WO2012090298A1 - Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same - Google Patents

Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same Download PDF

Info

Publication number
WO2012090298A1
WO2012090298A1 PCT/JP2010/073702 JP2010073702W WO2012090298A1 WO 2012090298 A1 WO2012090298 A1 WO 2012090298A1 JP 2010073702 W JP2010073702 W JP 2010073702W WO 2012090298 A1 WO2012090298 A1 WO 2012090298A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photocurable resin
liquid crystal
crystal display
electrode
Prior art date
Application number
PCT/JP2010/073702
Other languages
French (fr)
Japanese (ja)
Inventor
朋子 阿部
藤井 徹也
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to PCT/JP2010/073702 priority Critical patent/WO2012090298A1/en
Publication of WO2012090298A1 publication Critical patent/WO2012090298A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • the present invention relates to a photocurable resin composition, a protective coating agent, a cured film, a liquid crystal display module, and a method for producing the same.
  • LCDs liquid crystal displays
  • LCDs are made by encapsulating a liquid crystal material between two glass substrates and pasting deflecting plates on the front and back of the combined glass, and ITO etc. on the surface encapsulating the liquid crystal material of each glass substrate The electrode is formed.
  • This LCD is a liquid crystal connected via a connecting member such as an anisotropic conductive film to a flexible wiring board on which a semiconductor chip (hereinafter sometimes referred to as “LCD driver IC”) for controlling driving and display of the LCD is mounted.
  • LCD driver IC used as a display module.
  • Known mounting methods for mounting an LCD driver IC on a flexible wiring board include TAB (Tape Automated Bonding), COF (Chip on Film), and the like.
  • a COG (Chip on Glass) method is also known in which an LCD driver IC is directly mounted on an electrode formed on a glass substrate of an LCD.
  • connection part between the lead electrode of the flexible wiring board in the mounting method such as TAB or COF or the bump electrode of the semiconductor chip in the COG mounting method and the electrode of the LCD needs to be protected from moisture, dust, etc. Insulation is performed.
  • a coating treatment with a protective coating agent such as an acrylic resin or a urethane resin is widely adopted.
  • a protective coating agent is generally used in a state dissolved in an organic solvent.
  • the protective coating agent is applied to the connecting portion and dried to form a coating film, and the lead electrode or the bump electrode and the LCD electrode are protected.
  • Patent Document 1 discloses a photocurable resin composition that contains an acrylic-modified hydrogenated polybutadiene resin and the like that is capable of moisture-proofing and insulating electronic components and does not substantially contain an organic solvent.
  • the photocurable resin composition described in the cited document 1 is used as a protective film for a lead electrode of a flexible wiring board on which the LCD driver IC is mounted or a connection part between a bump electrode of a semiconductor chip and an electrode of an LCD.
  • the present inventors have clarified that it cannot be applied to this field because of insufficient curability.
  • the part may not be sufficiently cured and reliability such as moisture resistance may be reduced.
  • a protective coating agent that not only contains substantially no organic solvent but also can clearly identify a portion cured by light irradiation.
  • LCDs, LCD driver ICs are connected to flexible wiring boards or LCD driver ICs for flexible wiring boards equipped with LCD driver ICs, or connection bodies in which LCD driver ICs are connected to LCDs and the connection portions are coated with a protective coating agent.
  • an object of the present invention is to provide a material that satisfies these requirements and has performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycleability.
  • a further object of the present invention is to provide a protective coating agent, a cured film, a liquid crystal display module and a method for producing the same using the same.
  • the present invention provides (A) a urethane oligomer (hereinafter sometimes referred to as “(A) component”), (B) a polymerizable compound having an ethylenically unsaturated group (hereinafter sometimes referred to as “(B ) Component ”), (C) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (hereinafter sometimes referred to as“ component (C) ”), and ( D) A photocurable resin composition containing a leuco dye (hereinafter sometimes referred to as “component (D)”) is provided.
  • Such a photo-curable resin composition has high repair properties and performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycle properties. Furthermore, since the color of the photocurable resin composition of the present invention is changed by irradiating and curing ultraviolet rays, the application of the composition and the confirmation of the curing of the composition can be easily performed. Therefore, when the photocurable resin composition of the present invention is used as a protective coating agent, the presence or absence of the protective coating treatment can be easily confirmed. Furthermore, since the photocurable resin composition of the present invention can be used as a protective coating agent without using an organic solvent, the environmental load is small.
  • the component (D) is preferably leuco crystal violet from the viewpoint that the color developability upon curing is further improved.
  • the component (A) is preferably a urethane oligomer having a (meth) acryloyl group from the viewpoint that the adhesiveness, moisture resistance, and heat cycle properties can be further improved.
  • the above-mentioned photocurable resin composition preferably does not substantially contain an organic solvent from the viewpoint of reducing the environmental load. “Substantially free of organic solvent” means that the content of the organic solvent in the photocurable resin composition is 3000 ppm or less, for example.
  • the present invention provides a protective coating for a connecting portion in which an electrode of a liquid crystal display and a lead electrode of a flexible wiring board are connected via a connecting member, and an electrode of a liquid crystal display and a bump electrode of a semiconductor chip via a connecting member.
  • a protective coating agent comprising the above-mentioned photo-curable resin composition, which can be suitably used for a protective coating of connected connection parts.
  • the present invention provides a cured film obtained by photocuring the above-mentioned photocurable resin composition, and having a storage elastic modulus at 25 ° C. of 10 to 200 MPa. According to such a cured film, it is possible to sufficiently protect electrodes such as circuit electrodes, lead electrodes, and bump electrodes from moisture, dust, and the like.
  • the storage elastic modulus of a cured film can be measured by the method as described in an Example, for example.
  • the present invention includes a step of connecting an electrode of a liquid crystal display and a lead electrode of a flexible wiring board via a connecting member, and the above-described photocuring so as to cover the electrode of the liquid crystal display, the lead electrode of the flexible wiring board, and the connecting member.
  • the manufacturing method of a liquid crystal display module including the process of apply
  • the present invention also includes a step of connecting the electrode of the liquid crystal display and the bump electrode of the semiconductor chip via a connection member, and the photocurable property described above so as to cover the electrode of the liquid crystal display, the bump electrode of the semiconductor chip and the connection member.
  • a method for producing a liquid crystal display module comprising a step of applying a resin composition to form a coating film and a step of irradiating the coating film with actinic rays.
  • the present invention further provides a liquid crystal display module manufactured by these manufacturing methods.
  • the photocurable resin composition of the present invention has high repair properties and performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycle properties. Furthermore, when the photocurable resin composition of the present invention is used as a protective coating agent, the presence or absence of a protective coating treatment can be easily confirmed. Furthermore, according to this invention, the protective coating agent using this photocurable resin composition, a cured film, a liquid crystal display module, and its manufacturing method are provided.
  • (meth) acrylate means “acrylate” and “methacrylate” corresponding thereto.
  • (meth) acryl means “acryl” and “methacryl” corresponding thereto, and “(meth) acryloyl” means “acryloyl” and corresponding “methacryloyl”.
  • the photocurable resin composition of the present embodiment includes (A) a urethane oligomer, (B) a polymerizable compound having an ethylenically unsaturated group, (C) 2-methyl-1- [4- (methylthio) phenyl. ] A photopolymerization initiator containing 2-morpholino-propan-1-one, and (D) a leuco dye.
  • a photopolymerization initiator containing 2-morpholino-propan-1-one and (D) a leuco dye.
  • the (A) urethane oligomer can be obtained, for example, by reacting (a1) a diol compound with (a2) a compound having an isocyanate group.
  • Examples of (a1) diol compounds include polyolefin diols such as polyethylene glycol, polypropylene glycol, polybutadiene diol, polyisoprene diol, hydrogenated polybutadiene diol, hydrogenated polyisoprene diol, polyether diol, polyester diol, polycaprolactone diol, and silicone. Diols are mentioned. Among these, polyolefin diol is preferable from the viewpoints of flexibility (reduction in storage elastic modulus) and adhesiveness.
  • polybutadiene diols and polyisoprene diols have “1,4-repeating units” or “1,2-repeating units”.
  • the “1,4-repeat unit” is a repeat unit represented by the following chemical formula (1t) or (1c), and the “1,2-repeat unit” is the following chemical formula: It is a repeating unit represented by (1d).
  • Examples of the polybutadiene diol mainly having 1,4-repeating units include Poly bd R-45HT and Poly bd R-15HT (trade name, manufactured by Idemitsu Kosan Co., Ltd.).
  • Examples of the polybutadiene diol mainly having 1,2-repeating units include compounds represented by the following general formula (1a), specifically, G-1000, G-2000, G-3000 (1,2 -Content ratio of repeating unit: 85% or more, Nippon Soda Co., Ltd., trade name).
  • Examples of the polyisoprene diol mainly having 1,2-repeat units include Poly IP (trade name, manufactured by Idemitsu Kosan Co., Ltd.). [In the formula (1a), n1 represents an integer of 1 to 60. ]
  • polystyrene diols particularly from the viewpoint of heat cycleability, hydrogenation mainly having 1,2-repeating units represented by the following general formula (1b) obtained by hydrogenating the polybutadiene polyol of the above general formula (1a).
  • Polybutadiene diol is preferred.
  • all unsaturated double bonds may not be hydrogenated, and a few unsaturated double bonds may remain (iodine value (I 2 mg / 100 g) is preferably 21 or less).
  • n2 represents an integer of 1 to 60.
  • Examples of the divalent organic group represented by X in the general formula (2) include, for example, an alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted lower alkyl group having 1 to 5 carbon atoms such as a methyl group. And arylene groups such as a phenylene group and a naphthylene group. The number of carbon atoms of the alkylene group is more preferably 1-18.
  • the divalent organic group represented by X has an aromatic ring such as a phenylene group, a xylylene group, a naphthylene group, a diphenylmethane-4,4′-diyl group, a diphenylsulfone-4,4′-diyl group. Groups are preferred. A hydrogenated diphenylmethane-4,4'-diyl group is also preferred.
  • diisocyanates represented by the general formula (2) include diphenylmethane-2,4′-diisocyanate; 3,2′-, 3,3′-, 4,2′-, 4,3 ′. -, 5,2'-, 5,3'-, 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate; 3,2'-, 3,3'-, 4,2 '-, 4,3'-, 5,2'-, 5,3'-, 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate; 3,2'-, 3, 3'-, 4,2'-, 4,3'-, 5,2'-, 5,3'-, 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate; diphenylmethane -4,4'-diisocyanate; diphenylmethane-3,3'--
  • an aromatic diisocyanate compound in which X in the formula (2) is a group having an aromatic ring can be used alone or in combination of two or more.
  • the diisocyanates represented by the general formula (2) may be those stabilized with a blocking agent necessary to avoid changes over time.
  • the blocking agent include hydroxy acrylate, alcohol typified by methanol, phenol, and oxime, but are not particularly limited.
  • the blending ratio when the (a1) diol compound and the diisocyanate represented by the general formula (2) are reacted is the number average molecular weight of the urethane oligomer to be produced and the terminal of the urethane oligomer to be produced is a hydroxyl group. Or an isocyanate group.
  • the blending ratio is preferably adjusted so that the ratio between the number of hydroxyl groups and the number of isocyanate groups (number of hydroxyl groups / isocyanate groups) is 1.01 or more, and the number average molecular weight is increased. It is preferable to adjust to less than 2 from a viewpoint.
  • the terminal of the urethane oligomer is a hydroxyl group
  • monocarboxylic acids having a (meth) acryloyl group such as acetic acid and (meth) acrylic acid
  • a monoisocyanate compound having a (meth) acryloyl group such as 2-isocyanatoethyl (meth) acrylate
  • the terminal of the urethane oligomer may be modified by reacting a terminal hydroxyl group with a compound capable of reacting with a hydroxyl group such as acid anhydrides.
  • the ratio (the number of isocyanate groups / number of hydroxyl groups) of the number of isocyanate groups and the number of hydroxyl groups may be 1.01 or more, and a number average molecular weight is enlarged. It is preferable to adjust to less than 2 from a viewpoint.
  • the compound for introducing various skeletons include compounds capable of reacting with isocyanate groups such as monohydroxy compounds, lactams, oximes, monocarboxylic acids, and divalent acid anhydrides.
  • Examples of the monohydroxy compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, Caprolactone or alkylene oxide adduct of each (meth) acrylate, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane tri ( Monohydroxy compounds having a (meth) acryloyl group such as (meth) acrylate and 2-acryloxyethanol, and monohydrides having a carboxylic acid such as glycolic acid and hydroxypivalic acid Alkoxy compounds. These monohydroxy compounds can be used alone or in combination of two or more.
  • the urethane oligomer preferably has a (meth) acryloyl group from the viewpoint of improving toughness and further improving adhesiveness, moisture resistance, and heat cycle properties.
  • the urethane oligomer having a (meth) acryloyl group reacts with a monocarboxylic acid having a (meth) acryloyl group or a monoisocyanate compound having a (meth) acryloyl group when the terminal of the urethane oligomer is a hydroxyl group.
  • the terminal of the urethane oligomer is an isocyanate group, it can be obtained by reacting a monohydroxy compound having a (meth) acryloyl group.
  • urethane oligomers having a (meth) acryloyl group and a hydrogenated polybutadiene structure mainly having 1,2-repeating units are preferred.
  • the urethane oligomer having a hydrogenated polybutadiene structure mainly having a (meth) acryloyl group and 1,2-repeat units is, for example, a hydrogenated polybutadiene diol represented by the above general formula (1b), or a general formula (2). It can be synthesized from the diisocyanate compound represented and a monohydroxy compound having a (meth) acryloyl group.
  • the reaction of the diol compound in the production of the urethane oligomer used as the component (A) with the diisocyanate represented by the general formula (2) and a compound for introducing various skeletons is an organic solvent, preferably This can be carried out by heat condensation in the presence of a non-nitrogen-containing polar solvent.
  • non-nitrogen-containing polar solvent examples include ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether; sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, and sulfolane; Examples thereof include ester solvents such as ⁇ -butyrolactone and cellosolve acetate; ketone solvents such as cyclohexanone and methyl ethyl ketone; and aromatic hydrocarbon solvents such as toluene and xylene. These can be used alone or in combination of two or more.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether
  • sulfur-containing solvents such as dimethyl sulfoxide, diethyl s
  • the reaction may be carried out in the presence of a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
  • a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
  • the number average molecular weight of the urethane oligomer (A) thus obtained is preferably from 500 to 7000, from the viewpoint of curability, flexibility (reduction in storage elastic modulus), and coatability, and preferably from 1,000 to It is more preferably 5,000, particularly preferably 1,500 to 4,000.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve. Further, the number average molecular weight, the weight average molecular weight, and the degree of dispersion are defined as follows.
  • the content of the component (A) is based on 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of further improving curability, adhesiveness, and flexibility (reduction in storage elastic modulus). 40 to 70 parts by mass, more preferably 45 to 60 parts by mass, and particularly preferably 50 to 55 parts by mass.
  • ⁇ (B) component polymerizable compound having an ethylenically unsaturated group>
  • the polymerizable compound having an ethylenically unsaturated group is preferably liquid at room temperature (25 ° C.) and can dissolve the component (C) described below.
  • component (B1) ethylenically unsaturated A polymerizable compound containing a double bond and a cyclic aliphatic group
  • component (B2) a polymerizable compound having 5 to 10 ethylenically unsaturated double bonds in the molecule
  • component (B3) polymerizable compounds represented by the following general formula (3) (hereinafter also referred to as “component (B3)”).
  • component (B3) polymerizable compounds represented by the following general formula (3) (hereinafter also referred to as “component (B3)”).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 4 to 20 carbon atoms.
  • a monofunctional or polyfunctional polymerizable compound having a vinyl group, an acryloyl group, a methacryloyl group, etc., and a monocyclic or condensed ring made of a saturated or unsaturated hydrocarbon alone or Two or more types can be used in combination.
  • a monofunctional or polyfunctional polymerizable compound having a vinyl group, an acryloyl group, a methacryloyl group, etc. and a monocyclic or condensed ring made of a saturated or unsaturated hydrocarbon alone or Two or more types can be used in combination.
  • the adhesion tends to be further improved.
  • those having an acryloyl group or a methacryloyl group include, for example, cyclohexyl (meth) acrylate, norbornyl (meth) acrylate, isobornyl (meth) acrylate, norbornanyl (meth) ) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, tricyclodecane dimethylol di (meth) An acrylate is mentioned.
  • vinyl groups such as vinyl norbornene and vinyl norbornane
  • an isobornyl (meth) acrylate compound is preferable from the viewpoint of further improving the strength and adhesiveness of the cured product.
  • Examples of the component (B2) include dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, and dipentaerythritol hexahydroxy (meth) acrylate. Can be mentioned.
  • R 2 is preferably an alkyl group having 6 to 18 carbon atoms, and an alkyl group having 8 to 16 carbon atoms from the viewpoint of further improving flexibility (reduction in storage modulus). More preferred are groups of 10 to 14 alkyl groups.
  • Examples of the polymerizable compound represented by the general formula (3) include n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl ( Examples include (meth) acrylate, n-hexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (meth) acrylate. These can be used alone or in combination of two or more.
  • a polymerizable compound having an ethylenically unsaturated group other than the above can be used in combination, and has a vinyl group, an acryloyl group, a methacryloyl group, or the like, which is monofunctional or polyfunctional.
  • a polymerizable compound can be used.
  • (meth) acrylate compounds having an acryloyl group or a methacryloyl group are preferred.
  • methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyethyl Alkoxyalkyl (meth) acrylates such as (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethoxyethyl (meth) acrylate, 2-ethoxyethoxyethyl (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl Hydroxyalkyl (meth) acrylates such as (meth) acrylate and 2-hydroxypropyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxydiethyl Alkoxy (polyl (me
  • acrylamide derivatives such as acrylamide, dimethylacrylamide, diethylacrylamide, and (meth) acryloylmorpholine can also be used.
  • vinyl group such as ⁇ , ⁇ -tetraallylbistrimethylolpropane tetrahydrophthalate, N-vinylpyrrolidone, N-vinylcaprolactam can also be used.
  • the content of these components (B) can be adjusted to a viscosity range suitable for the workability of the curable and photocurable resin composition (hereinafter sometimes referred to as “workability”), and the resulting curing is obtained.
  • workability a viscosity range suitable for the workability of the curable and photocurable resin composition
  • From the viewpoint of moisture resistance of the film 30 to 60 parts by weight, preferably 40 to 55 parts by weight, more preferably 45 to 50 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B). Particularly preferred.
  • the content of the component (B1) is preferably 20 to 55 parts by mass with respect to 100 parts by mass as the total of the components (A) and (B). 25 to 50 parts by mass is more preferable, and 30 to 45 parts by mass is particularly preferable.
  • the content of the component (B1) is 20 parts by mass or more, the adhesiveness and workability are excellent, and when it is 55 parts by mass or less, moisture resistance can be further improved.
  • the content of the component (B2) when the component (B1) and the component (B2) are used together is 100 masses of the total amount of the component (A) and the component (B) from the viewpoint of improving the curability and adhesiveness in a balanced manner. 1 to 20 parts by mass is preferable, 2 to 15 parts by mass is more preferable, and 3 to 10 parts by mass is particularly preferable.
  • the component (B3) is preferable to use from the viewpoint of further improving the flexibility (reduction in storage elastic modulus).
  • the content is preferably 1 to 10 parts by mass, more preferably 1.5 to 10 parts by mass with respect to 100 parts by mass as the total of the components (A) and (B). 2 to 8 parts by mass is particularly preferred.
  • 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one is excellent in solubility in the component (B) and has surface curability on the coated surface of the photocurable resin composition. In addition to excellent bottom curability.
  • the content of the component (C) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of further improving curability, repairability and color developability. Is more preferably from 10 to 10 parts by weight, particularly preferably from 3 to 9 parts by weight, and most preferably from 5 to 8 parts by weight.
  • the photocurable resin composition of the present embodiment may contain a photopolymerization initiator other than the component (C) as long as various properties are not impaired.
  • a photopolymerization initiator include acridine or an acridine compound having at least one acridinyl group in the molecule, benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler's ketone), and the like.
  • Aromatic ketones such as N, N′-tetraalkyl-4,4′-diaminobenzophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and quinones such as alkylanthraquinone
  • Benzoin ether compounds such as benzoin alkyl ether, benzoin compounds such as benzoin and alkylbenzoin, benzyl derivatives such as benzyldimethyl ketal, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o -Chlorophenyl) -4,5-di Methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p -Methoxyphenyl
  • leuco dye for example, leuco crystal violet, leucomalachite green, leuco victoria blue BH, leuco victoria pure blue BOH, leuco diamond green, leuco acid violet 5B, leuco solar cyanine 6B, leuco brilliant green, 3, 6 -Bisdiethylamino-9-phenylxanthene.
  • leuco crystal violet Tris (4-dimethylaminophenyl) methane
  • a leuco dye is a reduction-type pigment composed of a colorless or light-colored electron-donating pigment (dye) precursor, and has an action of coloring when mixed with a compound having an acidic group and heated.
  • leuco dyes are colored by irradiation with ultraviolet rays in the presence of an organic halogen compound.
  • a photocurable resin composition as a protective film, it may become a factor which reduces migration resistance when it contains a compound having an acidic group (including a photoacid generator) or an organic halogen compound.
  • the component (C) is used in combination with a leuco dye, particularly leuco crystal violet, even if it does not substantially contain a compound having an acidic group as described above or an organic halogen compound.
  • a leuco dye particularly leuco crystal violet
  • excellent color developability is exhibited by irradiating light without heating.
  • “Substantially free” means that the amount of the compound having an acidic group or the organic halogen compound is small (less than 100 ppm, preferably 50 ppm in the total amount of the photocurable resin composition) as long as the properties of the present invention are not impaired. The following is more preferable), but it is particularly preferably not contained.
  • the content of the component (D) is 0.01 to 3 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint that the curability and color developability can be further improved.
  • 0.05 to 2 parts by mass is more preferable, 0.1 to 1 part by mass is particularly preferable, and 0.2 to 0.5 part by mass is most preferable.
  • a coupling agent, a filler, a polymerization inhibitor, a modifier, an antifoaming agent, and the like can be arbitrarily added to the photocurable resin composition of the present embodiment as necessary.
  • Examples of the coupling agent include titanate coupling agents and silane coupling agents.
  • Examples of the titanate coupling agent include a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, and a titanate coupling agent having an alkyl phosphate group. And titanate coupling agents having an alkyl pyrophosphate group.
  • isopropyl triisostearoyl titanate isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, Examples thereof include tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, and bis (dioctylpyrophosphate) ethylene titanate.
  • silane coupling agents include amino silane coupling agents, ureido silane coupling agents, vinyl silane coupling agents, methacrylic silane coupling agents, epoxy silane coupling agents, and mercapto silane cups. Examples thereof include a ring agent and an isocyanate-based silane coupling agent.
  • ⁇ -isocyanatopropyltriethoxysilane is preferable from the viewpoint of further improving adhesiveness.
  • These can be used alone or in combination of two or more.
  • the content of these coupling agents is usually preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the total amount of the photocurable resin composition.
  • the amount is preferably 0.1 to 2 parts by mass.
  • filler examples include inorganic fine particles such as fine powdered silicon oxide, magnesium oxide, aluminum hydroxide, and calcium carbonate.
  • hydroquinone for example, hydroquinone, hydroquinone monomethyl ether, benzoquinone, p-tert-butylcatechol, quinones such as 2,6-di-tert-butyl-4-methylphenol, pyrogallol, and other generally used Things can be used.
  • Examples of the modifier include a leveling agent for improving leveling properties.
  • Examples of the leveling agent include a polyether-modified dimethylpolysiloxane copolymer, a polyester-modified dimethylpolysiloxane copolymer, a polyether-modified methylalkylpolysiloxane copolymer, and an aralkyl-modified methylalkylpolysiloxane copolymer.
  • antifoaming agent examples include known defoaming agents such as silicon oil, fluorine oil, and polycarboxylic acid polymer.
  • the photocurable resin composition of the present embodiment can be used by blending the above-described components (A), (B), (C) and (D), and other optional components, and dissolving them by heating. There is no need to use organic solvents.
  • the above-mentioned photocurable resin composition can be suitably used as a protective coating agent for a portion that needs to be protected from moisture, dust and the like.
  • the protective coating agent comprising the above-mentioned photocurable resin composition is used for protective coating treatment of a connection portion in a liquid crystal display described later.
  • Protective coating treatment with the photocurable resin composition of the present embodiment can be performed, for example, as follows. First, a photocurable resin composition is applied to a portion to be protected to form a coating film. Next, the coating is irradiated with a necessary amount of ultraviolet rays and cured to form a cured body. The portion to be protected is protected by the cured body.
  • the method of applying the photocurable resin composition to the protection target can be appropriately changed depending on the shape of the portion to be protected, for example, a coating method using a dispenser device, a dipping method, a brush coating method, a spray method. A wire drawing method or the like can be applied.
  • Irradiation with ultraviolet rays can be performed using, for example, a high-pressure mercury lamp, a metal halide lamp, an LED, or the like as a light source.
  • the viscosity (25 ° C.) of the photocurable resin composition of the present embodiment is preferably 1 to 10 Pa ⁇ s, and more preferably 2 to 5 Pa ⁇ s.
  • the viscosity of the rotor No. is measured at 25 ° C. using a BL type viscometer (manufactured by Tokimec). 3. It can be measured under the condition that the photocurable resin composition amount is 120 g, the rotation speed is 30 rpm, and the rotation is performed for 3 minutes.
  • the cured film obtained by curing the photocurable resin composition of the present embodiment preferably has a storage elastic modulus at 25 ° C. of 10 to 200 MPa from the viewpoint of further improving heat cycle properties. Is more preferable.
  • liquid crystal display module Asinafter, the liquid crystal display module of the present embodiment will be described with reference to FIGS.
  • FIG. 1 is a schematic cross-sectional view showing an example of a liquid crystal display module of this embodiment in which a liquid crystal display and a flexible wiring board (TAB mounting method) are connected.
  • the connection part in which the electrode 22 in the liquid crystal display and the lead electrode 13 in the flexible wiring board are connected via the connection member 24 is cured by the photocurable resin composition of the present embodiment.
  • the structure is covered with the body 1.
  • an electrode 22 is formed on a glass substrate (lower glass) 23, and a glass substrate (upper glass) 21 is bonded to the upper surface thereof using a sealing material 25, and is surrounded by the sealing material 25 at a gap between the glass substrates 21 and 23.
  • the flexible wiring board has, for example, an adhesive layer 14 on a polyimide film 15, a lead electrode 13 is formed on the upper layer, a solder resist 16 is applied on the upper layer, and the semiconductor chip 11 and the bump electrode 12 are connected. , And its periphery is obtained by sealing with a liquid sealing material 17.
  • FIG. 2 is a schematic cross-sectional view showing an example of the liquid crystal display module of the present embodiment in which a liquid crystal display and a flexible wiring board (COF mounting method) are connected.
  • the connection part in which the electrode 42 in the liquid crystal display and the lead electrode 33 in the flexible wiring board are connected via the connection member 44 is cured by the photocurable resin composition of the present embodiment.
  • the structure is covered with the body 2.
  • an electrode 42 is formed on a glass substrate (lower glass) 43 in the same manner as in the TAB mounting method, and a glass substrate (upper glass) 41 is bonded to the upper surface using a sealing material 45, and glass substrates 41 and 43 are attached.
  • the flexible wiring board is formed, for example, by forming a lead electrode 33 on a polyimide film 34, further applying a solder resist 36 on the upper layer, and connecting the semiconductor chip 31 with the bump electrode 32, and sealing the periphery with a connection member 37. Is obtained.
  • connection portions between the electrodes 22 and 42 and the lead electrodes 13 and 33 in the liquid crystal display modules 100 and 200 described above can be formed by the following method, for example.
  • connection members 24 and 44 are connected through the connection members 24 and 44.
  • a coating film is formed by applying the photocurable resin composition of the present embodiment so as to cover the electrodes 22 and 42, the lead electrodes 13 and 33, and the connection members 24 and 44.
  • the connection portion can be formed by irradiating the coating film with an actinic ray and curing it.
  • connection members 24 and 44 for example, an anisotropic conductive film (ACF), a non-conductive film (NCF), and a non-conductive paste (NCP) can be suitably used.
  • ACF anisotropic conductive film
  • NCF non-conductive film
  • NCP non-conductive paste
  • Formation of the coating film and irradiation with actinic rays can be performed, for example, by the method described in the protective coating process described above.
  • FIG. 3 is a schematic cross-sectional view showing an example of the liquid crystal display module of the present embodiment in which a semiconductor chip is mounted on a glass substrate of a liquid crystal display (COG mounting method).
  • the connection part in which the electrode 62 in the liquid crystal display and the bump electrode 52 in the semiconductor chip 51 are connected via the connection member 53 is a cured body of the photocurable resin composition of the present embodiment. 3 is covered.
  • an electrode 62 is formed on a glass substrate (lower glass) 63, a glass substrate (upper glass) 61 is bonded to the upper surface of the electrode 62 using a sealing material 64, and the sealing material 64 is surrounded by a gap between the glass substrates 61 and 63. This is obtained by injecting liquid crystal (not shown) under reduced pressure into the broken portion.
  • connection portion between the electrode 62 and the bump electrode 52 in the liquid crystal display module 300 described above can be formed by, for example, the following method.
  • connection member 53 a coating film is formed by applying the photocurable resin composition of the present embodiment so as to cover the electrode 62, the bump electrode 52, and the connection member 53.
  • the connection portion can be formed by irradiating the coating film with an actinic ray and curing it.
  • connection member 53 For connection using the connection member 53, formation of the coating film, and curing, the same method as in the case of the liquid crystal display modules 100 and 200 described above can be applied.
  • the photocurable resin composition of the present embodiment includes a microcomputer, a transistor, a capacitor, a resistor, a relay, a transformer, and the like. And a mounting circuit board on which these are mounted, and further, can be applied to protective coating processing for lead wires, harnesses, film substrates and the like that are joined to these electronic components.
  • Part and % indicate “part by weight” and “% by weight”, respectively.
  • Synthesis example 1 After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, hydrogenated polybutadiene diol (manufactured by Nippon Soda Co., Ltd., trade name: GI-1000, number average molecular weight: About 1500) 100 parts (about 0.067 mol), hydroquinone monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) 0.01 part and 1,1,3,3-tetramethylguanidine (Wako Pure Chemical Industries, Ltd.) 0.1 parts), heated to 80 ° C., coronate T-65 (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: 65% by weight of tolylene-2,4-diisocyanate and tolylene-2,6-diisocyanate 20.5 parts (0.118 mol) of a mixture with 35% by mass) was added, and the mixture was kept at 80 to 85 ° C.
  • urethane oligomer number average molecular weight: about 3500.
  • Example 1 After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, 52 parts of urethane oligomer obtained in Synthesis Example 1 as component (A) and lauryl as component (B) 2 parts acrylate, 42 parts isobornyl acrylate, 4 parts dipentaerythritol hexaacrylate, 6 parts 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as component (C) , 0.3 part of leuco crystal violet as component (D) and 1 part of ⁇ -isocyanatopropyltriethoxysilane as silane coupling agent were added and heated and stirred at 60 ° C. for 3 hours to obtain a photocurable resin composition. .
  • Example 2 Photocurable resin as in Example 1 except that the amount of lauryl acrylate of component (B) in Example 1 was changed from 2 parts to 8 parts and the amount of isobornyl acrylate was changed from 42 parts to 36 parts. A composition was prepared.
  • Example 3 A photocurable resin composition was prepared in the same manner as in Example 1 except that the amount of the leuco crystal violet component (D) in Example 1 was changed from 0.3 part to 2 parts.
  • Example 4 Example 1 except that the amount of component (C) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one in Example 1 was changed from 6 parts to 9 parts. Similarly, a photocurable resin composition was prepared.
  • Example 1 is the same as Example 1 except that the amount of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as component (C) in Example 1 was changed from 6 parts to 3 parts. Similarly, a photocurable resin composition was prepared.
  • Example 6 The amount of the urethane oligomer of the component (A) in Example 1 was changed from 52 parts to 48 parts, 2 parts of the lauryl acrylate of the component (B) was not added, and the amount of dipentaerythritol hexaacrylate was changed from 4 parts to 10 parts.
  • a photocurable resin composition was prepared in the same manner as in Example 1 except that.
  • Comparative Example 1 The urethane oligomer of component (A) in Example 1 was changed to a polybutadiene homopolymer (B-3000, manufactured by Nippon Soda Co., Ltd., number average molecular weight: about 3,000) (hereinafter simply referred to as “polybutadiene homopolymer”).
  • a photocurable resin composition was prepared in the same manner as Example 1 except for the above.
  • Comparative Example 3 Photocurability in the same manner as in Example 1 except that 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as the component (C) in Example 1 was changed to benzophenone. A resin composition was prepared.
  • Comparative Example 5 A photocurable resin composition was prepared in the same manner as in Example 1 except that the leuco crystal violet component (D) in Example 1 was not added.
  • the photocurable resin composition obtained above was evaluated for curability, color developability, elastic modulus, adhesiveness, repairability, moisture resistance, and heat cycle properties as follows.
  • the color (b *) was measured with ⁇ 90 COLOR MEASURING SYSTEM manufactured by Nippon Denshoku and evaluated according to the following criteria.
  • test piece About the obtained test piece, it measured on the following conditions in tension mode using RS instruments made from TA instruments, and evaluated the storage elastic modulus in 25 degreeC. Measurement temperature: -60 to 150 ° C Temperature increase rate: 5 ° C / min Frequency: 1Hz
  • the obtained test piece was fixed to a universal tensile tester (manufactured by Shimadzu Corp., Autograph IS-10T) so that the cured film peeled off from the glass plate forms a 90-degree angle, and at 25 ° C., 50 mm / The 90-degree peel strength was measured at a rate of minutes.
  • a universal tensile tester manufactured by Shimadzu Corp., Autograph IS-10T
  • the moisture resistance was evaluated by migration resistance.
  • an ultraviolet irradiation device manufactured by Matsushita Electric Works Co., Ltd., output: 330 mW, number of LEDs: 2), irradiation distance 1 cm, lamp moving speed 80 mm / second, irradiation amount about 350 mJ / cm 2
  • the test piece was produced by irradiating ultraviolet rays under the conditions described above.
  • the obtained test piece was subjected to a high-temperature and high-humidity bias test for 500 hours under the conditions of 60 ° C., 90% RH, and DC 5 V, and evaluated for migration resistance (insulation resistance maintenance rate, corrosion resistance).
  • Insulation resistance maintenance ratio (resistance value after 500 hours / resistance value before high temperature and high humidity bias test) ⁇ 100 Corrosion resistance was evaluated based on the following criteria by visually observing the ITO electrode substrate at an observation magnification of substantially 100 times using a 10-times eyepiece and 10-times objective lens using a transmission type optical microscope. A: Corrosion is not observed at all. B: Corrosion in a very small range is generated in a dotted manner. C: Corrosion is generated on the wire and conduction is made.
  • the curability was poor and the back surface of the coating film was uncured.
  • the component (C) of Comparative Example 2 was not 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one but 2-benzyl-2-dimethylamino- (4-morpholinophenyl) )
  • the photocurable resin composition having 2-butan-1-one had low color developability and it was difficult to visually confirm the presence or absence of coloring. Regarding repairability, the film was cut during peeling.
  • the component (C) of Comparative Examples 3 and 4 was replaced with benzophenone and 2- (o-chlorophenyl) -4, respectively, instead of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one,
  • the photocurable resin composition made into 5-diphenylimidazole dimer had poor curability and the back surface of the coating film was uncured.
  • the cause of the poor curability of the photocurable resin composition made from 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer was the dimer of 2- (o-chlorophenyl) -4,5-diphenylimidazole. This is probably due to insufficient body solubility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention provides a photocurable resin composition having properties necessary for protective coating treatment such as repairability, adhesiveness, humidity resistance, and heat cycle properties. When the photocurable resin composition is used as a protective coating agent, it is possible to easily confirm the presence or absence of a protective coating treatment. The photocurable resin composition comprises: (A) urethane oligomer; (B) a polymerizable compound having an ethylenically unsaturated group; (C) a photopolymerization initiator containing 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one; and (D) a leuco dye.

Description

光硬化性樹脂組成物、保護コーティング剤、硬化膜、並びに液晶ディスプレイモジュール及びその製造法Photo-curable resin composition, protective coating agent, cured film, liquid crystal display module and method for producing the same
 本発明は、光硬化性樹脂組成物、保護コーティング剤、硬化膜、並びに液晶ディスプレイモジュール及びその製造法に関する。 The present invention relates to a photocurable resin composition, a protective coating agent, a cured film, a liquid crystal display module, and a method for producing the same.
 近年、移動式通信機器、特に携帯電話の需要が急増しており、これに用いられるLCD(液晶ディスプレイ)の需要も増えている。また、テレビ、パソコンモニターなどの表示機器についても、LCDはサイズの大型化が可能であり、かつ軽くて薄いという利点があるため、LCDの需要は今後も増えていくことが予想される。 In recent years, the demand for mobile communication devices, particularly mobile phones, has increased rapidly, and the demand for LCDs (liquid crystal displays) used therefor has also increased. In addition, for display devices such as televisions and personal computer monitors, the demand for LCDs is expected to increase in the future because LCDs can be increased in size and are light and thin.
 LCDは、2枚のガラス基板の間に液晶材料を封入し、2枚組み合わされたガラスの表裏に偏向板を貼り付けたものであり、各ガラス基板の液晶材料を封入した面にはITO等の電極が形成されている。 LCDs are made by encapsulating a liquid crystal material between two glass substrates and pasting deflecting plates on the front and back of the combined glass, and ITO etc. on the surface encapsulating the liquid crystal material of each glass substrate The electrode is formed.
 このLCDは、LCDの駆動及び表示を制御する半導体チップ(以下、「LCDドライバIC」という場合がある)を搭載したフレキシブル配線板に、異方導電性フィルム等の接続部材を介して接続した液晶ディスプレイモジュールとして使用される。LCDドライバICをフレキシブル配線板に搭載する実装方式としては、TAB(Tape Automated Bonding)、COF(Chip on Film)等が知られている。また、LCDドライバICをLCDのガラス基板に形成された電極上に直接実装するCOG(Chip on Glass)方式も知られている。 This LCD is a liquid crystal connected via a connecting member such as an anisotropic conductive film to a flexible wiring board on which a semiconductor chip (hereinafter sometimes referred to as “LCD driver IC”) for controlling driving and display of the LCD is mounted. Used as a display module. Known mounting methods for mounting an LCD driver IC on a flexible wiring board include TAB (Tape Automated Bonding), COF (Chip on Film), and the like. A COG (Chip on Glass) method is also known in which an LCD driver IC is directly mounted on an electrode formed on a glass substrate of an LCD.
 上記TAB、COF等の実装方式におけるフレキシブル配線板のリード電極、又はCOG実装方式における半導体チップのバンプ電極と、LCDの電極との接続部は、湿気、ほこり等から保護する必要があり、一般的に絶縁処理が行われている。この絶縁処理法としては、アクリル系樹脂、ウレタン系樹脂等の保護コーティング剤によるコーティング処理が広く採用されている。このような保護コーティング剤は、通常、有機溶剤に溶解した状態で用いられるのが一般的であった。この保護コーティング剤を上記接続部に塗布し、乾燥することにより塗膜が形成され、リード電極、又はバンプ電極とLCDの電極が保護される。 The connection part between the lead electrode of the flexible wiring board in the mounting method such as TAB or COF or the bump electrode of the semiconductor chip in the COG mounting method and the electrode of the LCD needs to be protected from moisture, dust, etc. Insulation is performed. As this insulation treatment method, a coating treatment with a protective coating agent such as an acrylic resin or a urethane resin is widely adopted. Such a protective coating agent is generally used in a state dissolved in an organic solvent. The protective coating agent is applied to the connecting portion and dried to form a coating film, and the lead electrode or the bump electrode and the LCD electrode are protected.
 しかし、これらの保護コーティング剤は、コーティング処理の際に大気中に有機溶剤が排出されるため、大気汚染の要因となる可能性があり、環境への負荷が高いものとなっていた。また、保護コーティング剤を塗布後、有機溶剤を乾燥する工程が必要となるため、作業効率が劣るという問題もあった。 However, these protective coating agents can cause air pollution because organic solvents are discharged into the atmosphere during the coating process, and have a high environmental impact. Moreover, since the process of drying an organic solvent is required after apply | coating a protective coating agent, there also existed a problem that work efficiency was inferior.
 一方、電子部品の分野においては、各種の電子部品を絶縁処理するために、実質的に有機溶剤を含まない光硬化性樹脂組成物を用いる方法が知られている。例えば、特許文献1には、電子部品の防湿、絶縁が可能な、アクリル変性水素添加ポリブタジエン樹脂等を含有する実質的に有機溶剤を含まない光硬化性樹脂組成物が開示されている。 On the other hand, in the field of electronic components, in order to insulate various electronic components, a method using a photocurable resin composition substantially free of an organic solvent is known. For example, Patent Document 1 discloses a photocurable resin composition that contains an acrylic-modified hydrogenated polybutadiene resin and the like that is capable of moisture-proofing and insulating electronic components and does not substantially contain an organic solvent.
特開2001-302946号公報JP 2001-302946 A
 しかしながら、引用文献1に記載されている光硬化性樹脂組成物を、上記LCDドライバICを搭載したフレキシブル配線板のリード電極、又は半導体チップのバンプ電極とLCDの電極との接続部の保護膜として用いた場合、硬化性が不十分であるため、この分野には適用できないことが本発明者らの検討で明らかとなった。 However, the photocurable resin composition described in the cited document 1 is used as a protective film for a lead electrode of a flexible wiring board on which the LCD driver IC is mounted or a connection part between a bump electrode of a semiconductor chip and an electrode of an LCD. When used, the present inventors have clarified that it cannot be applied to this field because of insufficient curability.
 上述の保護コーティング剤は、もし光照射が全部又は一部分だけ不完全であった場合、その部分は硬化が不十分となり、耐湿性等の信頼性が低下する可能性がある。このため、実質的に有機溶剤を含まないというだけでなく、光照射により硬化した部分を明確に識別できる保護コーティング剤が求められている。また、LCDドライバICを搭載したフレキシブル配線板、又はLCDドライバICとLCDを接続し、接続部を保護コーティング剤でコーティングした接続体について、LCD、LCDドライバICがフレキシブル配線板、又はLCDドライバICに不具合が生じた場合には、LCDを、LCDドライバICが搭載されたフレキシブル配線板、又はLCDドライバICから引き剥がし、不具合の生じた部品を別の部品に置き換えることが望ましい。このため、接続部における保護コーティング剤を容易に剥離除去できるリペア性も求められる。 If the above-mentioned protective coating agent is incomplete or only partially irradiated with light, the part may not be sufficiently cured and reliability such as moisture resistance may be reduced. For this reason, there is a need for a protective coating agent that not only contains substantially no organic solvent but also can clearly identify a portion cured by light irradiation. In addition, LCDs, LCD driver ICs are connected to flexible wiring boards or LCD driver ICs for flexible wiring boards equipped with LCD driver ICs, or connection bodies in which LCD driver ICs are connected to LCDs and the connection portions are coated with a protective coating agent. When a failure occurs, it is desirable to peel off the LCD from the flexible wiring board on which the LCD driver IC is mounted or the LCD driver IC, and replace the defective component with another component. For this reason, the repair property which can peel and remove the protective coating agent in a connection part easily is also calculated | required.
 そこで本発明は、これらの要求を満たし、かつ接着性、耐湿性、ヒートサイクル性等の保護コーティング処理に必要な性能を備える材料を提供することを目的とする。さらに本発明は、これを用いた保護コーティング剤、硬化膜、並びに液晶ディスプレイモジュール及びその製造法を提供することを目的とする。 Therefore, an object of the present invention is to provide a material that satisfies these requirements and has performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycleability. A further object of the present invention is to provide a protective coating agent, a cured film, a liquid crystal display module and a method for producing the same using the same.
 上記事情に鑑み、本発明は、(A)ウレタンオリゴマー(以下、場合により「(A)成分」という。)、(B)エチレン性不飽和基を有する重合性化合物(以下、場合により「(B)成分」という。)、(C)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン(以下、場合により「(C)成分」という)、及び(D)ロイコ染料(以下、場合により「(D)成分」という)を含有する光硬化性樹脂組成物を提供する。 In view of the above circumstances, the present invention provides (A) a urethane oligomer (hereinafter sometimes referred to as “(A) component”), (B) a polymerizable compound having an ethylenically unsaturated group (hereinafter sometimes referred to as “(B ) Component ”), (C) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one (hereinafter sometimes referred to as“ component (C) ”), and ( D) A photocurable resin composition containing a leuco dye (hereinafter sometimes referred to as “component (D)”) is provided.
 かかる光硬化性樹脂組成物によれば、リペア性が高く、かつ接着性、耐湿性、ヒートサイクル性等の保護コーティング処理に必要な性能を備える。さらに本発明の光硬化性樹脂組成物は、紫外線を照射し、硬化させることにより色が変化するので、組成物の塗布や、組成物の硬化の確認を容易に行うことができる。よって、本発明の光硬化性樹脂組成物を保護コーティング剤として用いると、保護コーティング処理の有無を簡便に確認することができる。さらに、本発明の光硬化性樹脂組成物は、有機溶剤を用いなくとも保護コーティング剤として用いることができるので、環境負荷が小さい。 Such a photo-curable resin composition has high repair properties and performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycle properties. Furthermore, since the color of the photocurable resin composition of the present invention is changed by irradiating and curing ultraviolet rays, the application of the composition and the confirmation of the curing of the composition can be easily performed. Therefore, when the photocurable resin composition of the present invention is used as a protective coating agent, the presence or absence of the protective coating treatment can be easily confirmed. Furthermore, since the photocurable resin composition of the present invention can be used as a protective coating agent without using an organic solvent, the environmental load is small.
 上記(D)成分は、硬化の際の発色性がより向上する点から、ロイコクリスタルバイオレットであると好ましい。 The component (D) is preferably leuco crystal violet from the viewpoint that the color developability upon curing is further improved.
 上記(A)成分は、接着性、耐湿性、ヒートサイクル性をより向上できる点から、(メタ)アクリロイル基を有するウレタンオリゴマーであると好ましい。 The component (A) is preferably a urethane oligomer having a (meth) acryloyl group from the viewpoint that the adhesiveness, moisture resistance, and heat cycle properties can be further improved.
 上述の光硬化性樹脂組成物は、環境負荷を低下させる点から、実質的に有機溶剤を含まないことが好ましい。なお、「実質的に有機溶剤を含まない」とは、例えば光硬化性樹脂組成物における有機溶剤の含有量が3000ppm以下であることをいう。 The above-mentioned photocurable resin composition preferably does not substantially contain an organic solvent from the viewpoint of reducing the environmental load. “Substantially free of organic solvent” means that the content of the organic solvent in the photocurable resin composition is 3000 ppm or less, for example.
 本発明は、液晶ディスプレイの電極とフレキシブル配線板のリード電極とが、接続部材を介して接続された接続部の保護コーティングや、液晶ディスプレイの電極と半導体チップのバンプ電極とが、接続部材を介して接続された接続部の保護コーティングに好適に用いることができる、上述の光硬化性樹脂組成物からなる保護コーティング剤を提供する。 The present invention provides a protective coating for a connecting portion in which an electrode of a liquid crystal display and a lead electrode of a flexible wiring board are connected via a connecting member, and an electrode of a liquid crystal display and a bump electrode of a semiconductor chip via a connecting member. A protective coating agent comprising the above-mentioned photo-curable resin composition, which can be suitably used for a protective coating of connected connection parts.
 本発明は、上述の光硬化性樹脂組成物を光硬化させて得られる硬化膜であって、25℃での貯蔵弾性率が10~200MPaである硬化膜を提供する。かかる硬化膜によれば、回路電極、リード電極、バンプ電極等の電極を湿気、ほこり等から充分に保護することが可能である。なお、硬化膜の貯蔵弾性率は、例えば実施例に記載の方法により測定することができるものである。 The present invention provides a cured film obtained by photocuring the above-mentioned photocurable resin composition, and having a storage elastic modulus at 25 ° C. of 10 to 200 MPa. According to such a cured film, it is possible to sufficiently protect electrodes such as circuit electrodes, lead electrodes, and bump electrodes from moisture, dust, and the like. In addition, the storage elastic modulus of a cured film can be measured by the method as described in an Example, for example.
 本発明は、液晶ディスプレイの電極とフレキシブル配線板のリード電極とを接続部材を介して接続する工程と、液晶ディスプレイの電極、フレキシブル配線板のリード電極及び接続部材を覆うように、上述の光硬化性樹脂組成物を塗布して塗膜を形成する工程と、塗膜に活性光線を照射する工程とを含む、液晶ディスプレイモジュールの製造法を提供する。 The present invention includes a step of connecting an electrode of a liquid crystal display and a lead electrode of a flexible wiring board via a connecting member, and the above-described photocuring so as to cover the electrode of the liquid crystal display, the lead electrode of the flexible wiring board, and the connecting member. The manufacturing method of a liquid crystal display module including the process of apply | coating an adhesive resin composition and forming a coating film, and the process of irradiating an actinic ray to a coating film is provided.
 本発明はまた、液晶ディスプレイの電極と半導体チップのバンプ電極とを接続部材を介して接続する工程と、液晶ディスプレイの電極、半導体チップのバンプ電極及び接続部材を覆うように、上述の光硬化性樹脂組成物を塗布して塗膜を形成する工程と、塗膜に活性光線を照射する工程とを含む、液晶ディスプレイモジュールの製造法を提供する。 The present invention also includes a step of connecting the electrode of the liquid crystal display and the bump electrode of the semiconductor chip via a connection member, and the photocurable property described above so as to cover the electrode of the liquid crystal display, the bump electrode of the semiconductor chip and the connection member. Provided is a method for producing a liquid crystal display module, comprising a step of applying a resin composition to form a coating film and a step of irradiating the coating film with actinic rays.
 本発明はさらに、これらの製造法により製造された液晶ディスプレイモジュールを提供する。 The present invention further provides a liquid crystal display module manufactured by these manufacturing methods.
 本発明の光硬化性樹脂組成物によればリペア性が高く、かつ接着性、耐湿性、ヒートサイクル性等の保護コーティング処理に必要な性能を備える。さらに、本発明の光硬化性樹脂組成物を保護コーティング剤として用いると、保護コーティング処理の有無を簡便に確認することができる。さらに、本発明によれば、この光硬化性樹脂組成物を用いた保護コーティング剤、硬化膜、並びに液晶ディスプレイモジュール及びその製造法が提供される。 The photocurable resin composition of the present invention has high repair properties and performance necessary for protective coating treatment such as adhesion, moisture resistance, and heat cycle properties. Furthermore, when the photocurable resin composition of the present invention is used as a protective coating agent, the presence or absence of a protective coating treatment can be easily confirmed. Furthermore, according to this invention, the protective coating agent using this photocurable resin composition, a cured film, a liquid crystal display module, and its manufacturing method are provided.
液晶ディスプレイとフレキシブル配線板(TAB実装方式)が接続された、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。It is a schematic cross section which shows an example of the liquid crystal display module of this embodiment to which the liquid crystal display and the flexible wiring board (TAB mounting system) were connected. 液晶ディスプレイとフレキシブル配線板(COF実装方式)が接続された、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。It is a schematic cross section which shows an example of the liquid crystal display module of this embodiment to which the liquid crystal display and the flexible wiring board (COF mounting system) were connected. 液晶ディスプレイのガラス基板上に半導体チップが搭載された(COG実装方式)、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。It is a schematic cross section which shows an example of the liquid crystal display module of this embodiment by which the semiconductor chip was mounted on the glass substrate of a liquid crystal display (COG mounting system).
 以下、図面を参照しながら本発明の実施形態について詳細に説明するが、この実施形態により本発明が限定されるものではない。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the embodiments. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 本明細書における「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。同様に「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」及びそれに対応する「メタクリロイル」を意味する。 In this specification, “(meth) acrylate” means “acrylate” and “methacrylate” corresponding thereto. Similarly, “(meth) acryl” means “acryl” and “methacryl” corresponding thereto, and “(meth) acryloyl” means “acryloyl” and corresponding “methacryloyl”.
 本実施形態の光硬化性樹脂組成物は、(A)ウレタンオリゴマーと、(B)エチレン性不飽和基を有する重合性化合物と、(C)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンを含む光重合開始剤、及び(D)ロイコ染料を含有する。以下、各成分について説明する。 The photocurable resin composition of the present embodiment includes (A) a urethane oligomer, (B) a polymerizable compound having an ethylenically unsaturated group, (C) 2-methyl-1- [4- (methylthio) phenyl. ] A photopolymerization initiator containing 2-morpholino-propan-1-one, and (D) a leuco dye. Hereinafter, each component will be described.
<(A)成分:ウレタンオリゴマー>
 (A)ウレタンオリゴマーは、例えば(a1)ジオール化合物と、(a2)イソシアネート基を有する化合物とを反応させることで得られる。
<(A) component: Urethane oligomer>
The (A) urethane oligomer can be obtained, for example, by reacting (a1) a diol compound with (a2) a compound having an isocyanate group.
 (a1)ジオール化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブタジエンジオール、ポリイソプレンジオール、水添ポリブタジエンジオール、水添ポリイソプレンジオール等のポリオレフィンジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール、シリコーンジオールが挙げられる。これらの中でも特に、柔軟性(貯蔵弾性率の低減)、及び接着性の観点からポリオレフィンジオールが好ましい。 Examples of (a1) diol compounds include polyolefin diols such as polyethylene glycol, polypropylene glycol, polybutadiene diol, polyisoprene diol, hydrogenated polybutadiene diol, hydrogenated polyisoprene diol, polyether diol, polyester diol, polycaprolactone diol, and silicone. Diols are mentioned. Among these, polyolefin diol is preferable from the viewpoints of flexibility (reduction in storage elastic modulus) and adhesiveness.
 上記ポリブタジエンジオール及びポリイソプレンジオールには、「1,4-繰り返し単位」又は「1,2-繰り返し単位」を有するものがある。 Some of the polybutadiene diols and polyisoprene diols have “1,4-repeating units” or “1,2-repeating units”.
 ここで、ポリブタジエンにおける、「1,4-繰り返し単位」とは、下記化学式(1t)又は(1c)で表されるような繰り返し単位であり、「1,2-繰り返し単位」とは、下記化学式(1d)で表されるような繰り返し単位である。
Figure JPOXMLDOC01-appb-C000001
Here, in the polybutadiene, the “1,4-repeat unit” is a repeat unit represented by the following chemical formula (1t) or (1c), and the “1,2-repeat unit” is the following chemical formula: It is a repeating unit represented by (1d).
Figure JPOXMLDOC01-appb-C000001
 1,4-繰り返し単位を主に有するポリブタジエンジオールとしては、例えば、Poly bd R-45HT、Poly bd R-15HT(出光興産社製、商品名)が挙げられる。1,2-繰り返し単位を主に有するポリブタジエンジオールとしては、下記一般式(1a)で表される化合物が例示され、具体的には、G-1000、G-2000,G-3000(1,2-繰り返し単位の含有割合:85%以上、日本曹達社製、商品名)が挙げられる。また、1,2-繰り返し単位を主に有するポリイソプレンジオールとしては、例えば、Poly IP(出光興産社製、商品名)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
[式(1a)中、n1は1~60の整数を示す。]
Examples of the polybutadiene diol mainly having 1,4-repeating units include Poly bd R-45HT and Poly bd R-15HT (trade name, manufactured by Idemitsu Kosan Co., Ltd.). Examples of the polybutadiene diol mainly having 1,2-repeating units include compounds represented by the following general formula (1a), specifically, G-1000, G-2000, G-3000 (1,2 -Content ratio of repeating unit: 85% or more, Nippon Soda Co., Ltd., trade name). Examples of the polyisoprene diol mainly having 1,2-repeat units include Poly IP (trade name, manufactured by Idemitsu Kosan Co., Ltd.).
Figure JPOXMLDOC01-appb-C000002
[In the formula (1a), n1 represents an integer of 1 to 60. ]
 これらのポリオレフィンジオールの中でも、特にヒートサイクル性の観点から、上記一般式(1a)のポリブタジエンポリオールを水素添加した下記一般式(1b)で表される1,2-繰り返し単位を主に有する水添ポリブタジエンジオールが好ましい。なお、水添ポリブタジエンポリオール及び水添ポリイソプレンポリオールは、全ての不飽和二重結合が水素添加されていなくてもよく、僅かに不飽和二重結合が残っていてもよい(ヨウ素価(I2mg/100g)が、21以下であることが好ましい)。
Figure JPOXMLDOC01-appb-C000003
[式(1b)中、n2は1~60の整数を示す。]
Among these polyolefin diols, particularly from the viewpoint of heat cycleability, hydrogenation mainly having 1,2-repeating units represented by the following general formula (1b) obtained by hydrogenating the polybutadiene polyol of the above general formula (1a). Polybutadiene diol is preferred. In the hydrogenated polybutadiene polyol and hydrogenated polyisoprene polyol, all unsaturated double bonds may not be hydrogenated, and a few unsaturated double bonds may remain (iodine value (I 2 mg / 100 g) is preferably 21 or less).
Figure JPOXMLDOC01-appb-C000003
[In the formula (1b), n2 represents an integer of 1 to 60. ]
 (a2)イソシアネート基を有する化合物としては、例えば、下記一般式(2)で表されるジイソシアネート化合物が挙げられる。
  OCN-X-NCO  …(2)
[式(2)中、Xは2価の有機基を示す。]
(A2) As a compound which has an isocyanate group, the diisocyanate compound represented by following General formula (2) is mentioned, for example.
OCN-X-NCO (2)
[In formula (2), X represents a divalent organic group. ]
 上記一般式(2)中のXで示される2価の有機基としては、例えば、炭素数1~20のアルキレン基、未置換若しくはメチル基等の炭素数1~5の低級アルキル基で置換されているフェニレン基、ナフチレン基等のアリーレン基が挙げられる。アルキレン基の炭素数は、より好ましくは1~18である。また、上記Xで示される2価の有機基としては、フェニレン基、キシリレン基、ナフチレン基、ジフェニルメタン-4,4’-ジイル基、ジフェニルスルホン-4,4’-ジイル基等の芳香環を有する基が好ましいものとして挙げられる。また、水添ジフェニルメタン-4,4’-ジイル基も好ましいものとして挙げられる。 Examples of the divalent organic group represented by X in the general formula (2) include, for example, an alkylene group having 1 to 20 carbon atoms, an unsubstituted or substituted lower alkyl group having 1 to 5 carbon atoms such as a methyl group. And arylene groups such as a phenylene group and a naphthylene group. The number of carbon atoms of the alkylene group is more preferably 1-18. The divalent organic group represented by X has an aromatic ring such as a phenylene group, a xylylene group, a naphthylene group, a diphenylmethane-4,4′-diyl group, a diphenylsulfone-4,4′-diyl group. Groups are preferred. A hydrogenated diphenylmethane-4,4'-diyl group is also preferred.
 また、上記一般式(2)で表されるジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート;3,2’-、3,3’-、4,2’-、4,3’-、5,2’-、5,3’-、6,2’-又は6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート;3,2’-、3,3’-、4,2’-、4,3’-、5,2’-、5,3’-、6,2’-又は6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート;3,2’-、3,3’-、4,2’-、4,3’-、5,2’-、5,3’-、6,2’-又は6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-3,3’-ジイソシアネート;ジフェニルメタン-3,4’-ジイソシアネート等のジフェニルメタンジイソシアネート化合物及びこれらの水添物;ジフェニルエーテル-4,4’-ジイソシアネート;ベンゾフェノン-4,4’-ジイソシアネート;ジフェニルスルホン-4,4’-ジイソシアネート;トリレン-2,4-ジイソシアネート;トリレン-2,6-ジイソシアネート;m-キシリレンジイソシアネート;p-キシリレンジイソシアネート;1,5-ナフタレンジイソシアネート;4,4’-〔2,2ビス(4-フェノキシフェニル)プロパン〕ジイソシアネート;ヘキサメチレンジイソシアネート;2,2,4-トリメチルヘキサメチレンジイソシアネート;イソホロンジイソシアネート;4,4’-ジシクロヘキシルメタンジイソシアネート;トランスシクロヘキサン-1,4-ジイソシアネート;水添m-キシリレンジイソシアネート;リジンジイソシアネート等の脂肪族又は脂環式イソシアネートが挙げられる。これらのジイソシアネート類のように、式(2)中のXが芳香環を有する基である芳香族ジイソシアネート化合物を使用することが好ましい。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。なお、イソシアネート基を有する化合物として、一般式(2)で表されるジイソシアネート類と共に、三官能以上のポリイソシアネートを用いてもよい。 Examples of the diisocyanates represented by the general formula (2) include diphenylmethane-2,4′-diisocyanate; 3,2′-, 3,3′-, 4,2′-, 4,3 ′. -, 5,2'-, 5,3'-, 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate; 3,2'-, 3,3'-, 4,2 '-, 4,3'-, 5,2'-, 5,3'-, 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate; 3,2'-, 3, 3'-, 4,2'-, 4,3'-, 5,2'-, 5,3'-, 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate; diphenylmethane -4,4'-diisocyanate; diphenylmethane-3,3'-diisocyanate; Diphenylmethane diisocyanate compounds such as rumethane-3,4′-diisocyanate and their hydrogenated products; diphenyl ether-4,4′-diisocyanate; benzophenone-4,4′-diisocyanate; diphenylsulfone-4,4′-diisocyanate; 2,4-diisocyanate; tolylene-2,6-diisocyanate; m-xylylene diisocyanate; p-xylylene diisocyanate; 1,5-naphthalene diisocyanate; 4,4 '-[2,2bis (4-phenoxyphenyl) propane Diisocyanate; Hexamethylene diisocyanate; 2,2,4-trimethylhexamethylene diisocyanate; Isophorone diisocyanate; 4,4'-dicyclohexylmethane diisocyanate; Hexane-1,4-diisocyanate; hydrogenated m- xylylene diisocyanate, aliphatic or alicyclic isocyanates such lysine diisocyanate. Like these diisocyanates, it is preferable to use an aromatic diisocyanate compound in which X in the formula (2) is a group having an aromatic ring. These can be used alone or in combination of two or more. In addition, as a compound which has an isocyanate group, you may use trifunctional or more polyisocyanate with the diisocyanate represented by General formula (2).
 また、上記一般式(2)で表されるジイソシアネート類は、経日変化を避けるために必要なブロック剤で安定化したものを使用してもよい。ブロック剤としては、例えば、ヒドロキシアクリレート、メタノールを代表とするアルコール、フェノール、オキシムが挙げられるが、特に制限はない。 Moreover, the diisocyanates represented by the general formula (2) may be those stabilized with a blocking agent necessary to avoid changes over time. Examples of the blocking agent include hydroxy acrylate, alcohol typified by methanol, phenol, and oxime, but are not particularly limited.
 上記(a1)ジオール化合物と、上記一般式(2)で表されるジイソシアネート類とを反応させる際の配合割合は、生成するウレタンオリゴマーの数平均分子量、及び生成するウレタンオリゴマーの末端を水酸基にするかイソシアネート基にするかで適宜調整される。 The blending ratio when the (a1) diol compound and the diisocyanate represented by the general formula (2) are reacted is the number average molecular weight of the urethane oligomer to be produced and the terminal of the urethane oligomer to be produced is a hydroxyl group. Or an isocyanate group.
 ウレタンオリゴマーの末端を水酸基にする場合、水酸基数とイソシアネート基数との比率(水酸基数/イソシアネート基数)が、1.01以上になるように配合割合を調整することが好ましく、数平均分子量を大きくする観点からは2未満に調整することが好ましい。 When the terminal of the urethane oligomer is a hydroxyl group, the blending ratio is preferably adjusted so that the ratio between the number of hydroxyl groups and the number of isocyanate groups (number of hydroxyl groups / isocyanate groups) is 1.01 or more, and the number average molecular weight is increased. It is preferable to adjust to less than 2 from a viewpoint.
 ウレタンオリゴマーの末端が水酸基である場合、酢酸、(メタ)アクリル酸等の(メタ)アクリロイル基を有するモノカルボン酸類、2-イソシアネートエチル(メタ)アクリレート等の(メタ)アクリロイル基を有するモノイソシアネート化合物、又は酸無水物類等の水酸基と反応可能な化合物と、末端の水酸基とを反応させることで、ウレタンオリゴマーの末端を修飾してもよい。 When the terminal of the urethane oligomer is a hydroxyl group, monocarboxylic acids having a (meth) acryloyl group such as acetic acid and (meth) acrylic acid, and a monoisocyanate compound having a (meth) acryloyl group such as 2-isocyanatoethyl (meth) acrylate Alternatively, the terminal of the urethane oligomer may be modified by reacting a terminal hydroxyl group with a compound capable of reacting with a hydroxyl group such as acid anhydrides.
 また、ウレタンオリゴマーの末端をイソシアネート基にする場合、イソシアネート基数と水酸基数との比率(イソシアネート基数/水酸基数)が、1.01以上になるように調整することが好ましく、数平均分子量を大きくする観点からは2未満に調整することが好ましい。このような比率にすることにより、末端がイソシアネート基であるウレタンオリゴマーとなり、種々の骨格を導入し易くすることができる。種々の骨格を導入するための化合物としては、例えば、モノヒドロキシ化合物、ラクタム類、オキシム類、モノカルボン酸類及び2価の酸無水物類等のイソシアネート基と反応可能な化合物が挙げられる。 Moreover, when making the terminal of a urethane oligomer into an isocyanate group, it is preferable to adjust so that the ratio (the number of isocyanate groups / number of hydroxyl groups) of the number of isocyanate groups and the number of hydroxyl groups may be 1.01 or more, and a number average molecular weight is enlarged. It is preferable to adjust to less than 2 from a viewpoint. By setting it as such a ratio, it becomes a urethane oligomer by which the terminal is an isocyanate group, and it can make it easy to introduce | transduce various frame | skeletons. Examples of the compound for introducing various skeletons include compounds capable of reacting with isocyanate groups such as monohydroxy compounds, lactams, oximes, monocarboxylic acids, and divalent acid anhydrides.
 上記モノヒドロキシ化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、上記各(メタ)アクリレートのカプロラクトン又は酸化アルキレン付加物、グリセリンジ(メタ)アクリレート、トリメチロールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリルレート、2-アクリロキシエタノール等の(メタ)アクリロイル基を有するモノヒドロキシ化合物、グリコール酸、ヒドロキシピバリン酸等のカルボン酸を有するモノヒドロキシ化合物が挙げられる。これらのモノヒドロキシ化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the monohydroxy compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, Caprolactone or alkylene oxide adduct of each (meth) acrylate, glycerin di (meth) acrylate, trimethylol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, ditrimethylolpropane tri ( Monohydroxy compounds having a (meth) acryloyl group such as (meth) acrylate and 2-acryloxyethanol, and monohydrides having a carboxylic acid such as glycolic acid and hydroxypivalic acid Alkoxy compounds. These monohydroxy compounds can be used alone or in combination of two or more.
 靱性が向上し、接着性、耐湿性、ヒートサイクル性をより向上できる観点から、ウレタンオリゴマーは(メタ)アクリロイル基を有することが好ましい。(メタ)アクリロイル基を有するウレタンオリゴマーは、上述のように、ウレタンオリゴマーの末端が水酸基の場合は、(メタ)アクリロイル基を有するモノカルボン酸類、又は(メタ)アクリロイル基を有するモノイソシアネート化合物を反応させることで、また、ウレタンオリゴマーの末端がイソシアネート基の場合は、(メタ)アクリロイル基を有するモノヒドロキシ化合物を反応させることで得ることができる。 The urethane oligomer preferably has a (meth) acryloyl group from the viewpoint of improving toughness and further improving adhesiveness, moisture resistance, and heat cycle properties. As described above, the urethane oligomer having a (meth) acryloyl group reacts with a monocarboxylic acid having a (meth) acryloyl group or a monoisocyanate compound having a (meth) acryloyl group when the terminal of the urethane oligomer is a hydroxyl group. In addition, when the terminal of the urethane oligomer is an isocyanate group, it can be obtained by reacting a monohydroxy compound having a (meth) acryloyl group.
 ヒートサイクル性及び硬化性をより向上できる観点から、(メタ)アクリロイル基、及び1,2-繰り返し単位を主に有する水添ポリブタジエン構造を有するウレタンオリゴマーが好ましい。(メタ)アクリロイル基、及び1,2-繰り返し単位を主に有する水添ポリブタジエン構造を有するウレタンオリゴマーは、例えば、上記一般式(1b)で表される水添ポリブタジエンジオール、一般式(2)で表されるジイソシアネート化合物、及び(メタ)アクリロイル基を有するモノヒドロキシ化合物から合成することができる。 From the viewpoint of further improving heat cycle properties and curability, urethane oligomers having a (meth) acryloyl group and a hydrogenated polybutadiene structure mainly having 1,2-repeating units are preferred. The urethane oligomer having a hydrogenated polybutadiene structure mainly having a (meth) acryloyl group and 1,2-repeat units is, for example, a hydrogenated polybutadiene diol represented by the above general formula (1b), or a general formula (2). It can be synthesized from the diisocyanate compound represented and a monohydroxy compound having a (meth) acryloyl group.
 (A)成分として使用されるウレタンオリゴマーの製造におけるジオール化合物と、上記一般式(2)で表されるジイソシアネート類、及び種々の骨格を導入するための化合物との反応は、有機溶媒、好ましくは非含窒素系極性溶媒の存在下に、加熱縮合させることにより行うことができる。 The reaction of the diol compound in the production of the urethane oligomer used as the component (A) with the diisocyanate represented by the general formula (2) and a compound for introducing various skeletons is an organic solvent, preferably This can be carried out by heat condensation in the presence of a non-nitrogen-containing polar solvent.
 上記非含窒素系極性溶媒としては、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のエーテル系溶媒;ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、スルホラン等の含硫黄系溶媒;γ-ブチロラクトン、酢酸セロソルブ等のエステル系溶媒;シクロヘキサノン、メチルエチルケトン等のケトン系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。これらは1種類を単独で又は2種類以上組み合わせて使用することができる。 Examples of the non-nitrogen-containing polar solvent include ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether; sulfur-containing solvents such as dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, and sulfolane; Examples thereof include ester solvents such as γ-butyrolactone and cellosolve acetate; ketone solvents such as cyclohexanone and methyl ethyl ketone; and aromatic hydrocarbon solvents such as toluene and xylene. These can be used alone or in combination of two or more.
 上記溶媒の中でも、生成するウレタンオリゴマーを溶解可能な溶媒を選択して使用するのが好ましい。 Among the above solvents, it is preferable to select and use a solvent capable of dissolving the generated urethane oligomer.
 また、必要に応じて、三級アミン類、アルカリ金属、アルカリ土類金属、スズ、亜鉛、チタニウム、コバルト等の金属又は半金属化合物等の触媒存在下に反応を行ってもよい。 If necessary, the reaction may be carried out in the presence of a catalyst such as a tertiary amine, an alkali metal, an alkaline earth metal, a metal such as tin, zinc, titanium, cobalt, or a metalloid compound.
 このようにして得られる(A)ウレタンオリゴマーの数平均分子量は、硬化性、柔軟性(貯蔵弾性率の低減)、及び塗布性の観点から、500~7000であることが好ましく、1,000~5,000であることがより好ましく、1,500~4,000であることが特に好ましい。 The number average molecular weight of the urethane oligomer (A) thus obtained is preferably from 500 to 7000, from the viewpoint of curability, flexibility (reduction in storage elastic modulus), and coatability, and preferably from 1,000 to It is more preferably 5,000, particularly preferably 1,500 to 4,000.
 なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算した値とする。また、数平均分子量、重量平均分子量及び分散度は、以下のように定義される。
(a)数平均分子量(Mn)
 Mn=Σ(N)/ΣNi=ΣX
(X=分子量Mの分子のモル分率=N/ΣN
(b)重量平均分子量(Mw)
 Mw=Σ(N )/ΣN=ΣW
(W=分子量Mの分子の重量分率=N/ΣN
(c)分子量分布(分散度)
 分散度=Mw/Mn
In the present specification, the number average molecular weight is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve. Further, the number average molecular weight, the weight average molecular weight, and the degree of dispersion are defined as follows.
(A) Number average molecular weight (Mn)
Mn = Σ (N i M i ) / ΣNi = ΣX i M i
(X i = Mole fraction of molecules with molecular weight M i = N i / ΣN i )
(B) Weight average molecular weight (Mw)
Mw = Σ (N i M i 2 ) / ΣN i M i = ΣW i M i
(W i = weight fraction of molecules of molecular weight M i = N i M i / ΣN i M i )
(C) Molecular weight distribution (dispersion degree)
Dispersity = Mw / Mn
 (A)成分の含有量は、硬化性、接着性、及び柔軟性(貯蔵弾性率の低減)をより向上できる観点から、(A)成分と(B)成分との総量100質量部に対して、40~70質量部が好ましく、45~60質量部がより好ましく、50~55質量部が特に好ましい。 The content of the component (A) is based on 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of further improving curability, adhesiveness, and flexibility (reduction in storage elastic modulus). 40 to 70 parts by mass, more preferably 45 to 60 parts by mass, and particularly preferably 50 to 55 parts by mass.
<(B)成分:エチレン性不飽和基を有する重合性化合物>
 (B)エチレン性不飽和基を有する重合性化合物としては、常温(25℃)で液状であり、後述の(C)成分が溶解可能であることが好ましく、例えば、(B1)エチレン性不飽和二重結合及び環状脂肪族基を含む重合性化合物(以下、「(B1)成分」ともいう。)、(B2)分子内に5以上10以下のエチレン性不飽和二重結合を有する重合性化合物(以下、「(B2)成分」ともいう。)、(B3)下記一般式(3)で表される重合性化合物(以下、「(B3)成分」ともいう。)が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(3)中、Rは水素原子又はメチル基を示し、Rは炭素数4~20のアルキル基を示す。)
<(B) component: polymerizable compound having an ethylenically unsaturated group>
(B) The polymerizable compound having an ethylenically unsaturated group is preferably liquid at room temperature (25 ° C.) and can dissolve the component (C) described below. For example, (B1) ethylenically unsaturated A polymerizable compound containing a double bond and a cyclic aliphatic group (hereinafter also referred to as “component (B1)”), (B2) a polymerizable compound having 5 to 10 ethylenically unsaturated double bonds in the molecule (Hereinafter also referred to as “component (B2)”), (B3) polymerizable compounds represented by the following general formula (3) (hereinafter also referred to as “component (B3)”).
Figure JPOXMLDOC01-appb-C000004
(In Formula (3), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 4 to 20 carbon atoms.)
 (B1)成分としては、ビニル基、アクリロイル基、メタクリロイル基等と、飽和又は不飽和炭化水素よりなる単環又は縮合環とを有する、単官能性又は多官能性の重合性化合物を単独で又は2種類以上を組み合わせて用いることができる。エチレン性不飽和二重結合と環状脂肪族基とを有することで、接着性がより向上する傾向がある。 As the component (B1), a monofunctional or polyfunctional polymerizable compound having a vinyl group, an acryloyl group, a methacryloyl group, etc., and a monocyclic or condensed ring made of a saturated or unsaturated hydrocarbon alone or Two or more types can be used in combination. By having an ethylenically unsaturated double bond and a cyclic aliphatic group, the adhesion tends to be further improved.
 これらの(B1)成分のうち、アクリロイル基又はメタクリロイル基を有するもの((メタ)アクリレート化合物)としては、例えば、シクロヘキシル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルナニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレートが挙げられる。また、ビニルノルボルネン、ビニルノルボルナン等のビニル基等を有するものを用いることもできる。これら重合性化合物のうち、硬化物の強度、及び接着性をより向上できる観点からイソボルニル(メタ)アクリレート化合物が好ましい。 Among these (B1) components, those having an acryloyl group or a methacryloyl group ((meth) acrylate compound) include, for example, cyclohexyl (meth) acrylate, norbornyl (meth) acrylate, isobornyl (meth) acrylate, norbornanyl (meth) ) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, tricyclodecane dimethylol di (meth) An acrylate is mentioned. Moreover, what has vinyl groups, such as vinyl norbornene and vinyl norbornane, can also be used. Among these polymerizable compounds, an isobornyl (meth) acrylate compound is preferable from the viewpoint of further improving the strength and adhesiveness of the cured product.
 (B2)成分としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスルトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサヒドロキシ(メタ)アクリレートが挙げられる。 Examples of the component (B2) include dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, and dipentaerythritol hexahydroxy (meth) acrylate. Can be mentioned.
 (B2)成分を用いることで、接着性を損なうことなく硬化性をより向上することができる。 (B2) By using a component, sclerosis | hardenability can be improved more without impairing adhesiveness.
 (B3)成分としては、上記一般式(3)中、柔軟性(貯蔵弾性率の低減)をより向上できる観点から、Rは炭素数6~18のアルキル基が好ましく、8~16のアルキル基がより好ましく、10~14のアルキル基が特に好ましい。 As the component (B3), in the general formula (3), R 2 is preferably an alkyl group having 6 to 18 carbon atoms, and an alkyl group having 8 to 16 carbon atoms from the viewpoint of further improving flexibility (reduction in storage modulus). More preferred are groups of 10 to 14 alkyl groups.
 上記一般式(3)で表される重合性化合物としては、例えば、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレートが挙げられる。これらは、単独で又は2種類以上組み合わせて用いることができる。 Examples of the polymerizable compound represented by the general formula (3) include n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl ( Examples include (meth) acrylate, n-hexyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (meth) acrylate. These can be used alone or in combination of two or more.
 (B3)成分を用いることで、硬化物の貯蔵弾性率をより低減することができる。 (B3) By using a component, the storage elastic modulus of hardened | cured material can be reduced more.
 また、(B)成分としては、上記以外のエチレン性不飽和基を有する重合性化合物を併用することも可能で、ビニル基、アクリロイル基、メタクリロイル基等を有する、単官能性又は多官能性の重合性化合物を用いることができる。 In addition, as the component (B), a polymerizable compound having an ethylenically unsaturated group other than the above can be used in combination, and has a vinyl group, an acryloyl group, a methacryloyl group, or the like, which is monofunctional or polyfunctional. A polymerizable compound can be used.
 これらのうち、アクリロイル基又はメタクリロイル基を有する(メタ)アクリレート化合物が好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-メトキシエトキシエチル(メタ)アクリレート、2-エトキシエトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート等のアルコキシ(ポリ)アルキレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート等のフッ素化アルキル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート、アリル(メタ)アクリレート、1,3-ブタンジオール(メタ)アクリレート、1,4-ブタンジオール(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、3-メチルペンタンジオール(メタ)アクリレート等のグリコールモノ(メタ)アクリレートなどの単官能性の(メタ)アクリレート化合物、ポリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、1,3-ビス(ヒドロキシエチル)-5,5-ジメチルヒダントインジ(メタ)アクリレート、α,ω-ジ(メタ)アクリルビスジエチレングリコールフタレート、トリメチロールプロパントリ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジアクリロキシエチルフォスフェート、ジペンタエリスリトールトリヒドロキシ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能性(メタ)アクリレートが挙げられる。 Of these, (meth) acrylate compounds having an acryloyl group or a methacryloyl group are preferred. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxyethyl Alkoxyalkyl (meth) acrylates such as (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethoxyethyl (meth) acrylate, 2-ethoxyethoxyethyl (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl Hydroxyalkyl (meth) acrylates such as (meth) acrylate and 2-hydroxypropyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxydiethyl Alkoxy (poly) alkylene glycol (meth) acrylate such as glycol (meth) acrylate, methoxydipropylene glycol (meth) acrylate, fluorinated alkyl (meth) acrylate such as octafluoropentyl (meth) acrylate, N, N-dimethylamino Dialkylaminoalkyl (meth) acrylates such as ethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, allyl (meth) acrylate, 1,3-butanediol (meth) acrylate, 1,4-butanediol ( Monofunctional (meth) acrylate compounds such as glycol mono (meth) acrylates such as (meth) acrylate, 1,6-hexanediol (meth) acrylate and 3-methylpentanediol (meth) acrylate , Polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol Di (meth) acrylate, trimethylolpropane di (meth) acrylate, 1,3-bis (hydroxyethyl) -5,5-dimethylhydantoin di (meth) acrylate, α, ω-di (meth) acrylbisdiethylene glycol phthalate, Trimethylolpropane tri (meth) acrylate, 2-hydroxyethyl (meth) acryloyl phosphate, trimethylolpropane tri (meth) acrylate, ethylene glyco Rudi (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, diacryloxy Multifunctional (meth) acrylates such as ethyl phosphate, dipentaerythritol trihydroxy (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate .
 また、アクリルアミド及びジメチルアクリルアミド、ジエチルアクリルアミド、(メタ)アクリロイルモルフォリン等のアクリルアミド誘導体も用いることができる。さらに、α,ω-テトラアリルビストリメチロールプロパンテトラヒドロフタレート、N-ビニルピロリドン、N-ビニルカプロラクタム等のビニル基を有するものを用いることもできる。 Further, acrylamide derivatives such as acrylamide, dimethylacrylamide, diethylacrylamide, and (meth) acryloylmorpholine can also be used. Further, those having a vinyl group such as α, ω-tetraallylbistrimethylolpropane tetrahydrophthalate, N-vinylpyrrolidone, N-vinylcaprolactam can also be used.
 これら(B)成分の含有量は、硬化性、光硬化性樹脂組成物の作業性に適した粘度範囲に調整可能であること(以下、「作業性」という場合もある)、及び得られる硬化膜の耐湿性の観点から、(A)成分と(B)成分との総量100質量部に対して、30~60質量部が好ましく、40~55質量部がより好ましく、45~50質量部が特に好ましい。
 本発明において、密着性、硬化性、耐湿性及び作業性をより向上できる観点からは、(B1)成分と(B2)成分を併用することが好ましい。
The content of these components (B) can be adjusted to a viscosity range suitable for the workability of the curable and photocurable resin composition (hereinafter sometimes referred to as “workability”), and the resulting curing is obtained. From the viewpoint of moisture resistance of the film, 30 to 60 parts by weight, preferably 40 to 55 parts by weight, more preferably 45 to 50 parts by weight with respect to 100 parts by weight of the total amount of component (A) and component (B). Particularly preferred.
In the present invention, it is preferable to use the component (B1) and the component (B2) in combination from the viewpoint of further improving adhesion, curability, moisture resistance and workability.
 (B1)成分と(B2)成分を併用する場合の(B1)成分の含有量は、(A)成分と(B)成分との総量100質量部に対して、20~55質量部が好ましく、25~50質量部がより好ましく、30~45質量部が特に好ましい。
 (B1)成分の含有量が20質量部以上であると、接着性、及び作業性により優れ、55質量部以下であると、耐湿性をより向上させることができる。
When the component (B1) and the component (B2) are used in combination, the content of the component (B1) is preferably 20 to 55 parts by mass with respect to 100 parts by mass as the total of the components (A) and (B). 25 to 50 parts by mass is more preferable, and 30 to 45 parts by mass is particularly preferable.
When the content of the component (B1) is 20 parts by mass or more, the adhesiveness and workability are excellent, and when it is 55 parts by mass or less, moisture resistance can be further improved.
 (B1)成分と(B2)成分を併用する場合の(B2)成分の含有量は、硬化性と接着性をバランスよく向上できる観点から、(A)成分と(B)成分との総量100質量部に対して、1~20質量部が好ましく、2~15質量部がより好ましく、3~10質量部が特に好ましい。 The content of the component (B2) when the component (B1) and the component (B2) are used together is 100 masses of the total amount of the component (A) and the component (B) from the viewpoint of improving the curability and adhesiveness in a balanced manner. 1 to 20 parts by mass is preferable, 2 to 15 parts by mass is more preferable, and 3 to 10 parts by mass is particularly preferable.
 さらに、柔軟性(貯蔵弾性率の低減)をより向上できる観点からは、(B3)成分を用いることが好ましい。
(B3)成分を用いる場合の含有量は、(A)成分と(B)成分との総量100質量部に対して、1~10質量部が好ましく、1.5~10質量部がより好ましく、2~8質量部が特に好ましい。
Furthermore, it is preferable to use the component (B3) from the viewpoint of further improving the flexibility (reduction in storage elastic modulus).
When the component (B3) is used, the content is preferably 1 to 10 parts by mass, more preferably 1.5 to 10 parts by mass with respect to 100 parts by mass as the total of the components (A) and (B). 2 to 8 parts by mass is particularly preferred.
<(C)成分:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン>
 (C)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンは、下記構造を有する光重合開始剤である。
Figure JPOXMLDOC01-appb-C000005
<Component (C): 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one>
(C) 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one is a photopolymerization initiator having the following structure.
Figure JPOXMLDOC01-appb-C000005
 2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンは、(B)成分への溶解性に優れ、光硬化性樹脂組成物の塗布面における表面硬化性だけでなく底部硬化性にも優れる。 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one is excellent in solubility in the component (B) and has surface curability on the coated surface of the photocurable resin composition. In addition to excellent bottom curability.
 (C)成分の含有量は、硬化性、リペア性及び発色性をより向上できる観点から、(A)成分及び(B)成分の総量100質量部に対して1~15質量部が好ましく、2~10質量部がより好ましく、3~9質量部が特に好ましく、5~8質量部が最も好ましい。 The content of the component (C) is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint of further improving curability, repairability and color developability. Is more preferably from 10 to 10 parts by weight, particularly preferably from 3 to 9 parts by weight, and most preferably from 5 to 8 parts by weight.
 本実施形態の光硬化性樹脂組成物は、種々特性を損なわない程度で、(C)成分以外の光重合開始剤を含有していてもよい。そのような光重合開始剤としては、例えば、アクリジン又は分子内に少なくとも1つのアクリジニル基を有するアクリジン系化合物、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、等の芳香族ケトン、アルキルアントラキノン等のキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オニウム塩が挙げられる。 The photocurable resin composition of the present embodiment may contain a photopolymerization initiator other than the component (C) as long as various properties are not impaired. Examples of such a photopolymerization initiator include acridine or an acridine compound having at least one acridinyl group in the molecule, benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler's ketone), and the like. Aromatic ketones such as N, N′-tetraalkyl-4,4′-diaminobenzophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and quinones such as alkylanthraquinone Benzoin ether compounds such as benzoin alkyl ether, benzoin compounds such as benzoin and alkylbenzoin, benzyl derivatives such as benzyldimethyl ketal, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o -Chlorophenyl) -4,5-di Methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p -Methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4,5-triarylimidazole dimer, N-phenylglycine, N-phenylglycine derivatives, coumarin compounds, onium salts.
<(D)成分:ロイコ染料>
 (D)ロイコ染料としては、例えば、ロイコクリスタルバイオレット、ロイコマラカイトグリーン、ロイコビクトリアブルーBH、ロイコビクトリアピュアブルーBOH、ロイコダイヤモンドグリーン、ロイコアシッドバイオレット5B、ロイコソーラーシアニン6B、ロイコブリリアントグリーン、3,6-ビスジエチルアミノ-9-フェニルキサンテンが挙げられる。これらの中でも、発色性、変色、色調等の観点から、ロイコクリスタルバイオレット(Tris(4-dimethylaminophenyl)methane)が好ましい。
<(D) component: leuco dye>
(D) As the leuco dye, for example, leuco crystal violet, leucomalachite green, leuco victoria blue BH, leuco victoria pure blue BOH, leuco diamond green, leuco acid violet 5B, leuco solar cyanine 6B, leuco brilliant green, 3, 6 -Bisdiethylamino-9-phenylxanthene. Among these, leuco crystal violet (Tris (4-dimethylaminophenyl) methane) is preferable from the viewpoints of color developability, discoloration, color tone, and the like.
