WO2021039320A1 - Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method - Google Patents

Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method Download PDF

Info

Publication number
WO2021039320A1
WO2021039320A1 PCT/JP2020/029924 JP2020029924W WO2021039320A1 WO 2021039320 A1 WO2021039320 A1 WO 2021039320A1 JP 2020029924 W JP2020029924 W JP 2020029924W WO 2021039320 A1 WO2021039320 A1 WO 2021039320A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable composition
acrylic
curing
styrene
chromaticity
Prior art date
Application number
PCT/JP2020/029924
Other languages
French (fr)
Japanese (ja)
Inventor
優 花倉
眸 愛澤
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Priority to CN202080044270.6A priority Critical patent/CN113993912A/en
Priority to KR1020217038886A priority patent/KR20220055451A/en
Priority to JP2021542688A priority patent/JPWO2021039320A1/ja
Publication of WO2021039320A1 publication Critical patent/WO2021039320A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention relates to a photocurable composition, a cured product thereof, and the like, and a method for producing the same.
  • a photocurable composition that is liquid before application and can be used as a gasket or the like after being photocured after application is used after being sufficiently cured after being applied to a desired site.
  • the uncured photocurable composition may come into contact with the contact body and become contaminated.
  • the product may be commercialized with insufficient curing, resulting in product defects due to a decrease in compression set.
  • the cured state of the photocurable composition does not necessarily correspond to the color change, and the color change indicates the end of curing. I could't say that. Further, if the dye concentration is high, it is difficult for light rays such as ultraviolet rays to reach the inside, and there is a concern that the curability is impaired.
  • the present invention has been made to solve such a problem. That is, there is provided a photocurable composition capable of obtaining a color change that can be distinguished from that before curing after completion of curing while coloring with a low concentration leuco dye.
  • the photocurable composition of the present invention and a cured product thereof that achieve the above object are as follows. That is, the present invention contains at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, and describes CIE1976 (L * , a *) described in JISZ8781-4.
  • a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are.
  • the chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing.
  • * Value and b * value are shown.
  • the present invention contains at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, the acrylic monomer, acrylic oligomer, and acrylic can be irradiated with light. At least one acrylic compound selected from the polymers can be cured, and the chromaticity can be changed before and after curing.
  • a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are.
  • the chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing.
  • * Value and b * value are shown.
  • the chromaticity change parameter represented by the above formula (1) is in the range of 0 to 2.0, the distance (color change) in the latter half of the reaction is at least half or more larger than that in the first half of the reaction, so that curing due to color change It is possible to prevent misunderstanding of the state.
  • the chromaticity difference and the chromaticity change parameter in the present invention are values measured and calculated by the method described in Examples.
  • the present invention can be a photocurable composition that does not contain an acid generator.
  • the photocurable composition containing no acid generator does not cause an early color change to the leuco dye, and it is easy to make the curing of the acrylic monomer, the acrylic oligomer, and the acrylic polymer correspond to the reaction by the leuco dye.
  • the acrylic compound can be a photocurable composition in which the acrylic compound is at least one of a monofunctional acrylic monomer, a bifunctional or higher acrylic oligomer, and a bifunctional or higher acrylic polymer.
  • a photocurable composition in which the acrylic compound is at least one of a monofunctional acrylic monomer, a bifunctional or higher acrylic oligomer, and a bifunctional or higher acrylic polymer, the cured product obtained by curing the photocurable composition is an electronic element. It can be used as a suitable sealing material, protective material, etc. because it adheres to the substrate and exhibits waterproofness and the like.
  • the acrylic compound can be a photocurable composition containing at least a monofunctional acrylic monomer and further containing a styrene-based elastomer.
  • a photocurable composition in which the acrylic compound contains at least a monofunctional acrylic monomer and further contains a styrene-based elastomer can reduce the transparency of the cured product and impart rubber elasticity while increasing its mechanical strength. it can.
  • the styrene-based elastomer is at least one of a high-molecular-weight styrene-based elastomer having a weight average molecular weight of 200,000 or more, an epoxy-modified styrene-based elastomer, and a styrene-based elastomer having an unsaturated bond in a soft segment. It can be a curable composition.
  • a high-molecular-weight styrene-based elastomer having a weight average molecular weight of 200,000 or more an epoxy-modified styrene-based elastomer
  • a styrene-based elastomer having an unsaturated bond in a soft segment can reduce the compression set when it is made into a cured product, and can be suitably used as a sealing material, a protective material, and the like.
  • the styrene-based elastomer can be a photocurable composition which is a styrene-isobutylene-styrene block polymer.
  • the photocurable composition in which the styrene-based elastomer is a styrene-isobutylene-styrene block polymer can reduce the transparency of the cured product and impart rubber elasticity while increasing its mechanical strength.
  • the present invention can be a photocurable composition further containing an inorganic powder.
  • a photocurable composition further containing an inorganic powder imparts thixotropy to the photocurable composition and has shape stability after coating, and thus serves as a protective material such as a sealing material and a sealing material, and a masking material. It can be preferably used.
  • the present invention can be a cured product of any of the above photocurable compositions in which ⁇ E changes by 20 or more when immersed in 1N hydrochloric acid at 70 ° C. for 120 hours.
  • the cured product obtained by curing any of the above photocurable compositions in which ⁇ E changes by 20 or more when immersed in 1N hydrochloric acid at 70 ° C. for 120 hours does not contain an acid generator.
  • Such a cured product is preferable because there is little concern that the residual acid will corrode the substrate, wiring, electronic elements, housing, and other adherends.
  • the present invention can be a cured product having a Martens hardness of 0.005 to 50 N / mm 2 as measured by a nanoindentation test.
  • a cured product having a Martens hardness of 0.005 to 50 N / mm 2 measured in a nanoindentation test has an excellent balance of flexibility, extensibility, and compressibility, and protects sealing materials, encapsulants, etc. It can be suitably used as a material and a masking material.
  • the present invention can be a cured product of any of the above photocurable compositions or the cured product, and can be a sealing material having a compression set of 50% or less. Since the cured product of any of the above photocurable compositions or the cured product has a compression set of 50% or less, it can be used as a sealing material such as a gasket having excellent sealing properties.
  • the present invention can be a cured product of any of the above photocurable compositions or a cured product of any of the above, and can be used as a protective material for covering an electronic element or wiring on a substrate.
  • the cured product of any of the photocurable compositions or the cured product of any of the above, and the protective material covering the electronic element or wiring on the substrate is excellent with predetermined flexibility and flexibility. It is a protective material.
  • the present invention includes a case having an opening, a lid that closes the opening, and the sealing material provided on at least one of the case or the lid, and by fitting the case and the lid.
  • the sealing material can be compressed and deformed to form a waterproof structure that tightly seals the opening.
  • the present invention includes a case having an opening, a lid that closes the opening, and the sealing material provided on at least one of the case or the lid, and by fitting the case and the lid. Since the sealing material is compressed and deformed to form a waterproof structure that tightly seals the opening, the waterproof structure has excellent sealing properties.
  • the present invention is selected from a sealing material, a protective material, a masking material, an adhesive, and a vibration-proof material, which comprises at least a step of applying any of the above-mentioned photocurable compositions and a step of irradiating with activation energy rays. It can be a method for producing at least one cured product.
  • the present invention is selected from a sealing material, a protective material, a masking material, an adhesive, and an anti-vibration material, which comprises at least a step of applying any of the above photocurable compositions and a step of irradiating with activation energy rays. Since the method for producing at least one cured product is used, the production of these cured products is easy.
  • the photocurable composition of the present invention has a color change that can be distinguished from that before curing after the completion of photocuring. Further, the cured product of the photocurable composition of the present invention can be used for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material.
  • the photocurable composition of the present invention comprises at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, and comprises JISZ8781-4.
  • the chromaticity difference ⁇ E from * 100 , b * 100 ) is 10 or more, and the chromaticity change parameter represented by the following equation (1) is in the range of 0 to 2.0.
  • a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are.
  • the chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing.
  • * Value and b * value are shown.
  • the "before curing" of the photocurable composition means a state before the photocuring reaction such as irradiation with ultraviolet rays is performed in a state where the components forming the photocurable cured product are mixed, and the "after curing” means.
  • "after curing” is defined as a state of being cured by irradiating light for curing under the condition of an integrated light amount of 15,000 mJ / cm 2.
  • the change in peak height when the infrared absorption spectrum is measured by the FT-IR method described later is shown in a substantially saturated state.
  • the photocurable composition is cured with an uncured color value (L * 0 , a * 0 , b * 0 ) defined in the CIE1976 (L * , a * , b *) color space described in JISZ8781-4. Since the chromaticity difference ⁇ E from the later color values (L * 100 , a * 100 , b * 100 ) is 10 or more, the color change between the uncured state and the cured state is clear, and the difference can be seen. Can be recognized. When ⁇ E is 20 or more, the color change is larger, and when ⁇ E is 30 or more, the color change in the latter half of the reaction is large even when the chromaticity change parameter is large, which is particularly preferable. On the other hand, if ⁇ E is less than 10, the color change before and after curing is small, and it may be difficult to determine whether or not curing is completed.
  • the molecules of the above formula (1) are based on the coordinates of the uncured chromaticity (a * 0 , b * 0 ) on the a * , b * plane, and the coordinates of the chromaticity in the cured state with a curing rate of 50% (a *).
  • the distance to 50 , b * 50 ) is shown, and the denominator of equation (1) is the coordinates of the chromaticity of the cured state with a curing rate of 50% on the a * , b * plane (a * 50 , b * 50 ). It shows the distance from to the coordinates (a * 100 , b * 100 ) of the chromaticity in the cured state after curing (curing rate 100%).
  • the formula (1) is expressed when the curing rate of the photocurable composition is 50% to 100% with respect to the distance (color change) when the curing rate is 0% to 50% (first half of the reaction).
  • the ratio of the distance (color change) of (the latter half of the reaction) is shown. This is used as a chromaticity change parameter. Since the value of this equation (1), that is, the chromaticity change parameter is in the range of 0 to 2.0, the color change in the latter half of the reaction is the smallest when the value is 2.0, and the closer to 0, the latter half of the reaction.
  • the color change is large (or the color change in the first half of the reaction is small), and the distance (color change) in the latter half of the reaction is at least half or more larger than that in the first half of the reaction.
  • the chromaticity change parameter is preferably 0 to 1.0, and particularly preferably 0 to 0.5.
  • the photocurable composition of the present invention comprises at least an acrylic compound of at least one of an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, but the acrylic monomer and acrylic.
  • acrylic monomer is synonymous with (meth) acrylic monomer and is used to include not only acrylic acid ester monomer but also methacrylic acid ester monomer.
  • acrylic oligomer is synonymous with (meth) acrylic oligomer and includes methacrylic acid ester oligomer in addition to acrylic acid ester oligomer
  • acrylic polymer is synonymous with (meth) acrylic polymer and is acrylic. It is used in the sense that it includes a methacrylate ester polymer in addition to the acid ester polymer.
  • all of the acrylic monomer, the acrylic oligomer, and the acrylic polymer are compounds having a radically polymerizable group, and those after the radical polymerization reaction are distinguished by notation as "cured product".
  • This photocurable composition can be made into a cured product by photocuring an acrylic monomer, an acrylic oligomer and an acrylic polymer.
  • the monofunctional acrylic monomer is a component that is cured by a photoradical polymerization initiator, and is a low-viscosity liquid before curing. If a styrene-based thermoplastic elastomer is included in the photocurable composition, the monofunctional acrylic monomer dissolves the styrene-based thermoplastic elastomer. The cured product of the monofunctional acrylic monomer adheres to an electronic element or a substrate and exhibits waterproofness and the like.
  • the monofunctional acrylic monomer contains a monofunctional high-polarity monomer such as a monofunctional (meth) acrylamide-based monomer in addition to the monofunctional (meth) acrylic acid ester monomer. More specifically, aliphatic (meth) acrylic acid ester monomer, alicyclic (meth) acrylic acid ester monomer, ether-based (meth) acrylic acid ester monomer, cyclic ether-based (meth) acrylic acid ester acrylic monomer, fragrance.
  • a monofunctional high-polarity monomer such as a monofunctional (meth) acrylamide-based monomer in addition to the monofunctional (meth) acrylic acid ester monomer. More specifically, aliphatic (meth) acrylic acid ester monomer, alicyclic (meth) acrylic acid ester monomer, ether-based (meth) acrylic acid ester monomer, cyclic ether-based (meth) acrylic acid ester acrylic monomer, fragrance.
  • the monofunctional aliphatic (meth) acrylic acid ester monomer include aliphatic carbides such as butyl acrylate, lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and n-octyl acrylate.
  • aliphatic carbides such as butyl acrylate, lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and n-octyl acrylate.
  • Examples thereof include hydrogen-based (meth) acrylic acid ester monomers.
  • Lauryl acrylate is preferable when used in combination with a styrene-based elastomer because it is extremely excellent in solubility of the styrene-based elastomer and also excellent
  • the styrene-based thermoplastic elastomer By blending a monofunctional aliphatic (meth) acrylic acid ester monomer, the styrene-based thermoplastic elastomer is dissolved when blended, and the flexibility of the cured product obtained after curing of the photocurable composition is increased. It can be increased, the Martens hardness and Young's modulus can be lowered, and the elongation at the time of cutting can be greatly improved.
  • monofunctional alicyclic (meth) acrylic acid ester monomer examples include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyloxyethyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4 -Tert-Butylcyclohexylacrylate and the like can be mentioned.
  • a monofunctional alicyclic (meth) acrylic acid ester monomer By blending a monofunctional alicyclic (meth) acrylic acid ester monomer, when a styrene-based thermoplastic elastomer is contained, it can be dissolved.
  • the monofunctional alicyclic (meth) acrylic acid ester monomer enhances the adhesive strength of the cured product (for example, a sealing material) after curing of the photocurable composition, and when the cured product is peeled off from the adherend. It is possible to reduce the adhesive residue. It also has the effect of making the cured product tough and increasing Young's modulus. In addition, increasing the proportion of this component can enhance moisture resistance and transparency.
  • the acrylic acid ester monomer For the monofunctional aliphatic (meth) acrylic acid ester monomer and the alicyclic (meth) acrylic acid ester monomer, it is preferable to use the acrylic acid ester monomer, respectively. This is because many acrylic acid ester monomers are superior in photocurability as compared with methacrylic acid ester monomers, and in addition to being able to be cured with a relatively low integrated amount of light, the cured product tends to be flexible.
  • a monofunctional aliphatic (meth) acrylic acid ester monomer and a monofunctional alicyclic (meth) acrylic acid ester monomer are used, they can be used as an adhesive because they have adhesive strength derived from these components. .. It is also preferable as a sealing material because it adheres to the adherend and can prevent foreign matter and moisture from entering.
  • the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer in combination.
  • the aliphatic (meth) acrylic acid ester monomer can increase the flexibility of the cured product and greatly improve the elongation at the time of cutting, while the alicyclic (meth) acrylic acid ester monomer makes the cured product tough. It has the effect of increasing the tensile strength. Therefore, by using both of them in combination, it is possible to achieve both appropriate flexibility and hardness.
  • ether-based (meth) acrylic acid ester monomer examples include 2-butoxyethyl acrylate, ethoxydiethylene glycol acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, and nonylphenolethylene oxide-modified acrylate.
  • cyclic ether-based acrylic acid ester monomer examples include tetrahydrofurfuryl acrylate, (2-methyl-2-ethyl-1,3-dioxolane-4-yl) methyl acrylate, and (3-ethyl-3-oxetanyl) methyl acrylate. Can be mentioned.
  • aromatic acrylic acid ester monomer examples include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, nonylphenol ethylene oxide-modified acrylate, and benzyl acrylate.
  • hydroxyl group-containing acrylic acid ester monomer examples include 1,4-cyclohexanedimethanol monoacrylate, 2-hydroxybutyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxyethyl acrylate.
  • carboxyl group-containing acrylic acid ester monomer examples include ⁇ -carboxy-polycaprolactone monoacrylate, monohydroxyethyl phthalate acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl hexahydrophthalic acid and the like. it can.
  • acrylamide-based monomer examples include acrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, hydroxyethylacrylamide, acroylmorpholin and the like.
  • tertiary amino group-containing (meth) acrylic acid ester monomer examples include 2- (dimethylamino) ethyl methacrylate (DMAEMA) and the like.
  • imide-based (meth) acrylic acid ester monomer examples include N-acryloyloxyethyl hexahydrophthalimide and N-acryloyloxyethyl tetrahydrophthalimide.
  • glycidyl group-containing (meth) acrylic acid ester monomer examples include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether and the like.
  • Examples of the phosphoric acid group-containing (meth) acrylic acid ester monomer include 2-metacloyloxyethyl acid phosphate and the like.
  • an aliphatic acrylic acid ester monomer and an alicyclic acrylic acid ester can be obtained from the viewpoint that a photocurable composition having almost no adverse effect on color change and having excellent distinguishability of color change due to curing can be obtained.
  • Monomers, aromatic acrylic acid ester monomers, and acrylamide-based monomers are preferable.
  • a monofunctional highly polar monomer and among the monofunctional highly polar monomers, an acrylamide-based monomer and a tertiary amino group are contained.
  • Nitrogen-containing monomers such as (meth) acrylic acid ester monomer and imide-based (meth) acrylic acid ester monomer are preferable.
  • an imide-based (meth) acrylic acid ester monomer is preferable from the viewpoint of enhancing the adhesion to the polyimide film.
  • a phosphoric acid group-containing (meth) acrylic acid ester monomer, a hydroxyl group-containing acrylic acid ester monomer, and a carboxyl group-containing acrylic acid ester monomer are preferable.
  • the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer are contained, the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer The mass ratio is preferably 4: 1 to 1: 4.
  • Polyfunctional acrylic monomer is also a component that is cured by the photoradical polymerization initiator.
  • the cured product of the photocurable composition is used as a gasket, a sealing material, a sealing material, etc., it can be blended in a small amount for the purpose of adjusting the hardness and reducing the surface tack, but only this is an essential component. It is difficult to do so, and it can be added as an auxiliary component of the monofunctional acrylic monomer.
  • Examples of such a polyfunctional acrylic monomer include a polyfunctional aliphatic (meth) acrylic acid ester monomer, a polyfunctional highly polar monomer, and a cyclized polymerizable (meth) acrylic monomer.
  • polyfunctional aliphatic (meth) acrylic acid ester monomer examples include a bifunctional aliphatic (meth) acrylic acid ester monomer, and specific examples of the bifunctional aliphatic (meth) acrylic acid ester monomer include ethylene glycol di. (Meta) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecanedimethanol di.
  • a styrene-based thermoplastic elastomer is added, since the compatibility with the soft segment is relatively high, a bifunctional aliphatic hydrocarbon-based di (meth) acrylic acid ester monomer having reactive groups at both ends is used. It is preferable to use it.
  • the polyfunctional high-polarity monomer includes a (meth) acrylic acid ester monomer having a polar group and bismaleimide.
  • Specific examples of the (meth) acrylic acid ester monomer having a polar group include di / tri (meth) acrylate ethoxylated isocyanurate, ⁇ -caprolactone-modified tris- (2-acryloxyethyl) isocyanurate, and 2-methacryoxy. Examples thereof include ethyl acid phosphate, 2-hydroxy-3-acryloyloxypropyl methacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, and bisphenol A diglycidyl ether acrylic acid adduct. From the viewpoint of improving adhesion, a tris (2-hydroxyethyl) isocyanurate-based (meth) acrylic acid ester monomer is preferable.
  • bismaleimide examples include 4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 2,2-bis [4- (4-maleimide phenoxy) phenyl] propane, and bis.
  • examples thereof include (3-ethyl-5-methyl-4-maleimidephenyl) methane, 1,6-bis (maleimide) hexane, and 1,6'-bismaleimide- (2,2,4-trimethyl) hexane.
  • 1,6-bis (maleimide) hexane and 1,6'-bismaleimide- (2,2,4-trimethyl) hexane are difficult to inhibit the compatibility and photocurability of the photocurable composition.
  • Such as aliphatic bismaleimide is preferable.
  • examples of the cyclized polymerizable (meth) acrylic monomer include ⁇ -allyloxymethyl acrylate (AOMA) and ⁇ -hydroxymethyl acrylate dimer (RHMA-D). Since these have a low viscosity, they can be used for adjusting the viscosity of a photocurable composition, and since the three-dimensional crosslink density is not excessively increased by curing, they have hardness and heat resistance while maintaining appropriate flexibility. , Can increase toughness.
  • ⁇ -allyloxymethyl acrylate is preferable from the viewpoint of improving coatability, heat resistance, and adhesiveness of glass and the like.
  • a cured product of a photocurable composition When a cured product of a photocurable composition is used as a gasket, a sealing material, a sealing material, etc. and a bifunctional or higher acrylic monomer is blended, 5% by mass or less is contained in the photocurable composition or the cured product thereof. It is preferably contained so as to be, and more preferably 1% by mass or less. This is because if a large amount is added, there is a concern that the hardness will increase and the adhesiveness to the adherend will decrease.
  • the acrylic oligomer is a compound having a (meth) acrylic group mainly having a weight average molecular weight in the range of 1,000 to 50,000.
  • the acrylic oligomer includes an oligomer obtained by polymerizing the acrylic monomer to a predetermined molecular weight, and an oligomer having a (meth) acrylic group at the end or side chain of a main chain other than acrylic.
  • polybutadiene-based acrylic oligomer acrylamide-based oligomer, polyisoprene-based acrylic oligomer, polyurethane-based acrylic oligomer, polyester-based acrylic oligomer, polyether-based acrylic oligomer, epoxy ester-based acrylic oligomer, bisphenol-based acrylic oligomer, novolak-type acrylic oligomer, etc.
  • acrylamide-based oligomer polyisoprene-based acrylic oligomer
  • polyurethane-based acrylic oligomer polyester-based acrylic oligomer
  • polyether-based acrylic oligomer polyether-based acrylic oligomer
  • epoxy ester-based acrylic oligomer bisphenol-based acrylic oligomer
  • novolak-type acrylic oligomer etc.
  • Acrylic polymers are compounds having (meth) acrylic groups with a weight average molecular weight of 50,000 to 5 million.
  • Acrylic polymers include polymers obtained by polymerizing the acrylic monomer or acrylic oligomer to a predetermined molecular weight, and polymers in which a (meth) acrylic group is added to a compound other than the acrylic compound.
  • the former includes a homopolymer obtained by polymerizing butyl acrylate.
  • Examples of the latter include compounds having a (meth) acrylic group added to a compound having a polybutadiene, acrylamide, polyisoprene, polyurethane, polyester, polyether, epoxy skeleton and the like, and specifically, a polybutadiene-based acrylic polymer and an acrylamide-based acrylic.
  • Examples thereof include polymers, polyisoprene-based acrylic polymers, polyurethane-based acrylic polymers, polyester-based acrylic polymers, polyether-based acrylic polymers, epoxy ester-based acrylic polymers, bisphenol-based acrylic polymers, and novolak-type acrylic polymers.
  • the total amount of the acrylic monomer, the acrylic oligomer, and the acrylic polymer is preferably 50% by mass to 99% by mass with respect to the mass of the photocurable composition.
  • the blending amount of the monofunctional acrylic monomer is preferably 10% by mass to 94% by mass with respect to the total mass of the acrylic monomer, the acrylic oligomer, the acrylic polymer, and the thermoplastic elastomer described later.
  • Styrene-based thermoplastic elastomer Styrene-based thermoplastic elastomers (also referred to as styrene-based elastomers) are not essential components. However, the styrene-based elastomer can be dissolved in an acrylic monomer or an acrylic oligomer in the photocurable composition, and the transparency can be lowered due to the hard segment thereof. Therefore, the color change can be easily recognized as compared with the case where the photocurable composition is transparent. Further, the styrene-based elastomer can increase the mechanical strength of the cured product after the acrylic monomer or the acrylic oligomer is cured and can impart rubber elasticity (flexibility). Then, the compression set can be reduced, and in addition, the moisture permeability can be reduced.
  • styrene-based elastomer examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), and the like.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SEPS Styrene-ethylene-propylene-styrene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • SEEPS styrene-ethylene-ethylene-propylene-styrene block copolymer
  • epoxy-modified styrene-based Examples thereof include these modified products such as styrene.
  • soft products such as styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-butadiene / isoprene copolymer-styrene block copolymer.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SIS styrene-butadiene / isoprene copolymer-styrene block copolymer
  • the sealing property can be maintained for a long period of time.
  • the tack on the surface of the cured product can be reduced, and the compression set can be made less likely to deteriorate when the inorganic powder is added.
  • the styrene-based elastomer having an unsaturated bond in the epoxy-modified styrene-based elastomer or the soft segment is used among the above-mentioned styrene-based elastomers.
  • the styrene-based elastomer having an unsaturated bond in the epoxy-modified styrene-based elastomer or the soft segment is used.
  • the compression set of the cured product obtained after curing can be reduced, and the sealing property during long-term use is improved.
  • the tack on the surface of the cured product can be reduced, and the compression set deteriorates even if an inorganic powder is added. It can be difficult to do.
  • the styrene-based elastomer preferably contains a high molecular weight styrene-based elastomer.
  • the high molecular weight styrene-based elastomer means an elastomer having a weight average molecular weight of 200,000 or more.
  • the weight average molecular weight of this high molecular weight styrene elastomer is preferably 250,000 or more, and more preferably 400,000 or more. There is no particular upper limit, but it can be, for example, 1 million or less.
  • the weight average molecular weight can be measured by using the GPC method (Gel Permeation Chromatography) and based on the calibration curve (calibration curve) measured by standard polystyrene.
  • the compression set can be reduced as compared with the case of using the low molecular weight styrene elastomer having a weight average molecular weight of less than 200,000, and the cured product can be sealed with a gasket, a sealing material or a sealant.
  • the sealing property can be maintained for a long period of time.
  • the bleed-out of the plasticizer can be suppressed by containing the high molecular weight styrene-based elastomer, a cured product having high flexibility can be obtained by adding a large amount of the plasticizer.
  • the amount added is preferably 1 to 60% by mass, more preferably 2 to 45% by mass in the photocurable composition. If the content of the styrene-based elastomer is less than 1% by mass, the mechanical strength may be lowered when the cured product is used as a gasket, a sealing material, a sealing material, or the like. On the other hand, if it exceeds 60% by mass, the viscosity of the photocurable composition tends to increase. If it is 35% by mass or less, the fluidity is suitable and it is easy to apply.
  • the amount added is preferably 1 to 7% by mass, more preferably 2 to 5% by mass in the photocurable composition. If the content of the high molecular weight styrene elastomer is less than 1% by mass, the mechanical strength may be lowered. On the other hand, if it exceeds 10% by mass, the viscosity of the photocurable composition tends to increase.
  • a high molecular weight styrene elastomer having a predetermined branched chain typically a branched chain extending radially from the core
  • a star polymer typically a branched chain extending radially from the core
  • the high molecular weight styrene elastomer having such a predetermined branched chain can suppress the entanglement of the main chains as compared with the linear high molecular weight styrene elastomer, and even if it is blended in a relatively high concentration. It is possible to suppress an increase in the viscosity of the photocurable composition.
  • this high molecular weight styrene-based elastomer can be blended in the photocurable composition at a concentration of about 5 to 20% by mass.
  • the photoradical generator is one that generates radicals and cures an acrylic monomer, an acrylic oligomer, and an acrylic polymer by a photoradical polymerization reaction.
  • the photoradical generator includes a photoradical polymerization initiator.
  • photoradical polymerization initiator examples include benzophenone-based, thioxanthone-based, acetophenone-based, acylphosphine-based, oxime ester-based, alkylphenone-based, and intramolecular hydrogen abstraction-type photopolymerization initiators.
  • alkylphenone system 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl-phenylketone, 2-hydroxy-2-methyl-methylpropanol, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-methylpropanone, 2-hydroxy-1-(4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one, 2-methyl- 1- [4- (Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- (dimethylamino) -4'-morpholinobutylphenone, 2-dimethylamino-2- (4-) Examples thereof include methyl-benzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1-one.
  • acylphosphine type examples include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and the like.
  • intramolecular hydrogen abstraction type examples include a mixture of methyl benzoylate, oxyphenylacetic acid-2-oxo-2-phenylacetoxyethoxyethyl ester and oxyphenylacetic acid-2-hydroxyethoxyethyl ester.
  • the amount of the photoradical polymerization initiator added is preferably 0.1 to 10 parts by mass, preferably 1 to 8 parts by mass, based on 100 parts by mass of the total amount of all acrylic monomers and acrylic oligomers including monofunctional and bifunctional or higher.
  • the part is more preferable. This is because if it is less than 0.1 part by mass, the polymerization may be insufficient and the curing may not be completed, and even if it is added in excess of 10 parts by mass, the effect of increasing the degree of polymerization does not increase so much.
  • Leuco dye is a compound that generally develops color upon contact with an acid, and in the present invention, it has a function of developing color after curing of the photocurable composition to confirm the completion of curing of the photocurable composition.
  • Specific examples of leuco dyes include indrill phthalides, diphenylmethane phthalides, monovinyl phthalides, divinyl phthalides, diphenylmethane azaphthalides, phthalides including phenyl indolyl azaphthalides, fluorans, and the like. Types such as thiazines, stylinoquinolins, lactones, lactams, and triphenylmethanes can be mentioned.
  • Phthalides include 3,3 bis [4- (dimethylamino) phenyl] phthalide, 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide, 3- (4-diethylaminophenyl) -3. -(1-Ethyl-2-methylindole-3-yl) phthalide, 3- (4-diethylamino-2-ethoxyphenyl) -4-azaphthalide, 3,3-bis (1-butyl-2-methyl-1H-) Indole-3-yl) phthalide, etc. can be mentioned.
  • Fluolans include 2'-methyl-6'-(Np-tolyl-N ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one, 1,3.
  • thiazines examples include benzoyl leucomethylene blue.
  • lactams examples include rhodamine-B-anilinolactam, rhodamine- (p-nitroanilino) lactam, rhodamine- (o-chloroanilino) lactam, and rhodamine- (o-nitroanilino) lactam.
  • triphenylmethanes examples include leuco crystal violet (LCV).
  • lactones examples include crystal violet lactone (CVL), which is a lactone derivative of crystal violet, and a diazarhodamine lactone derivative.
  • CVL crystal violet lactone
  • various lactones, phthalides, and fluorans having a lactone ring structure are preferable from the viewpoint that the color does not easily change after curing and the presence or absence of curing is excellent in distinguishability even after a lapse of a predetermined time.
  • the amount of the leuco dye added can be 0.001 to 2 parts by mass with respect to 100 parts by mass of the acrylic monomer, the acrylic oligomer, and the acrylic polymer, and is preferably 0.005 to 1 part by mass. If it is 0.001 to 0.1 parts by mass, it is possible to enhance the distinctiveness of the presence or absence of curing when curing with a thickness of 0.5 mm or more. Further, when the content is 0.1 to 2 parts by mass, the mechanical properties of the cured product of the photocurable composition can be enhanced. It is considered that the effect of enhancing the mechanical properties is observed in the region where the amount of the leuco dye added is slightly high, because the leuco dye promotes the radical reaction.
  • Plasticizer It is preferable to add a plasticizer to the photocurable composition if necessary. High flexibility can be imparted to the cured product by adding a plasticizer, which is suitable when used as a gasket or a sealing material. When a styrene-based elastomer is added, the plasticizer is preferably one that is compatible with the soft segment thereof. Specific examples of the plasticizer include paraffin-based oil, olefin-based oil, naphthen-based oil, and ester-based plasticizer, and specific examples of the ester-based plasticizer include phthalic acid ester, adipic acid ester, and trimellitic acid ester.
  • Polyester phosphoric acid ester, citric acid ester, epoxidized vegetable oil, sebacic acid ester, azelacinic acid ester, maleic acid ester, benzoic acid ester and the like.
  • paraffin-based oil is preferable among these, and if paraffin-based oil is used, the effect of improving the extensibility by physical cross-linking of the hard segment of the styrene-based elastomer is small, and the cured product is cured. Contributes to the improvement of flexibility and compression set.
  • the amount of the plasticizer is preferably 30 parts by mass or less with respect to 100 parts by mass of the acrylic monomer and the acrylic oligomer. If it exceeds 30 parts by mass, the risk of the plasticizer bleeding out from the cured product increases.
  • Thixotropy-imparting agent It is preferable to add a thixotropic agent to the photocurable composition. By increasing the thixotropic property, the shape retention of the applied photocurable composition is improved. Therefore, it is possible to suppress dripping during application of the photocurable composition and improve the shape retention of the applied photocurable composition.
  • the photocurable composition when the photocurable composition is formed into a three-dimensional object using a dispenser, it can be cured in the form in which the photocurable composition is applied, so that the cured product is used as a gasket material or a sealing material. Suitable for cases.
  • the thixotropy-imparting agent examples include an inorganic thixotropy-imparting agent consisting of inorganic powders such as silica, aluminum oxide, and titanium oxide; Agents and the like can be mentioned, but inorganic powder is preferable, and silica is preferable among them.
  • inorganic powder is preferable, and silica is preferable among them.
  • the reason is that it is easy to control the hydrogen ion index (pH) of the photocurable composition by performing a predetermined surface treatment on the inorganic powder, and it is easy to obtain such a surface-treated silica among the inorganic powders. Because.
  • the amount added is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the acrylic monomer, the acrylic oligomer, and the acrylic polymer (including the plasticizer when the plasticizer is contained). If it is less than 2 parts by mass, the effect of addition is difficult to obtain, and if it exceeds 10 parts by mass, the viscosity of the photocurable composition may increase too much, or the hardness of the cured product may become too hard.
  • the surface-treated inorganic powder it is preferable to use an inorganic powder having a hydrogen ion index of 3.0 to 11.0.
  • the leuco dye undergoes a predetermined color change due to curing, so that it is excellent in distinguishability of the presence or absence of curing.
  • the hydrogen ion index is more preferably 3.6 to 5.5. This is because the distinguishability of the presence or absence of curing is enhanced.
  • the hydrogen ion index is a hydrogen ion index measured for a dispersion liquid in which an inorganic powder having a concentration of 4% by mass is dispersed in pure water.
  • a white inorganic filler can also be added to the photocurable composition in order to make the color change clearer. By using a white inorganic filler, small color changes can be made clearer and visually distinguishable. Further, when the photocurable composition is applied to a coating target having a low lightness, the discriminability of the presence or absence of curing is enhanced.
  • the colorant include inorganic compounds such as aluminum oxide, titanium oxide, magnesium oxide, calcium carbonate, talc, bennite, and montmorolinite.
  • aluminum oxide is particularly preferable because it not only enhances the distinctiveness of the presence or absence of curing, but also has the effect of enhancing the coatability by imparting appropriate thixotropy.
  • the hydrogen ion index of the colorant is preferably 3.0 to 11.0, and more preferably 3.6 to 5.5. This is because within this range, the effect of imparting thixotropy can be obtained in the same manner as when the thixotropic agent is added, and the synergistic effect of imparting thixotropy can be expected.
  • additives can be appropriately blended in the photocurable composition as long as the gist of the present invention is not deviated.
  • plasticizers and thixophilicity-imparting agents for example, silane coupling agents, polymerization inhibitors, defoamers, light stabilizers, antioxidants, antistatic agents, thermal conductive fillers, and other functional fillers. And so on.
  • the viscosity of the photocurable composition is preferably 10 to 1000 Pa ⁇ s at 25 ° C., more preferably 20 to 300 Pa ⁇ s. If it is less than 10 Pa ⁇ s, dripping is likely to occur when applying to an electronic element or the like with a dispenser. On the other hand, if it exceeds 1000 Pa ⁇ s, it becomes difficult to apply with a dispenser. Further, when it is set to 20 Pa ⁇ s or more, the shape retention from application to curing is enhanced, and when it is set to 200 Pa ⁇ s or less, fine dispensing using a finer needle becomes possible.
  • the viscosity can be a value measured using a B-type rotational viscometer at a rotational speed of 10 rpm and a measurement temperature of 25 ° C.
  • the thixotropy of the photocurable composition is preferably 2 or more at 25 ° C., and more preferably 4 or more.
  • the thixotropy is preferably 2 or more at 25 ° C., and more preferably 4 or more.
  • the thixotropy is a value calculated as a ratio (viscosity (1 rpm) / viscosity (10 rpm)) obtained by measuring viscosity at rotational speeds of 1 rpm and 10 rpm at a measurement temperature of 25 ° C. using a B-type rotational viscometer.
  • the upper limit of the thixotropy ratio is not limited, but is preferably about 20 or less.
  • the photocurable composition can be cured by a photocuring reaction and used for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material.
  • a photocuring reaction for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material.
  • the seal can be used. It can be used as a material.
  • ultraviolet rays As active energy rays, energy rays that activate (meth) acryloyl groups such as visible light or electron rays, and energy rays that generate radicals in a photoradical polymerization initiator can be used.
  • the light source that irradiates ultraviolet rays include a high-pressure mercury lamp, a metal halide lamp, and an ultraviolet LED.
  • the hardness thereof is preferably 60 degrees or less, more preferably 40 degrees or less, still more preferably 20 degrees or less in terms of A hardness according to JIS K6253-3: 2012 from the viewpoint of imparting rubber elasticity. It is even more preferable if the temperature is 5 degrees or less. If the temperature is 5 degrees or less, it can be used as a sealing material that requires an extremely low load. Further, the compression set of the cured product is preferably 50% or less. This is because the long-term sealing property can be guaranteed.
  • the maltens hardness measured in the nanoindentation test is preferably in the range of 0.005 to 30 N / mm 2.
  • the Martens hardness is in this range, it has predetermined flexibility and flexibility, and is suitable for applications such as sealing materials such as gaskets, masking materials, protective materials such as sealing materials, adhesives, and anti-vibration materials. It becomes.
  • the method for measuring the Martens hardness can be specifically the method described in Examples.
  • the encapsulant preferably has flexibility that can be applied to a flexible substrate and strength that has repairability that can be removed after being used for encapsulating electronic components.
  • storage elastic modulus E' it is preferably in the range of 0.4 to 4.1 MPa.
  • the storage elastic modulus E' is 0.4 MPa or more, the cured product of the photocurable composition is hard to be torn and easily repaired, and when it is 4.1 MPa or less, the seal arranged on the flexible substrate is sealed. It becomes easy to peel off from the part to be stopped.
  • the storage elastic modulus E' is preferably in the range of 4.1 to 250 MPa. Within this range, the cured product of the photocurable composition is less likely to be peeled off from the adherend due to the increased toughness, and the appropriate rigidity is provided to prevent the wiring from being broken due to bending. be able to.
  • the mechanical strength such as Young's modulus and Martens hardness of the cured product of the photocurable composition is the strength appropriately required for the application. Is preferable.
  • Sample 1 to Sample 29 Acrylic monomer, acrylic oligomer, acrylic polymer, leuco dye, and styrene-based elastomer required depending on the sample are mixed, and after these are sufficiently mixed, an additive and a photoradical polymerization initiator are mixed to sample 1 to 1.
  • a photocurable composition of Sample 29 was prepared. These photocurable compositions were irradiated with ultraviolet rays (LED light source having a wavelength of 365 nm) under the conditions of an illuminance of 250 mW / cm 2 and an integrated light intensity of 15,000 mJ / cm 2 to obtain cured products of Samples 1 to 29.
  • LED light source having a wavelength of 365 nm
  • acrylic monomer lauryl acrylate as the aliphatic acrylate, isobornyl acrylate as the alicyclic acrylate, phenoxyethyl acrylate as the aromatic acrylate, 2-hydroxyethyl acrylate as the hydroxyl group-containing acrylate, and carboxyl.
  • ⁇ -carboxy-polycaprolactone monoacrylate as the group-containing acrylate
  • 2-methacryloxyethyl acid phosphate as the phosphate-containing acrylate
  • acroylmorpholine as the amide group-containing acrylate
  • 2-methacrylate as the amino group-containing acrylate
  • Dimethylamino ethyl was used, and 1,9-nonanediol diacrylate was used as the bifunctional aliphatic acrylate.
  • acrylic polymer an acrylic polymer having an acrylic skeleton ("RC500 (XX067C)" (trade name), manufactured by Kaneka Corporation) was used.
  • 2-hydroxy-2-methyl-methylpropanol was used as an alkylphenone-based initiator, and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide was used as an acylphosphine oxide-based agent.
  • [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] esterone-1- (O-acetooxym) was used, respectively.
  • Leuco dyes include 2'-methyl-6'-(N-p-tolyl-N ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one as fluorans.
  • "RED520" (trade name), manufactured by Fukui Yamada Chemical Industry Co., Ltd., 3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide ("Crystal Violet lactone (CVL)", Fukui as phthalides Yamada Chemical Industry Co., Ltd.) and "Leuco Crystal Violet” ((trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) were used as triphenylmethanes.
  • styrene-based thermoplastic elastomer a styrene-isobutylene-styrene triblock copolymer (“SIBSTAR 102T” (trade name), manufactured by Kaneka Co., Ltd.) was used.
  • SIBSTAR 102T styrene-isobutylene-styrene triblock copolymer
  • a photoacid generator (“CPI-210S” (trade name), manufactured by San-Apro Co., Ltd.) is used, and silica (“Aerosil 200" (trade name), Nippon Aerosil Co., Ltd.) is used as a viscosity modifier and a nitrogen-imparting agent.
  • Hydrophilic fumed silica with a specific surface area of about 200 m 2 / g manufactured by the company) and aluminum oxide (“Alu C” (trade name), manufactured by Nippon Aerosil Co., Ltd., fumed aluminum oxide) were used as colorants. ..
  • Calculation of curing rate when transitioning from a photocurable composition to a cured product How much curing is achieved when the photocurable composition is in an intermediate state from an uncured state, that is, a state in which the curing rate is 0% to a completely cured state, that is, a state in which the curing rate is 100%. Whether it was progressing, that is, what percentage the curing rate was, was measured by the FT-IR method.
  • the vertical axis to record an infrared absorption spectrum is the absorbance for the cured finished product with uncured material, 780 cm -1 from fluctuations peak (820 cm -1 attributable to the chemical bonds decreases with the curing reaction ) And the area of the internal standard peak (1730 cm -1 ) are read from each spectrum, and the curing rate of the sample whose curing rate is undecided is calculated based on the values of the uncured body and the cured product.
  • the area of the fluctuation peak of the measured sample is A
  • the area of the internal standard peak is B
  • the R value of the uncured product is Ru
  • the R value of the cured product cured product produced by irradiating ultraviolet rays under the condition of an integrated light amount of 15,000 mJ / cm 2
  • the rate Dc (%) that is, the rate of decrease in the R value of the cured product can be calculated by the following formula (2).
  • the reduction rate D (%) of this R value with respect to the Ru value can be obtained by the following equation (3).
  • the curing rate C (%) of the sample for which the curing rate is to be obtained can be obtained by comparing the D value of this sample with the Dc value. That is, it can be obtained by the following equation (4).
  • the chromaticity was measured as follows. Explaining with reference to the schematic view shown in FIG. 1, first, as shown in FIG. 1A, two 1 mm-thick transparent glass plates 11 are prepared, and one side of the two transparent glass plates 11 is subjected to 0.1 mm peeling treatment (PET). HSPX) is pasted (not shown). A shim ring (spacer) 12 having a thickness of 1 mm and having a circular through hole 13 having a diameter of 10 mm is arranged on the glass plate 11 to which the PET is not attached, and the other glass plate is placed so that the PET faces the shim ring. The shim ring is sandwiched between two glass plates.
  • PET 0.1 mm peeling treatment
  • the chromaticity of the reference white plate for calibration is measured. (Measurement of blank, FIG. 1B). Subsequently, the photocurable composition of each sample is applied to the through hole 13 of the shim ring 12, and the chromaticity of the photocurable composition before curing that has entered the through hole is measured as shown in FIG. 1C. .. At this time, a white calibration plate (not shown) is placed under the lower glass plate 11. The reason why the photocurable composition is sealed with two glass plates is to prevent the influence of oxygen in the air. Then, as shown in FIG.
  • the photocurable composition 15 is irradiated with ultraviolet rays for a predetermined time with a UV lamp (“Aice UJ30” manufactured by Panasonic Corporation, wavelength 365 nm, illuminance 250 mW / cm 2) 16.
  • a UV lamp (“Aice UJ30” manufactured by Panasonic Corporation, wavelength 365 nm, illuminance 250 mW / cm 2) 16.
  • the chromaticity of the cured product of the photocurable photocurable composition is measured with a spectrophotometer (“Handy spectrophotometer JX777” manufactured by Color Techno System Co., Ltd.) 14.
  • the ultraviolet irradiation time at which the curing rate becomes 50% was determined in advance for each sample, and the chromaticity was determined for the sample after being irradiated with the ultraviolet rays for that time.
  • the value of the formula (1) which is a chromaticity change parameter, was calculated from the chromaticity of each sample at uncured, cured rate of 50%, and cured (curing
  • the sample used in the measurement of the chromaticity is placed on a white plate for calibration, and the chromaticity of each sample is measured by a spectrocolorimeter to obtain a second chromaticity difference ⁇ E.
  • the term "chromaticity difference ⁇ E" indicates the chromaticity difference based on the color of the color chip, and the latter indicates the "second chromaticity difference ⁇ E 2 ".
  • the above-mentioned chromaticity difference ⁇ E is a value that faithfully reflects the color change visually observed. Therefore, if the chromaticity difference ⁇ E is large and the above-mentioned chromaticity change parameter is within a predetermined range, it means that it is easy to visually distinguish between before curing and after photocuring.
  • the second chromaticity difference ⁇ E 2 is preferably 10 or more. , 20 or more is more preferable. In this case, replacing the chromaticity difference Delta] E in the second chromaticity difference Delta] E 2, only the second chromaticity difference Delta] E 2 may be 10 or more. Further, both the chromaticity difference ⁇ E and the second chromaticity difference ⁇ E 2 are preferably 10 or more, and more preferably 20 or more.
  • Martens hardness (N / mm 2 ): A nanoindentation test of the cured product of each sample was carried out using a nanoindenter (manufactured by ELIONIX, ENT-2100). The test piece was prepared by applying a photocurable composition to a glass plate having a thickness of 1 mm so as to have a thickness of 200 ⁇ m, using an LED having a wavelength of 365 nm, under the conditions of an illuminance of 250 mW / cm 2 and an integrated light amount of 15000 mJ / cm 2. A cured product prepared by curing by irradiating with ultraviolet rays was used. Then, with the nano indenter, the Martens hardness of the cured product was measured under the conditions of a maximum pushing load of 0.1 mN and a pushing speed of 0.01 mN / sec.
  • Immersion test with 1 specified hydrochloric acid Each of the above samples was irradiated with ultraviolet rays having an integrated light intensity of 15,000 mJ / cm 2 and cured to a thickness of 1 mm to obtain a cured product of each sample. Subsequently, 0.2 g of a test piece was cut out from this cured product, immersed in 10 g of 1N hydrochloric acid, and allowed to stand in an environment of 70 ° C. for 120 hours. Then, after 120 hours, the test piece was taken out and the water on the surface was lightly wiped off.
  • the post-test test piece thus obtained was visually compared with the color chip of the color sample "PANTONE uncoated chips" (manufactured by PANTONE), and the closest color number was recorded. Subsequently, the chromaticity of each color chip is measured with the spectrocolorimeter, and the chromaticity difference is calculated from the chromaticity of the test piece after the test of each sample and the chromaticity of the test piece before the test. The results are shown in the item of chromaticity difference ⁇ E 3 after the immersion test in each table.
  • the chromaticity difference ⁇ E is a sufficiently large value exceeding 30, but the chromaticity change parameter is 2.0 or less but a large value exceeding 1.0, so that the color change in the latter half of the reaction is a large value. It seems that it was a little difficult to understand.
  • Samples 1 to 3 and 7 all had a second chromaticity difference of 20 or more. Therefore, it was found that the use of aliphatic, alicyclic, aromatic, and acrylamide-based monomers enhances not only visual discrimination but also spectrophotometric discrimination.
  • Sample 7 had a slightly higher maltens hardness than Samples 1 to 6. It is presumed that the acrylamide-based monomer promotes the curing reaction. From this, it was found that it is preferable to use an acrylic monomer excluding the acrylamide-based monomer when seeking flexibility, and to add an acrylamide-based monomer when increasing the hardness and seeking rigidity.
  • the chromaticity difference tended to become smaller as the addition amount of the leuco dyes decreased.
  • the reason why the difference in chromaticity is small seems to be that the density of the dye is low.
  • the chromaticity difference ⁇ E exceeds 30, but the value is smaller than that of the sample 15 which is 0.001 part by mass. The reason seems to be that when the amount of the leuco dye added is larger than the predetermined amount, the initial chromaticity becomes slightly yellowish, and the color approaches the color after curing.
  • the amount of the leuco dye added is preferably in the range of 0.005 to 1 part by mass.
  • sample 12 has the largest second chromaticity difference ⁇ E 2. Therefore, it was found that the addition amount exceeding 1 part by mass is preferable when the curing is judged by the spectrocolorimeter.
  • the chromaticity change parameter of Sample 2 exceeded 0.1 in Samples 19 to 23 containing a colorant as compared with Sample 2 not containing a colorant. In each case, the chromaticity change parameter is 0.1 or less. From this, it was found that the visibility of the color was enhanced by including aluminum oxide, which is a white powder, as the colorant.
  • the amount of the colorant added is the total amount of the resin components in order to improve the distinctiveness by the spectrocolorimeter. It was found that 0.1 to 1.5 parts by mass is preferable with respect to (100 parts by mass).
  • the initial color of Sample 22 and Sample 23 was reddish. This is because the pH of silica used in the present invention is 4.0 to 4.5 and the pH of aluminum oxide is 4.5 to 5.5. Therefore, a large amount is added to make the photocurable composition acidic. It seems that this is because the degree has increased. From this, it was found that the addition amount of such an additive is preferably about 5 parts by mass or less with respect to 100 parts by mass of the total amount of the resin components.

Abstract

Provided is a photocurable composition capable of changing colors after curing has finished, so as to be distinguishable from before the curing. The photocurable composition comprises a leuco dye, a photo-radical generation agent, and at least one acrylic compound selected from acrylic monomers, acrylic oligomers, and acrylic polymers. The color difference ΔE between the uncured color value (L* 0, a* 0, b* 0) and the post-curing color value (L* 100, a* 100, b* 100), as defined in the CIE 1976 (L*, a*, b*) color space described in JIS Z8781-4, is 10 or greater. The color change parameter represented by formula (1) falls in the range of 0 to 2.0. [In formula (1), a* 0 and b* 0 respectively represent the color a* value and b* value in the pre-curing L*a*b* color space, a* 50 and b* 50 respectively represent the color a* value and b* value in a 50% curing ratio L*a*b* color space, and a* 100 and b* 100 respectively represent the color a* value and b* value in the post-curing L*a*b* color space.]

Description

光硬化性組成物及びその硬化体、シール材、保護材、防水構造並びに硬化体の製造方法Photocurable composition and its cured product, sealing material, protective material, waterproof structure, and method for producing the cured product
 本発明は、光硬化性組成物及びその硬化体等、並びにそれらの製造方法に関する。 The present invention relates to a photocurable composition, a cured product thereof, and the like, and a method for producing the same.
 塗布前は液状であり塗布後に光硬化させた硬化体をガスケット等として利用できる光硬化型組成物は、所望部位に塗布した後に十分に硬化させて用いる。しかしながら、例えば工程ミスが原因で未硬化だったり、UVランプの劣化が原因で硬化が不十分であったりする場合には、未硬化の光硬化型組成物が接触体に触れて汚染してしまったり、硬化不足のまま製品化されて圧縮永久歪の低下などによる製品不良が生じたりするおそれがあった。 A photocurable composition that is liquid before application and can be used as a gasket or the like after being photocured after application is used after being sufficiently cured after being applied to a desired site. However, if, for example, it is uncured due to a process error or insufficiently cured due to deterioration of the UV lamp, the uncured photocurable composition may come into contact with the contact body and become contaminated. In addition, there is a risk that the product may be commercialized with insufficient curing, resulting in product defects due to a decrease in compression set.
 こうした問題は、光硬化型組成物の硬化前後で見た目の変化が小さく硬化が終了しているか否かが直ちに気付き難いことにあったため、硬化前後で色味を変えることで硬化の有無を見分ける技術が開発されており、例えば国際公開第2016/129568号(特許文献1)等に記載されている。 Such a problem is that the change in appearance before and after curing of the photocurable composition is small and it is difficult to immediately notice whether or not the curing is completed. Therefore, a technique for distinguishing the presence or absence of curing by changing the color before and after curing. Has been developed and is described in, for example, International Publication No. 2016/129568 (Patent Document 1).
国際公開第2016/129568号International Publication No. 2016/129568
 しかしながら、国際公開第2016/129568号(特許文献1)に記載された技術は、必ずしも光硬化型組成物の硬化状態と色変化が対応しているわけではなく、色変化が硬化の終了を示しているとまでは言えなかった。また、染料濃度が高いと紫外線等の光線が内部に届き難くなり硬化性が損なわれる懸念があった。 However, in the technique described in International Publication No. 2016/129568 (Patent Document 1), the cured state of the photocurable composition does not necessarily correspond to the color change, and the color change indicates the end of curing. I couldn't say that. Further, if the dye concentration is high, it is difficult for light rays such as ultraviolet rays to reach the inside, and there is a concern that the curability is impaired.
 本発明は、こうした課題を解決するためになされたものである。即ち、低濃度のロイコ染料で着色させつつ、硬化の終了後に硬化前とは識別できる色変化が得られる光硬化性組成物を提供する。 The present invention has been made to solve such a problem. That is, there is provided a photocurable composition capable of obtaining a color change that can be distinguished from that before curing after completion of curing while coloring with a low concentration leuco dye.
 上記目的を達成する本発明の光硬化性組成物及びその硬化体は以下のとおりである。即ち本発明は、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーから選択される少なくとも一のアクリル化合物と、光ラジカル発生剤と、ロイコ染料とを含み、JISZ8781-4に記載のCIE1976(L,a,b)色空間で定義される未硬化の色値(L ,a ,b )と硬化後の色値(L 100,a 100,b 100)との色度差ΔEが10以上であり、下記式(1)で表される色度変化パラメータが0~2.0の範囲にある光硬化性組成物を提供する。 The photocurable composition of the present invention and a cured product thereof that achieve the above object are as follows. That is, the present invention contains at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, and describes CIE1976 (L * , a *) described in JISZ8781-4. , B * ) Color between the uncured color value (L * 0 , a * 0 , b * 0 ) defined in the color space and the color value after curing (L * 100 , a * 100 , b * 100 ) Provided is a photocurable composition in which the degree difference ΔE is 10 or more and the chromaticity change parameter represented by the following formula (1) is in the range of 0 to 2.0.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
[上記式(1)中、a 及びb は、硬化前のL色空間における色度a値及びb値を示し、a 50及びb 50は、硬化率50%におけるL色空間における色度a値及びb値を示し、a 100及びb 100は、硬化後におけるL色空間における色度a値及びb値を示す。] [In the above formula (1), a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are. The chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing. * Value and b * value are shown. ]
 本発明は、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーから選択される少なくとも一のアクリル化合物と、光ラジカル発生剤と、ロイコ染料とを含むため、光照射することでアクリルモノマー、アクリルオリゴマー、及びアクリルポリマーから選択される少なくとも一つのアクリル化合物を硬化させることができ、また硬化前後で色度を変化させることができる。また、JISZ8781-4に記載のCIE1976(L,a,b)色空間で定義される未硬化の色値(L ,a ,b )と硬化後の色値(L 100,a 100,b 100)との色度差ΔEが10以上であるため、硬化前と硬化後での色度の変化が大きく、その相違が分かり易い。 Since the present invention contains at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, the acrylic monomer, acrylic oligomer, and acrylic can be irradiated with light. At least one acrylic compound selected from the polymers can be cured, and the chromaticity can be changed before and after curing. Further, the uncured color values (L * 0 , a * 0 , b * 0 ) defined in the CIE1976 (L * , a * , b * ) color space described in JISZ8781-4 and the color values after curing (L * 0, a * 0, b * 0) Since the chromaticity difference ΔE from L * 100 , a * 100 , b * 100 ) is 10 or more, the change in chromaticity before and after curing is large, and the difference is easy to understand.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[上記式(1)中、a 及びb は、硬化前のL色空間における色度a値及びb値を示し、a 50及びb 50は、硬化率50%におけるL色空間における色度a値及びb値を示し、a 100及びb 100は、硬化後におけるL色空間における色度a値及びb値を示す。] [In the above formula (1), a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are. The chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing. * Value and b * value are shown. ]
 さらに、上記式(1)で表される色度変化パラメータが0~2.0の範囲にあるため、反応後半の距離(色変化)が少なくとも反応前半の半分以上大きくなるため、色変化による硬化状態の見誤りを防止できる。なお、本発明における色度差および色度変化パラメータは、実施例記載の方法により測定および算出された値である。 Further, since the chromaticity change parameter represented by the above formula (1) is in the range of 0 to 2.0, the distance (color change) in the latter half of the reaction is at least half or more larger than that in the first half of the reaction, so that curing due to color change It is possible to prevent misunderstanding of the state. The chromaticity difference and the chromaticity change parameter in the present invention are values measured and calculated by the method described in Examples.
 本発明は、酸発生剤を含まない光硬化性組成物とすることができる。酸発生剤を含まない光硬化性組成物は、ロイコ染料に対する早期の色変化を生じさせず、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーの硬化とロイコ染料による反応とを対応させ易い。 The present invention can be a photocurable composition that does not contain an acid generator. The photocurable composition containing no acid generator does not cause an early color change to the leuco dye, and it is easy to make the curing of the acrylic monomer, the acrylic oligomer, and the acrylic polymer correspond to the reaction by the leuco dye.
 本発明は、前記アクリル化合物が、単官能アクリルモノマー、2官能以上のアクリルオリゴマー及び2官能以上のアクリルポリマーの少なくとも何れかである光硬化性組成物とすることができる。前記アクリル化合物が、単官能アクリルモノマー、2官能以上のアクリルオリゴマー及び2官能以上のアクリルポリマーの少なくとも何れかである光硬化性組成物は、それが硬化して得られた硬化体は、電子素子や基板に固着し、防水性等を発現するため、好適なシール材及び保護材等として利用することができる。 According to the present invention, the acrylic compound can be a photocurable composition in which the acrylic compound is at least one of a monofunctional acrylic monomer, a bifunctional or higher acrylic oligomer, and a bifunctional or higher acrylic polymer. A photocurable composition in which the acrylic compound is at least one of a monofunctional acrylic monomer, a bifunctional or higher acrylic oligomer, and a bifunctional or higher acrylic polymer, the cured product obtained by curing the photocurable composition is an electronic element. It can be used as a suitable sealing material, protective material, etc. because it adheres to the substrate and exhibits waterproofness and the like.
 本発明は、前記アクリル化合物が少なくとも単官能アクリルモノマーを含み、さらにスチレン系エラストマーを含む光硬化性組成物とすることができる。前記アクリル化合物が少なくとも単官能アクリルモノマーを含み、さらにスチレン系エラストマーを含む光硬化性組成物は、硬化体の透明性を低下させ、また、その機械的強度を高めながらゴム弾性を付与することができる。 According to the present invention, the acrylic compound can be a photocurable composition containing at least a monofunctional acrylic monomer and further containing a styrene-based elastomer. A photocurable composition in which the acrylic compound contains at least a monofunctional acrylic monomer and further contains a styrene-based elastomer can reduce the transparency of the cured product and impart rubber elasticity while increasing its mechanical strength. it can.
 本発明は、前記スチレン系エラストマーが、重量平均分子量で20万以上である高分子量スチレン系エラストマー、エポキシ変性スチレン系エラストマー、及びソフトセグメントに不飽和結合を有するスチレン系エラストマーの少なくとも何れかである光硬化性組成物とすることができる。前記スチレン系エラストマーが、重量平均分子量で20万以上である高分子量スチレン系エラストマー、エポキシ変性スチレン系エラストマー、及びソフトセグメントに不飽和結合を有するスチレン系エラストマーの少なくとも何れかである光硬化性組成物は、硬化体とした際の圧縮永久ひずみを小さくでき、シール材及び保護材等として好適に利用できる。 In the present invention, the styrene-based elastomer is at least one of a high-molecular-weight styrene-based elastomer having a weight average molecular weight of 200,000 or more, an epoxy-modified styrene-based elastomer, and a styrene-based elastomer having an unsaturated bond in a soft segment. It can be a curable composition. A photocurable composition in which the styrene-based elastomer is at least one of a high-molecular-weight styrene-based elastomer having a weight average molecular weight of 200,000 or more, an epoxy-modified styrene-based elastomer, and a styrene-based elastomer having an unsaturated bond in a soft segment. Can reduce the compression set when it is made into a cured product, and can be suitably used as a sealing material, a protective material, and the like.
 本発明は、前記スチレン系エラストマーが、スチレン-イソブチレン-スチレンブロック重合体である光硬化性組成物とすることができる。前記スチレン系エラストマーが、スチレン-イソブチレン-スチレンブロック重合体である光硬化性組成物は、硬化体の透明性を低下させ、また、その機械的強度を高めながらゴム弾性を付与することができるため、封止材等の保護材として好適に利用できる。 In the present invention, the styrene-based elastomer can be a photocurable composition which is a styrene-isobutylene-styrene block polymer. The photocurable composition in which the styrene-based elastomer is a styrene-isobutylene-styrene block polymer can reduce the transparency of the cured product and impart rubber elasticity while increasing its mechanical strength. , Can be suitably used as a protective material such as a sealing material.
 本発明は、無機粉体をさらに含む光硬化性組成物とすることができる。無機粉体をさらに含む光硬化性組成物は、光硬化性組成物にチキソ性を付与し、塗布後の形状安定性を有することからシール材、封止材等の保護材、及びマスキング材として好適に利用できる。 The present invention can be a photocurable composition further containing an inorganic powder. A photocurable composition further containing an inorganic powder imparts thixotropy to the photocurable composition and has shape stability after coating, and thus serves as a protective material such as a sealing material and a sealing material, and a masking material. It can be preferably used.
 本発明は、70℃の1規定塩酸に120h浸漬したときにΔEが20以上変化する前記何れかの光硬化性組成物を硬化した硬化体とすることができる。70℃の1規定塩酸に120h浸漬したときにΔEが20以上変化する前記何れかの光硬化性組成物を硬化した硬化体は、酸発生材を含まないものである。こうした硬化体は、残留する酸による基板や配線、電子素子、筐体などの被着体を腐食する懸念が少ない点で好ましい。 The present invention can be a cured product of any of the above photocurable compositions in which ΔE changes by 20 or more when immersed in 1N hydrochloric acid at 70 ° C. for 120 hours. The cured product obtained by curing any of the above photocurable compositions in which ΔE changes by 20 or more when immersed in 1N hydrochloric acid at 70 ° C. for 120 hours does not contain an acid generator. Such a cured product is preferable because there is little concern that the residual acid will corrode the substrate, wiring, electronic elements, housing, and other adherends.
 本発明は、ナノインデンテーション試験で測定されるマルテンス硬さが0.005~50N/mmである硬化体とすることができる。ナノインデンテーション試験で測定されるマルテンス硬さが0.005~50N/mmである硬化体は、可撓性、伸張性、及び圧縮性のバランスに優れ、シール材、封止材等の保護材、及びマスキング材として好適に利用できる。 The present invention can be a cured product having a Martens hardness of 0.005 to 50 N / mm 2 as measured by a nanoindentation test. A cured product having a Martens hardness of 0.005 to 50 N / mm 2 measured in a nanoindentation test has an excellent balance of flexibility, extensibility, and compressibility, and protects sealing materials, encapsulants, etc. It can be suitably used as a material and a masking material.
 本発明は、前記何れかの光硬化性組成物の硬化体又は前記硬化体であって、圧縮永久ひずみが50%以下であるシール材とすることができる。前記何れかの光硬化性組成物の硬化体又は前記硬化体であって、圧縮永久ひずみが50%以下であることから、シール性に優れたガスケット等のシール材とすることができる。 The present invention can be a cured product of any of the above photocurable compositions or the cured product, and can be a sealing material having a compression set of 50% or less. Since the cured product of any of the above photocurable compositions or the cured product has a compression set of 50% or less, it can be used as a sealing material such as a gasket having excellent sealing properties.
 本発明は、前記何れかの光硬化性組成物の硬化体又は前記何れかの硬化体であって、基板上にある電子素子又は配線を覆う保護材とすることができる。前記何れかの光硬化性組成物の硬化体又は前記何れかの硬化体であって、基板上にある電子素子又は配線を覆う保護材は、所定の可撓性及び柔軟性を備えた優れた保護材である。 The present invention can be a cured product of any of the above photocurable compositions or a cured product of any of the above, and can be used as a protective material for covering an electronic element or wiring on a substrate. The cured product of any of the photocurable compositions or the cured product of any of the above, and the protective material covering the electronic element or wiring on the substrate is excellent with predetermined flexibility and flexibility. It is a protective material.
 本発明は、開口を有するケースと、前記開口を閉塞する蓋体と、ケース又は前記蓋体の少なくとも何れかに設けられる前記シール材と、を備え、前記ケースと前記蓋体との嵌め合わせにより前記シール材が圧縮変形して前記開口を液密に封止する防水構造とすることができる。本発明を、開口を有するケースと、前記開口を閉塞する蓋体と、ケース又は前記蓋体の少なくとも何れかに設けられる前記シール材と、を備え、前記ケースと前記蓋体との嵌め合わせにより前記シール材が圧縮変形して前記開口を液密に封止する防水構造としたため、シール性に優れた防水構造である。 The present invention includes a case having an opening, a lid that closes the opening, and the sealing material provided on at least one of the case or the lid, and by fitting the case and the lid. The sealing material can be compressed and deformed to form a waterproof structure that tightly seals the opening. The present invention includes a case having an opening, a lid that closes the opening, and the sealing material provided on at least one of the case or the lid, and by fitting the case and the lid. Since the sealing material is compressed and deformed to form a waterproof structure that tightly seals the opening, the waterproof structure has excellent sealing properties.
 本発明は、前記何れかの光硬化性組成物を塗布する工程と、活性化エネルギー線を照射する工程とを少なくとも含む、シール材、保護材、マスキング材、接着剤、及び防振材から選択される少なくとも一の硬化体の製造方法とすることができる。本発明を、前記何れかの光硬化性組成物を塗布する工程と、活性化エネルギー線を照射する工程とを少なくとも含む、シール材、保護材、マスキング材、接着剤、及び防振材から選択される少なくとも一の硬化体の製造方法としたため、これらの硬化体の製造が容易である。 The present invention is selected from a sealing material, a protective material, a masking material, an adhesive, and a vibration-proof material, which comprises at least a step of applying any of the above-mentioned photocurable compositions and a step of irradiating with activation energy rays. It can be a method for producing at least one cured product. The present invention is selected from a sealing material, a protective material, a masking material, an adhesive, and an anti-vibration material, which comprises at least a step of applying any of the above photocurable compositions and a step of irradiating with activation energy rays. Since the method for producing at least one cured product is used, the production of these cured products is easy.
 本発明の光硬化性組成物は、光硬化の終了後には、硬化前とは識別できる色変化が得られる。また、本発明の光硬化性組成物の硬化体は、接着剤、マスキング材、ガスケット、シール材、封止材等の種々の用途に利用できる。 The photocurable composition of the present invention has a color change that can be distinguished from that before curing after the completion of photocuring. Further, the cured product of the photocurable composition of the present invention can be used for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material.
色度の測定手順を説明する説明図である。It is explanatory drawing explaining the chromaticity measurement procedure.
 〔光硬化性組成物〕
 本発明について実施形態に基づき詳しく説明する。本発明の光硬化性組成物は、少なくともアクリルモノマー、アクリルオリゴマー、及びアクリルポリマーから選択される少なくとも一のアクリル化合物と、光ラジカル発生剤と、ロイコ染料と、を含む組成からなり、JISZ8781-4に記載のCIE1976(L,a,b)色空間で定義される未硬化の色値(L ,a ,b )と硬化後の色値(L 100,a 100,b 100)との色度差ΔEが10以上であり、下記式(1)で表される色度変化パラメータが0~2.0の範囲となる。
[Photocurable composition]
The present invention will be described in detail based on the embodiments. The photocurable composition of the present invention comprises at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, and comprises JISZ8781-4. The uncured color values (L * 0 , a * 0 , b * 0 ) defined in the CIE1976 (L * , a * , b * ) color space described in 1 and the color values after curing (L * 100 , a). The chromaticity difference ΔE from * 100 , b * 100 ) is 10 or more, and the chromaticity change parameter represented by the following equation (1) is in the range of 0 to 2.0.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
[上記式(1)中、a 及びb は、硬化前のL色空間における色度a値及びb値を示し、a 50及びb 50は、硬化率50%におけるL色空間における色度a値及びb値を示し、a 100及びb 100は、硬化後におけるL色空間における色度a値及びb値を示す。] [In the above formula (1), a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are. The chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing. * Value and b * value are shown. ]
 光硬化性組成物の「硬化前」とは、光硬化性硬化体を形成する成分を混合した状態で、紫外線照射等の光硬化反応をさせる前の状態をいい、「硬化後」とは、光硬化性組成物が光硬化反応を十分に完了させることのできる条件で硬化させた状態を言う。但し十分に硬化が認められない場合が発生することに鑑み、後述する実施例では、「硬化後」を積算光量15000mJ/cmの条件で硬化のための光を照射して硬化させた状態とし、後述するFT-IR法で赤外吸収スペクトルを測定した際のピーク高さの変化が略飽和した状態で示される。 The "before curing" of the photocurable composition means a state before the photocuring reaction such as irradiation with ultraviolet rays is performed in a state where the components forming the photocurable cured product are mixed, and the "after curing" means. A state in which the photocurable composition is cured under conditions that can sufficiently complete the photocuring reaction. However, in view of the fact that sufficient curing may not be observed, in the examples described later, "after curing" is defined as a state of being cured by irradiating light for curing under the condition of an integrated light amount of 15,000 mJ / cm 2. , The change in peak height when the infrared absorption spectrum is measured by the FT-IR method described later is shown in a substantially saturated state.
 光硬化性組成物は、JISZ8781-4に記載のCIE1976(L,a,b)色空間で定義される未硬化の色値(L ,a ,b )と硬化後の色値(L 100,a 100,b 100)との色度差ΔEが10以上であるため、未硬化の状態と硬化後の状態との色変化が明らかでありその相違を認識することができる。ΔEが20以上であれば色変化がより大きく好ましく、ΔEが30以上であれば色度変化パラメータが大きい場合であっても反応後半の色変化が大きくなるため特に好ましい。一方で、ΔEが10未満であると、硬化前後の色変化が小さく、硬化が終了しているのか否かの判別がし難くなるおそれがある。 The photocurable composition is cured with an uncured color value (L * 0 , a * 0 , b * 0 ) defined in the CIE1976 (L * , a * , b *) color space described in JISZ8781-4. Since the chromaticity difference ΔE from the later color values (L * 100 , a * 100 , b * 100 ) is 10 or more, the color change between the uncured state and the cured state is clear, and the difference can be seen. Can be recognized. When ΔE is 20 or more, the color change is larger, and when ΔE is 30 or more, the color change in the latter half of the reaction is large even when the chromaticity change parameter is large, which is particularly preferable. On the other hand, if ΔE is less than 10, the color change before and after curing is small, and it may be difficult to determine whether or not curing is completed.
 上記式(1)の分子は、a,b平面上の未硬化の色度の座標(a ,b )から、硬化率50%の硬化状態の色度の座標(a 50,b 50)までの距離を示し、また式(1)の分母は、a,b平面上の硬化率50%の硬化状態の色度の座標(a 50,b 50)から、硬化後(硬化率100%)の硬化状態の色度の座標(a 100,b 100)までの距離を示している。したがって、式(1)は、光硬化性組成物の硬化率が0%から50%になるとき(反応前半)の距離(色変化)に対して、硬化率が50%から100%になるとき(反応後半)の距離(色変化)の割合を示している。これを色度変化パラメータとする。そしてこの式(1)の値、即ち色度変化パラメータが0~2.0の範囲にあることから、数値が2.0のとき反応後半の色変化が最も小さく、0に近づくほど反応後半の色変化が大きく(又は反応前半の色変化が小さく)なり、反応後半の距離(色変化)が少なくとも前記反応前半の半分以上大きい。反応後半の色変化が大きいという観点から、色度変化パラメータは0~1.0であることが好ましく、0~0.5であることが特に好ましい。 The molecules of the above formula (1) are based on the coordinates of the uncured chromaticity (a * 0 , b * 0 ) on the a * , b * plane, and the coordinates of the chromaticity in the cured state with a curing rate of 50% (a *). The distance to 50 , b * 50 ) is shown, and the denominator of equation (1) is the coordinates of the chromaticity of the cured state with a curing rate of 50% on the a * , b * plane (a * 50 , b * 50 ). It shows the distance from to the coordinates (a * 100 , b * 100 ) of the chromaticity in the cured state after curing (curing rate 100%). Therefore, the formula (1) is expressed when the curing rate of the photocurable composition is 50% to 100% with respect to the distance (color change) when the curing rate is 0% to 50% (first half of the reaction). The ratio of the distance (color change) of (the latter half of the reaction) is shown. This is used as a chromaticity change parameter. Since the value of this equation (1), that is, the chromaticity change parameter is in the range of 0 to 2.0, the color change in the latter half of the reaction is the smallest when the value is 2.0, and the closer to 0, the latter half of the reaction. The color change is large (or the color change in the first half of the reaction is small), and the distance (color change) in the latter half of the reaction is at least half or more larger than that in the first half of the reaction. From the viewpoint that the color change in the latter half of the reaction is large, the chromaticity change parameter is preferably 0 to 1.0, and particularly preferably 0 to 0.5.
 以前より物体の硬化によって色度が相違する現象は知られているが、光硬化性組成物の硬化の程度と色変化の程度が必ずしも一致するものではなく、一般には硬化の初期段階で色変化がほとんど進行する場合が多かった。そのため、硬化が完全に終了していないにもかかわらず、色変化が生じることでかえって硬化が行われたものと間違える場合も生じていた。ところが本発明では、色変化の状態を光硬化性組成物の硬化率が50%となった状態で2分したことで、反応後半の残り50%硬化時の色変化の大きさを重視できることに加え、式(1)の値が0~2.0の範囲にある場合を設定したため、反応前半でほとんどの色変化が終了する場合を除外できることになる。これにより、色変化による硬化状態の見誤りを防止可能な光硬化性組成物が得られる。次に光硬化性組成物を構成する成分について説明する。 It has long been known that the chromaticity differs depending on the curing of an object, but the degree of curing and the degree of color change of the photocurable composition do not always match, and generally the color changes in the initial stage of curing. Was almost always progressing. Therefore, even though the curing has not been completely completed, there are cases where the color change causes the product to be mistaken for the cured product. However, in the present invention, by dividing the state of color change into two in a state where the curing rate of the photocurable composition is 50%, it is possible to emphasize the magnitude of the color change at the time of curing the remaining 50% in the latter half of the reaction. In addition, since the case where the value of the formula (1) is in the range of 0 to 2.0 is set, it is possible to exclude the case where most of the color changes are completed in the first half of the reaction. As a result, a photocurable composition capable of preventing misunderstanding of the cured state due to color change can be obtained. Next, the components constituting the photocurable composition will be described.
 本発明の光硬化性組成物は、少なくともアクリルモノマー、アクリルオリゴマー、及びアクリルポリマーの少なくとも何れかのアクリル化合物と、光ラジカル発生剤と、ロイコ染料と、を含む組成からなるが、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーについて、本明細書、請求の範囲では、「アクリルモノマー」は(メタ)アクリルモノマーと同義であり、アクリル酸エステルモノマーだけでなくメタクリル酸エステルモノマーを含む意味で用いている。同様に「アクリルオリゴマー」は、(メタ)アクリルオリゴマーと同義であり、アクリル酸エステルオリゴマーの他にメタクリル酸エステルオリゴマーをも含み、「アクリルポリマー」は、(メタ)アクリルポリマーと同義であり、アクリル酸エステルポリマーの他にメタクリル酸エステルポリマーをも含む意味で用いている。また、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーの何れについても、ラジカル重合性基を備える化合物であり、ラジカル重合反応後のものは「硬化体」と表記することで区別している。この光硬化性組成物は、アクリルモノマー、アクリルオリゴマー及びアクリルポリマーを光硬化させることで硬化体とすることができるものである。 The photocurable composition of the present invention comprises at least an acrylic compound of at least one of an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye, but the acrylic monomer and acrylic. Regarding oligomers and acrylic polymers, as used herein and in the scope of claims, "acrylic monomer" is synonymous with (meth) acrylic monomer and is used to include not only acrylic acid ester monomer but also methacrylic acid ester monomer. Similarly, "acrylic oligomer" is synonymous with (meth) acrylic oligomer and includes methacrylic acid ester oligomer in addition to acrylic acid ester oligomer, and "acrylic polymer" is synonymous with (meth) acrylic polymer and is acrylic. It is used in the sense that it includes a methacrylate ester polymer in addition to the acid ester polymer. Further, all of the acrylic monomer, the acrylic oligomer, and the acrylic polymer are compounds having a radically polymerizable group, and those after the radical polymerization reaction are distinguished by notation as "cured product". This photocurable composition can be made into a cured product by photocuring an acrylic monomer, an acrylic oligomer and an acrylic polymer.
 単官能アクリルモノマー:
 単官能アクリルモノマーは、光ラジカル重合開始剤により硬化する成分であり、硬化前は低粘度の液体である。光硬化性組成物中にスチレン系熱可塑性エラストマーを含めば、単官能アクリルモノマーはそのスチレン系熱可塑性エラストマーを溶解させる。単官能アクリルモノマーの硬化体は、電子素子や基板に固着し、防水性等を発現する。
Monofunctional acrylic monomer:
The monofunctional acrylic monomer is a component that is cured by a photoradical polymerization initiator, and is a low-viscosity liquid before curing. If a styrene-based thermoplastic elastomer is included in the photocurable composition, the monofunctional acrylic monomer dissolves the styrene-based thermoplastic elastomer. The cured product of the monofunctional acrylic monomer adheres to an electronic element or a substrate and exhibits waterproofness and the like.
 単官能アクリルモノマーには、単官能(メタ)アクリル酸エステルモノマーの他にも単官能(メタ)アクリルアミド系モノマー等の単官能高極性モノマーを含む。また、より詳しくは、脂肪族(メタ)アクリル酸エステルモノマー、脂環式(メタ)アクリル酸エステルモノマー、エーテル系(メタ)アクリル酸エステルモノマー、環状エーテル系(メタ)アクリル酸エステルアクリルモノマー、芳香族系(メタ)アクリル酸エステルモノマー、複素環式(メタ)アクリル酸エステルモノマー等を含み、さらに水酸基含有(メタ)アクリル酸エステルモノマー、カルボキシル基含有(メタ)アクリル酸エステルモノマー、アクリルアミド系モノマー、第三級アミノ基含有(メタ)アクリル酸エステルモノマー、イミド系(メタ)アクリル酸エステルモノマー、グリシジル基含有(メタ)アクリル酸エステルモノマー、リン酸基含有(メタ)アクリル酸エステルモノマー等の極性基を有する(メタ)アクリル酸エステルモノマーを含む。 The monofunctional acrylic monomer contains a monofunctional high-polarity monomer such as a monofunctional (meth) acrylamide-based monomer in addition to the monofunctional (meth) acrylic acid ester monomer. More specifically, aliphatic (meth) acrylic acid ester monomer, alicyclic (meth) acrylic acid ester monomer, ether-based (meth) acrylic acid ester monomer, cyclic ether-based (meth) acrylic acid ester acrylic monomer, fragrance. Group (meth) acrylic acid ester monomer, heterocyclic (meth) acrylic acid ester monomer, etc., and further hydroxyl group-containing (meth) acrylic acid ester monomer, carboxyl group-containing (meth) acrylic acid ester monomer, acrylamide-based monomer, Polar groups such as tertiary amino group-containing (meth) acrylic acid ester monomer, imide-based (meth) acrylic acid ester monomer, glycidyl group-containing (meth) acrylic acid ester monomer, and phosphoric acid group-containing (meth) acrylic acid ester monomer. Contains (meth) acrylic acid ester monomers having.
 単官能脂肪族(メタ)アクリル酸エステルモノマーとして具体的には、ブチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、デシルアクリレート、イソデシルアクリレート、イソノニルアクリレート、n-オクチルアクリレート等の脂肪族炭化水素系(メタ)アクリル酸エステルモノマーが挙げられる。ラウリルアクリレートは、スチレン系エラストマーの溶解性に非常に優れており、柔軟性にも優れていることから、スチレン系エラストマーと併用する際に好ましい。 Specific examples of the monofunctional aliphatic (meth) acrylic acid ester monomer include aliphatic carbides such as butyl acrylate, lauryl acrylate, stearyl acrylate, isostearyl acrylate, decyl acrylate, isodecyl acrylate, isononyl acrylate, and n-octyl acrylate. Examples thereof include hydrogen-based (meth) acrylic acid ester monomers. Lauryl acrylate is preferable when used in combination with a styrene-based elastomer because it is extremely excellent in solubility of the styrene-based elastomer and also excellent in flexibility.
 単官能脂肪族(メタ)アクリル酸エステルモノマーを配合することで、スチレン系熱可塑性エラストマーを配合するときはこれを溶解し、また、光硬化性組成物の硬化後に得られる硬化体の柔軟性を高め、マルテンス硬さ及びヤング率を下げ、切断時伸びを大きく向上させることができる。 By blending a monofunctional aliphatic (meth) acrylic acid ester monomer, the styrene-based thermoplastic elastomer is dissolved when blended, and the flexibility of the cured product obtained after curing of the photocurable composition is increased. It can be increased, the Martens hardness and Young's modulus can be lowered, and the elongation at the time of cutting can be greatly improved.
 単官能脂環式(メタ)アクリル酸エステルモノマーとして具体的には、イソボルニルアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、4-tert-ブチルシクロヘキシルアクリレート等が挙げられる。 Specific examples of the monofunctional alicyclic (meth) acrylic acid ester monomer include isobornyl acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyloxyethyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4 -Tert-Butylcyclohexylacrylate and the like can be mentioned.
 単官能脂環式(メタ)アクリル酸エステルモノマーを配合することで、スチレン系熱可塑性エラストマーを含有するときはこれを溶解することができる。単官能脂環式(メタ)アクリル酸エステルモノマーは、光硬化性組成物の硬化後における硬化体(例えば、シール材)の接着力を高めつつ、被着物に対して硬化体を剥したときに糊残りを少なくすることができる。また、硬化体を強靭にしてヤング率を高める効果がある。加えて、この成分の割合を多くすると防湿性と透明性を高めることができる。 By blending a monofunctional alicyclic (meth) acrylic acid ester monomer, when a styrene-based thermoplastic elastomer is contained, it can be dissolved. The monofunctional alicyclic (meth) acrylic acid ester monomer enhances the adhesive strength of the cured product (for example, a sealing material) after curing of the photocurable composition, and when the cured product is peeled off from the adherend. It is possible to reduce the adhesive residue. It also has the effect of making the cured product tough and increasing Young's modulus. In addition, increasing the proportion of this component can enhance moisture resistance and transparency.
 単官能脂肪族(メタ)アクリル酸エステルモノマーおよび脂環式(メタ)アクリル酸エステルモノマーについては、それぞれアクリル酸エステルモノマーを用いることが好ましい。アクリル酸エステルモノマーは、メタクリル酸エステルモノマーと比較して、光硬化性に優れるものが多く、比較的低い積算光量で硬化できることに加えて、硬化体が柔軟になる傾向があるためである。 For the monofunctional aliphatic (meth) acrylic acid ester monomer and the alicyclic (meth) acrylic acid ester monomer, it is preferable to use the acrylic acid ester monomer, respectively. This is because many acrylic acid ester monomers are superior in photocurability as compared with methacrylic acid ester monomers, and in addition to being able to be cured with a relatively low integrated amount of light, the cured product tends to be flexible.
 単官能脂肪族(メタ)アクリル酸エステルモノマーと単官能脂環式(メタ)アクリル酸エステルモノマーを用いた場合には、これらの成分に由来する接着力を備えることから接着剤として用いることができる。また、被着物に密着して異物や水分の侵入を防ぐことができることからシール材としても好ましい。 When a monofunctional aliphatic (meth) acrylic acid ester monomer and a monofunctional alicyclic (meth) acrylic acid ester monomer are used, they can be used as an adhesive because they have adhesive strength derived from these components. .. It is also preferable as a sealing material because it adheres to the adherend and can prevent foreign matter and moisture from entering.
 また、脂環式(メタ)アクリル酸エステルモノマーと、脂肪族(メタ)アクリル酸エステルモノマーとを併用することが好ましい。脂肪族(メタ)アクリル酸エステルモノマーは、硬化体の柔軟性を高め、切断時伸びを大きく向上させることができる一方で、脂環式(メタ)アクリル酸エステルモノマーは、硬化体を強靭にして引張強さを高める効果がある。そのため、この両者を併用することで適度な柔軟性と硬さを両立することができる。 Further, it is preferable to use the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer in combination. The aliphatic (meth) acrylic acid ester monomer can increase the flexibility of the cured product and greatly improve the elongation at the time of cutting, while the alicyclic (meth) acrylic acid ester monomer makes the cured product tough. It has the effect of increasing the tensile strength. Therefore, by using both of them in combination, it is possible to achieve both appropriate flexibility and hardness.
 エーテル系(メタ)アクリル酸エステルモノマーとしては、2-ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、ノニルフェノールエチレンオキサイド変性アクリレート等を挙げることができる。 Examples of the ether-based (meth) acrylic acid ester monomer include 2-butoxyethyl acrylate, ethoxydiethylene glycol acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, and nonylphenolethylene oxide-modified acrylate.
 環状エーテル系アクリル酸エステルモノマーとしては、テトラヒドロフルフリルアクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート等を挙げることができる。 Examples of the cyclic ether-based acrylic acid ester monomer include tetrahydrofurfuryl acrylate, (2-methyl-2-ethyl-1,3-dioxolane-4-yl) methyl acrylate, and (3-ethyl-3-oxetanyl) methyl acrylate. Can be mentioned.
 芳香族系アクリル酸エステルモノマーとしては、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ノニルフェノールエチレンオキサイド変性アクリレート、ベンジルアクリレート等を挙げることができる。 Examples of the aromatic acrylic acid ester monomer include phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, nonylphenol ethylene oxide-modified acrylate, and benzyl acrylate.
 水酸基含有アクリル酸エステルモノマーとしては、1,4-シクロヘキサンジメタノールモノアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレート等を挙げることができる。 Examples of the hydroxyl group-containing acrylic acid ester monomer include 1,4-cyclohexanedimethanol monoacrylate, 2-hydroxybutyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxyethyl acrylate.
 カルボキシル基含有アクリル酸エステルモノマーとしては、ω-カルボキシ-ポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレート、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルヘキサヒドロフタル酸等を挙げることができる。 Examples of the carboxyl group-containing acrylic acid ester monomer include ω-carboxy-polycaprolactone monoacrylate, monohydroxyethyl phthalate acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl hexahydrophthalic acid and the like. it can.
 アクリルアミド系モノマーとしては、アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、ヒドロキシエチルアクリルアミド、アクロイルモルフォリン等を挙げることができる。 Examples of the acrylamide-based monomer include acrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, hydroxyethylacrylamide, acroylmorpholin and the like.
 第三級アミノ基含有(メタ)アクリル酸エステルモノマーとしては、メタクリル酸2-(ジメチルアミノ)エチル(DMAEMA)等を挙げることができる。 Examples of the tertiary amino group-containing (meth) acrylic acid ester monomer include 2- (dimethylamino) ethyl methacrylate (DMAEMA) and the like.
 イミド系(メタ)アクリル酸エステルモノマーとしては、N-アクリロイルオキシエチルヘキサヒドロフタルイミド、N-アクリロイルオキシエチルテトラヒドロフタルイミド等を挙げることができる。 Examples of the imide-based (meth) acrylic acid ester monomer include N-acryloyloxyethyl hexahydrophthalimide and N-acryloyloxyethyl tetrahydrophthalimide.
 グリシジル基含有(メタ)アクリル酸エステルモノマーとしては、アクリル酸グリシジル、メタクリル酸グリシジル、4-ヒドロキシブチルアクリレートグリシジルエーテル等を挙げることができる。 Examples of the glycidyl group-containing (meth) acrylic acid ester monomer include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether and the like.
 リン酸基含有(メタ)アクリル酸エステルモノマーとしては、2-メタクロイロキシエチルアシッドホスフェート等を挙げることができる。 Examples of the phosphoric acid group-containing (meth) acrylic acid ester monomer include 2-metacloyloxyethyl acid phosphate and the like.
 これらの中でも、色調変化に悪影響がほとんどなく、硬化に伴う色変化の識別性に優れる光硬化性組成物を得ることができるという観点からは、脂肪族アクリル酸エステルモノマーと脂環式アクリル酸エステルモノマー、芳香族系アクリル酸エステルモノマー、アクリルアミド系モノマーが好ましい。 Among these, an aliphatic acrylic acid ester monomer and an alicyclic acrylic acid ester can be obtained from the viewpoint that a photocurable composition having almost no adverse effect on color change and having excellent distinguishability of color change due to curing can be obtained. Monomers, aromatic acrylic acid ester monomers, and acrylamide-based monomers are preferable.
 また、光硬化性組成物の保管安定性と樹脂への密着向上の観点からは、単官能高極性モノマーを用いることが好ましく、単官能高極性モノマーの中でもアクリルアミド系モノマー、第三級アミノ基含有(メタ)アクリル酸エステルモノマー、イミド系(メタ)アクリル酸エステルモノマー等の窒素含有モノマーが好ましい。特にポリイミドフィルムへの密着性を高める観点からは、イミド系(メタ)アクリル酸エステルモノマーが好ましい。また、金属への接着性向上の観点からは、リン酸基含有(メタ)アクリル酸エステルモノマー、水酸基含有アクリル酸エステルモノマー、カルボキシル基含有アクリル酸エステルモノマーが好ましい。 Further, from the viewpoint of storage stability of the photocurable composition and improvement of adhesion to the resin, it is preferable to use a monofunctional highly polar monomer, and among the monofunctional highly polar monomers, an acrylamide-based monomer and a tertiary amino group are contained. Nitrogen-containing monomers such as (meth) acrylic acid ester monomer and imide-based (meth) acrylic acid ester monomer are preferable. In particular, an imide-based (meth) acrylic acid ester monomer is preferable from the viewpoint of enhancing the adhesion to the polyimide film. Further, from the viewpoint of improving the adhesiveness to the metal, a phosphoric acid group-containing (meth) acrylic acid ester monomer, a hydroxyl group-containing acrylic acid ester monomer, and a carboxyl group-containing acrylic acid ester monomer are preferable.
 脂環式(メタ)アクリル酸エステルモノマーと、脂肪族(メタ)アクリル酸エステルモノマーの両方を含む場合は、脂環式(メタ)アクリル酸エステルモノマーと、脂肪族(メタ)アクリル酸エステルモノマーの質量比は、4:1~1:4であることが好ましい。脂環式(メタ)アクリル酸エステルモノマーと、脂肪族(メタ)アクリル酸エステルモノマーの両方を使用することで、組成物の色調変化への悪影響を少なくでき、金属接着性を高めることができる。 When both an alicyclic (meth) acrylic acid ester monomer and an aliphatic (meth) acrylic acid ester monomer are contained, the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer The mass ratio is preferably 4: 1 to 1: 4. By using both the alicyclic (meth) acrylic acid ester monomer and the aliphatic (meth) acrylic acid ester monomer, the adverse effect on the color tone change of the composition can be reduced and the metal adhesiveness can be enhanced.
 単官能脂肪族(メタ)アクリル酸エステルモノマーが脂環式(メタ)アクリル酸エステルモノマーの4質量倍を超える場合には、光硬化性組成物の硬化体を剥したときに糊残りが発生するおそれがあり、接着強さ、防湿性が不十分となるおそれがある。逆に4分の1未満の場合には、前記硬化体が硬くなり易く、さらに経時変化で必要以上に接着性が増大し剥離が困難になるおそれがある。そして、脂環式(メタ)アクリル酸エステルモノマーと、脂肪族(メタ)アクリル酸エステルモノマーの質量比が3:2~1:4の範囲とすることにより、適度な密着性を有し、切断時伸びが大きく、剥離し易い硬化体(例えば、シール材)を得ることができる。 When the monofunctional aliphatic (meth) acrylic acid ester monomer exceeds 4 times by mass of the alicyclic (meth) acrylic acid ester monomer, adhesive residue is generated when the cured product of the photocurable composition is peeled off. There is a risk that the adhesive strength and moisture resistance will be insufficient. On the other hand, if it is less than one-fourth, the cured product tends to become hard, and the adhesiveness may increase more than necessary due to aging, making peeling difficult. Then, by setting the mass ratio of the alicyclic (meth) acrylic acid ester monomer to the aliphatic (meth) acrylic acid ester monomer in the range of 3: 2 to 1: 4, it has appropriate adhesion and can be cut. A cured product (for example, a sealing material) having a large time elongation and easy peeling can be obtained.
 多官能アクリルモノマー:
 多官能アクリルモノマーも光ラジカル重合開始剤により硬化する成分である。光硬化性組成物の硬化体をガスケット、シール材、又は封止材等として用いる場合には、硬さの調整や、表面タックの低減等の目的で少量配合することができるがこれだけを必須成分とすることは困難であり、単官能アクリルモノマーの補助成分として加えることができる。このような多官能アクリルモノマーとしては、多官能脂肪族(メタ)アクリル酸エステルモノマー、多官能高極性モノマー、環化重合性(メタ)アクリルモノマー等を挙げることができる。
Polyfunctional acrylic monomer:
The polyfunctional acrylic monomer is also a component that is cured by the photoradical polymerization initiator. When the cured product of the photocurable composition is used as a gasket, a sealing material, a sealing material, etc., it can be blended in a small amount for the purpose of adjusting the hardness and reducing the surface tack, but only this is an essential component. It is difficult to do so, and it can be added as an auxiliary component of the monofunctional acrylic monomer. Examples of such a polyfunctional acrylic monomer include a polyfunctional aliphatic (meth) acrylic acid ester monomer, a polyfunctional highly polar monomer, and a cyclized polymerizable (meth) acrylic monomer.
 前記多官能脂肪族(メタ)アクリル酸エステルモノマーとしては、2官能脂肪族(メタ)アクリル酸エステルモノマーが挙げられ、2官能脂肪族(メタ)アクリル酸エステルモノマーの具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート等が挙げられる。スチレン系熱可塑性エラストマーを添加する場合には、そのソフトセグメントとの相溶性が比較的高いことから、両末端に反応性基を有する2官能脂肪族炭化水素系ジ(メタ)アクリル酸エステルモノマーを用いることが好ましい。 Examples of the polyfunctional aliphatic (meth) acrylic acid ester monomer include a bifunctional aliphatic (meth) acrylic acid ester monomer, and specific examples of the bifunctional aliphatic (meth) acrylic acid ester monomer include ethylene glycol di. (Meta) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, glycerin di (meth) acrylate, tricyclodecanedimethanol di. (Meta) acrylate, neopentyl glycol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di ( Examples thereof include meta) acrylate and 1,10-decanediol di (meth) acrylate. When a styrene-based thermoplastic elastomer is added, since the compatibility with the soft segment is relatively high, a bifunctional aliphatic hydrocarbon-based di (meth) acrylic acid ester monomer having reactive groups at both ends is used. It is preferable to use it.
 前記多官能高極性モノマーとしては、極性基を有する(メタ)アクリル酸エステルモノマーとビスマレイミドが含まれる。極性基を有する(メタ)アクリル酸エステルモノマーの具体的には、エトキシ化イソシアヌル酸ジ/トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、2-メタクロイロキシエチルアシッドホスフェート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物等が挙げられる。密着性向上の観点から、トリス(2-ヒドロキシエチル)イソシアヌレート系(メタ)アクリル酸エステルモノマーが好ましい。 The polyfunctional high-polarity monomer includes a (meth) acrylic acid ester monomer having a polar group and bismaleimide. Specific examples of the (meth) acrylic acid ester monomer having a polar group include di / tri (meth) acrylate ethoxylated isocyanurate, ε-caprolactone-modified tris- (2-acryloxyethyl) isocyanurate, and 2-methacryoxy. Examples thereof include ethyl acid phosphate, 2-hydroxy-3-acryloyloxypropyl methacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, and bisphenol A diglycidyl ether acrylic acid adduct. From the viewpoint of improving adhesion, a tris (2-hydroxyethyl) isocyanurate-based (meth) acrylic acid ester monomer is preferable.
 また、ビスマレイミドの具体的には、4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、1,6-ビス(マレイミド)ヘキサン、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサンが挙げられる。これらの中でも光硬化性組成物の相溶性や光硬化性を阻害しにくい点から、1,6-ビス(マレイミド)ヘキサン、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサンなどの脂肪族ビスマレイミドが好ましい。 Specific examples of bismaleimide include 4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 2,2-bis [4- (4-maleimide phenoxy) phenyl] propane, and bis. Examples thereof include (3-ethyl-5-methyl-4-maleimidephenyl) methane, 1,6-bis (maleimide) hexane, and 1,6'-bismaleimide- (2,2,4-trimethyl) hexane. Among these, 1,6-bis (maleimide) hexane and 1,6'-bismaleimide- (2,2,4-trimethyl) hexane are difficult to inhibit the compatibility and photocurability of the photocurable composition. Such as aliphatic bismaleimide is preferable.
 または、環化重合性(メタ)アクリルモノマーとして、α-アリルオキシメチルアクリレート(AOMA)やα-ヒドロキシメチルアクリレートの2量体(RHMA-D)などが挙げられる。これらは、低粘度であることから光硬化性組成物の粘度調整に用いることができ、硬化により3次元的な架橋密度を高めすぎないため、適度な柔軟性を維持しながら、硬さや耐熱性、強靭性を高めることができる。上記の中でも、塗布性の改善および耐熱性向上、ガラスなどの接着性向上の観点からα-アリルオキシメチルアクリレートが好ましい。 Alternatively, examples of the cyclized polymerizable (meth) acrylic monomer include α-allyloxymethyl acrylate (AOMA) and α-hydroxymethyl acrylate dimer (RHMA-D). Since these have a low viscosity, they can be used for adjusting the viscosity of a photocurable composition, and since the three-dimensional crosslink density is not excessively increased by curing, they have hardness and heat resistance while maintaining appropriate flexibility. , Can increase toughness. Among the above, α-allyloxymethyl acrylate is preferable from the viewpoint of improving coatability, heat resistance, and adhesiveness of glass and the like.
 光硬化性組成物の硬化体をガスケット、シール材又は封止材等として用いる場合に2官能以上のアクリルモノマーを配合する場合には、光硬化性組成物又はその硬化体中に5質量%以下となるように含有されることが好ましく、1質量%以下であることがより好ましい。多量に添加すると硬度の上昇や、被着体への接着性の低下が懸念されるためである。 When a cured product of a photocurable composition is used as a gasket, a sealing material, a sealing material, etc. and a bifunctional or higher acrylic monomer is blended, 5% by mass or less is contained in the photocurable composition or the cured product thereof. It is preferably contained so as to be, and more preferably 1% by mass or less. This is because if a large amount is added, there is a concern that the hardness will increase and the adhesiveness to the adherend will decrease.
 アクリルオリゴマー:
 アクリルオリゴマーは、主に重量平均分子量が1000~5万の範囲で(メタ)アクリル基を有する化合物である。アクリルオリゴマーには前記アクリルモノマーを所定の分子量になるまで重合したオリゴマーや、アクリル以外の主鎖の末端や側鎖に(メタ)アクリル基を有するオリゴマーを含む。例えば、ポリブタジエン系アクリルオリゴマー、アクリルアミド系オリゴマー、ポリイソプレン系アクリルオリゴマー、ポリウレタン系アクリルオリゴマー、ポリエステル系アクリルオリゴマー、ポリエーテル系アクリルオリゴマー、エポキシエステル系アクリルオリゴマー、ビスフェノール系アクリルオリゴマー、又はノボラック型アクリルオリゴマー等が挙げられる。
Acrylic oligomer:
The acrylic oligomer is a compound having a (meth) acrylic group mainly having a weight average molecular weight in the range of 1,000 to 50,000. The acrylic oligomer includes an oligomer obtained by polymerizing the acrylic monomer to a predetermined molecular weight, and an oligomer having a (meth) acrylic group at the end or side chain of a main chain other than acrylic. For example, polybutadiene-based acrylic oligomer, acrylamide-based oligomer, polyisoprene-based acrylic oligomer, polyurethane-based acrylic oligomer, polyester-based acrylic oligomer, polyether-based acrylic oligomer, epoxy ester-based acrylic oligomer, bisphenol-based acrylic oligomer, novolak-type acrylic oligomer, etc. Can be mentioned.
 アクリルポリマー:
 アクリルポリマーは重量平均分子量が5万~500万の(メタ)アクリル基を有する化合物である。アクリルポリマーには前記アクリルモノマー又はアクリルオリゴマーを所定の分子量になるまで重合したポリマー、及びアクリル化合物以外の化合物に(メタ)アクリル基を付加したポリマーを含む。例えば、前者としては、アクリル酸ブチルを重合したホモポリマーが挙げられる。後者としては、ポリブタジエン、アクリルアミド、ポリイソプレン、ポリウレタン、ポリエステル、ポリエーテル、エポキシ骨格等を有する化合物に(メタ)アクリル基を付加した化合物が挙げられ、具体的にはポリブタジエン系アクリルポリマー、アクリルアミド系アクリルポリマー、ポリイソプレン系アクリルポリマー、ポリウレタン系アクリルポリマー、ポリエステル系アクリルポリマー、ポリエーテル系アクリルポリマー、エポキシエステル系アクリルポリマー、ビスフェノール系アクリルポリマー、又はノボラック型アクリルポリマー等が挙げられる。
Acrylic polymer:
Acrylic polymers are compounds having (meth) acrylic groups with a weight average molecular weight of 50,000 to 5 million. Acrylic polymers include polymers obtained by polymerizing the acrylic monomer or acrylic oligomer to a predetermined molecular weight, and polymers in which a (meth) acrylic group is added to a compound other than the acrylic compound. For example, the former includes a homopolymer obtained by polymerizing butyl acrylate. Examples of the latter include compounds having a (meth) acrylic group added to a compound having a polybutadiene, acrylamide, polyisoprene, polyurethane, polyester, polyether, epoxy skeleton and the like, and specifically, a polybutadiene-based acrylic polymer and an acrylamide-based acrylic. Examples thereof include polymers, polyisoprene-based acrylic polymers, polyurethane-based acrylic polymers, polyester-based acrylic polymers, polyether-based acrylic polymers, epoxy ester-based acrylic polymers, bisphenol-based acrylic polymers, and novolak-type acrylic polymers.
 アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーの合計の配合量は、光硬化性組成物の質量に対して50質量%~99質量%であることが好ましい。また、前記単官能アクリルモノマーの配合量は、アクリルモノマー、アクリルオリゴマー、アクリルポリマー、後述の熱可塑性エラストマーの合計質量に対して、10質量%~94質量%であることが好ましい。 The total amount of the acrylic monomer, the acrylic oligomer, and the acrylic polymer is preferably 50% by mass to 99% by mass with respect to the mass of the photocurable composition. The blending amount of the monofunctional acrylic monomer is preferably 10% by mass to 94% by mass with respect to the total mass of the acrylic monomer, the acrylic oligomer, the acrylic polymer, and the thermoplastic elastomer described later.
 スチレン系熱可塑性エラストマー:
 スチレン系熱可塑性エラストマー(スチレン系エラストマーともいう)は、必須成分ではない。しかし、スチレン系エラストマーは光硬化性組成物中ではアクリルモノマー又はアクリルオリゴマーに溶解させることができ、そのハードセグメントに起因して透明性を低下させることができる。このため、光硬化性組成物が透明な場合よりも色の変化を視認し易くできる。また、スチレン系エラストマーは、アクリルモノマー又はアクリルオリゴマーが硬化した後の硬化体の機械的強度を高めるとともにゴム弾性(柔軟性)を付与することができる。そして、圧縮永久ひずみを小さくすることができ、加えて透湿度を低くすることができる。
Styrene-based thermoplastic elastomer:
Styrene-based thermoplastic elastomers (also referred to as styrene-based elastomers) are not essential components. However, the styrene-based elastomer can be dissolved in an acrylic monomer or an acrylic oligomer in the photocurable composition, and the transparency can be lowered due to the hard segment thereof. Therefore, the color change can be easily recognized as compared with the case where the photocurable composition is transparent. Further, the styrene-based elastomer can increase the mechanical strength of the cured product after the acrylic monomer or the acrylic oligomer is cured and can impart rubber elasticity (flexibility). Then, the compression set can be reduced, and in addition, the moisture permeability can be reduced.
 スチレン系エラストマーの具体例としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-エチレン-エチレン-プロピレン-スチレンブロック共重合体(SEEPS)、及びエポキシ変性スチレン系エラストマー等のこれらの変性体が挙げられる。 Specific examples of the styrene-based elastomer include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene-butylene-styrene block copolymer (SEBS), and the like. Styrene-ethylene-propylene-styrene block copolymer (SEPS), styrene-isobutylene-styrene block copolymer (SIBS), styrene-ethylene-ethylene-propylene-styrene block copolymer (SEEPS), and epoxy-modified styrene-based Examples thereof include these modified products such as styrene.
 上記スチレン系エラストマーのうち、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン/イソプレン共重合体-スチレンブロック共重合体等のソフトセグメントに不飽和結合を有するスチレン系エラストマーは、ソフトセグメントに不飽和結合を有しないスチレン系エラストマーを用いた場合に比べて、その硬化体の圧縮永久ひずみを小さくすることができる。そのため、硬化体をガスケット、シール材又は封止材等として用いる場合には、シール性を長期間維持することができる。また、硬化体の表面のタックを低減することができ、無機粉体を添加した際に圧縮永久ひずみを悪化し難くすることができる。 Among the above styrene-based elastomers, soft products such as styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), and styrene-butadiene / isoprene copolymer-styrene block copolymer. A styrene-based elastomer having an unsaturated bond in the segment can reduce the compressive permanent strain of the cured product as compared with the case where a styrene-based elastomer having no unsaturated bond in the soft segment is used. Therefore, when the cured product is used as a gasket, a sealing material, a sealing material, or the like, the sealing property can be maintained for a long period of time. In addition, the tack on the surface of the cured product can be reduced, and the compression set can be made less likely to deteriorate when the inorganic powder is added.
 また、上記スチレン系エラストマーのうち、エポキシ変性スチレン系エラストマー又はソフトセグメントに不飽和結合を有するスチレン系エラストマーを用いた場合は、エポキシ変性スチレン系エラストマー又はソフトセグメントに不飽和結合を有するスチレン系エラストマーを含まない場合に比べ、硬化後に得られる硬化体の圧縮永久ひずみを小さくすることができ、長期間使用におけるシール性が向上する。また、エポキシ変性スチレン系エラストマー又はソフトセグメントに不飽和結合を有するスチレン系エラストマーを含むことにより、硬化体の表面のタックを低減することができ、無機粉体を添加しても圧縮永久ひずみが悪化し難くすることができる。 When a styrene-based elastomer having an unsaturated bond in the epoxy-modified styrene-based elastomer or the soft segment is used among the above-mentioned styrene-based elastomers, the styrene-based elastomer having an unsaturated bond in the epoxy-modified styrene-based elastomer or the soft segment is used. Compared with the case where it is not contained, the compression set of the cured product obtained after curing can be reduced, and the sealing property during long-term use is improved. Further, by including the epoxy-modified styrene-based elastomer or the styrene-based elastomer having an unsaturated bond in the soft segment, the tack on the surface of the cured product can be reduced, and the compression set deteriorates even if an inorganic powder is added. It can be difficult to do.
 さらに、上記スチレン系エラストマーは、高分子量スチレン系エラストマーを含むことが好ましい。ここで、高分子量スチレン系エラストマーとは、重量平均分子量で20万以上であるものを言う。この高分子量スチレン系エラストマーの重量平均分子量は、25万以上であることが好ましく、40万以上であることがより好ましい。上限は特にないが、例えば100万以下とすることができる。重量平均分子量は、GPC法(Gel Permeation Chromatography;ゲル浸透クロマトグラフィー)を用い、かつ、標準ポリスチレンにより測定された校正曲線(検量線)を基に測定することができる。 Further, the styrene-based elastomer preferably contains a high molecular weight styrene-based elastomer. Here, the high molecular weight styrene-based elastomer means an elastomer having a weight average molecular weight of 200,000 or more. The weight average molecular weight of this high molecular weight styrene elastomer is preferably 250,000 or more, and more preferably 400,000 or more. There is no particular upper limit, but it can be, for example, 1 million or less. The weight average molecular weight can be measured by using the GPC method (Gel Permeation Chromatography) and based on the calibration curve (calibration curve) measured by standard polystyrene.
 高分子量スチレン系エラストマーを含むことにより、重量平均分子量が20万未満の低分子量スチレン系エラストマーを用いた場合に比べて、圧縮永久ひずみを小さくすることができ、硬化体をガスケット、シール材又は封止材として用いる場合にシール性を長期間維持することができる。また、高分子量スチレン系エラストマーを含むことにより、可塑剤のブリードアウトを抑制できるため、可塑剤を多めに添加して柔軟性の高い硬化体を得ることができる。 By including the high molecular weight styrene elastomer, the compression set can be reduced as compared with the case of using the low molecular weight styrene elastomer having a weight average molecular weight of less than 200,000, and the cured product can be sealed with a gasket, a sealing material or a sealant. When used as a stopper, the sealing property can be maintained for a long period of time. Further, since the bleed-out of the plasticizer can be suppressed by containing the high molecular weight styrene-based elastomer, a cured product having high flexibility can be obtained by adding a large amount of the plasticizer.
 スチレン系エラストマーを配合する場合の添加量は、光硬化性組成物中1~60質量%であることが好ましく、2~45質量%であることがより好ましい。スチレン系エラストマーの配合が1質量%未満である場合には、その硬化体をガスケット、シール材又は封止材等として用いる場合に機械的強度が低くなるおそれがある。一方で60質量%を超えると、光硬化性組成物の粘度が高まり易い傾向がある。35質量%以下であれば流動性が好適であり塗布し易い。 When the styrene-based elastomer is blended, the amount added is preferably 1 to 60% by mass, more preferably 2 to 45% by mass in the photocurable composition. If the content of the styrene-based elastomer is less than 1% by mass, the mechanical strength may be lowered when the cured product is used as a gasket, a sealing material, a sealing material, or the like. On the other hand, if it exceeds 60% by mass, the viscosity of the photocurable composition tends to increase. If it is 35% by mass or less, the fluidity is suitable and it is easy to apply.
 但し、高分子量スチレン系エラストマーの場合の添加量は、光硬化性組成物中1~7質量%であることが好ましく、2~5質量%であることがより好ましい。高分子量スチレン系エラストマーの配合が1質量%未満である場合には、機械的強度が低くなるおそれがある。一方で10質量%を超えると、光硬化性組成物の粘度が高まり易い傾向がある。 However, in the case of the high molecular weight styrene elastomer, the amount added is preferably 1 to 7% by mass, more preferably 2 to 5% by mass in the photocurable composition. If the content of the high molecular weight styrene elastomer is less than 1% by mass, the mechanical strength may be lowered. On the other hand, if it exceeds 10% by mass, the viscosity of the photocurable composition tends to increase.
 上記高分子量スチレン系エラストマーの中でもスターポリマーと言われる所定の分岐鎖(典型的にはコアから放射状に伸びる分岐鎖)を備える高分子量スチレン系エラストマーを用いることが好ましい。このような所定の分岐鎖を備える高分子量スチレン系エラストマーは、直鎖型の高分子量スチレン系エラストマーと比較して、主鎖どうし絡まりを抑制することができ、比較的高濃度に配合しても光硬化性組成物の粘度の上昇を抑制することができる。具体的にはこの高分子量スチレン系エラストマーを光硬化性組成物中に5~20質量%程度の濃度で配合することができる。 Among the above high molecular weight styrene elastomers, it is preferable to use a high molecular weight styrene elastomer having a predetermined branched chain (typically a branched chain extending radially from the core) called a star polymer. The high molecular weight styrene elastomer having such a predetermined branched chain can suppress the entanglement of the main chains as compared with the linear high molecular weight styrene elastomer, and even if it is blended in a relatively high concentration. It is possible to suppress an increase in the viscosity of the photocurable composition. Specifically, this high molecular weight styrene-based elastomer can be blended in the photocurable composition at a concentration of about 5 to 20% by mass.
 光ラジカル発生剤:
 光ラジカル発生剤は、ラジカルを生じさせて、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーを光ラジカル重合反応で硬化させるものである。光ラジカル発生剤には光ラジカル重合開始剤を含む。
Photoradical generator:
The photoradical generator is one that generates radicals and cures an acrylic monomer, an acrylic oligomer, and an acrylic polymer by a photoradical polymerization reaction. The photoradical generator includes a photoradical polymerization initiator.
 光ラジカル重合開始剤としては、ベンゾフェノン系、チオキサントン系、アセトフェノン系、アシルフォスフィン系、オキシムエステル系、アルキルフェノン系、分子内水素引き抜き型等の光重合開始剤を挙げることができる。これらの中でも、特に色度差を高めやすいという観点からアルキフェノン系開始剤またはオキシムエステル系開始剤を用いることが好ましい。 Examples of the photoradical polymerization initiator include benzophenone-based, thioxanthone-based, acetophenone-based, acylphosphine-based, oxime ester-based, alkylphenone-based, and intramolecular hydrogen abstraction-type photopolymerization initiators. Among these, it is preferable to use an alkiferone-based initiator or an oxime ester-based initiator from the viewpoint of easily increasing the chromaticity difference.
 アルキルフェノン系としては、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルーフェニルケトン、2-ヒドロキシ-2-メチル-メチルプロパノン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチルフェノン、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等が挙げられる。 As the alkylphenone system, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl-phenylketone, 2-hydroxy-2-methyl-methylpropanol, 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-methylpropanone, 2-hydroxy-1-(4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one, 2-methyl- 1- [4- (Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- (dimethylamino) -4'-morpholinobutylphenone, 2-dimethylamino-2- (4-) Examples thereof include methyl-benzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1-one.
 アシルフォスフィン系(アシルフォスフィンオキサイド系)としては、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド等が挙げられる。 Examples of the acylphosphine type (acylphosphine oxide type) include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and the like.
 分子内水素引き抜き型としては、ベンゾイル蟻酸メチル、オキシフェニル酢酸-2-2-オキソ-2-フェニルアセトキシエトキシエチルエステルとオキシフェニル酢酸-2-2-ヒドロキシエトキシエチルエステルの混合物等が挙げられる。 Examples of the intramolecular hydrogen abstraction type include a mixture of methyl benzoylate, oxyphenylacetic acid-2-oxo-2-phenylacetoxyethoxyethyl ester and oxyphenylacetic acid-2-hydroxyethoxyethyl ester.
 オキシムエステル系(オキシフェニル酢酸エステル系)としては、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセトオキシム)等が挙げられる。 Examples of the oxime ester type (oxyphenyl acetate type) include 1- [4- (phenylthio) phenyl] octane-1,2-dione = 2- (O-benzoyloxime) and 1- [9-ethyl-6- ( 2-Methylbenzoyl) -9H-carbazole-3-yl] Ethanone-1- (O-acetooxime) and the like can be mentioned.
 光ラジカル重合開始剤の添加量は、単官能および2官能以上を含めた全てのアクリルモノマー及びアクリルオリゴマーの合計量100質量部に対して、0.1~10質量部が好ましく、1~8質量部がより好ましい。0.1質量部よりも少ないと重合が不十分で硬化が終了しない場合もあり得るからであり、10質量部を超えて加えても重合度を高める効果がそれほど増さないからである。 The amount of the photoradical polymerization initiator added is preferably 0.1 to 10 parts by mass, preferably 1 to 8 parts by mass, based on 100 parts by mass of the total amount of all acrylic monomers and acrylic oligomers including monofunctional and bifunctional or higher. The part is more preferable. This is because if it is less than 0.1 part by mass, the polymerization may be insufficient and the curing may not be completed, and even if it is added in excess of 10 parts by mass, the effect of increasing the degree of polymerization does not increase so much.
 ロイコ染料:
 ロイコ染料は、一般に酸との接触により発色する化合物であって、本発明では光硬化性組成物の硬化後に発色して光硬化性組成物の硬化の終了を確認させる機能を奏する。ロイコ染料の具体例としては、インドリルフタリド類、ジフェニルメタンフタリド類、モノビニルフタリド類、ジビニルフタリド類、ジフェニルメタンアザフタリド類、フェニルインドリルアザフタリド類を含むフタリド類、フルオラン類、チアジン類、スチリノキノリン類、ラクトン類、ラクタム類、トリフェニルメタン類等の種類が挙げられる。
Leuco dye:
The leuco dye is a compound that generally develops color upon contact with an acid, and in the present invention, it has a function of developing color after curing of the photocurable composition to confirm the completion of curing of the photocurable composition. Specific examples of leuco dyes include indrill phthalides, diphenylmethane phthalides, monovinyl phthalides, divinyl phthalides, diphenylmethane azaphthalides, phthalides including phenyl indolyl azaphthalides, fluorans, and the like. Types such as thiazines, stylinoquinolins, lactones, lactams, and triphenylmethanes can be mentioned.
 フタリド類としては、3,3ビス[4-(ジメチルアミノ)フェニル]フタリド、3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド、3-(4-ジエチルアミノフェニル)-3-(1-エチル-2-メチルインドール-3-イル)フタリド、3-(4-ジエチルアミノ-2-エトキシフェニル)-4-アザフタリド、3,3-ビス(1-ブチル-2-メチル-1H-インドール-3-イル)フタリド、等が挙げられる。 Phthalides include 3,3 bis [4- (dimethylamino) phenyl] phthalide, 3,3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide, 3- (4-diethylaminophenyl) -3. -(1-Ethyl-2-methylindole-3-yl) phthalide, 3- (4-diethylamino-2-ethoxyphenyl) -4-azaphthalide, 3,3-bis (1-butyl-2-methyl-1H-) Indole-3-yl) phthalide, etc. can be mentioned.
 フルオラン類としては、2’-メチル-6’-(N-p-トリル-Nエチルアミノ)スピロ[イソベンゾフラン-1(3H),9’-[9H]キサンテン]-3-オン、1,3-ジメチル-6-ジエチルアミノフルオラン、2-クロロ-3-メチル-6-ジメチルアミノフルオラン、3-ジブチルアミノ-6-メチル-7-アニリノフルオラン、3-ジエチルアミノ-6-メチル-7-アニリノフルオラン、3-ジエチルアミノ-6-メチル-7-キシリジノフルオラン、2-(2-クロロアニリノ)-6-ジブチルアミノフルオラン、3,6-ジメトキシフルオラン、3,6-ジ-n-ブトキシフルオラン、1,2-ベンツ-6-ジエチルアミノフルオラン、1,2-ベンツ-6-ジブチルアミノフルオラン、1,2-ベンツ-6-エチルイソアミルアミノフルオラン、2-メチル-6-(N-p-トリル-N-エチルアミノ)フルオラン、2-(N-フェニル-N-メチルアミノ)-6-(N-p-トリル-N-エチルアミノ)フルオラン、2-(3’-トリフルオロメチルアニリノ)-6-ジエチルアミノフルオラン、3-クロロ-6-シクロヘキシルアミノフルオラン、2-メチル-6-シクロヘキシルアミノフルオラン、3-ジ(n-ブチル)アミノ-6-メトキシ-7-アニリノフルオラン、3,6-ビス(ジフェニルアミノ)フルオラン、メチル-3’,6’-ビスジフェニルアミノフルオラン、クロロ-3’,6’-ビスジフェニルアミノフルオランなどが挙げられる。 Fluolans include 2'-methyl-6'-(Np-tolyl-N ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one, 1,3. -Dimethyl-6-diethylaminofluorane, 2-chloro-3-methyl-6-dimethylaminofluorane, 3-dibutylamino-6-methyl-7-anilinofluorane, 3-diethylamino-6-methyl-7- Anilinofluolane, 3-diethylamino-6-methyl-7-xylidinofluorane, 2- (2-chloroanilino) -6-dibutylaminofluorane, 3,6-dimethoxyfluorane, 3,6-di-n -Butoxyfluolane, 1,2-benz-6-diethylaminofluorane, 1,2-benz-6-dibutylaminofluorane, 1,2-benz-6-ethylisoamylaminofluorane, 2-methyl-6- (Np-trill-N-ethylamino) fluorane, 2- (N-phenyl-N-methylamino) -6- (Np-trill-N-ethylamino) fluorane, 2- (3'-tri Fluoromethylanilino) -6-diethylaminofluorane, 3-chloro-6-cyclohexylaminofluorane, 2-methyl-6-cyclohexylaminofluorane, 3-di (n-butyl) amino-6-methoxy-7- Examples thereof include anilinofluorane, 3,6-bis (diphenylamino) fluorane, methyl-3', 6'-bisdiphenylaminofluorane, chloro-3', 6'-bisdiphenylaminofluorane and the like.
 チアジン類としては、ベンゾイルロイコメチレンブルーなどが挙げられる。 Examples of thiazines include benzoyl leucomethylene blue.
 ラクタム類としては、ローダミン-B-アニリノラクタム、ローダミン-(p-ニトロアニリノ)ラクタム、ローダミン-(o-クロロアニリノ)ラクタム、ローダミン-(o-ニトロアニリノ)ラクタム等が挙げられる。 Examples of lactams include rhodamine-B-anilinolactam, rhodamine- (p-nitroanilino) lactam, rhodamine- (o-chloroanilino) lactam, and rhodamine- (o-nitroanilino) lactam.
 トリフェニルメタン類としてはロイコクリスタルバイオレット(LCV)等が挙げられる。 Examples of triphenylmethanes include leuco crystal violet (LCV).
 また、さらにラクトン類としてはクリスタルバイオレットのラクトン誘導体であるクリスタルバイオレットラクトン(CVL)、ジアザローダミンラクトン誘導体等が挙げられる。 Further, examples of the lactones include crystal violet lactone (CVL), which is a lactone derivative of crystal violet, and a diazarhodamine lactone derivative.
 硬化後に色味が変化し難く、所定時間経過後であっても硬化の有無を識別性に優れるという観点から、これらの中でも、ラクトン環構造を備える各種ラクトン類、フタリド類、フルオラン類が好ましい。 Among these, various lactones, phthalides, and fluorans having a lactone ring structure are preferable from the viewpoint that the color does not easily change after curing and the presence or absence of curing is excellent in distinguishability even after a lapse of a predetermined time.
 ロイコ染料の添加量は、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマー100質量部に対して0.001~2質量部とすることができ、0.005~1質量部であることが好ましい。0.001~0.1質量部とすれば、0.5mm以上の厚さで硬化するときに、硬化の有無の識別性を高めることができる。また、0.1~2質量部とすると、光硬化性組成物の硬化体の機械物性を高めることができる。ロイコ染料の添加量としてやや高濃度の領域において機械物性を高める効果が見られることは、ロイコ染料がラジカル反応を促進しているためであると思われる。 The amount of the leuco dye added can be 0.001 to 2 parts by mass with respect to 100 parts by mass of the acrylic monomer, the acrylic oligomer, and the acrylic polymer, and is preferably 0.005 to 1 part by mass. If it is 0.001 to 0.1 parts by mass, it is possible to enhance the distinctiveness of the presence or absence of curing when curing with a thickness of 0.5 mm or more. Further, when the content is 0.1 to 2 parts by mass, the mechanical properties of the cured product of the photocurable composition can be enhanced. It is considered that the effect of enhancing the mechanical properties is observed in the region where the amount of the leuco dye added is slightly high, because the leuco dye promotes the radical reaction.
 可塑剤:
 光硬化性組成物には必要により可塑剤を添加することが好ましい。可塑剤を添加することで硬化体に高い柔軟性を付与することができ、ガスケット又はシール材として用いる場合に好適である。可塑剤としては、スチレン系エラストマーを添加する場合にはそのソフトセグメントと相溶するものが好ましい。可塑剤の具体例としては、パラフィン系オイル、オレフィン系オイル、ナフテン系オイル、エステル系可塑剤が挙げられ、エステル系可塑剤の具体例としては、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル、ポリエステル、リン酸エステル、クエン酸エステル、エポキシ化植物油、セバシン酸エステル、アゼラシン酸エステル、マレイン酸エステル、安息香酸エステル等が挙げられる。また、前記スチレン系エラストマーを添加する場合には、これらの中でもパラフィン系オイルが好ましく、パラフィン系オイルを用いればスチレン系エラストマーのハードセグメントの物理架橋による伸長性改善の効果の低減が小さく、硬化体の柔軟性の向上と圧縮永久ひずみの改善に寄与する。
Plasticizer:
It is preferable to add a plasticizer to the photocurable composition if necessary. High flexibility can be imparted to the cured product by adding a plasticizer, which is suitable when used as a gasket or a sealing material. When a styrene-based elastomer is added, the plasticizer is preferably one that is compatible with the soft segment thereof. Specific examples of the plasticizer include paraffin-based oil, olefin-based oil, naphthen-based oil, and ester-based plasticizer, and specific examples of the ester-based plasticizer include phthalic acid ester, adipic acid ester, and trimellitic acid ester. , Polyester, phosphoric acid ester, citric acid ester, epoxidized vegetable oil, sebacic acid ester, azelacinic acid ester, maleic acid ester, benzoic acid ester and the like. Further, when the styrene-based elastomer is added, paraffin-based oil is preferable among these, and if paraffin-based oil is used, the effect of improving the extensibility by physical cross-linking of the hard segment of the styrene-based elastomer is small, and the cured product is cured. Contributes to the improvement of flexibility and compression set.
 可塑剤は、アクリルモノマー及びアクリルオリゴマー100質量部に対して30質量部以下であることが好ましい。30質量部を超えると硬化体から可塑剤がブリードアウトするおそれが高まる。 The amount of the plasticizer is preferably 30 parts by mass or less with respect to 100 parts by mass of the acrylic monomer and the acrylic oligomer. If it exceeds 30 parts by mass, the risk of the plasticizer bleeding out from the cured product increases.
 チキソ性付与剤:
 光硬化性組成物にはチキソ性付与剤を添加することが好ましい。チキソ性を高めることにより、塗布した光硬化性組成物の形状維持性が向上する。従って、光硬化性組成物の塗布時の液だれを抑制して、塗布した光硬化性組成物の形状維持性を向上させることができる。例えば、ディスペンサを用いて光硬化性組成物を立体物に形成させた場合に、光硬化性組成物を塗布した形状のまま硬化させることができるため、硬化体をガスケット材料または封止材として用いる場合に好適である。
Thixotropy-imparting agent:
It is preferable to add a thixotropic agent to the photocurable composition. By increasing the thixotropic property, the shape retention of the applied photocurable composition is improved. Therefore, it is possible to suppress dripping during application of the photocurable composition and improve the shape retention of the applied photocurable composition. For example, when the photocurable composition is formed into a three-dimensional object using a dispenser, it can be cured in the form in which the photocurable composition is applied, so that the cured product is used as a gasket material or a sealing material. Suitable for cases.
 チキソ性付与剤の具体例としては、シリカ、酸化アルミニウム、酸化チタンなどの無機粉体からなる無機系のチキソ性付与剤;水添ヒマシ油、アマイドワックス、カルボキシメチルセルロースなどの有機系のチキソ性付与剤などが挙げられるが、無機粉体が好ましく、その中でもシリカが好ましい。その理由は、無機粉体は所定の表面処理を行うことで光硬化性組成物の水素イオン指数(pH)を制御しやすく、無機粉体の中でもシリカはそうした表面処理済みのものを入手しやすいためである。シリカを用いる場合の添加量は、アクリルモノマー、アクリルオリゴマー、及びアクリルポリマー(可塑剤を含む場合は可塑剤も含めて)100質量部に対して2~10質量部が好ましい。2質量部よりも少ないとその添加効果が得られにくく、10質量部を超えると光硬化性組成物の粘度が増加しすぎたり、硬化体の硬度が硬くなりすぎたりするおそれがある。 Specific examples of the thixotropy-imparting agent include an inorganic thixotropy-imparting agent consisting of inorganic powders such as silica, aluminum oxide, and titanium oxide; Agents and the like can be mentioned, but inorganic powder is preferable, and silica is preferable among them. The reason is that it is easy to control the hydrogen ion index (pH) of the photocurable composition by performing a predetermined surface treatment on the inorganic powder, and it is easy to obtain such a surface-treated silica among the inorganic powders. Because. When silica is used, the amount added is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the acrylic monomer, the acrylic oligomer, and the acrylic polymer (including the plasticizer when the plasticizer is contained). If it is less than 2 parts by mass, the effect of addition is difficult to obtain, and if it exceeds 10 parts by mass, the viscosity of the photocurable composition may increase too much, or the hardness of the cured product may become too hard.
 前記表面処理をした無機粉体としては、無機粉体の水素イオン指数が3.0~11.0のものを用いることが好ましい。上記範囲であれば、ロイコ染料が硬化により所定の色変化をするため、硬化の有無の識別性に優れる。また、水素イオン指数は3.6~5.5であることがより好ましい。硬化の有無の識別性が高まるためである。なお、上記水素イオン指数は、純水に4質量%の濃度となる無機粉体を分散した分散液について測定される水素イオン指数である。 As the surface-treated inorganic powder, it is preferable to use an inorganic powder having a hydrogen ion index of 3.0 to 11.0. Within the above range, the leuco dye undergoes a predetermined color change due to curing, so that it is excellent in distinguishability of the presence or absence of curing. Further, the hydrogen ion index is more preferably 3.6 to 5.5. This is because the distinguishability of the presence or absence of curing is enhanced. The hydrogen ion index is a hydrogen ion index measured for a dispersion liquid in which an inorganic powder having a concentration of 4% by mass is dispersed in pure water.
 着色剤:
 光硬化性組成物には色変化をより鮮明にするために、白色の無機充填剤を添加することもできる。白色の無機充填剤を使用することで、小さい色変化をより鮮明にすることができ目視での識別性が高まる。また、明度の小さい塗布対象に光硬化性組成物を塗布した場合に硬化の有無の識別性が高まる。
Colorant:
A white inorganic filler can also be added to the photocurable composition in order to make the color change clearer. By using a white inorganic filler, small color changes can be made clearer and visually distinguishable. Further, when the photocurable composition is applied to a coating target having a low lightness, the discriminability of the presence or absence of curing is enhanced.
 着色剤の具体例としては酸化アルミニウム、酸化チタン、酸化マグネシウム、炭酸カルシウム、タルク、ベンナイト、モンモロリナイト等の無機化合物が挙げられる。これらの中でも酸化アルミニウムは、硬化の有無の識別性を高めるだけでなく、適度にチキソ性を付与することで塗布性を高める効果をも備えるため特に好ましい。
 また、着色剤の水素イオン指数は3.0~11.0であることが好ましく、3.6~5.5であることがより好ましい。この範囲であれば、チキソ性付与剤を加えたのと同様にチキソ性を付与する効果が得られ、チキソ性付与という相乗効果を期待できるためである。
Specific examples of the colorant include inorganic compounds such as aluminum oxide, titanium oxide, magnesium oxide, calcium carbonate, talc, bennite, and montmorolinite. Among these, aluminum oxide is particularly preferable because it not only enhances the distinctiveness of the presence or absence of curing, but also has the effect of enhancing the coatability by imparting appropriate thixotropy.
The hydrogen ion index of the colorant is preferably 3.0 to 11.0, and more preferably 3.6 to 5.5. This is because within this range, the effect of imparting thixotropy can be obtained in the same manner as when the thixotropic agent is added, and the synergistic effect of imparting thixotropy can be expected.
 その他の成分:
 光硬化性組成物は、本発明の趣旨を逸脱しない範囲で各種添加剤を適宜配合することができる。上記可塑剤やチキソ性付与剤の他、例えば、シランカップリング剤、重合禁止剤、消泡剤、光安定剤、酸化防止剤、帯電防止剤、熱伝導性充填剤、その他の機能性充填剤等が挙げられる。
Other ingredients:
Various additives can be appropriately blended in the photocurable composition as long as the gist of the present invention is not deviated. In addition to the above plasticizers and thixophilicity-imparting agents, for example, silane coupling agents, polymerization inhibitors, defoamers, light stabilizers, antioxidants, antistatic agents, thermal conductive fillers, and other functional fillers. And so on.
 光硬化性組成物の粘度は、25℃で10~1000Pa・sとすることが好ましく、20~300Pa・sとすることがより好ましい。10Pa・s未満の場合には、電子素子等に対してディスペンサで塗布する際に液だれが生じ易い。一方、1000Pa・sを超えると、ディスペンサによる塗布が困難となる。また、20Pa・s以上とするとことで塗布してから硬化するまでの間の形状保持性が高まり、200Pa・s以下とすることで、より細いニードルを用いた精細なディスペンスが可能となる。なお、上記粘度はB型回転粘度計を用い、回転速度10rpm、測定温度25℃で測定した値とすることができる。 The viscosity of the photocurable composition is preferably 10 to 1000 Pa · s at 25 ° C., more preferably 20 to 300 Pa · s. If it is less than 10 Pa · s, dripping is likely to occur when applying to an electronic element or the like with a dispenser. On the other hand, if it exceeds 1000 Pa · s, it becomes difficult to apply with a dispenser. Further, when it is set to 20 Pa · s or more, the shape retention from application to curing is enhanced, and when it is set to 200 Pa · s or less, fine dispensing using a finer needle becomes possible. The viscosity can be a value measured using a B-type rotational viscometer at a rotational speed of 10 rpm and a measurement temperature of 25 ° C.
 また、光硬化性組成物のチキソ比は、25℃で2以上とすることが好ましく、4以上とすることがより好ましい。チキソ比を2以上とすることで、光硬化性組成物を塗布した際に光硬化性組成物が硬化前に広がってしまうことを抑制することができることから封止材の他にシール材やガスケット等の用途として好ましい。また、チキソ比を4以上とすることで、特に粘度が低い光硬化性組成物であっても前記広がりを低減でき、より細いニードルを用いた精細な形状を形成可能となる。なお、上記チキソ比はB型回転粘度計を用い、測定温度25℃で回転速度1rpmおよび10rpmにおける粘度を測定し、その比(粘度(1rpm)/粘度(10rpm))として算出した値である。なお、チキソ比の上限は限定するものではないが、概ね20以下とすることが好ましい。 Further, the thixotropy of the photocurable composition is preferably 2 or more at 25 ° C., and more preferably 4 or more. By setting the thixotropy to 2 or more, it is possible to prevent the photocurable composition from spreading before curing when the photocurable composition is applied. Therefore, in addition to the sealing material, a sealing material or a gasket It is preferable as an application such as. Further, by setting the thixotropy to 4 or more, the spread can be reduced even in a photocurable composition having a particularly low viscosity, and a fine shape can be formed by using a finer needle. The thixotropy is a value calculated as a ratio (viscosity (1 rpm) / viscosity (10 rpm)) obtained by measuring viscosity at rotational speeds of 1 rpm and 10 rpm at a measurement temperature of 25 ° C. using a B-type rotational viscometer. The upper limit of the thixotropy ratio is not limited, but is preferably about 20 or less.
 光硬化性組成物の硬化体:
 光硬化性組成物は、光硬化反応により硬化させて接着剤、マスキング材、ガスケット、シール材、封止材等の種々の用途に利用することができる。例えば、電子基板等に設けた電子素子や、金属が露出した部分に光硬化性組成物を塗布して被着物を覆った後、紫外線照射により光硬化性組成物を光硬化させて用いればシール材とすることができる。なお、紫外線以外にも活性エネルギー線として、可視光線又は電子線等、(メタ)アクリロイル基を活性化するエネルギー線、及び光ラジカル重合開始剤においてラジカルを生成させるエネルギー線を利用できる。紫外線を照射する光源には例えば高圧水銀灯、メタルハライドランプ又は紫外線LED等を挙げることができる。
Cured product of photocurable composition:
The photocurable composition can be cured by a photocuring reaction and used for various purposes such as an adhesive, a masking material, a gasket, a sealing material, and a sealing material. For example, if an electronic element provided on an electronic substrate or the like or a portion where metal is exposed is coated with a photocurable composition to cover an adherend, and then the photocurable composition is photocured by ultraviolet irradiation, the seal can be used. It can be used as a material. In addition to ultraviolet rays, as active energy rays, energy rays that activate (meth) acryloyl groups such as visible light or electron rays, and energy rays that generate radicals in a photoradical polymerization initiator can be used. Examples of the light source that irradiates ultraviolet rays include a high-pressure mercury lamp, a metal halide lamp, and an ultraviolet LED.
 シール材としては、ゴム弾性を付与する観点からその硬度は、JIS K6253-3:2012の規定によるA硬度で60度以下であることが好ましく、40度以下がより好ましく、20度以下がさらに好ましく、5度以下であればなおさらに好ましい。5度以下であれば、極低荷重が求められるシール材として利用できる。また、硬化体の圧縮永久ひずみが50%以下であることが好ましい。長期間のシール性を担保することができるためである。 As the sealing material, the hardness thereof is preferably 60 degrees or less, more preferably 40 degrees or less, still more preferably 20 degrees or less in terms of A hardness according to JIS K6253-3: 2012 from the viewpoint of imparting rubber elasticity. It is even more preferable if the temperature is 5 degrees or less. If the temperature is 5 degrees or less, it can be used as a sealing material that requires an extremely low load. Further, the compression set of the cured product is preferably 50% or less. This is because the long-term sealing property can be guaranteed.
 また、本発明の光硬化性組成物の硬化体は、ナノインデンテーション試験で測定されるマルテンス硬さを0.005~30N/mmの範囲とすることが好ましい。マルテンス硬さがこの範囲であることで、所定の可撓性および柔軟性を備え、ガスケット等のシール材、マスキング材、封止材等の保護材、接着剤、及び防振材の用途に好適となる。マルテンス硬さの測定方法は、具体的には実施例に記載の方法とすることができる。 Further, in the cured product of the photocurable composition of the present invention, the maltens hardness measured in the nanoindentation test is preferably in the range of 0.005 to 30 N / mm 2. When the Martens hardness is in this range, it has predetermined flexibility and flexibility, and is suitable for applications such as sealing materials such as gaskets, masking materials, protective materials such as sealing materials, adhesives, and anti-vibration materials. It becomes. The method for measuring the Martens hardness can be specifically the method described in Examples.
 封止材としては、フレキシブル基板にも適用できる柔軟性と、電子部品を封止する用途に利用した後に取り除きも可能なリペア性を有する強度を備えることが好ましい。こうした性質を貯蔵弾性率E’でみると、0.4~4.1MPaの範囲であることが好ましい。貯蔵弾性率E’を0.4MPa以上とすることで、光硬化性組成物の硬化体が千切れ難くなりリペアし易くなり、4.1MPa以下とすることで、フレキシブル基板に配置されている封止対象の部品から剥しやすくなる。また、封止材としてリペア性よりも長期的な接着性や保護効果を優先する場合には、前記貯蔵弾性率E’が4.1~250MPaを範囲とすることが好ましい。この範囲であれば、強靭性が増すことで光硬化性組成物の硬化体は被着体から剥がれにくくなり、また適度な剛性を備えることで、配線が屈曲によって断線してしまうことを抑制することができる。 The encapsulant preferably has flexibility that can be applied to a flexible substrate and strength that has repairability that can be removed after being used for encapsulating electronic components. Looking at these properties in terms of storage elastic modulus E', it is preferably in the range of 0.4 to 4.1 MPa. When the storage elastic modulus E'is 0.4 MPa or more, the cured product of the photocurable composition is hard to be torn and easily repaired, and when it is 4.1 MPa or less, the seal arranged on the flexible substrate is sealed. It becomes easy to peel off from the part to be stopped. Further, when long-term adhesiveness and protective effect are prioritized over repairability as a sealing material, the storage elastic modulus E'is preferably in the range of 4.1 to 250 MPa. Within this range, the cured product of the photocurable composition is less likely to be peeled off from the adherend due to the increased toughness, and the appropriate rigidity is provided to prevent the wiring from being broken due to bending. be able to.
 また、リジッド基板とフレキシブル基板の境界部分などに適用する接着剤や補強部材としては、光硬化性組成物の硬化体のヤング率、マルテンス硬さ等の機械的強度はその用途において適宜求められる強度とすることが好ましい。 Further, as an adhesive or a reinforcing member applied to the boundary portion between the rigid substrate and the flexible substrate, the mechanical strength such as Young's modulus and Martens hardness of the cured product of the photocurable composition is the strength appropriately required for the application. Is preferable.
 上記実施形態は本発明の例示であり、本発明の趣旨を逸脱しない範囲で、実施形態の変更または公知技術の付加や、組合せ等を行い得るものであり、それらの技術もまた本発明の範囲に含まれるものである。 The above-described embodiment is an example of the present invention, and the embodiments can be changed, known techniques can be added, combinations, and the like can be performed without departing from the spirit of the present invention, and these techniques are also within the scope of the present invention. It is included in.
 次に実施例(比較例)に基づいて本発明をさらに詳しく説明する。以下の各表に示す組成からなる光硬化性組成物、及びそれらの光硬化性組成物を硬化させた硬化体を作製し、試料1~試料29とした。そしてこれらの試料について各種の試験を行った。 Next, the present invention will be described in more detail based on Examples (Comparative Examples). A photocurable composition having the compositions shown in the following tables and a cured product obtained by curing the photocurable composition were prepared and used as Samples 1 to 29. Then, various tests were performed on these samples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<試料の作製> <Preparation of sample>
 試料1~試料29:
 アクリルモノマー、アクリルオリゴマー、アクリルポリマー、ロイコ染料、そして試料に応じて必要なスチレン系エラストマーを混合し、これらが十分に混ぜ合わされた後に、添加剤および光ラジカル重合開始剤を混合して試料1~試料29の光硬化性組成物を作製した。これらの光硬化性組成物は、照度250mW/cm、積算光量15000mJ/cmの条件で紫外線(波長365nmのLED光源)を照射して試料1~試料29の硬化体を得た。
Sample 1 to Sample 29:
Acrylic monomer, acrylic oligomer, acrylic polymer, leuco dye, and styrene-based elastomer required depending on the sample are mixed, and after these are sufficiently mixed, an additive and a photoradical polymerization initiator are mixed to sample 1 to 1. A photocurable composition of Sample 29 was prepared. These photocurable compositions were irradiated with ultraviolet rays (LED light source having a wavelength of 365 nm) under the conditions of an illuminance of 250 mW / cm 2 and an integrated light intensity of 15,000 mJ / cm 2 to obtain cured products of Samples 1 to 29.
 上記各表中、アクリルモノマーとしては、脂肪族アクリレートとしてラウリルアクリレートを、脂環式アクリレートとしてイソボルニルアクリレートを、芳香族アクリレートとしてフェノキシエチルアクリレートを、水酸基含有アクリレートとして2-ヒドロキシエチルアクリレートを、カルボキシル基含有アクリレートとしてω-カルボキシ-ポリカプロラクトンモノアクリレートを、リン酸含有アクリレートとして2-メタクロイロキシエチルアシッドホスフェートを、アミド基含有アクリレートとしてアクロイルモルフォリンを、アミノ基含有アクリレートとしてメタクリル酸2-(ジメチルアミノ)エチルを、2官能脂肪族アクリレートとして1,9-ノナンジオールジアクリレートを、それぞれ用いた。 In each of the above tables, as the acrylic monomer, lauryl acrylate as the aliphatic acrylate, isobornyl acrylate as the alicyclic acrylate, phenoxyethyl acrylate as the aromatic acrylate, 2-hydroxyethyl acrylate as the hydroxyl group-containing acrylate, and carboxyl. Ω-carboxy-polycaprolactone monoacrylate as the group-containing acrylate, 2-methacryloxyethyl acid phosphate as the phosphate-containing acrylate, acroylmorpholine as the amide group-containing acrylate, and 2-methacrylate as the amino group-containing acrylate ( Dimethylamino) ethyl was used, and 1,9-nonanediol diacrylate was used as the bifunctional aliphatic acrylate.
 また、アクリポリマーとしては、アクリル骨格のアクリルポリマー(「RC500(XX067C)」(商品名)、株式会社カネカ製)を用いた。 Further, as the acrylic polymer, an acrylic polymer having an acrylic skeleton ("RC500 (XX067C)" (trade name), manufactured by Kaneka Corporation) was used.
 光ラジカル重合開始剤としては、アルキルフェノン系開始剤として2-ヒドロキシ-2-メチル-メチルプロパノンを、アシルフォスフィンオキサイド系としてビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイドを、分子内水素引き抜き型としてオキシフェニル酢酸-2-2-オキソ-2-フェニルアセトキシエトキシエチルエステルとオキシフェニル酢酸-2-2-ヒドロキシエトキシエチルエステルの混合物を、オキシフェニル酢酸エステル系としては、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセトオキシム)を、それぞれ用いた。 As the photoradical polymerization initiator, 2-hydroxy-2-methyl-methylpropanol was used as an alkylphenone-based initiator, and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide was used as an acylphosphine oxide-based agent. A mixture of oxyphenylacetate-2-oxo-2-phenylacetoxyethoxyethyl ester and oxyphenylacetic acid-2-hydroxyethoxyethyl ester as the intramolecular hydrogen abstraction type, and 1- as the oxyphenylacetate ester system. [9-Ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] esterone-1- (O-acetooxym) was used, respectively.
 ロイコ染料としては、フルオラン類として2’-メチル-6’-(N-p-トリル-Nエチルアミノ)スピロ[イソベンゾフラン-1(3H),9’-[9H]キサンテン]-3-オン(「RED520」(商品名)、福井山田化学工業株式会社製)を、フタリド類としては3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(「クリスタルバイオレットラクトン(CVL)」、福井山田化学工業株式会社製)を、トリフェニルメタン類として「ロイコクリスタルバイオレット」((商品名)、東京応化工業株式会社製)を、それぞれ用いた。 Leuco dyes include 2'-methyl-6'-(N-p-tolyl-N ethylamino) spiro [isobenzofuran-1 (3H), 9'-[9H] xanthene] -3-one as fluorans. "RED520" (trade name), manufactured by Fukui Yamada Chemical Industry Co., Ltd., 3-bis (p-dimethylaminophenyl) -6-dimethylaminophthalide ("Crystal Violet lactone (CVL)", Fukui as phthalides Yamada Chemical Industry Co., Ltd.) and "Leuco Crystal Violet" ((trade name), manufactured by Tokyo Ohka Kogyo Co., Ltd.) were used as triphenylmethanes.
 スチレン系熱可塑性エラストマーとしては、スチレン-イソブチレン-スチレントリブロック共重合体(「SIBSTAR 102T」(商品名)、カネカ株式会社製)を用いた。 As the styrene-based thermoplastic elastomer, a styrene-isobutylene-styrene triblock copolymer (“SIBSTAR 102T” (trade name), manufactured by Kaneka Co., Ltd.) was used.
 添加剤としては、光酸発生剤(「CPI-210S」(商品名)、サンアプロ株式会社製)を、粘度調整剤及びチキソ性付与剤としてシリカ(「アエロジル200」(商品名)、日本アエロジル株式会社製、比表面積が約200m/gの親水性フュームドシリカ)を、着色剤として酸化アルミニウム(「Alu C」(商品名)、日本アエロジル株式会社製、フュームド酸化アルミニウム)を、それぞれ用いた。 As an additive, a photoacid generator ("CPI-210S" (trade name), manufactured by San-Apro Co., Ltd.) is used, and silica ("Aerosil 200" (trade name), Nippon Aerosil Co., Ltd.) is used as a viscosity modifier and a nitrogen-imparting agent. Hydrophilic fumed silica with a specific surface area of about 200 m 2 / g manufactured by the company) and aluminum oxide (“Alu C” (trade name), manufactured by Nippon Aerosil Co., Ltd., fumed aluminum oxide) were used as colorants. ..
 <各種試験と評価> <Various tests and evaluations>
 上記各試料について、以下に説明する各種の試験を行い光硬化性組成物及びその硬化体の特性を評価した。 Each of the above samples was subjected to various tests described below to evaluate the characteristics of the photocurable composition and its cured product.
 光硬化性組成物から硬化体へ移行する際の硬化率の算出:
 光硬化性組成物が未硬化の状態、即ち硬化率が0%の状態から、完全に硬化した状態、即ち硬化率が100%の状態に至るまでの中間の状態にある場合に、どのくらい硬化が進行しているか、即ち硬化率が何%であるかをFT-IR法により測定した。FT-IR法は、未硬化体と硬化終了物について縦軸が吸光度である赤外吸収スペクトルを記録し、硬化反応に伴って減少する化学結合に帰属する変動ピーク(820cm-1から780cm-1)と内部標準ピーク(1730cm-1)の面積を各スペクトルから読み取り、硬化率未定の試料の硬化率を、未硬化体と硬化終了物の値をもとに計算により求めたものである。
Calculation of curing rate when transitioning from a photocurable composition to a cured product:
How much curing is achieved when the photocurable composition is in an intermediate state from an uncured state, that is, a state in which the curing rate is 0% to a completely cured state, that is, a state in which the curing rate is 100%. Whether it was progressing, that is, what percentage the curing rate was, was measured by the FT-IR method. FT-IR method, the vertical axis to record an infrared absorption spectrum is the absorbance for the cured finished product with uncured material, 780 cm -1 from fluctuations peak (820 cm -1 attributable to the chemical bonds decreases with the curing reaction ) And the area of the internal standard peak (1730 cm -1 ) are read from each spectrum, and the curing rate of the sample whose curing rate is undecided is calculated based on the values of the uncured body and the cured product.
 より具体的には、測定した試料の変動ピークの面積をAとし、内部標準ピークの面積をBとし、面積の比R=A/Bを求める。ここで、未硬化体のR値をRu、硬化終了物(積算光量15000mJ/cmの条件で紫外線を照射して作製した硬化体)のR値をRcとすると、Rc値のRu値に対する減少率Dc(%)、即ち硬化終了物のR値の減少率は、次の式(2)で求めることができる。 More specifically, the area of the fluctuation peak of the measured sample is A, the area of the internal standard peak is B, and the area ratio R = A / B is obtained. Here, assuming that the R value of the uncured product is Ru and the R value of the cured product (cured product produced by irradiating ultraviolet rays under the condition of an integrated light amount of 15,000 mJ / cm 2 ) is Rc, the Rc value is reduced with respect to the Ru value. The rate Dc (%), that is, the rate of decrease in the R value of the cured product can be calculated by the following formula (2).
   Dc=(1-Rc/Ru)×100・・・式(2) Dc = (1-Rc / Ru) x 100 ... Equation (2)
 次に、硬化率を求めたいサンプルの赤外吸収スペクトルからR値を求めると、このR値のRu値に対する減少率D(%)は、次の式(3)で求めることができる。 Next, when the R value is obtained from the infrared absorption spectrum of the sample for which the curing rate is to be obtained, the reduction rate D (%) of this R value with respect to the Ru value can be obtained by the following equation (3).
   D=(1-R/Ru)×100・・・式(3) D = (1-R / Ru) x 100 ... formula (3)
 そして、硬化率を求めたいサンプルの硬化率C(%)は、このサンプルのD値をDc値と比較することで得ることができる。即ち、次の式(4)で求めることができる。 Then, the curing rate C (%) of the sample for which the curing rate is to be obtained can be obtained by comparing the D value of this sample with the Dc value. That is, it can be obtained by the following equation (4).
   C=D/Dc×100・・・式(4) C = D / Dc x 100 ... Equation (4)
 上記FT-IRによる硬化率の決定について、「化学反応型樹脂(UV硬化・熱硬化・湿気硬化)の硬化率測定とその実践~接着剤・封止材・塗料等への適用の実際(並木陽一著)」(株式会社情報機構)に記載がある。 Regarding the determination of the curing rate by FT-IR, "Measurement of curing rate of chemically reactive resin (UV curing, thermosetting, moisture curing) and its practice-Actual application to adhesives, encapsulants, paints, etc. (Namiki) (By Yoichi) ”(Information Organization Co., Ltd.).
 色度の測定:
 色度の測定は次のようにして行った。図1で示す模式図を参照して説明すると、まず図1Aで示すように、1mm厚の透明ガラス板11を2枚準備し、その1枚の片面には0.1mmの剥離処理したPET(HSPX)を貼り付けておく(図示せず)。PETを貼り付けない方のガラス板11には直径10mmの円形の透孔13を有する厚み1mmのシムリング(スペーサー)12を配置し、そのシムリングにPETが対向するようにもう一方のガラス板を置いてシムリングを2枚のガラス板で挟む。
Saturation measurement:
The chromaticity was measured as follows. Explaining with reference to the schematic view shown in FIG. 1, first, as shown in FIG. 1A, two 1 mm-thick transparent glass plates 11 are prepared, and one side of the two transparent glass plates 11 is subjected to 0.1 mm peeling treatment (PET). HSPX) is pasted (not shown). A shim ring (spacer) 12 having a thickness of 1 mm and having a circular through hole 13 having a diameter of 10 mm is arranged on the glass plate 11 to which the PET is not attached, and the other glass plate is placed so that the PET faces the shim ring. The shim ring is sandwiched between two glass plates.
 次に、基準となる校正用白色板の色度を測定する。(ブランクの測定、図1B)。続いて、シムリング12の透孔13内に各試料の光硬化性組成物を塗布し、透孔内に入った硬化前の光硬化性組成物の色度を、図1Cで示すように測定する。このとき下側となるガラス板11の下には校正用白色板(図示せず)を配置する。なお、2枚のガラス板で光硬化性組成物を封入するのは空気中の酸素の影響を受けないようにするためである。そして図1Dで示すように、UVランプ(パナソニック株式会社製、「Aicure UJ30」、波長365nm、照度250mW/cm)16で光硬化性組成物15に紫外線を所定時間照射する。最後に図1Eで示すように、光硬化した光硬化性組成物の硬化体の色度を分光測色計(株式会社カラーテクノシステム製、「ハンディ分光測色計 JX777」)14で測定する。なお、色度の実際の測定は、試料ごとに硬化率が50%となる紫外線照射時間を予め求めておき、その時間だけ紫外線を照射した後の試料で色度を求めた。各試料の未硬化、硬化率50%、硬化終了(硬化率100%)の色度から、色度変化パラメータである式(1)の値を算出し、上記各表にその結果を示した。 Next, the chromaticity of the reference white plate for calibration is measured. (Measurement of blank, FIG. 1B). Subsequently, the photocurable composition of each sample is applied to the through hole 13 of the shim ring 12, and the chromaticity of the photocurable composition before curing that has entered the through hole is measured as shown in FIG. 1C. .. At this time, a white calibration plate (not shown) is placed under the lower glass plate 11. The reason why the photocurable composition is sealed with two glass plates is to prevent the influence of oxygen in the air. Then, as shown in FIG. 1D, the photocurable composition 15 is irradiated with ultraviolet rays for a predetermined time with a UV lamp (“Aice UJ30” manufactured by Panasonic Corporation, wavelength 365 nm, illuminance 250 mW / cm 2) 16. Finally, as shown in FIG. 1E, the chromaticity of the cured product of the photocurable photocurable composition is measured with a spectrophotometer (“Handy spectrophotometer JX777” manufactured by Color Techno System Co., Ltd.) 14. In the actual measurement of the chromaticity, the ultraviolet irradiation time at which the curing rate becomes 50% was determined in advance for each sample, and the chromaticity was determined for the sample after being irradiated with the ultraviolet rays for that time. The value of the formula (1), which is a chromaticity change parameter, was calculated from the chromaticity of each sample at uncured, cured rate of 50%, and cured (curing rate of 100%), and the results are shown in the above tables.
 色度差の測定:
 最初に、前記色度の測定で用いた試料と同じものを準備する。続いて、前記試料を校正用白色板の上に配置し、各試料の色味と、色見本「PANTONE uncoated chips」(PANTONE社製)のカラーチップの色と、を目視で比較して、最も近い色番号を記録した。続いて、各カラーチップの色度を前記分光測色計で測定する。こうして得られた各試料の未硬化および硬化後(硬化率100%)の色に相当する色度から、色度差ΔEを算出し、上記各表にその結果を示した。
Measurement of chromaticity difference:
First, the same sample used in the chromaticity measurement is prepared. Subsequently, the sample is placed on a white plate for calibration, and the color of each sample is visually compared with the color of the color chip of the color sample "PANTONE uncoated chips" (manufactured by PANTONE). Recorded close color numbers. Subsequently, the chromaticity of each color chip is measured by the spectrophotometer. The chromaticity difference ΔE was calculated from the chromaticity corresponding to the uncured and cured (curing rate 100%) color of each sample thus obtained, and the results are shown in the above tables.
 また、それとは別に、前記色度の測定で用いた試料を校正用白色板の上に配置し、各試料の色度を分光測色計で測定した色度から、第2の色度差ΔEを求めた。
 なお、本発明において単に「色度差ΔE」と言う場合は、前記カラーチップの色に基づく色度差を示し、後者を示す場合は「第2の色度差ΔE」と表記するものとする。ここで、前述の色度差ΔEは、目視で見た色変化を忠実に反映した値である。したがって、この色度差ΔEが大きく、且つ、前述の色度変化パラメータが所定の範囲にあれば、硬化前と光硬化の終了後とを、目視で識別しやすいということを意味する。
Separately, the sample used in the measurement of the chromaticity is placed on a white plate for calibration, and the chromaticity of each sample is measured by a spectrocolorimeter to obtain a second chromaticity difference ΔE. I asked for 2.
In the present invention, the term "chromaticity difference ΔE" indicates the chromaticity difference based on the color of the color chip, and the latter indicates the "second chromaticity difference ΔE 2 ". To do. Here, the above-mentioned chromaticity difference ΔE is a value that faithfully reflects the color change visually observed. Therefore, if the chromaticity difference ΔE is large and the above-mentioned chromaticity change parameter is within a predetermined range, it means that it is easy to visually distinguish between before curing and after photocuring.
 他方、例えば、生産工程において、分光測色計や色度計を用いて硬化の状態を検査するような特別な場合おいては、第2の色度差ΔEが10以上であることが好ましく、20以上であることがより好ましい。この場合、色度差ΔEを第2の色度差ΔEに置き換えて、第2の色度差ΔEのみが10以上であっても良い。また、色度差ΔEと第2の色度差ΔEの両方が10以上であることが好ましく、20以上であることがより好ましい。この場合、分光測色計での検査と、目視での検査の両方に対応できるほか、未硬化の光硬化性組成物への不用意な接触を防止し、作業員の作業安全性を高めることができる。なお、目視で選択したカラーチップを用いた色度差ΔEと、分光測色計による色度差ΔEは多くの場合に相関するが、一部の試料では相関から外れる値となった。その理由は、定かではないが、反射色と透過色が補色の関係にある試料や、光拡散性の程度などにより、分光色測で測定される色度と、目視で感じる色度に差が生じているものと思われる。 On the other hand, for example, in a special case where the state of curing is inspected using a spectrophotometer or a chromaticity meter in the production process, the second chromaticity difference ΔE 2 is preferably 10 or more. , 20 or more is more preferable. In this case, replacing the chromaticity difference Delta] E in the second chromaticity difference Delta] E 2, only the second chromaticity difference Delta] E 2 may be 10 or more. Further, both the chromaticity difference ΔE and the second chromaticity difference ΔE 2 are preferably 10 or more, and more preferably 20 or more. In this case, in addition to being able to handle both spectrophotometric inspection and visual inspection, it is possible to prevent inadvertent contact with the uncured photocurable composition and improve the work safety of workers. Can be done. The chromaticity difference ΔE using the visually selected color chip and the chromaticity difference ΔE 2 by the spectrophotometer correlate in many cases, but in some samples, the values deviate from the correlation. The reason is not clear, but there is a difference between the chromaticity measured by spectrophotometric measurement and the chromaticity visually perceived depending on the sample in which the reflected color and the transmitted color have a complementary color relationship and the degree of light diffusivity. It seems that it is occurring.
 ΔE/色度変化パラメータの算出:
 各表には、色度差ΔEを色度変化パラメータで割った値を示した。この値は、色度差が大きく、且つ色度変化パラメータが小さいもの(すなわち反応後半の色度変化が大きいもの)ほど大きな値となる。したがって、この値が硬化の状態の識別性に相関することが期待できる。
Calculation of ΔE / chromaticity change parameter:
In each table, the value obtained by dividing the chromaticity difference ΔE by the chromaticity change parameter is shown. This value becomes larger as the chromaticity difference is larger and the chromaticity change parameter is smaller (that is, the chromaticity change in the latter half of the reaction is larger). Therefore, it can be expected that this value correlates with the distinctiveness of the cured state.
 硬化判断の適否確認試験:
 上記各試料について、本試験用に硬化前(硬化率0%)、硬化率25%、硬化率50%、硬化率75%、硬化後(硬化率100%)の各試験体を準備した。試験者には、始めに硬化前の試験体と硬化後の試験体を30秒見せた後、それらの試験体を隠し、その後3分経ってから硬化状態が異なる前記5つの試験体をランダムにひとつずつ見せ、その試験体が硬化率100%のものかそれ以外のものであるかについて回答させた。この試験を一つの試料(即ち5つの試験体)について、5人に対して行い、回答に誤りがあった人の数を計測した。その結果を上記各表に示す。
Appropriateness confirmation test for curing judgment:
For each of the above samples, each specimen before curing (curing rate 0%), curing rate 25%, curing rate 50%, curing rate 75%, and after curing (curing rate 100%) was prepared for this test. First, the tester was shown the pre-cured test body and the post-cured test body for 30 seconds, then the test bodies were hidden, and after 3 minutes, the five test bodies having different cured states were randomly selected. They were shown one by one and asked if the test piece had a 100% cure rate or something else. This test was performed on one sample (that is, five test specimens) for five people, and the number of people who answered incorrectly was counted. The results are shown in the above tables.
 マルテンス硬さ(N/mm):
 ナノインデンター(ELIONIX製、ENT-2100)を用いて、各試料の硬化体のナノインデンテーション試験を実施した。試験片は、厚み1mmのガラス板に、厚み200μmになるように光硬化性組成物を塗布し、波長365nmのLEDを使用して、照度250mW/cm、積算光量15000mJ/cmの条件で紫外線を照射することで硬化させて作製した硬化体を用いた。そして、前記ナノインデンターで、押し込み最大荷重0.1mN、押し込み速度0.01mN/秒の条件で硬化体のマルテンス硬さを測定した。
Martens hardness (N / mm 2 ):
A nanoindentation test of the cured product of each sample was carried out using a nanoindenter (manufactured by ELIONIX, ENT-2100). The test piece was prepared by applying a photocurable composition to a glass plate having a thickness of 1 mm so as to have a thickness of 200 μm, using an LED having a wavelength of 365 nm, under the conditions of an illuminance of 250 mW / cm 2 and an integrated light amount of 15000 mJ / cm 2. A cured product prepared by curing by irradiating with ultraviolet rays was used. Then, with the nano indenter, the Martens hardness of the cured product was measured under the conditions of a maximum pushing load of 0.1 mN and a pushing speed of 0.01 mN / sec.
 1規定塩酸による浸漬試験:
 上記各試料について、積算光量15000mJ/cmの紫外線を照射して厚み1mmとなるように硬化させた各試料の硬化体を得た。続いて、この硬化体から0.2gの試験片を切り出し、1規定塩酸を10gに浸漬させて、70℃の環境下に120時間静置した。そして、120時間後に前記試験片を取り出し、表面の水分を軽く拭き取った。こうして得た試験後試験片を色見本「PANTONE uncoated chips」(PANTONE社製)のカラーチップと目視で比較して、最も近い色番号を記録した。続いて、各カラーチップの色度を前記分光測色計で測定し、各試料の試験後試験片の色度と、試験前の試験片の色度とから、色度差を算出し、上記各表の浸漬試験後の色度差ΔEの項目にその結果を示した。
Immersion test with 1 specified hydrochloric acid:
Each of the above samples was irradiated with ultraviolet rays having an integrated light intensity of 15,000 mJ / cm 2 and cured to a thickness of 1 mm to obtain a cured product of each sample. Subsequently, 0.2 g of a test piece was cut out from this cured product, immersed in 10 g of 1N hydrochloric acid, and allowed to stand in an environment of 70 ° C. for 120 hours. Then, after 120 hours, the test piece was taken out and the water on the surface was lightly wiped off. The post-test test piece thus obtained was visually compared with the color chip of the color sample "PANTONE uncoated chips" (manufactured by PANTONE), and the closest color number was recorded. Subsequently, the chromaticity of each color chip is measured with the spectrocolorimeter, and the chromaticity difference is calculated from the chromaticity of the test piece after the test of each sample and the chromaticity of the test piece before the test. The results are shown in the item of chromaticity difference ΔE 3 after the immersion test in each table.
 <試験結果の分析> <Analysis of test results>
 上記硬化判断の適否確認試験の結果を見ると、ΔEが10に満たない試料28については、硬化後(硬化率100%)の試験体についても硬化率が100以外の場合であると誤答する試験者や、硬化率75%でも硬化率100%と誤る試験者もおり誤答をする人数は多かった。これは硬化率100%の色度が、硬化前の色度との差異が少ないことに原因があると考えられた。また、色度変化パラメータが2.0を超える試料29では、硬化率25%でも硬化率100%と誤る試験者が表れるなど、誤答者が見られた。これは反応前半でかなりの色度変化が生じ反応後半及び反応終了の場合との区別がつき難かったことが原因と考えられた。 Looking at the results of the above-mentioned suitability confirmation test for curing judgment, it is erroneously answered that the curing rate of the sample 28 after curing (curing rate 100%) is other than 100 for the sample 28 whose ΔE is less than 10. There were some testers and some testers who mistakenly thought that the curing rate was 100% even if the curing rate was 75%, and many people gave incorrect answers. It is considered that this is because the chromaticity with a curing rate of 100% has little difference from the chromaticity before curing. In addition, in the sample 29 in which the chromaticity change parameter exceeds 2.0, some testers mistakenly think that the curing rate is 100% even if the curing rate is 25%. It was considered that this was because a considerable change in chromaticity occurred in the first half of the reaction and it was difficult to distinguish between the latter half of the reaction and the end of the reaction.
 一方、試料9、10、18は、硬化判断の適否確認試験の誤答者が1人だった。試料9は、色度変化パラメータの値は0.5以下と小さいものの、色度差ΔEが10を超えたが20未満と小さめの値であることから、色の区別がやや分かりにくかったものと思われる。試料10は、色度差ΔEは試料9に比べて改善し20を超えているものの30未満であり、また色度変化パラメータも2.0以下であるが1.0を超えたやや大きい値だったため、反応後半の色の変化がやや分かりにくかったものと思われる。試料18は、色度差ΔEは30を超え充分に大きい値であるが、色度変化パラメータは2.0以下であるが1.0を超えた大きい値のため、反応後半の色の変化がやや分かりにくかったものと思われる。 On the other hand, for samples 9, 10 and 18, there was one wrong answerer in the suitability confirmation test for curing judgment. In sample 9, although the value of the chromaticity change parameter was as small as 0.5 or less, the chromaticity difference ΔE exceeded 10 but was less than 20, so the color distinction was somewhat difficult to understand. Seem. In sample 10, the chromaticity difference ΔE was improved as compared with sample 9 and exceeded 20, but was less than 30, and the chromaticity change parameter was 2.0 or less but slightly larger than 1.0. Therefore, it seems that the color change in the latter half of the reaction was a little difficult to understand. In sample 18, the chromaticity difference ΔE is a sufficiently large value exceeding 30, but the chromaticity change parameter is 2.0 or less but a large value exceeding 1.0, so that the color change in the latter half of the reaction is a large value. It seems that it was a little difficult to understand.
 一方、試料9、試料10、試料18、試料28及び試料29以外の試料、即ち試料1~8、11~17、19~27については、誤答をする人数は0であった。これらの試料については、何れの試料もΔEが30以上であり、色度変化パラメータが0~1.0の範囲に入っていた。 On the other hand, for samples other than Sample 9, Sample 10, Sample 18, Sample 28 and Sample 29, that is, Samples 1 to 8, 11 to 17, 19 to 27, the number of incorrect answers was 0. For these samples, ΔE was 30 or more and the chromaticity change parameter was in the range of 0 to 1.0.
 これらの結果から、色度差ΔEが10以上であり、かつ色度変化パラメータが0~2.0の範囲にあれば、硬化判断の適否確認で若干誤るおそれがあるものの多くの場合で適否確認を正確に行うことができ、色度差ΔEが30以上であり、かつ色度変化パラメータが1.0以下であれば誤りなく確実に硬化判断の適否確認ができることがわかった。 From these results, if the chromaticity difference ΔE is 10 or more and the chromaticity change parameter is in the range of 0 to 2.0, the suitability of the curing judgment may be slightly wrong, but the suitability is confirmed in many cases. It was found that if the chromaticity difference ΔE is 30 or more and the chromaticity change parameter is 1.0 or less, the suitability of the curing judgment can be confirmed without error.
 「ΔE/色度変化パラメータ」の値をみると上記試料9、10、18は20~40の範囲であることがわかった。また、誤答をする人がいなかった試料については、いずれも「ΔE/色度変化パラメータ」の値が40を超える値であった。このことから、「ΔE/色度変化パラメータ」の値は、20以上であることが好ましく、40以上であることが特に好ましいことがわかった。 Looking at the value of "ΔE / chromaticity change parameter", it was found that the above samples 9, 10 and 18 were in the range of 20 to 40. In addition, the value of "ΔE / chromaticity change parameter" was a value exceeding 40 in all the samples for which no one gave an incorrect answer. From this, it was found that the value of "ΔE / chromaticity change parameter" is preferably 20 or more, and particularly preferably 40 or more.
 試料1~8を比較すると、試料6を除いて、色度差ΔEが30以上であるため、特に色度の変化が大きいことがわかる。また、試料6は、初期の色度値が(31.9、48.4)であることから、赤味に着色していることがわかる。試料6はリン酸含有モノマーであることから、光硬化性組成物が酸性になったことが、初期の色度が変化した理由と思われる。このことから初期の色調が無色であるという観点からは、酸性基を備えないアクリルモノマーを用いることが好ましいことがわかった。 Comparing Samples 1 to 8, it can be seen that the change in chromaticity is particularly large because the chromaticity difference ΔE is 30 or more except for Sample 6. Further, since the initial chromaticity value of Sample 6 is (31.9, 48.4), it can be seen that the sample 6 is colored reddish. Since Sample 6 is a phosphoric acid-containing monomer, it is considered that the reason why the initial chromaticity was changed was that the photocurable composition became acidic. From this, it was found that it is preferable to use an acrylic monomer having no acidic group from the viewpoint that the initial color tone is colorless.
 試料1~3、7は、いずれも第2の色度差が20以上であった。したがって、脂肪族、脂環式、芳香族系、アクリルアミド系の各モノマーを用いると、目視による識別性だけでなく、分光測色計による識別性も高まることがわかった。 Samples 1 to 3 and 7 all had a second chromaticity difference of 20 or more. Therefore, it was found that the use of aliphatic, alicyclic, aromatic, and acrylamide-based monomers enhances not only visual discrimination but also spectrophotometric discrimination.
 試料7は、試料1~6と比較して、マルテンス硬さがやや大きくなった。アクリルアミド系モノマーが硬化反応を促進していることが推定される。このことから、柔軟性を求める場合には、アクリルアミド系モノマーを除くアクリルモノマーを用い、硬さを高めて剛性を求める場合には、アクリルアミド系モノマーを添加することが好ましいことがわかった。 Sample 7 had a slightly higher maltens hardness than Samples 1 to 6. It is presumed that the acrylamide-based monomer promotes the curing reaction. From this, it was found that it is preferable to use an acrylic monomer excluding the acrylamide-based monomer when seeking flexibility, and to add an acrylamide-based monomer when increasing the hardness and seeking rigidity.
 試料2、9~11を比較すると、アシルフォスフィン系開始剤と、分子内水素引き抜き型開始剤である試料9と10は、ΔEの値がやや小さめの値となっていた。このことは、これらの試料は、初期の色度がやや黄色味を帯びており、硬化後の色にやや近づいていたためであると思われる。このことから、ラジカル重合開始剤としては、アルキルフェノン系開始剤またはオキシムエステル系開始剤を用いることが好ましいことがわかった。 Comparing Samples 2 and 9 to 11, the value of ΔE was slightly smaller in the acylphosphine-based initiator and the intramolecular hydrogen abstraction type initiators Samples 9 and 10. It is considered that this is because these samples had a slightly yellowish initial chromaticity and were slightly close to the color after curing. From this, it was found that it is preferable to use an alkylphenone-based initiator or an oxime ester-based initiator as the radical polymerization initiator.
 試料13~15のロイコ染料の添加量の大小を比較すると、ロイコ染料の添加量が少なくなるほど色度差が小さくなる傾向があった。色度差の小さくなった理由は、染料の濃度が低くなったためであると思われる。ところが、ロイコ染料の添加量が1質量部を超える試料12では、色度差ΔEが30を超えているものの、0.001質量部である試料15よりも小さい値となった。その理由は、ロイコ染料の添加量が所定量よりも多いと、初期の色度がやや黄色味を帯びてくるため、硬化後の色に近づくためであると思われる。このことから、ロイコ染料の添加量は、0.005~1質量部の範囲であると好ましいことがわかった。また、これらの中で、第2の色度差ΔEは試料12が最も大きくなっている。したがって、分光色測計で硬化判断をする場合には、1質量部を超える添加量の方が好ましいことがわかった。 Comparing the magnitudes of the addition amounts of the leuco dyes in the samples 13 to 15, the chromaticity difference tended to become smaller as the addition amount of the leuco dyes decreased. The reason why the difference in chromaticity is small seems to be that the density of the dye is low. However, in the sample 12 in which the amount of the leuco dye added exceeds 1 part by mass, the chromaticity difference ΔE exceeds 30, but the value is smaller than that of the sample 15 which is 0.001 part by mass. The reason seems to be that when the amount of the leuco dye added is larger than the predetermined amount, the initial chromaticity becomes slightly yellowish, and the color approaches the color after curing. From this, it was found that the amount of the leuco dye added is preferably in the range of 0.005 to 1 part by mass. Of these, sample 12 has the largest second chromaticity difference ΔE 2. Therefore, it was found that the addition amount exceeding 1 part by mass is preferable when the curing is judged by the spectrocolorimeter.
 試料2と試料19~23を比較すると、着色剤を含まない試料2に比べて着色剤を含む試料19~23は、試料2の色度変化パラメータが0.1を超えていたのに対して、いずれも色度変化パラメータが0.1以下である。このことから、着色剤として白色粉末である酸化アルミニウムを含むことで、色味の視認性が高まることがわかった。 Comparing Sample 2 and Samples 19 to 23, the chromaticity change parameter of Sample 2 exceeded 0.1 in Samples 19 to 23 containing a colorant as compared with Sample 2 not containing a colorant. In each case, the chromaticity change parameter is 0.1 or less. From this, it was found that the visibility of the color was enhanced by including aluminum oxide, which is a white powder, as the colorant.
 また、第2の色度差ΔEは特に試料19,20,21,22で値が大きいことから、分光色測計による識別性を高めるために、着色剤の添加量が樹脂成分の合計量(100質量部)に対して、0.1~1.5質量部であることが好ましいことがわかった。 Further, since the value of the second chromaticity difference ΔE 2 is particularly large in the samples 19, 20, 21 and 22, the amount of the colorant added is the total amount of the resin components in order to improve the distinctiveness by the spectrocolorimeter. It was found that 0.1 to 1.5 parts by mass is preferable with respect to (100 parts by mass).
 さらに、試料22および試料23は、初期の色味が赤味を帯びていた。このことは、本発明で用いたシリカのpHが4.0~4.5、酸化アルミニウムのpHが4.5~5.5であることから、多量に添加して光硬化性組成物の酸性度が増したためであると思われる。このことから、こうした添加剤の添加量は樹脂成分の合計量100質量部に対して概ね5質量部以下であることが好ましいことがわかった。 Further, the initial color of Sample 22 and Sample 23 was reddish. This is because the pH of silica used in the present invention is 4.0 to 4.5 and the pH of aluminum oxide is 4.5 to 5.5. Therefore, a large amount is added to make the photocurable composition acidic. It seems that this is because the degree has increased. From this, it was found that the addition amount of such an additive is preferably about 5 parts by mass or less with respect to 100 parts by mass of the total amount of the resin components.
 1規定塩酸による浸漬試験の結果、試料28および試料29の色度差は20未満と小さい値だったが、試料1~27は、いずれも色度差が20以上となった。このことから、このような浸漬試験を行うことで、色度変化を識別できる硬化体であることが判別できることがわかった。 As a result of the immersion test with 1N hydrochloric acid, the chromaticity difference between Sample 28 and Sample 29 was as small as less than 20, but the chromaticity difference between Samples 1 to 27 was 20 or more. From this, it was found that by performing such a dipping test, it can be determined that the cured product can discriminate in chromaticity change.
  11 ガラス板
  12 シムリング(スペーサー)
  13 透孔
  14 分光測色計
  15 光硬化性組成物
  16 UVランプ
11 Glass plate 12 Sim ring (spacer)
13 Through hole 14 Spectrophotometer 15 Photocurable composition 16 UV lamp

Claims (13)

  1. アクリルモノマー、アクリルオリゴマー、及びアクリルポリマーから選択される少なくとも一のアクリル化合物と、光ラジカル発生剤と、ロイコ染料と、を含み、
    JISZ8781-4に記載のCIE1976(L,a,b)色空間で定義される未硬化の色値(L ,a ,b )と硬化後の色値(L 100,a 100,b 100)との色度差ΔEが10以上であり、
    下記式(1)で表される色度変化パラメータが0~2.0の範囲にある光硬化性組成物。
    Figure JPOXMLDOC01-appb-M000001
    [上記式(1)中、a 及びb は、硬化前のL色空間における色度a値及びb値を示し、a 50及びb 50は、硬化率50%におけるL色空間における色度a値及びb値を示し、a 100及びb 100は、硬化後におけるL色空間における色度a値及びb値を示す。]
    Containing at least one acrylic compound selected from an acrylic monomer, an acrylic oligomer, and an acrylic polymer, a photoradical generator, and a leuco dye.
    The uncured color values (L * 0 , a * 0 , b * 0 ) defined in the CIE1976 (L * , a * , b * ) color space described in JISZ8781-4 and the color values after curing (L *). The chromaticity difference ΔE from 100 , a * 100 , b * 100 ) is 10 or more.
    A photocurable composition in which the chromaticity change parameter represented by the following formula (1) is in the range of 0 to 2.0.
    Figure JPOXMLDOC01-appb-M000001
    [In the above formula (1), a * 0 and b * 0 indicate chromaticity a * value and b * value in the L * a * b * color space before curing, and a * 50 and b * 50 are. The chromaticity a * value and b * value in the L * a * b * color space at a curing rate of 50% are shown, and a * 100 and b * 100 are the chromaticity a in the L * a * b * color space after curing. * Value and b * value are shown. ]
  2. 酸発生剤を含まない請求項1記載の光硬化性組成物。 The photocurable composition according to claim 1, which does not contain an acid generator.
  3. 前記アクリル化合物が、単官能アクリルモノマー、2官能以上のアクリルオリゴマー及び2官能以上のアクリルポリマーの少なくとも何れかである請求項1又は請求項2記載の光硬化性組成物。 The photocurable composition according to claim 1 or 2, wherein the acrylic compound is at least one of a monofunctional acrylic monomer, a bifunctional or higher acrylic oligomer, and a bifunctional or higher acrylic polymer.
  4. 前記アクリル化合物が少なくとも単官能アクリルモノマーを含み、さらにスチレン系エラストマーを含む請求項1~請求項3何れか1項記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 3, wherein the acrylic compound contains at least a monofunctional acrylic monomer and further contains a styrene-based elastomer.
  5. 前記スチレン系エラストマーが、重量平均分子量で20万以上である高分子量スチレン系エラストマー、エポキシ変性スチレン系エラストマー及びソフトセグメントに不飽和結合を有するスチレン系エラストマーの少なくとも何れかである請求項4記載の光硬化性組成物。 The light according to claim 4, wherein the styrene-based elastomer is at least one of a high-molecular-weight styrene-based elastomer having a weight average molecular weight of 200,000 or more, an epoxy-modified styrene-based elastomer, and a styrene-based elastomer having an unsaturated bond in a soft segment. Curable composition.
  6. 前記スチレン系エラストマーが、スチレン-イソブチレン-スチレンブロック重合体である請求項4記載の光硬化性組成物。 The photocurable composition according to claim 4, wherein the styrene-based elastomer is a styrene-isobutylene-styrene block polymer.
  7. 無機粉体をさらに含む請求項1~請求項6何れか1項記載の光硬化性組成物。 The photocurable composition according to any one of claims 1 to 6, further comprising an inorganic powder.
  8. 70℃の1規定塩酸に120h浸漬したときにΔEが20以上変化する請求項1~請求項7何れか1項記載の光硬化性組成物を硬化した硬化体。 A cured product obtained by curing the photocurable composition according to any one of claims 1 to 7, wherein ΔE changes by 20 or more when immersed in 1N hydrochloric acid at 70 ° C. for 120 hours.
  9.  ナノインデンテーション試験で測定されるマルテンス硬さが0.005~50N/mmである請求項8記載の硬化体。 The cured product according to claim 8, wherein the Martens hardness measured in the nanoindentation test is 0.005 to 50 N / mm 2.
  10. 請求項1~請求項7何れか1項記載の光硬化性組成物の硬化体又は請求項8若しくは請求項9記載の硬化体であって、圧縮永久ひずみが50%以下であるシール材。 A sealing material which is a cured product of the photocurable composition according to any one of claims 1 to 7 or a cured product according to claim 8 or 9, wherein the compression set is 50% or less.
  11. 請求項1~請求項7何れか1項記載の光硬化性組成物の硬化体又は請求項8若しくは請求項9記載の硬化体であって、基板上にある電子素子又は配線を覆う保護材。 The cured product of the photocurable composition according to any one of claims 1 to 7, or the cured product according to claim 8 or 9, which is a protective material that covers an electronic element or wiring on a substrate.
  12. 開口を有するケースと、前記開口を閉塞する蓋体と、
    ケース又は前記蓋体の少なくとも何れかに設けられる請求項9記載のシール材と、を備え、前記ケースと前記蓋体との嵌め合わせにより前記シール材が圧縮変形して前記開口を液密に封止する防水構造。
    A case having an opening, a lid that closes the opening,
    The sealing material according to claim 9, which is provided on at least one of the case and the lid body, is provided, and the sealing material is compressively deformed by fitting the case and the lid body to seal the opening liquid-tightly. Waterproof structure to stop.
  13. 請求項1~請求項7何れか1項記載の光硬化性組成物を塗布する工程と、活性化エネルギー線を照射する工程とを少なくとも含む、シール材、保護材、マスキング材、接着剤、及び防振材から選択される少なくとも一の硬化体の製造方法。 A sealing material, a protective material, a masking material, an adhesive, and a step including at least a step of applying the photocurable composition according to any one of claims 1 to 7 and a step of irradiating the activation energy ray. A method for producing at least one cured product selected from anti-vibration materials.
PCT/JP2020/029924 2019-08-29 2020-08-05 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method WO2021039320A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080044270.6A CN113993912A (en) 2019-08-29 2020-08-05 Photocurable composition, cured product thereof, sealing material, protective material, waterproof structure, and method for producing cured product
KR1020217038886A KR20220055451A (en) 2019-08-29 2020-08-05 Photocurable composition and its cured product, sealing material, protective material, waterproof structure and manufacturing method of the cured product
JP2021542688A JPWO2021039320A1 (en) 2019-08-29 2020-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157438 2019-08-29
JP2019-157438 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039320A1 true WO2021039320A1 (en) 2021-03-04

Family

ID=74684768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029924 WO2021039320A1 (en) 2019-08-29 2020-08-05 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method

Country Status (4)

Country Link
JP (1) JPWO2021039320A1 (en)
KR (1) KR20220055451A (en)
CN (1) CN113993912A (en)
WO (1) WO2021039320A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178448A (en) * 1983-03-30 1984-10-09 Sekisui Chem Co Ltd Photopolymerizable image forming composition
JP2006243018A (en) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd Liquid crystal display element, shading sealant therefor, and vertical conduction material
JP2010195985A (en) * 2009-02-26 2010-09-09 Omron Corp Cure degree evaluation method of active energy ray-curable resin composition, cure degree evaluation sheet, and cure degree evaluation system
JP2011088975A (en) * 2009-10-21 2011-05-06 Hitachi Chem Co Ltd Photocurable moisture-proof insulating coating material and method for manufacturing moisture-proof insulated electronic part using the same
WO2012090298A1 (en) * 2010-12-28 2012-07-05 日立化成工業株式会社 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same
JP2015007166A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Photocurable resin composition, and photocurable light-shielding coating material, light leakage preventing material, liquid crystal display panel and liquid crystal display device using the composition, and photocuring method
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
JP2018199796A (en) * 2017-05-29 2018-12-20 積水ポリマテック株式会社 Sealing material composition and sealing material
WO2019124452A1 (en) * 2017-12-20 2019-06-27 旭化成株式会社 Photosensitive resin laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751238B2 (en) 2015-02-09 2020-09-02 株式会社スリーボンド Method of curing photocurable resin composition and cured product
CN109153842A (en) * 2016-07-05 2019-01-04 积水保力马科技株式会社 Encapulant composition and sealing material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178448A (en) * 1983-03-30 1984-10-09 Sekisui Chem Co Ltd Photopolymerizable image forming composition
JP2006243018A (en) * 2005-02-28 2006-09-14 Sekisui Chem Co Ltd Liquid crystal display element, shading sealant therefor, and vertical conduction material
JP2010195985A (en) * 2009-02-26 2010-09-09 Omron Corp Cure degree evaluation method of active energy ray-curable resin composition, cure degree evaluation sheet, and cure degree evaluation system
JP2011088975A (en) * 2009-10-21 2011-05-06 Hitachi Chem Co Ltd Photocurable moisture-proof insulating coating material and method for manufacturing moisture-proof insulated electronic part using the same
WO2012090298A1 (en) * 2010-12-28 2012-07-05 日立化成工業株式会社 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same
JP2015007166A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Photocurable resin composition, and photocurable light-shielding coating material, light leakage preventing material, liquid crystal display panel and liquid crystal display device using the composition, and photocuring method
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
JP2018199796A (en) * 2017-05-29 2018-12-20 積水ポリマテック株式会社 Sealing material composition and sealing material
WO2019124452A1 (en) * 2017-12-20 2019-06-27 旭化成株式会社 Photosensitive resin laminate

Also Published As

Publication number Publication date
JPWO2021039320A1 (en) 2021-03-04
CN113993912A (en) 2022-01-28
KR20220055451A (en) 2022-05-03

Similar Documents

Publication Publication Date Title
US9627646B2 (en) Method for encapsulating an electronic arrangement
JP5297163B2 (en) UV curable resin composition and bonding method using the same
JP6751238B2 (en) Method of curing photocurable resin composition and cured product
US20110190414A1 (en) Adhesive composition and adhesion method
KR20220042050A (en) Photocurable resin composition
TW201726876A (en) Photocurable resin composition and method for producing picture display device
WO2021039320A1 (en) Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method
CN108431157A (en) Use the adhering method of photo-curable sticker
JP6919886B2 (en) Encapsulant composition and encapsulant
KR102553298B1 (en) Gasket and waterproof structure using photocurable composition, cured product and cured product, and manufacturing method of gasket
KR102652063B1 (en) Leak point specific material and leak point specific method, leak point repair material and leak point repair method, and leak point repair device
JP6625079B2 (en) Sealing resin composition
WO2018038226A1 (en) Curable resin composition, image display device and manufacturing method of image display device
JP7448390B2 (en) UV curable resin composition
CN109427245A (en) Constitute body and its manufacturing method, display body and optics adhesive sheet
WO2019016960A1 (en) Method for producing joined body, joined body, liquid crystal display and image display device
WO2023042676A1 (en) Variable-color adhesive sheet and coloring method therefor
JP2023164830A (en) Photocurable resin composition, and method for manufacturing image display device
WO2018038217A1 (en) Curable resin composition
JP2022046421A (en) Color-changeable adhesive sheet
WO2018037514A1 (en) Method for manufacturing image display device
JP2024052224A (en) Adhesive sheet and laminate
TW201925390A (en) Curable resin composition, image display device, and method for manufacturing image display device
JP2020063315A (en) Ultraviolet curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856002

Country of ref document: EP

Kind code of ref document: A1