JP3841604B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3841604B2
JP3841604B2 JP36546399A JP36546399A JP3841604B2 JP 3841604 B2 JP3841604 B2 JP 3841604B2 JP 36546399 A JP36546399 A JP 36546399A JP 36546399 A JP36546399 A JP 36546399A JP 3841604 B2 JP3841604 B2 JP 3841604B2
Authority
JP
Japan
Prior art keywords
particles
inorganic pigment
pigment particles
intermediate layer
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36546399A
Other languages
Japanese (ja)
Other versions
JP2001183856A (en
Inventor
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP36546399A priority Critical patent/JP3841604B2/en
Publication of JP2001183856A publication Critical patent/JP2001183856A/en
Application granted granted Critical
Publication of JP3841604B2 publication Critical patent/JP3841604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基体と所定の光を受けて電荷を発生する感光層の間に中間層を有する電子写真感光体に関する。
【0002】
【従来の技術】
図1に示すように、基体10と感光層11との間に中間層12を有する電子写真感光体が知られている。この中間層12は、感光層を基体10の表面に形成する際に、塗布液の浸食作用に対して十分な耐食性を持たせるように、基体10の防食・保護を確保する目的で設けられている。また、中間層12は、基体10上の欠陥を被覆し、感光層11の表面の十分な平坦性を確保し、電気的損傷の回避等をも目的として設けられている。
【0003】
従来、この中間層を形成するために有機系樹脂が用いられてきたが、低湿環境等の使用環境によっては光に対する感度低下を引き起こすという問題が指摘されている。これに対処するために、硬化した有機金属化合物中に無機顔料を多量に含む中間層を形成することが提案されていて、これによって、上述の光感度低下の問題を軽減し、しかも膜厚を所定の厚さまで大きくしても、中間層に亀裂等の欠陥が発生することを回避出来ることが明らかにされている。ここで、中間層に含有する無機顔料としては、ZnO、TiO2 、SiO2 、Al2 3等の酸化物セラミックスやある種の硫酸塩、炭酸塩を用い、これらは特に粒径0.1μm以下の超微粒子とすることが望ましいとされている。これは、無機顔料粒子を中間層形成用の塗布液中に分散したとき、粒径0.1μm以下の超微粒子ならば、該塗布液中での急速な沈降を抑制出来ると考えられるためである。
【0004】
【発明が解決しようとする課題】
ところで、電子写真感光体を作製する場合、中間層12を非常に薄く(例えば厚さ0.1μm程度に)すると、通常表面が粗化された基体10の影響を感光体11が受ける。このため、この電子写真感光体を用いてレーザビームを照射して、感光体に作製した複写画像が基体表面の凹凸の影響を受け、鮮明な画像が得られ難くなるという問題がある。
【0005】
反対に、中間層の膜厚を大きくすると、基体の欠陥に起因する不具合は緩和されるが、塗布液量や無機顔料の総量が増加するのに伴って、無機顔料粒子の沈降による影響を受け、結果的に顔料粒子の不均一分散を生じ、その結果感光体表面に凹凸が生じ易くなるという問題がある。感光体表面に凹凸が存在すると、上述したようにレーザービームを照射して複写画像に対応した電荷分布を形成する際に、電気的損傷により鮮明な画像が得られ難くなる。
【0006】
本発明は、上記事情に鑑みて為されたもので、無機顔料を含む中間層膜厚を大きくすることができ、且つ該中間層に無機顔料粒子を均一に分散させることによって表面の十分な平坦性が得られる電子写真感光体を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の電子写真感光体は、基体と感光層の間に中間層を有する電子写真感光体において、前記中間層は、無機顔料粒子の表面を金属超微粒子が被覆し、更にその周囲を有機材料が被覆した無機顔料粒子を含むものであることを特徴とする。
【0008】
これにより、無機顔料の粒子表面に、金属超微粒子が、無機顔料粒子を被覆するように金属層を形成した状態で付着している。この金属層で被覆された無機顔料粒子は中間層内に均一に分散し、その表面が平坦化された緻密な無機質の膜となり、比較的厚い膜とすることができる。したがって、基体上に感光層を形成するに際して、十分な保護作用を有すると共に、基体の粗面を十分に被覆して且つ十分な平坦面を感光層に対して提供できる。その結果、平坦度の高い感光層が中間層上に形成されるので、レーザビームの照射により鮮明度の高い画像に対応した電荷分布を、電気的損傷の影響を受けることなく形成できる。
【0009】
また、請求項2に記載の電子写真感光体は、請求項1において、前記無機顔料粒子は、銀の超微粒子により被覆されことを特徴とする。例えばアルキル鎖殻によって周囲を被覆された銀の超微粒子を用いて、上述した良好な特性を有する中間層を形成することができる。