 ロイコ染料は、無色又は淡色の電子供与性色素(染料)前駆体からなる還元型の色素であり、酸性基を有する化合物と混合して加熱することにより発色する作用がある。また、ロイコ染料は、有機ハロゲン化合物の存在下で紫外線を照射することでも有色化が起こることが知られている。しかしながら、光硬化性樹脂組成物を保護膜として用いる場合、酸性基を有する化合物(光酸発生剤を含む)、又は有機ハロゲン化合物を含むと耐マイグレーション性を低下させる要因となる可能性がある。本実施形態の光硬化性樹脂組成物においては、上記のような酸性基を有する化合物又は有機ハロゲン化合物を実質的に含まなくても、(C)成分をロイコ染料、特にロイコクリスタルバイオレットと併用することにより、加熱しなくても光を照射することにより優れた発色性を呈する。
 「実質的に含まない」とは、本発明の特性を損ねない程度であれば、酸性基を有する化合物又は有機ハロゲン化合物が微量(光硬化性樹脂組成物の総量中、100ppm以下が好ましく、50ppm以下がより好ましい)に存在してもよいことを意味するが、特に好ましくは含有しないことである。
A leuco dye is a reduction-type pigment composed of a colorless or light-colored electron-donating pigment (dye) precursor, and has an action of coloring when mixed with a compound having an acidic group and heated. In addition, it is known that leuco dyes are colored by irradiation with ultraviolet rays in the presence of an organic halogen compound. However, when using a photocurable resin composition as a protective film, it may become a factor which reduces migration resistance when it contains a compound having an acidic group (including a photoacid generator) or an organic halogen compound. In the photocurable resin composition of the present embodiment, the component (C) is used in combination with a leuco dye, particularly leuco crystal violet, even if it does not substantially contain a compound having an acidic group as described above or an organic halogen compound. Thus, excellent color developability is exhibited by irradiating light without heating.
“Substantially free” means that the amount of the compound having an acidic group or the organic halogen compound is small (less than 100 ppm, preferably 50 ppm in the total amount of the photocurable resin composition) as long as the properties of the present invention are not impaired. The following is more preferable), but it is particularly preferably not contained.
 (D)成分の含有量は、硬化性、及び発色性をより向上できる点から、(A)成分及び(B)成分の総量100質量部に対して0.01~3質量部であることが好ましく、0.05~2質量部がより好ましく、0.1~1質量部が特に好ましく、0.2~0.5質量部が最も好ましい。 The content of the component (D) is 0.01 to 3 parts by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B) from the viewpoint that the curability and color developability can be further improved. Preferably, 0.05 to 2 parts by mass is more preferable, 0.1 to 1 part by mass is particularly preferable, and 0.2 to 0.5 part by mass is most preferable.
 本実施形態の光硬化性樹脂組成物には、必要に応じてカップリング剤、充填剤、重合禁止剤、改質剤及び消泡剤などを任意に添加することができる。 A coupling agent, a filler, a polymerization inhibitor, a modifier, an antifoaming agent, and the like can be arbitrarily added to the photocurable resin composition of the present embodiment as necessary.
 カップリング剤としては、例えばチタネート系カップリング剤及びシラン系カップリング剤が挙げられる。チタネート系カップリング剤としては、例えば、少なくとも炭素数1~60のアルキレート基を有するチタネート系カップリング剤、アルキルホスファイト基を有するチタネート系カップリング剤、アルキルホスフェート基を有するチタネート系カップリング剤、及びアルキルパイロホスフェート基を有するチタネート系カップリング剤が挙げられる。具体的にはイソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。 Examples of the coupling agent include titanate coupling agents and silane coupling agents. Examples of the titanate coupling agent include a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, and a titanate coupling agent having an alkyl phosphate group. And titanate coupling agents having an alkyl pyrophosphate group. Specifically, isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, Examples thereof include tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, and bis (dioctylpyrophosphate) ethylene titanate.
 またシラン系カップリング剤としては、例えば、アミノ系シランカップリング剤、ウレイド系シランカップリング剤、ビニル系シランカップリング剤、メタクリル系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤及びイソシアネート系シランカップリング剤が挙げられる。具体的には、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-フェニルアミノプロピルトリメトキシシラン、ウレイドプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン等が挙げられる。これらの中でも特に、接着性をより向上できる観点から、γ-イソシアネートプロピルトリエトキシシランが好ましい。これらは単独で又は2種以上を組み合わせて使用できる。これらカップリング剤の含有量は、通常、光硬化性樹脂組成物の総量100質量部に対し、0.01~10質量部とすることが好ましく、0.05~5質量部とすることがより好ましく、0.1~2質量部とすることが特に好ましい。 Examples of silane coupling agents include amino silane coupling agents, ureido silane coupling agents, vinyl silane coupling agents, methacrylic silane coupling agents, epoxy silane coupling agents, and mercapto silane cups. Examples thereof include a ring agent and an isocyanate-based silane coupling agent. Specifically, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-phenylaminopropyltrimethoxysilane, ureidopropyltrimethoxysilane, Ethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) Examples include ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane, and γ-isocyanatopropyltriethoxysilane. It is. Among these, γ-isocyanatopropyltriethoxysilane is preferable from the viewpoint of further improving adhesiveness. These can be used alone or in combination of two or more. The content of these coupling agents is usually preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the total amount of the photocurable resin composition. The amount is preferably 0.1 to 2 parts by mass.
 充填剤としては、例えば、微粉末酸化ケイ素、酸化マグネシウム、水酸化アルミニウム、炭酸カルシウム等の無機微粒子が挙げられる。 Examples of the filler include inorganic fine particles such as fine powdered silicon oxide, magnesium oxide, aluminum hydroxide, and calcium carbonate.
 重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、p-tert-ブチルカテコール、2,6-ジ-tert-ブチル-4-メチルフェノール、ピロガロール等のキノン類、その他一般に使用されているものを用いることができる。 As polymerization inhibitors, for example, hydroquinone, hydroquinone monomethyl ether, benzoquinone, p-tert-butylcatechol, quinones such as 2,6-di-tert-butyl-4-methylphenol, pyrogallol, and other generally used Things can be used.
 改質剤としては、例えば、レベリング性を向上させるためのレベリング剤等が挙げられる。レベリング剤としては、例えば、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物が挙げられる。 Examples of the modifier include a leveling agent for improving leveling properties. Examples of the leveling agent include a polyether-modified dimethylpolysiloxane copolymer, a polyester-modified dimethylpolysiloxane copolymer, a polyether-modified methylalkylpolysiloxane copolymer, and an aralkyl-modified methylalkylpolysiloxane copolymer.
 消泡剤としては、例えば、シリコン系オイル、フッ素系オイル、ポリカルボン酸系ポリマーの公知の消泡剤が挙げられる。 Examples of the antifoaming agent include known defoaming agents such as silicon oil, fluorine oil, and polycarboxylic acid polymer.
 本実施形態の光硬化性樹脂組成物は、上述の(A)、(B)、(C)及び(D)成分、並びにその他の任意の成分を配合し、加熱溶解させて用いることができ、有機溶剤を用いる必要がない。 The photocurable resin composition of the present embodiment can be used by blending the above-described components (A), (B), (C) and (D), and other optional components, and dissolving them by heating. There is no need to use organic solvents.
[保護コーティング剤]
 上述の光硬化性樹脂組成物は、湿気、ほこり等から保護する必要がある部分に対する保護コーティング剤として好適に用いることができる。特に好適には、上述の光硬化性樹脂組成物からなる保護コーティング剤は、後述する液晶ディスプレイにおける接続部の保護コーティング処理に用いられる。
[Protective coating agent]
The above-mentioned photocurable resin composition can be suitably used as a protective coating agent for a portion that needs to be protected from moisture, dust and the like. Particularly preferably, the protective coating agent comprising the above-mentioned photocurable resin composition is used for protective coating treatment of a connection portion in a liquid crystal display described later.
 本実施形態の光硬化性樹脂組成物による保護コーティング処理は、例えば以下のようにして行うことができる。まず、保護の対象となる部分に光硬化性樹脂組成物を塗布して塗膜を形成する。次に、必要量の紫外線を塗膜に照射して硬化させて硬化体を形成する。この硬化体により、保護の対象となる部分が保護される。 Protective coating treatment with the photocurable resin composition of the present embodiment can be performed, for example, as follows. First, a photocurable resin composition is applied to a portion to be protected to form a coating film. Next, the coating is irradiated with a necessary amount of ultraviolet rays and cured to form a cured body. The portion to be protected is protected by the cured body.
 光硬化性樹脂組成物を保護対象に塗布する方法は、保護の対象となる部分の形状等により適宜変更することができ、例えばディスペンサー装置を用いた塗布法、浸漬法、ハケ塗り法、スプレー法、線引き塗布法等を適用することができる。 The method of applying the photocurable resin composition to the protection target can be appropriately changed depending on the shape of the portion to be protected, for example, a coating method using a dispenser device, a dipping method, a brush coating method, a spray method. A wire drawing method or the like can be applied.
 紫外線の照射は、例えば高圧水銀灯、メタルハライドランプ、LED等を光源として行うことができる。 Irradiation with ultraviolet rays can be performed using, for example, a high-pressure mercury lamp, a metal halide lamp, an LED, or the like as a light source.
 ディスペンサーを用いて塗布する場合、本実施形態の光硬化性樹脂組成物の粘度(25℃)は、1~10Pa・sであることが好ましく、2~5Pa・sであることがより好ましい。粘度は、例えば、BL型粘度計(トキメック製)により、25℃にてロータNo.3、光硬化性樹脂組成物量120g、回転数30rpm、3分間回転させる条件で測定することができる。 When applied using a dispenser, the viscosity (25 ° C.) of the photocurable resin composition of the present embodiment is preferably 1 to 10 Pa · s, and more preferably 2 to 5 Pa · s. For example, the viscosity of the rotor No. is measured at 25 ° C. using a BL type viscometer (manufactured by Tokimec). 3. It can be measured under the condition that the photocurable resin composition amount is 120 g, the rotation speed is 30 rpm, and the rotation is performed for 3 minutes.
 本実施形態の光硬化性樹脂組成物を硬化することにより得られる硬化膜は、ヒートサイクル性をより向上できる観点から、25℃での貯蔵弾性率が10~200MPaであると好ましく、10~100MPaであるとより好ましい。 The cured film obtained by curing the photocurable resin composition of the present embodiment preferably has a storage elastic modulus at 25 ° C. of 10 to 200 MPa from the viewpoint of further improving heat cycle properties. Is more preferable.
[液晶ディスプレイモジュール]
 以下、図1~3を参照しながら、本実施形態の液晶ディスプレイモジュールについて説明する。
[LCD module]
Hereinafter, the liquid crystal display module of the present embodiment will be described with reference to FIGS.
 図1は、液晶ディスプレイとフレキシブル配線板(TAB実装方式)が接続された、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。本実施形態の液晶ディスプレイモジュール100は、液晶ディスプレイにおける電極22とフレキシブル配線板におけるリード電極13とが、接続部材24を介して接続された接続部が本実施形態の光硬化性樹脂組成物の硬化体1により覆われた構成を有する。液晶ディスプレイは、ガラス基板(下ガラス)23上に電極22を形成し、その上面にシール材25を用いガラス基板(上ガラス)21を張り合わせ、ガラス基板21及び23の隙間でシール材25によって囲われた部分に液晶(図示せず)を減圧注入することによって得られるものである。また、フレキシブル配線板は、例えばポリイミドフィルム15上に接着剤層14を有し、その上層にリード電極13を形成し、さらに上層にソルダーレジスト16を施し、半導体チップ11とバンプ電極12で連結させ、その周辺を液状封止材料17にて封止して得られるものである。 FIG. 1 is a schematic cross-sectional view showing an example of a liquid crystal display module of this embodiment in which a liquid crystal display and a flexible wiring board (TAB mounting method) are connected. In the liquid crystal display module 100 of the present embodiment, the connection part in which the electrode 22 in the liquid crystal display and the lead electrode 13 in the flexible wiring board are connected via the connection member 24 is cured by the photocurable resin composition of the present embodiment. The structure is covered with the body 1. In the liquid crystal display, an electrode 22 is formed on a glass substrate (lower glass) 23, and a glass substrate (upper glass) 21 is bonded to the upper surface thereof using a sealing material 25, and is surrounded by the sealing material 25 at a gap between the glass substrates 21 and 23. This is obtained by injecting liquid crystal (not shown) under reduced pressure into the broken portion. In addition, the flexible wiring board has, for example, an adhesive layer 14 on a polyimide film 15, a lead electrode 13 is formed on the upper layer, a solder resist 16 is applied on the upper layer, and the semiconductor chip 11 and the bump electrode 12 are connected. , And its periphery is obtained by sealing with a liquid sealing material 17.
 図2は、液晶ディスプレイとフレキシブル配線板(COF実装方式)が接続された、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。本実施形態の液晶ディスプレイモジュール200は、液晶ディスプレイにおける電極42とフレキシブル配線板におけるリード電極33とが、接続部材44を介して接続された接続部が本実施形態の光硬化性樹脂組成物の硬化体2により覆われた構成を有する。液晶ディスプレイは、TAB実装方式の時と同様にガラス基板(下ガラス)43上に電極42を形成し、その上面にシール材45を用いガラス基板(上ガラス)41を張り合わせ、ガラス基板41及び43の隙間でシール材45によって囲われた部分に液晶(図示せず)を減圧注入することによって得られるものである。また、フレキシブル配線板は、例えばポリイミドフィルム34上にリード電極33を形成し、さらに上層にソルダーレジスト36を施し、半導体チップ31とバンプ電極32で連結させ、その周辺を接続部材37にて封止して得られるものである。 FIG. 2 is a schematic cross-sectional view showing an example of the liquid crystal display module of the present embodiment in which a liquid crystal display and a flexible wiring board (COF mounting method) are connected. In the liquid crystal display module 200 of the present embodiment, the connection part in which the electrode 42 in the liquid crystal display and the lead electrode 33 in the flexible wiring board are connected via the connection member 44 is cured by the photocurable resin composition of the present embodiment. The structure is covered with the body 2. In the liquid crystal display, an electrode 42 is formed on a glass substrate (lower glass) 43 in the same manner as in the TAB mounting method, and a glass substrate (upper glass) 41 is bonded to the upper surface using a sealing material 45, and glass substrates 41 and 43 are attached. This is obtained by injecting liquid crystal (not shown) under reduced pressure into a portion surrounded by the sealing material 45 in the gap. Further, the flexible wiring board is formed, for example, by forming a lead electrode 33 on a polyimide film 34, further applying a solder resist 36 on the upper layer, and connecting the semiconductor chip 31 with the bump electrode 32, and sealing the periphery with a connection member 37. Is obtained.
 上述の液晶ディスプレイモジュール100、200における電極22、42と、リード電極13、33との接続部は、例えば以下に示す方法により形成することができる。 The connection portions between the electrodes 22 and 42 and the lead electrodes 13 and 33 in the liquid crystal display modules 100 and 200 described above can be formed by the following method, for example.
 まず、電極22、42と、リード電極13、33とを、接続部材24、44を介して接続する。次に、電極22、42、リード電極13、33、及び接続部材24、44を覆うように、本実施形態の光硬化性樹脂組成物を塗布して塗膜を形成する。この塗膜に活性光線を照射して硬化させることにより、上記接続部を形成することができる。 First, the electrodes 22 and 42 and the lead electrodes 13 and 33 are connected through the connection members 24 and 44. Next, a coating film is formed by applying the photocurable resin composition of the present embodiment so as to cover the electrodes 22 and 42, the lead electrodes 13 and 33, and the connection members 24 and 44. The connection portion can be formed by irradiating the coating film with an actinic ray and curing it.
 接続部材24、44としては、例えば異方導電フィルム(ACF)、非導電フィルム(NCF)、非導電ペースト(NCP)を好適に用いることができる。上述の接続は、用いる接続部材の特性に合わせた公知の条件で行うことができる。 As the connection members 24 and 44, for example, an anisotropic conductive film (ACF), a non-conductive film (NCF), and a non-conductive paste (NCP) can be suitably used. The above-described connection can be performed under known conditions according to the characteristics of the connection member used.
 塗膜の形成及び活性光線の照射は、例えば上述の保護コーティング処理において説明した方法により行うことができる。 Formation of the coating film and irradiation with actinic rays can be performed, for example, by the method described in the protective coating process described above.
 図3は、液晶ディスプレイのガラス基板上に半導体チップが搭載された(COG実装方式)、本実施形態の液晶ディスプレイモジュールの一例を示す模式断面図である。本実施形態の液晶ディスプレイモジュール300は、液晶ディスプレイにおける電極62と半導体チップ51におけるバンプ電極52とが接続部材53を介して接続された接続部が本実施形態の光硬化性樹脂組成物の硬化体3により覆われた構成を有する。液晶ディスプレイは、ガラス基板(下ガラス)63上に電極62を形成し、その上面にシール材64を用いガラス基板(上ガラス)61を張り合わせ、ガラス基板61及び63の隙間でシール材64によって囲われた部分に液晶(図示せず)を減圧注入することによって得られるものである。 FIG. 3 is a schematic cross-sectional view showing an example of the liquid crystal display module of the present embodiment in which a semiconductor chip is mounted on a glass substrate of a liquid crystal display (COG mounting method). In the liquid crystal display module 300 of the present embodiment, the connection part in which the electrode 62 in the liquid crystal display and the bump electrode 52 in the semiconductor chip 51 are connected via the connection member 53 is a cured body of the photocurable resin composition of the present embodiment. 3 is covered. In the liquid crystal display, an electrode 62 is formed on a glass substrate (lower glass) 63, a glass substrate (upper glass) 61 is bonded to the upper surface of the electrode 62 using a sealing material 64, and the sealing material 64 is surrounded by a gap between the glass substrates 61 and 63. This is obtained by injecting liquid crystal (not shown) under reduced pressure into the broken portion.
 上述の液晶ディスプレイモジュール300における電極62と、バンプ電極52との接続部は、例えば以下に示す方法により形成することができる。 The connection portion between the electrode 62 and the bump electrode 52 in the liquid crystal display module 300 described above can be formed by, for example, the following method.
 まず、電極62と、バンプ電極52とを、接続部材53を介して接続する。次に、電極62、バンプ電極52及び接続部材53を覆うように、本実施形態の光硬化性樹脂組成物を塗布して塗膜を形成する。この塗膜に活性光線を照射して硬化させることにより、上記接続部を形成することができる。 First, the electrode 62 and the bump electrode 52 are connected via the connection member 53. Next, a coating film is formed by applying the photocurable resin composition of the present embodiment so as to cover the electrode 62, the bump electrode 52, and the connection member 53. The connection portion can be formed by irradiating the coating film with an actinic ray and curing it.
 接続部材53を用いた接続、塗膜の形成及び硬化については、上述の液晶ディスプレイモジュール100、200の場合と同様の方法を適用することができる。 For connection using the connection member 53, formation of the coating film, and curing, the same method as in the case of the liquid crystal display modules 100 and 200 described above can be applied.
 以上、本実施形態の光硬化性樹脂組成物を液晶ディスプレイモジュールに適用した場合について説明したが、本実施形態の光硬化性樹脂組成物は、マイクロコンピュータ、トランジスタ、コンデンサ、抵抗、リレー、トランス等、及びこれらを搭載した実装回路板、さらにこれら電子部品に接合されるリード線、ハーネス、フィルム基板等の保護コーティング処理にも適用することができる。 The case where the photocurable resin composition of the present embodiment is applied to a liquid crystal display module has been described above. However, the photocurable resin composition of the present embodiment includes a microcomputer, a transistor, a capacitor, a resistor, a relay, a transformer, and the like. And a mounting circuit board on which these are mounted, and further, can be applied to protective coating processing for lead wires, harnesses, film substrates and the like that are joined to these electronic components.
 以下に本発明を実施例及び比較例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、「部」及び「%」は、それぞれ、「重量部」及び「重量%」を示す。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. “Part” and “%” indicate “part by weight” and “% by weight”, respectively.
合成例1
 撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に空気ガスを導入させた後、水添ポリブタジエンジオール(日本曹達(株)製、商品名:GI-1000、数平均分子量:約1500)100部(約0.067モル)、ハイドロキノンモノメチルエーテル(和光純薬工業(株)製)0.01部及び1,1,3,3-テトラメチルグアニジン(和光純薬工業(株)製)0.1部を仕込み、80℃に昇温後、コロネートT-65(日本ポリウレタン工業(株)製、商品名:トリレン-2,4-ジイソシアネート65質量%とトリレン-2,6-ジイソシアネート35質量%との混合物)20.5部(0.118モル)を加え、80~85℃で120分間保温した。これに2-ヒドロキシエチルアクリレート(大阪有機化学工業(株)製、商品名:HEA)13.7部(0.118モル)を仕込み80℃に昇温後、80~85℃で120分間保温し、反応を進行させた。
Synthesis example 1
After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, hydrogenated polybutadiene diol (manufactured by Nippon Soda Co., Ltd., trade name: GI-1000, number average molecular weight: About 1500) 100 parts (about 0.067 mol), hydroquinone monomethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) 0.01 part and 1,1,3,3-tetramethylguanidine (Wako Pure Chemical Industries, Ltd.) 0.1 parts), heated to 80 ° C., coronate T-65 (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: 65% by weight of tolylene-2,4-diisocyanate and tolylene-2,6-diisocyanate 20.5 parts (0.118 mol) of a mixture with 35% by mass) was added, and the mixture was kept at 80 to 85 ° C. for 120 minutes. To this was added 13.7 parts (0.118 mol) of 2-hydroxyethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: HEA), the temperature was raised to 80 ° C., and then kept at 80 to 85 ° C. for 120 minutes. The reaction was allowed to proceed.
 IR測定によりイソシアネートが消失したことを確認した後、反応を終了させ、ウレタンオリゴマー(以下、単に「ウレタンオリゴマー」という。数平均分子量:約3500)を得た。 After confirming that the isocyanate had disappeared by IR measurement, the reaction was terminated to obtain a urethane oligomer (hereinafter simply referred to as “urethane oligomer”, number average molecular weight: about 3500).
実施例1
 撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に空気ガスを導入させた後、(A)成分として合成例1で得られたウレタンオリゴマー52部、(B)成分としてラウリルアクリレート2部、イソボルニルアクリレート42部、ジペンタエリスリトールヘキサアクリレート4部、(C)成分として2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン6部、(D)成分としてロイコクリスタルバイオレット0.3部、及びシランカップリング剤としてγ-イソシアネートプロピルトリエトキシシラン1部を仕込み、60℃で3時間加熱攪拌して光硬化性樹脂組成物を得た。
Example 1
After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, 52 parts of urethane oligomer obtained in Synthesis Example 1 as component (A) and lauryl as component (B) 2 parts acrylate, 42 parts isobornyl acrylate, 4 parts dipentaerythritol hexaacrylate, 6 parts 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as component (C) , 0.3 part of leuco crystal violet as component (D) and 1 part of γ-isocyanatopropyltriethoxysilane as silane coupling agent were added and heated and stirred at 60 ° C. for 3 hours to obtain a photocurable resin composition. .
実施例2
 実施例1の(B)成分のラウリルアクリレートの量を2部から8部に変え、イソボルニルアクリレートの量を42部から36部に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Example 2
Photocurable resin as in Example 1 except that the amount of lauryl acrylate of component (B) in Example 1 was changed from 2 parts to 8 parts and the amount of isobornyl acrylate was changed from 42 parts to 36 parts. A composition was prepared.
実施例3
 実施例1の(D)成分のロイコクリスタルバイオレットの量を0.3部から2部に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Example 3
A photocurable resin composition was prepared in the same manner as in Example 1 except that the amount of the leuco crystal violet component (D) in Example 1 was changed from 0.3 part to 2 parts.
実施例4
 実施例1の(C)成分の2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンの量を6部から9部に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Example 4
Example 1 except that the amount of component (C) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one in Example 1 was changed from 6 parts to 9 parts. Similarly, a photocurable resin composition was prepared.
実施例5
 実施例1の(C)成分の2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンの量を6部から3部に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Example 5
Example 1 is the same as Example 1 except that the amount of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as component (C) in Example 1 was changed from 6 parts to 3 parts. Similarly, a photocurable resin composition was prepared.
実施例6
 実施例1の(A)成分のウレタンオリゴマーの量を52部から48部に変え、(B)成分のラウリルアクリレート2部を加えず、ジペンタエリスリトールヘキサアクリレートの量を4部から10部に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Example 6
The amount of the urethane oligomer of the component (A) in Example 1 was changed from 52 parts to 48 parts, 2 parts of the lauryl acrylate of the component (B) was not added, and the amount of dipentaerythritol hexaacrylate was changed from 4 parts to 10 parts. A photocurable resin composition was prepared in the same manner as in Example 1 except that.
比較例1
 実施例1の(A)成分のウレタンオリゴマーをポリブタジエンホモポリマー(B-3000、日本曹達株式会社製、数平均分子量:約3,000)(以下、単に「ポリブタジエンホモポリマー」という。)に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Comparative Example 1
The urethane oligomer of component (A) in Example 1 was changed to a polybutadiene homopolymer (B-3000, manufactured by Nippon Soda Co., Ltd., number average molecular weight: about 3,000) (hereinafter simply referred to as “polybutadiene homopolymer”). A photocurable resin composition was prepared in the same manner as Example 1 except for the above.
比較例2
 実施例1の(C)成分の2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンを2-ベンジル-2-ジメチルアミノ-(4-モルフォリノフェニル)-ブタン-1-オンに変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Comparative Example 2
2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as the component (C) in Example 1 was converted to 2-benzyl-2-dimethylamino- (4-morpholinophenyl). A photocurable resin composition was prepared in the same manner as in Example 1 except that -butan-1-one was used.
比較例3
 実施例1の(C)成分の2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンをベンゾフェノンに変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Comparative Example 3
Photocurability in the same manner as in Example 1 except that 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as the component (C) in Example 1 was changed to benzophenone. A resin composition was prepared.
比較例4
 実施例1の(C)成分の2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンを2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体に変えた以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Comparative Example 4
2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one as the component (C) in Example 1 was converted into 2- (o-chlorophenyl) -4,5-diphenylimidazole A photocurable resin composition was prepared in the same manner as in Example 1 except that the body was changed.
比較例5
 実施例1の(D)成分のロイコクリスタルバイオレットを加えなかった以外は実施例1と同様にして光硬化性樹脂組成物を調製した。
Comparative Example 5
A photocurable resin composition was prepared in the same manner as in Example 1 except that the leuco crystal violet component (D) in Example 1 was not added.
比較例6
 撹拌機、温度計、冷却管及び空気ガス導入管を装備した反応容器に空気ガスを導入させた後、ウレタンオリゴマー100部、ベンジルジメチルケタール2.5部、及びγ-メタクリロキシプロピルトリエトキシシラン5部を仕込み、60℃で3時間加熱攪拌して光硬化性樹脂組成物を得た(特開2001-302946号公報(特許文献1)の実施例1に記載の樹脂組成物)。
Comparative Example 6
After introducing air gas into a reaction vessel equipped with a stirrer, thermometer, cooling pipe and air gas introduction pipe, 100 parts of urethane oligomer, 2.5 parts of benzyldimethyl ketal, and γ-methacryloxypropyltriethoxysilane 5 A photocurable resin composition was obtained by heating and stirring at 60 ° C. for 3 hours (resin composition described in Example 1 of JP-A-2001-302946 (Patent Document 1)).
 以上で得た光硬化性樹脂組成物について、硬化性、発色性、弾性率、接着性、リペア性、耐湿性及びヒートサイクル性について下記のようにして評価した。 The photocurable resin composition obtained above was evaluated for curability, color developability, elastic modulus, adhesiveness, repairability, moisture resistance, and heat cycle properties as follows.
〔硬化性〕
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2mmとなるようにガラス板に塗布した。得られた塗膜に、紫外線照射装置(松下電工(株)製、出力:330mW、LEDの数:2本)を用い、照射距離1cm、ランプ移動速度80mm/秒、照射量約350mJ/cmの条件で紫外線を照射して試験片を作製した。得られた試験片について、指で塗膜表面を押して下記の基準で硬化性を評価した。
A:全くべたつきがない。
B:若干べたつきがある。
C:顕著なべたつきがある。
[Curing property]
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to a glass plate using an applicator so that the film thickness was 300 μm and the width was 2 mm. For the obtained coating film, an ultraviolet irradiation device (manufactured by Matsushita Electric Works Co., Ltd., output: 330 mW, number of LEDs: 2), irradiation distance 1 cm, lamp moving speed 80 mm / second, irradiation amount about 350 mJ / cm 2 A test piece was prepared by irradiating ultraviolet rays under the conditions described above. About the obtained test piece, the coating-film surface was pushed with the finger | toe, and sclerosis | hardenability was evaluated on the following reference | standard.
A: There is no stickiness.
B: There is some stickiness.
C: There is remarkable stickiness.
〔発色性〕
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2cmとなるようにガラス板に塗布した。得られた塗膜に、日本電池株式会社製UV照射装置で、バンドパスフィルタを用い365nm以外の波長の光をカットし、照射出力400mW/cmで総照射量が350mJ/cmになるように紫外線を照射して試験片を作製した。得られた試験片について、日本電飾製Σ90 COLOR MEASURING SYSTEMで色目(b*)を測定し、下記の基準で評価した。
A:-50以下
B:-40~-50
C:0~-40
D:0よりも大きい
 なお、C,Dについては、色の視認が困難である。
[Color development]
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to a glass plate using an applicator so that the film thickness was 300 μm and the width was 2 cm. Cut the light with a wavelength other than 365 nm using a bandpass filter with a UV irradiation device manufactured by Nippon Batteries Co., Ltd. on the obtained coating film so that the total irradiation amount becomes 350 mJ / cm 2 at an irradiation output of 400 mW / cm 2. A test piece was prepared by irradiating the sample with ultraviolet rays. About the obtained test piece, the color (b *) was measured with Σ90 COLOR MEASURING SYSTEM manufactured by Nippon Denshoku and evaluated according to the following criteria.
A: -50 or less B: -40 to -50
C: 0 to -40
D: Greater than 0 Note that it is difficult to visually recognize colors for C and D.
〔貯蔵弾性率〕
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2cmとなるようにガラス板に塗布した。得られた塗膜に、日本電池株式会社製UV照射装置で、バンドパスフィルタを用い365nm以外の波長の光をカットし、照射出力400mW/cmで総照射量が350mJ/cmになるように紫外線を照射して試験片を作製した。得られた試験片について、TA instruments製 RSA-IIIを用い引張りモードにて以下の条件にて測定し、25℃における貯蔵弾性率を評価した。
測定温度:-60から150℃
昇温速度:5℃/min
周波数:1Hz
[Storage modulus]
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to a glass plate using an applicator so that the film thickness was 300 μm and the width was 2 cm. Cut the light with a wavelength other than 365 nm using a bandpass filter with a UV irradiation device manufactured by Nippon Batteries Co., Ltd. on the obtained coating film so that the total irradiation amount becomes 350 mJ / cm 2 at an irradiation output of 400 mW / cm 2. A test piece was prepared by irradiating the sample with ultraviolet rays. About the obtained test piece, it measured on the following conditions in tension mode using RS instruments made from TA instruments, and evaluated the storage elastic modulus in 25 degreeC.
Measurement temperature: -60 to 150 ° C
Temperature increase rate: 5 ° C / min
Frequency: 1Hz
〔接着性〕
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2mmとなるようにガラス板に塗布した。得られた塗膜に、紫外線照射装置(松下電工(株)製、出力:330mW、LEDの数:2本)を用い、照射距離1cm、ランプ移動速度80mm/秒、照射量約350mJ/cmの条件で紫外線を照射して試験片を作製した。得られた試験片について、ガラス板と剥離した硬化フィルムが90度の角度を成すように万能引っ張り試験機((株)島津製作所製、オートグラフ IS-10T)に固定し、25℃において50mm/分の速度で90度引き剥がし強さを測定した。
〔Adhesiveness〕
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to a glass plate using an applicator so that the film thickness was 300 μm and the width was 2 mm. For the obtained coating film, an ultraviolet irradiation device (manufactured by Matsushita Electric Works Co., Ltd., output: 330 mW, number of LEDs: 2), irradiation distance 1 cm, lamp moving speed 80 mm / second, irradiation amount about 350 mJ / cm 2 A test piece was prepared by irradiating ultraviolet rays under the conditions described above. The obtained test piece was fixed to a universal tensile tester (manufactured by Shimadzu Corp., Autograph IS-10T) so that the cured film peeled off from the glass plate forms a 90-degree angle, and at 25 ° C., 50 mm / The 90-degree peel strength was measured at a rate of minutes.
〔リペア性〕
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2mmとなるようにガラス板に塗布した。得られた塗膜に、紫外線照射装置(松下電工(株)製、出力:330mW、LEDの数:2本)を用い、照射距離1cm、ランプ移動速度80mm/秒、照射量約350mJ/cmの条件で紫外線を照射して試験片を作製した。得られた試験片について、硬化膜の引き剥がしを試み、リペア性を下記の基準で評価した。
A:ガラス板から樹脂残りなく、素早く綺麗に硬化膜を引き剥がすことができる
B:ガラス板からゆっくりと硬化膜を引き剥がすことで、樹脂残りなく綺麗に硬化膜を引き剥がすことができる
C:ガラス板からゆっくりと硬化膜を引き剥がしても、引き剥がしの途中で硬化膜が切れる
D:引き剥がせない
[Repairability]
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to a glass plate using an applicator so that the film thickness was 300 μm and the width was 2 mm. For the obtained coating film, an ultraviolet irradiation device (manufactured by Matsushita Electric Works Co., Ltd., output: 330 mW, number of LEDs: 2), irradiation distance 1 cm, lamp moving speed 80 mm / second, irradiation amount about 350 mJ / cm 2 A test piece was prepared by irradiating ultraviolet rays under the conditions described above. About the obtained test piece, peeling of the cured film was tried and the repair property was evaluated according to the following criteria.
A: The cured film can be peeled off quickly and beautifully without any resin residue from the glass plate. B: The cured film can be peeled off beautifully without resin residue by slowly peeling off the cured film from the glass plate C: Even if the cured film is slowly peeled off from the glass plate, the cured film is cut during the peeling. D: Cannot be peeled off
〔耐湿性〕
 耐湿性については耐マイグレーション性で評価した。
 実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を、アプリケーターを用い、膜厚が300μm、幅が2mmとなるようにITO電極基板(L/S(ライン幅/スペース幅)=35/15μm)に塗布した。得られた塗膜に、紫外線照射装置(松下電工(株)製、出力:330mW、LEDの数:2本)を用い、照射距離1cm、ランプ移動速度80mm/秒、照射量約350mJ/cmの条件で紫外線を照射して試験片を作製した。得られた試験片について、60℃、90%RH、直流5Vの条件にて高温高湿バイアス試験を500時間実施し、耐マイグレーション性(絶縁抵抗維持率、耐腐食性)を評価した。絶縁抵抗維持率については、イオンマイグレーションテスター(IMV社製、MIG-8600)を用いて、下記の式により絶縁抵抗維持率を算出した。絶縁抵抗維持率は、高いほど優れていることを表す。
絶縁抵抗維持率(%)=(500時間後の抵抗値/高温高湿バイアス試験前の抵抗値)×100
 耐腐食性は、透過型の光学顕微鏡を用い、接眼10倍、対物10倍のレンズを用いて、実質100倍の観察倍率でITO電極基板を目視観察し、下記の基準で評価した。
A:全く腐食が見られない
B:点状にごく小範囲の腐食が発生した
C:線上に腐食が発生し導通した
[Moisture resistance]
The moisture resistance was evaluated by migration resistance.
The photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were used with an ITO electrode substrate (L / S (line width / line width) so that the film thickness was 300 μm and the width was 2 mm using an applicator. (Space width) = 35/15 μm). For the obtained coating film, an ultraviolet irradiation device (manufactured by Matsushita Electric Works Co., Ltd., output: 330 mW, number of LEDs: 2), irradiation distance 1 cm, lamp moving speed 80 mm / second, irradiation amount about 350 mJ / cm 2 The test piece was produced by irradiating ultraviolet rays under the conditions described above. The obtained test piece was subjected to a high-temperature and high-humidity bias test for 500 hours under the conditions of 60 ° C., 90% RH, and DC 5 V, and evaluated for migration resistance (insulation resistance maintenance rate, corrosion resistance). With respect to the insulation resistance maintenance ratio, an insulation resistance maintenance ratio was calculated by the following formula using an ion migration tester (IMV, MIG-8600). The higher the insulation resistance maintenance rate, the better.
Insulation resistance maintenance ratio (%) = (resistance value after 500 hours / resistance value before high temperature and high humidity bias test) × 100
Corrosion resistance was evaluated based on the following criteria by visually observing the ITO electrode substrate at an observation magnification of substantially 100 times using a 10-times eyepiece and 10-times objective lens using a transmission type optical microscope.
A: Corrosion is not observed at all. B: Corrosion in a very small range is generated in a dotted manner. C: Corrosion is generated on the wire and conduction is made.
〔ヒートサイクル性〕
 大きさ2×5cmで300μm厚のITO電極基板2枚を1cmずらして貼り合せ、ずらした部分に実施例1~6及び比較例1~6で得られた光硬化性樹脂組成物を塗布した。得られた塗膜に、日本電池株式会社製UV照射装置で、バンドパスフィルタを用い365nm以外の波長の光をカットし、照射出力400mW/cmで総照射量が350mJ/cmになるように紫外線を照射して試験片を作製した。得られた試験片について、-20℃で0.5時間保持し、その後60℃まで昇温し、60℃で0.5時間保持という工程を1サイクルとして、200サイクル(200時間)行い、塗膜外観(クラック、基材からのはがれ等)を下記の基準で評価した。
A:変化なし
B:硬化膜の一部分にクラックがある、又は硬化膜の端部に剥がれがある
C:硬化膜の全体にクラックがある、又は硬化膜全体が剥がれている
[Heat cycle properties]
Two ITO electrode substrates having a size of 2 × 5 cm and a thickness of 300 μm were bonded to each other with a shift of 1 cm, and the photocurable resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were applied to the shifted portions. Cut the light with a wavelength other than 365 nm using a bandpass filter with a UV irradiation device manufactured by Nippon Batteries Co., Ltd. on the obtained coating film so that the total irradiation amount becomes 350 mJ / cm 2 at an irradiation output of 400 mW / cm 2. A test piece was prepared by irradiating the sample with ultraviolet rays. The obtained test piece was held at −20 ° C. for 0.5 hour, then heated to 60 ° C., and held at 60 ° C. for 0.5 hour as 200 cycles (200 hours). The film appearance (cracks, peeling from the substrate, etc.) was evaluated according to the following criteria.
A: No change B: There is a crack in a part of the cured film, or there is peeling at the end of the cured film C: There is a crack in the entire cured film, or the entire cured film is peeled off
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例1の(A)成分をウレタンオリゴマーではなくポリブタジエンホモポリマーとした光硬化性樹脂組成物では、硬化性が悪く、塗膜裏面が未硬化の状態であった。比較例2の(C)成分を2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンではなく2-ベンジル-2-ジメチルアミノ-(4-モルフォリノフェニル)-2-ブタン-1-オンとした光硬化性樹脂組成物では発色性が低く、着色の有無の視認が困難であった。リペア性については、引き剥がし途中で膜が切れた。比較例3及び4の(C)成分を2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンではなくそれぞれベンゾフェノン及び2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体とした光硬化性樹脂組成物では、硬化性が悪く、塗膜裏面が未硬化の状態であった。2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体とした光硬化性樹脂組成物の硬化性が悪かった要因は、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体の溶解性が不充分であったためと推察する。 In the photocurable resin composition in which the component (A) of Comparative Example 1 was not a urethane oligomer but a polybutadiene homopolymer, the curability was poor and the back surface of the coating film was uncured. The component (C) of Comparative Example 2 was not 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one but 2-benzyl-2-dimethylamino- (4-morpholinophenyl) ) The photocurable resin composition having 2-butan-1-one had low color developability and it was difficult to visually confirm the presence or absence of coloring. Regarding repairability, the film was cut during peeling. The component (C) of Comparative Examples 3 and 4 was replaced with benzophenone and 2- (o-chlorophenyl) -4, respectively, instead of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, The photocurable resin composition made into 5-diphenylimidazole dimer had poor curability and the back surface of the coating film was uncured. The cause of the poor curability of the photocurable resin composition made from 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer was the dimer of 2- (o-chlorophenyl) -4,5-diphenylimidazole. This is probably due to insufficient body solubility.
 1,2,3…光硬化性樹脂組成物の硬化体、11,31,51…半導体チップ、12,32,52…バンプ電極、13,33…リード電極、14…接着剤層、15,34…ポリイミドフィルム、16,36…ソルダーレジスト、17…液状封止材料、21,23,41,43,61,63…ガラス基板、22,42,62…電極、24,37,44,53…接続部材、25,45,64…シール材、100,200,300…液晶ディスプレイモジュール。 1, 2, 3... Cured body of photocurable resin composition, 11, 31, 51... Semiconductor chip, 12, 32, 52... Bump electrode, 13, 33. Lead electrode, 14. ... polyimide film, 16, 36 ... solder resist, 17 ... liquid sealing material, 21, 23, 41, 43, 61, 63 ... glass substrate, 22, 42, 62 ... electrode, 24, 37, 44, 53 ... connection Member, 25, 45, 64 ... Sealing material, 100, 200, 300 ... Liquid crystal display module.

Claims (10)

  1.  (A)ウレタンオリゴマー、
     (B)エチレン性不飽和基を有する重合性化合物、
     (C)2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、及び
     (D)ロイコ染料、を含有する光硬化性樹脂組成物。
    (A) urethane oligomer,
    (B) a polymerizable compound having an ethylenically unsaturated group,
    A photocurable resin composition comprising (C) 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, and (D) a leuco dye.
  2.  前記(D)成分がロイコクリスタルバイオレットである、請求項1に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the component (D) is leuco crystal violet.
  3.  前記(A)成分が(メタ)アクリロイル基を有するウレタンオリゴマーである、請求項1又は2に記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1 or 2, wherein the component (A) is a urethane oligomer having a (meth) acryloyl group.
  4.  実質的に有機溶剤を含まない、請求項1~3のいずれか1項に記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, which is substantially free of an organic solvent.
  5.  液晶ディスプレイの電極とフレキシブル配線板のリード電極とが接続部材を介して接続された接続部を保護コーティングするための、請求項1~4のいずれか1項に記載の光硬化性樹脂組成物からなる保護コーティング剤。 The photocurable resin composition according to any one of claims 1 to 4, wherein the liquid crystal display electrode and the lead electrode of the flexible wiring board are protectively coated on a connection portion where the connection portion is connected via a connection member. Protective coating agent.
  6.  液晶ディスプレイの電極と半導体チップのバンプ電極とが接続部材を介して接続された接続部を保護コーティングするための、請求項1~4のいずれか1項に記載の光硬化性樹脂組成物からなる保護コーティング剤。 5. The photocurable resin composition according to claim 1, wherein the liquid crystal display electrode and the bump electrode of the semiconductor chip are provided with a protective coating on a connection portion where the electrode is connected via a connection member. Protective coating agent.
  7.  請求項1~4のいずれか1項に記載の光硬化性樹脂組成物を光硬化させて得られる硬化膜であって、
     25℃での貯蔵弾性率が10~200MPaである硬化膜。
    A cured film obtained by photocuring the photocurable resin composition according to any one of claims 1 to 4,
    A cured film having a storage elastic modulus at 25 ° C. of 10 to 200 MPa.
  8.  液晶ディスプレイの電極とフレキシブル配線板のリード電極とを接続部材を介して接続する工程と、
     前記液晶ディスプレイの電極、前記フレキシブル配線板のリード電極及び前記接続部材を覆うように、請求項1~4のいずれか一項に記載の光硬化性樹脂組成物を塗布して塗膜を形成する工程と、
     前記塗膜に活性光線を照射する工程と、
    を含む、液晶ディスプレイモジュールの製造法。
    Connecting the electrode of the liquid crystal display and the lead electrode of the flexible wiring board via a connecting member;
    The coating film is formed by applying the photocurable resin composition according to any one of claims 1 to 4 so as to cover the electrode of the liquid crystal display, the lead electrode of the flexible wiring board, and the connection member. Process,
    Irradiating the coating film with an actinic ray;
    A method for manufacturing a liquid crystal display module, comprising:
  9.  液晶ディスプレイの電極と半導体チップのバンプ電極とを接続部材を介して接続する工程と、
     前記液晶ディスプレイの電極、前記半導体チップのバンプ電極及び前記接続部材を覆うように、請求項1~4のいずれか一項に記載の光硬化性樹脂組成物を塗布して塗膜を形成する工程と、
     前記塗膜に活性光線を照射する工程と、
    を含む、液晶ディスプレイモジュールの製造法。
    Connecting the electrode of the liquid crystal display and the bump electrode of the semiconductor chip via a connecting member;
    A step of forming a coating film by applying the photocurable resin composition according to any one of claims 1 to 4 so as to cover the electrode of the liquid crystal display, the bump electrode of the semiconductor chip, and the connection member. When,
    Irradiating the coating film with an actinic ray;
    A method for manufacturing a liquid crystal display module, comprising:
  10.  請求項8又は9に記載の液晶ディスプレイモジュールの製造法で製造された液晶ディスプレイモジュール。 A liquid crystal display module manufactured by the method for manufacturing a liquid crystal display module according to claim 8 or 9.
PCT/JP2010/073702 2010-12-28 2010-12-28 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same WO2012090298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073702 WO2012090298A1 (en) 2010-12-28 2010-12-28 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073702 WO2012090298A1 (en) 2010-12-28 2010-12-28 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2012090298A1 true WO2012090298A1 (en) 2012-07-05

Family

ID=46382448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073702 WO2012090298A1 (en) 2010-12-28 2010-12-28 Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2012090298A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007166A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Photocurable resin composition, and photocurable light-shielding coating material, light leakage preventing material, liquid crystal display panel and liquid crystal display device using the composition, and photocuring method
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
EP2963061A4 (en) * 2013-02-27 2016-07-27 Autonetworks Technologies Ltd Light-curable material combining radical and anionic curability
WO2016117631A1 (en) * 2015-01-21 2016-07-28 株式会社スリーボンド Photocurable composition
JP2017203162A (en) * 2017-06-16 2017-11-16 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal display panel, liquid crystal display device, and photo-curing method
WO2021039320A1 (en) * 2019-08-29 2021-03-04 積水ポリマテック株式会社 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method
WO2021117804A1 (en) * 2019-12-13 2021-06-17 日東シンコー株式会社 Curable composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169560A (en) * 2005-12-26 2007-07-05 Denki Kagaku Kogyo Kk Composition and method for temporarily fixing member using the same
JP2010144000A (en) * 2008-12-17 2010-07-01 Hitachi Chem Co Ltd Photocurable resin composition, photocurable moistureproof sealing material for use in electronic paper, electronic paper, and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169560A (en) * 2005-12-26 2007-07-05 Denki Kagaku Kogyo Kk Composition and method for temporarily fixing member using the same
JP2010144000A (en) * 2008-12-17 2010-07-01 Hitachi Chem Co Ltd Photocurable resin composition, photocurable moistureproof sealing material for use in electronic paper, electronic paper, and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963061A4 (en) * 2013-02-27 2016-07-27 Autonetworks Technologies Ltd Light-curable material combining radical and anionic curability
US9695270B2 (en) 2013-02-27 2017-07-04 Autonetworks Technologies, Ltd. Photocurable material combining radical curability and anionic curability
JP2015007166A (en) * 2013-06-25 2015-01-15 日立化成株式会社 Photocurable resin composition, and photocurable light-shielding coating material, light leakage preventing material, liquid crystal display panel and liquid crystal display device using the composition, and photocuring method
JP2019167542A (en) * 2014-02-18 2019-10-03 日立化成株式会社 Photocurable resin composition, photocurable shading coating, light leakage preventive material, liquid crystal display panel and liquid crystal display device using the same, and photocuring method
JP2015172176A (en) * 2014-02-18 2015-10-01 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal panel, liquid crystal display and photo-curing method
WO2016117631A1 (en) * 2015-01-21 2016-07-28 株式会社スリーボンド Photocurable composition
JPWO2016117631A1 (en) * 2015-01-21 2017-11-02 株式会社スリーボンド Photocurable composition
US10294310B2 (en) 2015-01-21 2019-05-21 Three Bond Co., Ltd. Photocurable composition
JP2017203162A (en) * 2017-06-16 2017-11-16 日立化成株式会社 Photocurable resin composition, photocurable light-shielding coating and light leakage prevention material using the composition, liquid crystal display panel, liquid crystal display device, and photo-curing method
WO2021039320A1 (en) * 2019-08-29 2021-03-04 積水ポリマテック株式会社 Photocurable composition, cured body thereof, sealing material, protective material, waterproof structure, and cured body production method
CN113993912A (en) * 2019-08-29 2022-01-28 积水保力马科技株式会社 Photocurable composition, cured product thereof, sealing material, protective material, waterproof structure, and method for producing cured product
WO2021117804A1 (en) * 2019-12-13 2021-06-17 日東シンコー株式会社 Curable composition
CN114787213A (en) * 2019-12-13 2022-07-22 日东新兴有限公司 Curable composition
US12116432B2 (en) 2019-12-13 2024-10-15 Nitto Shinko Corporation Curable composition
CN114787213B (en) * 2019-12-13 2024-10-18 日东新兴有限公司 Curable composition

Similar Documents

Publication Publication Date Title
WO2012090298A1 (en) Photocurable resin composition, protective coating agent, hard coating film, liquid crystal display module, and method for manufacturing same
KR101307124B1 (en) Photosensitive resin composition, composition for solder resist, and photosensitive dry film
JP5621595B2 (en) Photosensitive resin composition
US20140309326A1 (en) Curable composition
WO2013118655A1 (en) Urethane (meth)acrylate and moisture-proof insulating coating material
JPWO2012043550A1 (en) Composition for photocurable transparent adhesive sheet
JP2008280414A (en) Photocurable resin composition, photocurable moistureproof insulating coating for mounting circuit board, electronic part and its manufacturing method
JP2008291114A (en) Photosetting resin composition, photosetting and moistureproof insulating paint for mounted circuit board, electronic component and method for manufacturing the component
TW201241126A (en) UV-curable optical resin adhesive composition
WO2018207730A1 (en) Sealant for liquid crystal display element, top-bottom conductive material, and liquid crystal display element
TW201444882A (en) Method for producing substrate having pattern and resin composition for hydrofluoric acid etching
JP4852785B2 (en) Film adhesive for circuit connection, circuit terminal connection structure, and circuit terminal connection method
JP2016074891A (en) Photo-and moisture-curable resin composition, electronic component adhesive, and display element adhesive
WO2020066601A1 (en) Curable resin composition, dry film, cured product, printed circuit board, and electronic component
JP6260792B2 (en) Method for manufacturing thin glass substrate
WO2014065048A1 (en) Novel electronic circuit reinforcing agent
KR20100069559A (en) Curable resin composition, curable resin film, and plating method employing it
JP2015010113A (en) Moisture-proof insulation coating, sealing insulating treatment method using the coating, and electronic component
KR102329983B1 (en) Pressure-sensitive adhesive composition, surface protective film and method of manufacturing organic light emitting electronic device
JP2011088975A (en) Photocurable moisture-proof insulating coating material and method for manufacturing moisture-proof insulated electronic part using the same
JP2022155116A (en) Photosensitive resin composition, dry film, hardened material, and electronic component
TW202028410A (en) Sealing agent for display elements, cured product, vertically conducting material and display element
JP5050517B2 (en) Manufacturing method of photocurable resin composition, photocurable moisture-proof insulating coating for mounting circuit board, mounting circuit board, and manufacturing method of mounting circuit board
WO2024204487A1 (en) Curable composition for coating, and cured product thereof
JP6607345B2 (en) Composition for forming resin thin film for hydrofluoric acid etching and resin thin film for hydrofluoric acid etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP