース幅が10/10(μm)未満である、請求項28又は29に記載の方法。 The method according to claim 28 or 29, wherein the line width / space width of the resist pattern is less than 10/10 (μm).
  31.  支持フィルムと、前記支持フィルム上に形成された、感光性樹脂組成物層と、を備える感光性樹脂積層体であって、
     直接描画露光機を用いてライン幅/スペース幅が8/8(μm)のレジストパターンを基板上に形成した場合に、支持フィルムの感光性樹脂組成物層側の表面に焦点を合わせた際の線幅と、当該表面から厚み方向に400μm基板内側にずらした際の線幅の差が1.8μm以下である、感光性樹脂積層体。
    A photosensitive resin laminate comprising: a support film; and a photosensitive resin composition layer formed on the support film,
    When a resist pattern with a line width / space width of 8/8 (μm) is formed on a substrate using a direct writing exposure machine, the surface on the photosensitive resin composition layer side of the support film is focused The photosensitive resin laminated body whose difference of the line width and the line width at the time of shifting to the board | substrate inner side 400 micrometers in the thickness direction from the said surface is 1.8 micrometers or less.
PCT/JP2018/046833 2017-12-20 2018-12-19 Photosensitive resin laminate WO2019124452A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019560540A JP7068340B2 (en) 2017-12-20 2018-12-19 Photosensitive resin laminate
CN201880081747.0A CN111492309B (en) 2017-12-20 2018-12-19 Photosensitive resin laminate
KR1020207014783A KR102471794B1 (en) 2017-12-20 2018-12-19 photosensitive resin laminate
MYPI2020002762A MY192613A (en) 2017-12-20 2018-12-19 Photosensitive resin laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017243871 2017-12-20
JP2017-243871 2017-12-20
JP2018102603 2018-05-29
JP2018-102603 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019124452A1 true WO2019124452A1 (en) 2019-06-27

Family

ID=66994619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046833 WO2019124452A1 (en) 2017-12-20 2018-12-19 Photosensitive resin laminate

Country Status (6)

Country Link
JP (1) JP7068340B2 (en)
KR (1) KR102471794B1 (en)
CN (1) CN111492309B (en)
MY (1) MY192613A (en)
TW (1) TWI700183B (en)
WO (1) WO2019124452A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039320A1 (en) * 2019-08-29 2021-03-04 積水ポリマテック株式会社 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method
WO2021220981A1 (en) * 2020-05-01 2021-11-04 富士フイルム株式会社 Photosensitive transfer material, resin pattern production method, circuit wiring production method, touch panel production method, and polyethylene terephthalate film
KR102671948B1 (en) * 2019-08-06 2024-06-03 아사히 가세이 가부시키가이샤 Photosensitive resin composition, and photosensitive element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003435A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Pattern forming material, pattern forming apparatus, and pattern forming method
JP2015018029A (en) * 2013-07-09 2015-01-29 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for manufacturing printed wiring board

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841604B2 (en) * 1999-12-22 2006-11-01 株式会社荏原製作所 Electrophotographic photoreceptor
JP2002144504A (en) * 2000-09-04 2002-05-21 Toray Ind Inc Polyolefin film and photoresist cover film for photosensitive plate making
JP3711083B2 (en) * 2002-04-12 2005-10-26 株式会社東芝 Pattern formation method
JP4201746B2 (en) * 2003-09-30 2008-12-24 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus
JP2006023406A (en) * 2004-07-06 2006-01-26 Fuji Photo Film Co Ltd Photosensitive film for permanent pattern formation, method for producing the same and permanent pattern forming method
CN101002142B (en) * 2004-08-11 2010-12-15 日立化成工业株式会社 Photosensitive resin composition and photosensitive film made with the same
JP4322757B2 (en) * 2004-09-06 2009-09-02 富士フイルム株式会社 Pattern forming material and pattern forming method
JP4086310B2 (en) * 2005-01-25 2008-05-14 日東電工株式会社 Manufacturing method of optical film
JP2010502487A (en) * 2006-09-05 2010-01-28 フジフイルム ハント ケミカルズ ユー.エス.エイ. インコーポレイテッド Laser-marking substance comprising a composition for forming a laser-marking film and an organic absorption enhancing additive
JP2008129431A (en) * 2006-11-22 2008-06-05 Fujifilm Corp Photosensitive transfer material, color filter and display device
JP5030599B2 (en) * 2007-01-16 2012-09-19 富士フイルム株式会社 PHOTOSPACER FOR LIQUID CRYSTAL DISPLAY, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE
KR101102186B1 (en) 2007-01-31 2012-01-02 히다치 가세고교 가부시끼가이샤 Photosensitive element
JP2008239743A (en) * 2007-03-27 2008-10-09 Toray Ind Inc Polyester film for dry film resist carrier
JP5433367B2 (en) * 2008-11-19 2014-03-05 日本碍子株式会社 Lamb wave device
CN106918991A (en) * 2010-07-13 2017-07-04 日立化成工业株式会社 Photosensitive element, the forming method of corrosion-resisting pattern, the manufacture method of printed circuit board and printed circuit board
CN107367903A (en) * 2010-12-16 2017-11-21 日立化成株式会社 The manufacture method of photosensitive element, the forming method of corrosion-resisting pattern and printed wiring board
JP5763492B2 (en) * 2011-09-30 2015-08-12 富士フイルム株式会社 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same
JP6486672B2 (en) * 2013-12-20 2019-03-20 旭化成株式会社 Photosensitive element and manufacturing method thereof
JP6463104B2 (en) * 2013-12-26 2019-01-30 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2015178462A1 (en) * 2014-05-21 2015-11-26 旭化成イーマテリアルズ株式会社 Photosensitive resin composition and method for forming circuit pattern
JP6333629B2 (en) * 2014-05-28 2018-05-30 シャープ株式会社 Electrophotographic photoreceptor and image forming apparatus having the same
JP6446848B2 (en) * 2014-06-16 2019-01-09 富士ゼロックス株式会社 Conductive support for electrophotographic photosensitive member, electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2016162284A (en) * 2015-03-03 2016-09-05 株式会社きもと Scattering prevention sheet
JP6782417B2 (en) * 2015-07-29 2020-11-11 昭和電工マテリアルズ株式会社 Photosensitive resin composition, photosensitive element, resist pattern forming method and printed wiring board manufacturing method
CN106960897A (en) * 2017-04-18 2017-07-18 仇凯弘 A kind of preparation method of compound pattern substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003435A (en) * 2004-06-15 2006-01-05 Fuji Photo Film Co Ltd Pattern forming material, pattern forming apparatus, and pattern forming method
JP2015018029A (en) * 2013-07-09 2015-01-29 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern and method for manufacturing printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102671948B1 (en) * 2019-08-06 2024-06-03 아사히 가세이 가부시키가이샤 Photosensitive resin composition, and photosensitive element
WO2021039320A1 (en) * 2019-08-29 2021-03-04 積水ポリマテック株式会社 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method
WO2021220981A1 (en) * 2020-05-01 2021-11-04 富士フイルム株式会社 Photosensitive transfer material, resin pattern production method, circuit wiring production method, touch panel production method, and polyethylene terephthalate film

Also Published As

Publication number Publication date
TW201932307A (en) 2019-08-16
JPWO2019124452A1 (en) 2020-04-16
CN111492309B (en) 2023-12-12
CN111492309A (en) 2020-08-04
KR102471794B1 (en) 2022-11-28
MY192613A (en) 2022-08-29
JP7068340B2 (en) 2022-05-16
TWI700183B (en) 2020-08-01
KR20200062363A (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6470805B2 (en) Photosensitive resin composition and method for forming circuit pattern
JP6666944B2 (en) Photosensitive resin composition and photosensitive resin laminate
WO2015098870A1 (en) Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing printed circuit board
JP7340643B2 (en) Photosensitive resin composition and photosensitive resin laminate
JP7170723B2 (en) Photosensitive resin composition and method for forming resist pattern
JP5777461B2 (en) Photosensitive resin composition
JP7137370B2 (en) Photosensitive resin laminate roll
WO2019124452A1 (en) Photosensitive resin laminate
JP2021113984A (en) Photosensitive resin composition and photosensitive resin laminate
JP7214875B2 (en) Photosensitive resin composition and photosensitive element
JP2022058739A (en) Photosensitive resin laminate and method for manufacturing the same
JP6630088B2 (en) Photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560540

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890435

Country of ref document: EP

Kind code of ref document: A1