【0010】
また、前記金属超微粒子は、粒径が5nm程度であることが好ましい。これにより、粒子径が0.1〜1μm程度の無機顔料粒子に、容易に金属超微粒子を付着させることができ、且つ200゜C以下の比較的低温で処理することができる。
【0011】
また、前記金属超微粒子は、銀を含む有機錯体の熱分解工程を経て形成したものであることが好ましい。これにより、上記5nm程度の粒径の超微粒子を工業的に容易に量産できる。
【0012】
また、本発明の電子写真感光体の製造方法は、基体と感光層の間に中間層を有する電子写真感光体の製造方法において、前記中間層は、無機顔料粒子と、有機材料で被覆された金属超微粒子を溶媒中に分散させ、該溶媒中で無機顔料粒子の表面を金属超微粒子が被覆し、更にその周囲を有機材料が被覆した無機顔料粒子が形成され、該溶媒を前記基体上に塗布し、乾燥・焼成して形成することを特徴とする。上記の中間層形成段階で、金属超微粒子及び有機材料によって被覆された無機顔料粒子は被覆前に比べその粒子径が大きくなると共に密度が小さくなるので、塗布液中での沈降速度が遅くなる。この結果、基体上に塗布液を厚く塗布しても、無機顔料の粒子を塗布液中に均一に分散することができる。したがって、この塗布液を乾燥・焼成すれば、無機顔料の粒子が均一に分散した膜厚の大きい中間層を得ることができる。
【0013】
【発明の実施の形態】
以下、本発明の電子写真感光体の実施の形態について説明する。
ここで、金属超微粒子とは、粒径が1〜100nm(ナノメートル)程度、好ましくは1〜20nm程度の極く微細な金属粒子であり、その表面が有機物で被覆された状態で使用する。この金属超微粒子は、例えば、有機金属塩又は金属錯体を有機物が分解を開始する温度以上で且つ完全に分解する温度未満で熱分解することにより、有機物で被覆された状態で得られる。
【0014】
また、この金属超微粒子は、金属塩を有機媒体中で加熱分解することによっても形成でき、この場合は金属超微粒子と有機物とがイオン結合した状態で形成される。更にまた、金属超微粒子は、金属を真空中で溶解・蒸発させ、そのガスを冷却することによっても形成できる。
【0015】
このようにして製造されたアルキル鎖殻付き銀・超微粒子を、塗布液中に無機顔料と共に分散すると、図2に示すように、無機顔料の粒子1を被覆する形態で配置する傾向がある。即ち、無機顔料の粒子1の表面を被覆するように銀粒子2の層が形成され、更にこの銀層の周囲がアルキル鎖殻3によって被覆される。これにより、アルキル鎖殻付き銀・超微粒子は、無機顔料と一体化し、被覆された顔料粒子は被覆前のそれと比べその粒子径が大きく、密度が低くなる。その結果、このようにして形成された塗布液を基体10上に塗布すると、基体10上に塗布液を厚く塗布しても、塗布液中で無機顔料の粒子1の急速な沈降が抑制され、無機顔料の粒子が塗布液中に均一に分散する傾向が強くなる。したがって、この塗布液を乾燥・焼成すれば、銀粒子2によって周囲を被覆された無機顔料の粒子1が均一に分散した状態の膜厚の大きな中間層を得ることができる。例えば、中間層の膜厚は0.5〜5μm程度に形成できる。この際、焼成温度は200゜C以下の比較的低温で銀・超微粒子同士が融着し、強固な銀層を形成できる。
【0016】
ここで、図3に示すように、中間層形成用の塗布液4中に分散した無機顔料の粒子1が、該液体4中で重力によって自然落下(沈降)するときの沈降速度についての概念的考察を流体力学によって行う。
【0017】
ρS 、ρF を夫々、粒子(質量m)、液体の密度とし、Aを粒子の落下方向に直角の断面積、CD を抗力係数、νを落下速度とする。粒子には、重力、液体から受ける抗力及び浮力が働いている。従って、その運動方程式は、一般に式(1)のようになる。
m(dν/dt)=mg-CDρFν2A/2-mgρF
∴ m(dν/dt)=mg(ρF)/ρ-CDρFν2A/2 (1)
落下が進むにつれ、式(1)の第2項が次第に増加し、第1項と等しくなったとき、一定速度つまり終速度で落下するようになる。即ち、式(1)で
【0018】
m・dν/dt=0
となるので、この場合の終速度νは、式(2)のように記述できる。
【数1】

Figure 0003841604
但し、m:粒子の質量gr、g:重力加速度=980cm/s
ρ:粒子の密度gr/cm、ρ:液の密度gr/cm
:抗力係数
A:沈降方向に直角の粒子投影面積cm
【0019】
今、簡単のため、図4に示すように、従来使用してきた無機顔料粒子に、アルキル鎖殻付き銀・超微粒子層による被覆を行い、これにより塗布液中での沈降速度がどの程度遅くなるかを考察する。
【0020】
図4の無機顔料粒子を球形と仮定し、各部の寸法を図4に付記したように決め、更に式(2)で記述可能な粒子の大きさは大略0.1μm程度以上になるという流体力学上の経験則によって、図4における無機顔料粒子の直径が0.1μmと、1μmとなる2つの場合を取り上げる。なお、粒子径が非常に小さくなると、ブラウン運動の寄与が相対的に大きくなるので、式(2)だけでは記述が困難となる傾向がある。
【0021】
多用される無機顔料である酸化亜鉛(ZnO)、アルミナ(Al2 3 )及び銀の密度ρは、それぞれ5.78gr/cm3 、3.99gr/cm3 、10.5gr/cm3 である。ここでは、無機顔料として、密度の大きい酸化亜鉛を採用する。図4に示す無機顔料粒子単独の質量をm1 、銀被覆後の質量をm2 とする。
無機顔料粒子単独の質量m1 は、次の式(3)のようになる。
m1 =(4π/3)(d/2)3ρ (3)
但し、ρは顔料粒子の密度である。
【0022】
次に、m2 は、無機顔料粒子と銀層の夫々の質量の和(アルキル鎖殻の質量を無視する)であるので、式(4)が成り立つ。
m2 =(4π/3)(d/2)3ρ+4π(d/2)2 tAg・ρAg・r (4)
但し、ρAgは金属銀の密度、rは銀層内部の銀の充填率、tAgは銀層の厚さである。
【0023】
一方、銀層被覆前後の無機顔料粒子の密度、落下方向に直角の投影面積を、夫々ρ1 、ρ2 、A1 、A2 とすると、これらは次式(5)〜(8)のようになる。
ρ1 =5.78gr/cm3 (5)
ρ2={3m2/(4π)}/[{d+2(tAg+t*)}/2]3 (6)
A1 =(π/4)d2 (7)
A2 =(π/4){(d+2(tAg+t* )}2 (8)
【0024】
ここで、銀層の寸法については、図4(b)に示すように、銀層の厚さtAgとアルキル鎖殻の厚さt* を夫々、
Ag=20nm=2×10-6cm
* =13nm=1.3×10-6cm
とおき、更に、図4(b)において、銀層中の銀充填率を0.32とおいて、式(3)〜式(8)を、顔料粒子径d=0.1μm、1μmの場合について夫々計算すると、以下のようになる。
【0025】
即ち、顔料粒子径(初期)dが0.1μmの場合、銀被覆前の質量は3.026×10-15grであり、密度は5.78gr/cm3 であり、投影面積は7.854×10-11cm2 である。そして、銀被覆後の質量は5.129×10-15grであり、密度は2.141gr/cm3 であり、投影面積は2.164×10-10cm2 である。顔料粒子径(初期)dが1μmの場合、銀被覆前の質量は3.026×10-12grであり、密度は5.78gr/cm3 であり、断面積は7.854×10-9cm2 である。そして、銀被覆後の質量は3.237×10-12grであり、密度は5.103gr/cm3 であり、断面積は8.925×10-9cm2 である。なお、銀被覆後の数値は、顔料粒子と被覆銀層が一体になった粒子に関するものである。
【0026】
以上の結果を用い、式(2)による粒子沈降速度を計算すると、顔料粒子径(初期)が0.1μmの場合、沈降速度は、銀被覆前が8.84×10-4cm/sであるのに対し、銀被覆後が5.56×10-4cm/sである。顔料粒子径(初期)が1μmの場合、沈降速度は、銀被覆前が2.79×10-3cm/sであるのに対し、銀被覆後が2.67×10-3cm/sである。なお、抗力係数CD については流体力学の傾向を参考にして、全ての場合でCD =8×104 とおいた。
【0027】
上記から明らかなように、少なくとも無機顔料粒子径(初期値)が0.1〜1μmの範囲にあれば、アルキル鎖殻付き銀層がこれを被覆したとき、沈降速度は流体力学の計算によって遅くなることが結論として得られる。即ち、中間層の塗布時に、塗布液中の無機顔料粒子の沈降速度を遅くすることができるので、中間層膜厚を厚くしても、銀層を被覆した無機顔料粒子を溶媒中に高い均一度で分散させることができる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、中間層が、無機顔料粒子と、この周囲に被着した金属の超微粒子とから構成されているので、中間層に無機顔料粒子を高い均一度で分散させることができる。これにより、基体を十分に保護できると共に、基体の欠陥を十分に被覆する程度に厚く形成し、且つレーザ光照射時に電気的損傷を生じない平坦な表面を有する感光層を形成した中間層を備えた電子写真感光体を提供することができる。
【図面の簡単な説明】
【図1】電子写真感光体の断面図である。
【図2】本発明の実施の形態に係る銀・超微粒子で被覆された無機顔料粒子を示す概念図である。
【図3】図2の無機顔料粒子の塗布液中における沈降状態を示す概念図である。
【図4】図2の無機顔料粒子を示す図であって、図4(a)は全体の概念図であり、図4(b)は表面付近の拡大図である。
【符号の説明】
1 無機顔料粒子
2 銀粒子
3 アルキル鎖殻
4 塗布液
10 基体
11 感光層
12 中間層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member having an intermediate layer between a substrate and a photosensitive layer which receives predetermined light and generates charges.
[0002]
[Prior art]
As shown in FIG. 1, an electrophotographic photosensitive member having an intermediate layer 12 between a substrate 10 and a photosensitive layer 11 is known. This intermediate layer 12 is provided for the purpose of ensuring corrosion protection and protection of the substrate 10 so as to provide sufficient corrosion resistance against the erosion action of the coating solution when the photosensitive layer is formed on the surface of the substrate 10. Yes. In addition, the intermediate layer 12 is provided for the purpose of covering defects on the substrate 10, ensuring sufficient flatness of the surface of the photosensitive layer 11, and avoiding electrical damage.
[0003]
Conventionally, an organic resin has been used to form the intermediate layer, but a problem has been pointed out that depending on the use environment such as a low humidity environment, the sensitivity to light is reduced. In order to cope with this, it has been proposed to form an intermediate layer containing a large amount of inorganic pigment in the cured organometallic compound, thereby reducing the above-mentioned problem of lowering the photosensitivity and further increasing the film thickness. It has been clarified that even when the thickness is increased to a predetermined thickness, it is possible to avoid the occurrence of defects such as cracks in the intermediate layer. Here, as the inorganic pigment contained in the intermediate layer, oxide ceramics such as ZnO, TiO 2 , SiO 2 , Al 2 O 3, and certain sulfates and carbonates are used. The following ultrafine particles are considered desirable. This is because when the inorganic pigment particles are dispersed in the coating solution for forming the intermediate layer, it is considered that if the ultrafine particles have a particle size of 0.1 μm or less, rapid settling in the coating solution can be suppressed. .
[0004]
[Problems to be solved by the invention]
By the way, when producing an electrophotographic photosensitive member, if the intermediate layer 12 is very thin (for example, about 0.1 μm thick), the photosensitive member 11 is usually affected by the substrate 10 whose surface is roughened. For this reason, there is a problem that a copy image produced by irradiating a laser beam using this electrophotographic photosensitive member is affected by irregularities on the surface of the substrate, and it becomes difficult to obtain a clear image.
[0005]
On the other hand, increasing the film thickness of the intermediate layer alleviates problems caused by defects in the substrate, but it is affected by sedimentation of inorganic pigment particles as the amount of coating solution and the total amount of inorganic pigments increase. As a result, there is a problem that uneven dispersion of the pigment particles occurs, and as a result, irregularities are easily generated on the surface of the photoreceptor. If there are irregularities on the surface of the photoreceptor, it is difficult to obtain a clear image due to electrical damage when a charge distribution corresponding to a copy image is formed by irradiation with a laser beam as described above.
[0006]
The present invention has been made in view of the above circumstances, and it is possible to increase the thickness of the intermediate layer containing the inorganic pigment, and to sufficiently flatten the surface by uniformly dispersing the inorganic pigment particles in the intermediate layer. An object of the present invention is to provide an electrophotographic photosensitive member capable of obtaining the properties.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the electrophotographic photosensitive member according to claim 1 is an electrophotographic photosensitive member having an intermediate layer between a substrate and a photosensitive layer, wherein the intermediate layer has a surface of an inorganic pigment particle on a metal surface. It is characterized by containing inorganic pigment particles coated with fine particles and further coated with an organic material .
[0008]
Thereby, the metal ultrafine particles are adhered to the surface of the inorganic pigment particles in a state where the metal layer is formed so as to cover the inorganic pigment particles. The inorganic pigment particles coated with the metal layer are uniformly dispersed in the intermediate layer and become a dense inorganic film having a flattened surface, which can be a relatively thick film. Therefore, when the photosensitive layer is formed on the substrate, the photosensitive layer has a sufficient protective effect, and can sufficiently cover the rough surface of the substrate and provide a sufficiently flat surface to the photosensitive layer. As a result, since a photosensitive layer with high flatness is formed on the intermediate layer, a charge distribution corresponding to an image with high definition can be formed without being affected by electrical damage by irradiation with a laser beam.
[0009]
The electrophotographic photosensitive member according to claim 2, in claim 1, wherein the inorganic pigment particles are characterized by being coated with silver superfine particles. For example, an intermediate layer having the above-mentioned good characteristics can be formed by using ultrafine silver particles coated with an alkyl chain shell.
[0010]
The ultrafine metal particles preferably have a particle size of about 5 nm. Thereby, the ultrafine metal particles can be easily attached to the inorganic pigment particles having a particle diameter of about 0.1 to 1 μm and can be processed at a relatively low temperature of 200 ° C. or less.
[0011]
Moreover, it is preferable that the said metal ultrafine particle is formed through the thermal decomposition process of the organic complex containing silver. Thereby, the ultrafine particles having a particle diameter of about 5 nm can be easily mass-produced industrially.
[0012]
The method for producing an electrophotographic photoreceptor of the present invention is the method for producing an electrophotographic photoreceptor having an intermediate layer between the substrate and the photosensitive layer, wherein the intermediate layer is coated with inorganic pigment particles and an organic material. Ultrafine metal particles are dispersed in a solvent, and inorganic pigment particles are formed in which the surface of the inorganic pigment particles is coated with the ultrafine metal particles in the solvent, and the surroundings are coated with an organic material, and the solvent is formed on the substrate. It is characterized by being formed by coating, drying and baking. In the intermediate layer forming step, the inorganic pigment particles coated with the ultrafine metal particles and the organic material have a larger particle size and a lower density than before coating, so that the settling rate in the coating solution is decreased. As a result, even if the coating solution is applied thickly on the substrate, the inorganic pigment particles can be uniformly dispersed in the coating solution. Therefore, if this coating solution is dried and fired, an intermediate layer having a large film thickness in which the inorganic pigment particles are uniformly dispersed can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the electrophotographic photosensitive member of the present invention will be described.
Here, the ultrafine metal particles are extremely fine metal particles having a particle size of about 1 to 100 nm (nanometer), preferably about 1 to 20 nm, and are used in a state where the surface is coated with an organic substance. The ultrafine metal particles can be obtained, for example, by thermally decomposing an organic metal salt or metal complex at a temperature equal to or higher than a temperature at which the organic substance starts to decompose and lower than a temperature at which the organic substance completely decomposes.
[0014]
The ultrafine metal particles can also be formed by thermally decomposing a metal salt in an organic medium. In this case, the ultrafine metal particles and the organic substance are formed in an ion-bonded state. Furthermore, the ultrafine metal particles can be formed by dissolving and evaporating a metal in a vacuum and cooling the gas.
[0015]
When the silver / ultrafine particles with alkyl chain shells thus produced are dispersed together with the inorganic pigment in the coating solution, they tend to be arranged in a form covering the inorganic pigment particles 1 as shown in FIG. That is, a layer of silver particles 2 is formed so as to cover the surface of the inorganic pigment particles 1, and the periphery of the silver layer is covered with the alkyl chain shell 3. As a result, the silver / ultrafine particles with alkyl chain shells are integrated with the inorganic pigment, and the coated pigment particles have a larger particle diameter and lower density than those before coating. As a result, when the coating solution formed in this way is applied on the substrate 10, even if the coating solution is applied thickly on the substrate 10, rapid settling of the inorganic pigment particles 1 is suppressed in the coating solution, There is a strong tendency for the inorganic pigment particles to be uniformly dispersed in the coating solution. Therefore, if this coating solution is dried and fired, an intermediate layer having a large film thickness can be obtained in a state where the inorganic pigment particles 1 coated with the silver particles 2 are uniformly dispersed. For example, the film thickness of the intermediate layer can be formed to about 0.5 to 5 μm. At this time, the silver / ultrafine particles are fused to each other at a relatively low firing temperature of 200 ° C. or less, and a strong silver layer can be formed.
[0016]
Here, as shown in FIG. 3, conceptually the sedimentation speed when the inorganic pigment particles 1 dispersed in the coating liquid 4 for forming the intermediate layer naturally fall (sediment) due to gravity in the liquid 4. Consideration is done by hydrodynamics.
[0017]
ρ S and ρ F are the particle (mass m) and liquid density, respectively, A is the cross-sectional area perpendicular to the particle drop direction, C D is the drag coefficient, and ν is the drop speed. Gravity, drag and buoyancy from the liquid act on the particles. Therefore, the equation of motion is generally as shown in equation (1).
m (dν / dt) = mg-C D ρ F ν 2 A / 2-mgρ F / ρ S
∴ m (dν / dt) = mg (ρ SF ) / ρ S -C D ρ F ν 2 A / 2 (1)
As the fall progresses, the second term of Equation (1) gradually increases, and when it becomes equal to the first term, it falls at a constant speed, that is, the final speed. That is, in equation (1):
m · dν / dt = 0
Therefore, the final velocity ν in this case can be described as in Equation (2).
[Expression 1]
Figure 0003841604
Where m: mass of the particle gr, g: acceleration of gravity = 980 cm / s 2
ρ S : Particle density gr / cm 3 , ρ F : Liquid density gr / cm 3
C D : Drag coefficient A: Particle projected area cm 2 perpendicular to the settling direction
[0019]
For simplicity, as shown in FIG. 4, conventionally used inorganic pigment particles are coated with a silver / ultrafine particle layer with an alkyl chain shell, which slows the sedimentation rate in the coating solution. Consider.
[0020]
Assuming that the inorganic pigment particles in FIG. 4 are spherical, the dimensions of each part are determined as indicated in FIG. 4, and the size of the particles that can be described by equation (2) is approximately 0.1 μm or more. Based on the above rule of thumb, the two cases where the diameter of the inorganic pigment particle in FIG. 4 is 0.1 μm and 1 μm will be taken up. If the particle size is very small, the contribution of Brownian motion becomes relatively large, so that there is a tendency that the description is difficult only by equation (2).
[0021]
Densities ρ of zinc oxide (ZnO), alumina (Al 2 O 3 ) and silver, which are frequently used inorganic pigments, are 5.78 gr / cm 3 , 3.99 gr / cm 3 and 10.5 gr / cm 3 , respectively. . Here, zinc oxide having a high density is employed as the inorganic pigment. The mass of the inorganic pigment particles alone shown in FIG. 4 is m 1 , and the mass after silver coating is m 2 .
The mass m 1 of the inorganic pigment particles alone is represented by the following formula (3).
m 1 = (4π / 3) (d / 2) 3 ρ (3)
Where ρ is the density of the pigment particles.
[0022]
Next, since m 2 is the sum of the masses of the inorganic pigment particles and the silver layer (ignoring the mass of the alkyl chain shell), the formula (4) is established.
m 2 = (4π / 3) (d / 2) 3 ρ + 4π (d / 2) 2 t Ag・ ρ Ag・ r (4)
Here, ρ Ag is the density of metallic silver, r is the filling rate of silver inside the silver layer, and t Ag is the thickness of the silver layer.
[0023]
On the other hand, assuming that the density of the inorganic pigment particles before and after the silver layer coating and the projected area perpendicular to the falling direction are ρ 1 , ρ 2 , A 1 , and A 2 , respectively, these are expressed by the following equations (5) to (8): become.
ρ 1 = 5.78gr / cm 3 (5)
ρ 2 = {3m 2 / (4π)} / [{d + 2 (t Ag + t * )} / 2] 3 (6)
A 1 = (π / 4) d 2 (7)
A 2 = (π / 4) {(d + 2 (t Ag + t * )} 2 (8)
[0024]
Here, as for the dimensions of the silver layer, as shown in FIG. 4 (b), the thickness t Ag of the silver layer and the thickness t * of the alkyl chain shell, respectively,
t Ag = 20 nm = 2 × 10 −6 cm
t * = 13 nm = 1.3 × 10 −6 cm
Further, in FIG. 4B, the silver filling rate in the silver layer is set to 0.32, and the formulas (3) to (8) are changed in the case of the pigment particle diameter d = 0.1 μm and 1 μm. Each calculation is as follows.
[0025]
That is, when the pigment particle diameter (initial) d is 0.1 μm, the mass before silver coating is 3.026 × 10 −15 gr, the density is 5.78 gr / cm 3 , and the projected area is 7.854. × 10 -11 cm 2 The mass after silver coating is 5.129 × 10 −15 gr, the density is 2.141 gr / cm 3 , and the projected area is 2.164 × 10 −10 cm 2 . When the pigment particle diameter (initial) d is 1 μm, the mass before silver coating is 3.026 × 10 −12 gr, the density is 5.78 gr / cm 3 , and the cross-sectional area is 7.854 × 10 −9. cm 2 . The mass after silver coating is 3.237 × 10 −12 gr, the density is 5.103 gr / cm 3 , and the cross-sectional area is 8.925 × 10 −9 cm 2 . The numerical values after silver coating relate to particles in which pigment particles and a coating silver layer are integrated.
[0026]
Using the above results, the particle sedimentation rate according to equation (2) is calculated. When the pigment particle diameter (initial) is 0.1 μm, the sedimentation rate is 8.84 × 10 −4 cm / s before silver coating. On the other hand, it is 5.56 × 10 −4 cm / s after silver coating. When the pigment particle diameter (initial) is 1 μm, the sedimentation rate is 2.79 × 10 −3 cm / s before silver coating, whereas it is 2.67 × 10 −3 cm / s after silver coating. is there. The drag coefficient C D was set to C D = 8 × 10 4 in all cases with reference to the tendency of fluid dynamics.
[0027]
As is apparent from the above, when at least the inorganic pigment particle diameter (initial value) is in the range of 0.1 to 1 μm, when the silver chain with an alkyl chain shell is coated, the sedimentation rate is slowed by calculation of hydrodynamics. The conclusion is obtained. That is, when the intermediate layer is applied, the sedimentation rate of the inorganic pigment particles in the coating solution can be slowed down. Therefore, even if the intermediate layer thickness is increased, the inorganic pigment particles coated with the silver layer are highly uniform in the solvent. Can be dispersed at once.
[0028]
【The invention's effect】
As described above, according to the present invention, the intermediate layer is composed of the inorganic pigment particles and the ultrafine particles of metal deposited around the intermediate layer. Can be dispersed. As a result, the substrate can be sufficiently protected, and has an intermediate layer formed with a photosensitive layer having a flat surface that is thick enough to cover the defects of the substrate and does not cause electrical damage when irradiated with laser light. An electrophotographic photosensitive member can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrophotographic photosensitive member.
FIG. 2 is a conceptual diagram showing inorganic pigment particles coated with silver / ultrafine particles according to an embodiment of the present invention.
FIG. 3 is a conceptual diagram showing a sedimentation state of the inorganic pigment particles in FIG. 2 in a coating solution.
4 is a diagram showing the inorganic pigment particles of FIG. 2, in which FIG. 4 (a) is an overall conceptual diagram, and FIG. 4 (b) is an enlarged view of the vicinity of the surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inorganic pigment particle 2 Silver particle 3 Alkyl chain shell 4 Coating liquid 10 Base body 11 Photosensitive layer 12 Intermediate layer

Claims (5)

基体と感光層の間に中間層を有する電子写真感光体において、前記中間層は、無機顔料粒子の表面を金属超微粒子が被覆し、更にその周囲を有機材料が被覆した無機顔料粒子を含むものであることを特徴とする電子写真感光体。In the electrophotographic photosensitive member having an intermediate layer between the substrate and the photosensitive layer, the intermediate layer includes inorganic pigment particles in which the surface of inorganic pigment particles is coated with ultrafine metal particles and the periphery thereof is coated with an organic material. An electrophotographic photosensitive member characterized by the above. 前記無機顔料粒子は、銀の超微粒子により被覆されたことを特徴とする請求項1に記載の電子写真感光体。  The electrophotographic photoreceptor according to claim 1, wherein the inorganic pigment particles are coated with ultrafine silver particles. 前記金属超微粒子は、粒径が5nm程度であることを特徴とする請求項1又は請求項2に記載の電子写真感光体。  The electrophotographic photosensitive member according to claim 1, wherein the ultrafine metal particles have a particle size of about 5 nm. 前記金属超微粒子は、銀を含む有機錯体の熱分解工程を経て形成したものであることを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体。  4. The electrophotographic photosensitive member according to claim 1, wherein the ultrafine metal particles are formed through a thermal decomposition step of an organic complex containing silver. 基体と感光層の間に中間層を有する電子写真感光体の製造方法において、前記中間層は、無機顔料粒子と、有機材料で被覆された金属超微粒子を溶媒中に分散させ、該溶媒中で無機顔料粒子の表面を金属超微粒子が被覆し、更にその周囲を有機材料が被覆した無機顔料粒子が形成され、該溶媒を前記基体上に塗布し、乾燥・焼成して形成することを特徴とする電子写真感光体の製造方法。  In the method for producing an electrophotographic photosensitive member having an intermediate layer between a substrate and a photosensitive layer, the intermediate layer is obtained by dispersing inorganic pigment particles and metal ultrafine particles coated with an organic material in a solvent, The inorganic pigment particles are formed by coating the surface of the inorganic pigment particles with ultrafine metal particles and further coating the periphery with an organic material, and applying the solvent onto the substrate, followed by drying and baking. A method for producing an electrophotographic photoreceptor.
JP36546399A 1999-12-22 1999-12-22 Electrophotographic photoreceptor Expired - Fee Related JP3841604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36546399A JP3841604B2 (en) 1999-12-22 1999-12-22 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36546399A JP3841604B2 (en) 1999-12-22 1999-12-22 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2001183856A JP2001183856A (en) 2001-07-06
JP3841604B2 true JP3841604B2 (en) 2006-11-01

Family

ID=18484332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36546399A Expired - Fee Related JP3841604B2 (en) 1999-12-22 1999-12-22 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3841604B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700183B (en) * 2017-12-20 2020-08-01 日商旭化成股份有限公司 Photosensitive resin laminate

Also Published As

Publication number Publication date
JP2001183856A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
RU2201428C1 (en) Abrasive grain and method for manufacturing the same
CA1257086A (en) Antistatic compositions comprising polymerized oxyalkylene monomers and an inorganic salt containing borates, carboxylates, phosphates or sulfonates
JP5755262B2 (en) Process cartridge and electrophotographic apparatus
CA1204635A (en) Process for preparing overcoated electrophotographic imaging members
Holasek et al. Experiments on gas-ash separation processes in volcanic umbrella plumes
JP2010237658A (en) Carrier for two-component developer
JP3841604B2 (en) Electrophotographic photoreceptor
EP0784858B1 (en) Method for the manufacture of a radiographic intensifying screen with fluorinated surfactant
Hassan et al. Solar energy harvesting and self‐cleaning of surfaces by an impacting water droplet
EP3451067B1 (en) Electrophotographic photosensitive body, method for producing electrophotographic photosensitive body, process cartridge and electrophotographic apparatus
JP2011141542A (en) Carrier for electrostatic latent image development and developer for electrostatic latent image development
JP2009271283A (en) Organic photoreceptor, image forming method, image forming apparatus and image forming unit
JPH04278957A (en) Electrophotographic sensitive body and its production
JP2021098182A (en) Coating dryer and coating dry method
JP4178708B2 (en) Electrophotographic photosensitive member substrate, electrophotographic photosensitive member using the same, and substrate processing method
JPH11327085A (en) Image forming element
JP2005010591A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus, and method for forming image
JP2000047415A (en) Electrophotographic photoreceptor undercoat layer and its forming method, and electrophotographic photoreceptor and its manufacture
JP2006146236A (en) In situ method for passivating surface of photoreceptor substrate
JP2005140975A5 (en)
JP2873868B2 (en) Particle generator for gas evaporation method
JP2781565B2 (en) Electrostatic recording film
JPH027057B2 (en)
JPS59223443A (en) Electrophotographic sensitive body
KR101815910B1 (en) Manufacturing method of thin film using laser beam printer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees