WO2019123745A1 - 単結晶ダイヤモンドおよびそれを用いた半導体素子 - Google Patents

単結晶ダイヤモンドおよびそれを用いた半導体素子 Download PDF

Info

Publication number
WO2019123745A1
WO2019123745A1 PCT/JP2018/034651 JP2018034651W WO2019123745A1 WO 2019123745 A1 WO2019123745 A1 WO 2019123745A1 JP 2018034651 W JP2018034651 W JP 2018034651W WO 2019123745 A1 WO2019123745 A1 WO 2019123745A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal diamond
diamond layer
substrate
dislocation density
Prior art date
Application number
PCT/JP2018/034651
Other languages
English (en)
French (fr)
Inventor
新矢 大曲
山田 英明
茶谷原 昭義
杢野 由明
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018124605A external-priority patent/JP6703683B2/ja
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201880081889.7A priority Critical patent/CN111492098A/zh
Priority to US16/956,499 priority patent/US11355591B2/en
Priority to EP18890500.4A priority patent/EP3730677A4/en
Publication of WO2019123745A1 publication Critical patent/WO2019123745A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a single crystal diamond and a semiconductor device using the same.
  • Non-Patent Documents 1 to 3 are known.
  • the method of reducing dislocation density described in Non-Patent Document 1 is a method of reducing dislocation density by thickening a diamond film. And, it is described that the dislocation density can be reduced from 1 ⁇ 10 10 cm ⁇ 2 to 4 ⁇ 10 7 cm ⁇ 2 by increasing the film thickness of the diamond film to 1 mm or more When the distance between dislocation lines is increased by the above, the effect is reduced, and therefore the dislocation density can not be reduced to a density below 1 ⁇ 10 6 cm ⁇ 2 .
  • Non-Patent Document 2 forms a pattern in which a nucleation region is limited in pretreatment of heteroepitaxial growth, and controls dislocation propagation direction by Epitaxial Lateral Overgrowth (ELO). Is a method of reducing dislocation density. And, the dislocation density can be reduced to about 1 ⁇ 10 8 cm ⁇ 2 by this method.
  • ELO Epitaxial Lateral Overgrowth
  • Non-Patent Document 3 The method of reducing dislocation density described in Non-Patent Document 3 is a method of reducing dislocation density by forming metal nanoparticles in etch pits (locations where dislocations exist) and thereafter growing diamond by CVD. Since the formation of metal nanoparticles is required, there is a problem of controllability of dislocation propagation as well as time and cost, and the reduction of dislocations below 1 ⁇ 10 6 cm ⁇ 2 has not been realized.
  • Non-Patent Documents 1 to 3 are effective for relatively high dislocation density samples such as heteroepitaxial diamond, but consistently reduce dislocations below 1 ⁇ 10 6 cm ⁇ 2. Impossible and can not completely suppress the propagation of dislocations.
  • a single crystal diamond having a reduced dislocation density is provided.
  • a semiconductor device using single crystal diamond with reduced dislocation density is provided.
  • the monocrystalline diamond comprises a first monocrystalline diamond layer.
  • the first single crystal diamond layer is formed on the substrate and contains point defects. And, the first single crystal diamond layer has a dislocation density lower than that of the substrate.
  • the single crystal diamond further comprises a second single crystal diamond layer.
  • the second single crystal diamond layer is disposed on the first single crystal diamond layer and has a dislocation density lower than that of the substrate.
  • the first single crystal diamond layer contains any of tungsten, tantalum, rhenium, iron, nickel, cobalt, aluminum, gallium, germanium, iridium and phosphorus, silicon and molybdenum.
  • the second single crystal diamond layer has a dislocation density that is two orders of magnitude less than that of the substrate.
  • the first single crystal diamond layer has a thickness of 1 ⁇ m or more.
  • the second single crystal diamond layer has a thickness of 200 ⁇ m or more.
  • the first single crystal diamond layer further contains a p-type dopant.
  • the semiconductor device includes the single crystal diamond described in the seventh aspect and the first and second metals.
  • the first metal forms a Schottky junction with the second single crystal diamond layer.
  • the second metal forms an ohmic junction with the first single crystal diamond layer or the second single crystal diamond layer.
  • Dislocation density of single crystal diamond can be reduced.
  • FIG. 1 is a cross-sectional view of a single crystal diamond according to an embodiment of the present invention. It is process drawing which shows the manufacturing method of the single crystal diamond shown in FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of another semiconductor device according to an embodiment of the present invention.
  • FIG. 6 is a view showing measurement results of cathode luminescence of single crystal diamond in Example 1. It is a figure which shows distribution with respect to the depth direction of tungsten.
  • FIG. 16 is a view showing measurement results of cathode luminescence of single crystal diamond in Example 3.
  • FIG. 16 is a view showing measurement results of cathode luminescence of single crystal diamond in Example 4.
  • FIG. 16 is a view showing measurement results of cathode luminescence of single crystal diamond in Example 5.
  • FIG. 7 is a diagram showing current-voltage characteristics of the semiconductor devices of Example 6 and Comparative Example 2 at room temperature.
  • FIG. 16 is a diagram showing another current-voltage characteristic of semiconductor elements of Example 6 and Comparative Example 2. It is a figure which shows the relationship of the leakage current and electric field strength of the semiconductor element in room temperature. It is a figure which shows the current-voltage characteristic of the semiconductor element of Example 7 in room temperature.
  • FIG. 7 is a view showing current-voltage characteristics of semiconductor devices of Example 8 and Comparative Example 3 at room temperature. It is a figure which shows the ideal factor (n value) of the semiconductor element of Example 8 and Comparative Example 3. It is a figure which shows the barrier height of the semiconductor element of Example 8 and Comparative Example 3.
  • FIG. 7 is a diagram showing current-voltage characteristics of the semiconductor devices of Example 6 and Comparative Example 2 at room temperature.
  • FIG. 16 is a diagram showing another current
  • FIG. 1 is a cross-sectional view of a single crystal diamond according to an embodiment of the present invention.
  • a single crystal diamond 10 according to an embodiment of the present invention includes a substrate 1 and single crystal diamond layers 2 and 3.
  • the substrate 1 is made of single crystal diamond or hetero diamond.
  • Single crystal diamond has a dislocation density of, for example, 1 ⁇ 10 2 cm ⁇ 2 to 1 ⁇ 10 6 cm ⁇ 2
  • hetero diamond has a dislocation density of, for example, 1 ⁇ 10 8 to 1 ⁇ 10 10 cm ⁇ 2 Have.
  • the substrate 1 may be a substrate in which a plurality of diamonds are arranged or joined in a flat plate (for example, a grid).
  • the substrate may contain materials other than diamond such as iridium (Ir), silicon (Si), silicon carbide (SiC), gallium nitride (GaN) and tungsten carbide (WC), It may be a freestanding crystal from which a different kind of substrate has been removed.
  • materials other than diamond such as iridium (Ir), silicon (Si), silicon carbide (SiC), gallium nitride (GaN) and tungsten carbide (WC), It may be a freestanding crystal from which a different kind of substrate has been removed.
  • the single crystal diamond layer 2 is disposed on the substrate 1 in contact with the surface of the substrate 1.
  • the single crystal diamond layer 2 is made of tungsten (W), tantalum (Ta), rhenium (Re), iron (Fe), nickel (Ni), cobalt (Co), aluminum (Al), gallium (Ga), germanium (Ge) And iridium (Ir) and phosphorus (P), and silicon (Si) and molybdenum (Mo).
  • W, Ta, Re, Fe, Ni, Co, Al, Ga, Ge, Ir, and P is an element whose atomic radius is larger than that of carbon (C) and which is in the interstitial space of single crystal diamond.
  • the content of each of W, Ta, Re, Fe, Ni, Co, Al, Ga, Ge, Ir and P is 1 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the content of each of Si and Mo is two or more orders of magnitude lower than the content of any of W, Ta, Re, Fe, Ni, Co, Al, Ga, Ge, Ir, and P.
  • the content of W, Ta, Re, Fe, Ni, Co, Al, Ga, Ge, Ir and P is limited to 1 ⁇ 10 20 cm -3 , and W, Ta, Re, It is not preferable to increase the content of Fe, Ni, Co, Al, Ga, Ge, Ir and P more than 1 ⁇ 10 20 cm ⁇ 3 .
  • the single crystal diamond layer 2 has a thickness of, for example, 1 to 2 ⁇ m.
  • the single crystal diamond layer 2 may have a thickness of 1 ⁇ m or more. If the thickness is 1 ⁇ m or more, as described later, the dislocation density of the single crystal diamond layers 2 and 3 can be reduced more than the dislocation density of the substrate 1.
  • the single crystal diamond layer 2 may contain boron (B) or may not contain B.
  • B boron
  • the B concentration is 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the single crystal diamond layer 3 is disposed on the single crystal diamond layer 2 in contact with the single crystal diamond layer 2.
  • the single crystal diamond layer 3 may contain B or may not contain B.
  • the B concentration is 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the single crystal diamond layer 3 is not particularly limited, but when the single crystal diamond layer 3 is used as a gem, the thickness of the single crystal diamond layer 3 is 200 ⁇ m or more.
  • the single crystal diamond layer 2 has a dislocation density of 2 ⁇ 10 6 cm ⁇ 2 or less.
  • the single crystal diamond layer 3 has, for example, a dislocation density of 0 to 1 ⁇ 10 4 cm ⁇ 2 (ie, 1 ⁇ 10 4 cm ⁇ 2 or less).
  • the single crystal diamond layer 2 contains point defects (that is, contains W, Ta, Re, Fe, Ni, Co, Al, Ga, Ge, Ir and P, and Si and Mo).
  • the dislocation density of the single crystal diamond layer 3 can be reduced by two orders of magnitude or more than that of the substrate 1.
  • the substrate 1 is made of single crystal diamond
  • the single crystal diamond layers 2, 3 are homoepitaxially grown
  • the substrate 1 is made of Si other than single crystal diamond
  • the single crystal diamond layers 2, 3 are heteroepitaxially grown .
  • FIG. 2 is a process chart showing a method of producing the single crystal diamond 10 shown in FIG. Referring to FIG. 2, first, substrate 1 is prepared (see step (a)).
  • the substrate 1 is, for example, a single crystal diamond having a (100) plane.
  • the substrate 1 is placed in a vacuum vessel in which a filament is placed, and a carrier gas containing a carbon source is introduced into the vacuum vessel. Then, the single crystal diamond layer 2 is grown on the substrate 1 by a hot filament CVD (Chemical Vapor Deposition) method (see step (b)).
  • CVD Chemical Vapor Deposition
  • a single crystal diamond layer 3 is grown on the single crystal diamond layer 2 by the CVD method (see step (c)).
  • Single crystal diamond 10 is manufactured by this.
  • the CVD method microwave plasma, DC plasma, combustion method, arc jet method and hot filament method can be used.
  • the single crystal diamond 10 is manufactured according to the process shown in FIG.
  • the single crystal diamond layer 2 comprises a gas containing a carbon source, a gas containing a tungsten source, a gas containing a tantalum source, or a gas containing a rhenium source, and a gas containing a silicon source.
  • the gas may be formed by microwave plasma, DC plasma, combustion method, arc jet method or the like using a gas containing a molybdenum source.
  • FIG. 3 is a cross-sectional view of the semiconductor device according to the embodiment of the present invention.
  • semiconductor device 100 according to the embodiment of the present invention includes substrate 1, single crystal diamond layers 2 and 3, and electrodes 4 and 5. That is, the semiconductor device 100 has a configuration in which the electrodes 4 and 5 are added to the single crystal diamond 10 shown in FIG.
  • Electrodes 4 and 5 are disposed on single crystal diamond layer 3 in contact with single crystal diamond layer 3.
  • the electrode 4 is an electrode for Schottky junction
  • the electrode 5 is an electrode for ohmic junction.
  • the electrode 4 is made of, for example, any of Mo / Au, Ru / Au, Au, Ru, Pt and Mo.
  • the electrode 5 is made of, for example, any of Ti / Mo / Au, Ti / Pt / Au and Ti / Au. It consists of a body.
  • the single crystal diamond layer 2 is made of B-doped p-type single crystal diamond.
  • the B concentration is, for example, 1 ⁇ 10 20 cm ⁇ 3 .
  • the single crystal diamond layer 3 may be doped with B or may not be doped with B.
  • the B concentration is 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the semiconductor element 100 is manufactured by, for example, forming the electrodes 4 and 5 on the single crystal diamond layer 3 by vapor deposition after the single crystal diamond 10 is manufactured according to the process chart shown in FIG.
  • FIG. 4 is a cross-sectional view of another semiconductor device according to an embodiment of the present invention.
  • the semiconductor device according to the embodiment of the present invention may be the semiconductor device 100A shown in FIG.
  • semiconductor device 100A has a structure in which a part of substrate 1 is removed by etching, and electrode 5 is formed in contact with substrate 1 and single crystal diamond layer 2.
  • carriers holes and electrons move in the longitudinal direction between the electrodes 4 and 5, so that series resistance can be reduced.
  • Semiconductor device 100A manufactures single crystal diamond 10 according to the process chart shown in FIG. 2, then etches away part of substrate 1 and forms electrode 4 on single crystal diamond layer 3 by vapor deposition, for example. It is manufactured by forming 5 in contact with the substrate 1 and the single crystal diamond layer 2.
  • the single crystal diamond layer 2 having point defects is formed on the substrate 1 and the single crystal diamond layer 3 is formed on the single crystal diamond layer 2 It consists of a structure.
  • the single crystal diamond formed on the substrate 1 inherits the dislocations of the substrate 1 and grows.
  • the single crystal diamond layer 2 is formed on the substrate 1, the point defects in the single crystal diamond layer 2 suppress the propagation (the propagation in the thickness direction) of dislocations inherited from the substrate 1.
  • the single crystal diamond layer 2 has a dislocation density lower than that of the substrate 1.
  • the single crystal diamond layer 3 only takes over dislocations in the single crystal diamond layer 2.
  • the dislocation density in the single crystal diamond layers 2 and 3 can be reduced than the dislocation density of the substrate 1. Therefore, the propagation of the dislocation density of the substrate 1 to the single crystal diamond layers 2 and 3 can be suppressed by the single crystal diamond 10 having the structure of substrate 1 / single crystal diamond layer 2 / single crystal diamond layer 3.
  • the single crystal diamond according to the embodiment of the present invention may be the single crystal diamond 10 shown in FIG. 1 from which the single crystal diamond layer 3 is removed.
  • the reason is as follows. Although single crystal diamond has the structure of substrate 1 / single crystal diamond layer 2, dislocations propagated from substrate 1 are in the middle of single crystal diamond layer 2 (single crystal diamond layer 2 Further propagation in the thickness direction of the single crystal diamond layer 2 is suppressed by the point defects in the middle of the thickness direction of Therefore, if the single crystal diamond according to the embodiment of the present invention has the structure of substrate 1 / single crystal diamond layer 2, single crystal diamond having a dislocation density lower than that of substrate 1 can be formed.
  • Example 1 A CVD substrate was used as the substrate 1.
  • the CVD substrate is one in which the (100) plane is turned off by 3 °.
  • a hot filament CVD apparatus manufactured by sp3 Diamond Technologies, Model-650 was used for the growth of the single crystal diamond layer 2.
  • This hot filament CVD apparatus has 19 hot filaments arranged in parallel.
  • the hot filament is made of tungsten (W) with a purity of 99.9% and has a diameter of 0.12 mm and a length of 40 cm. Further, the thermal filament was disposed so that the distance to the substrate 1 was 15 mm.
  • the CVD substrate was placed on a support in a hot filament CVD apparatus, and the inside of the hot filament CVD apparatus was evacuated until the pressure in the hot filament CVD apparatus became 1 Pa.
  • the substrate temperature is set to 700 ° C. to 800 ° C.
  • 30 sccm of methane (CH 4 ) gas and 1000 sccm of hydrogen (H 2 ) gas are introduced into the thermal filament CVD device, and the pressure in the thermal filament CVD device is It was set to 3990 Pa.
  • single crystal diamond was grown for 10 hours to form a single crystal diamond layer 2 having a thickness of 2 ⁇ m on the substrate 1.
  • the substrate 1 / single crystal diamond layer 2 is removed from the hot filament CVD apparatus, and the substrate 1 / single crystal diamond layer 2 is a support base in a 5 kW microwave plasma CVD apparatus manufactured by SEKI DIAMOND SYSTEMS. Installed on top.
  • the inside of the microwave plasma CVD apparatus was evacuated until the pressure in the microwave plasma CVD apparatus became 5 ⁇ 10 ⁇ 5 Pa.
  • the substrate temperature is set to 900 ° C.
  • 20 sccm of methane (CH 4 ) gas and 480 sccm of hydrogen (H 2 ) gas are introduced into the microwave plasma CVD apparatus, and the pressure in the microwave plasma CVD apparatus is set to It was set to 15960 Pa.
  • a high frequency power of 2500 W is applied, and a single crystal diamond is grown on the single crystal diamond layer 2 by microwave plasma CVD method for 1 hour, and a single crystal diamond layer 3 having a thickness of 4 ⁇ m is formed into a single crystal diamond layer 2 Formed on.
  • the cathode luminescence of single crystal diamond 10-1 in Example 1 was measured.
  • the apparatus used for the measurement is JSM-7001F manufactured by JEOL. Further, the measurement conditions of cathode luminescence are an acceleration voltage of 15 kV, a sample temperature of 300 K, and a center wavelength of a band pass filter of 430 nm.
  • FIG. 5 is a view showing the measurement results of cathode luminescence of single crystal diamond 10-1 in Example 1.
  • A) of FIG. 5 shows the measurement result of cathode luminescence of single crystal diamond 10-1 in Example 1
  • (b) of FIG. 5 shows the measurement result of cathode luminescence of a diamond substrate (substrate 1 consisting of diamond).
  • the dislocation density can be reduced by about two digits.
  • the effect that the dislocation density can be reduced as shown in Example 1 is an effect that one skilled in the art can not predict.
  • the effect that the dislocation density can be reduced by two orders of magnitude from 2.1 ⁇ 10 6 cm ⁇ 2 to 2.6 ⁇ 10 4 cm ⁇ 2 is an effect that one skilled in the art can not predict at all.
  • SIMS Secondary Ion Mass Spectrometry
  • FIG. 6 is a diagram showing the distribution of tungsten in the depth direction.
  • the vertical axis represents the tungsten concentration
  • the horizontal axis represents the distance in the depth direction.
  • the thickness of the single crystal diamond layer 2 used for SIMS measurement is 7.5 ⁇ m.
  • tungsten was uniformly distributed at a concentration of about 2 ⁇ 10 18 cm ⁇ 3 in the depth direction.
  • the diamond grown by the hot filament CVD method was also found to contain 1.4 ⁇ 10 16 cm ⁇ 3 of Mo and 1.0 ⁇ 10 16 cm ⁇ 3 of Si from the measurement results of SIMS.
  • the content of Si and Mo is two orders of magnitude lower than the content of W.
  • the single crystal diamond layer 2 is any of tungsten, tantalum, rhenium, iron, nickel, cobalt, aluminum, gallium, germanium, iridium and phosphorus, Mo and Si It has been found that the dislocation density can be reduced to 2.6 ⁇ 10 4 cm ⁇ 2 by including. If it is shown that the dislocation density of single crystal diamond 10-1 can be reduced by including tungsten, molybdenum and silicon in single crystal diamond layer 2, the atomic radius is larger than that of carbon, similarly to tungsten.
  • elements such as tantalum, rhenium, iron, nickel, cobalt, aluminum, gallium, germanium, iridium and phosphorus, which are elements of interstitials of single crystal diamond, and Mo and Si enter into single crystal diamond layer 2 This is because it can be easily understood that the dislocation density of the single crystal diamond 10-1 can be reduced.
  • Comparative example 1 The same CVD substrate as in Example 1 was used as the substrate 1. Then, as Comparative Example 1, a single crystal diamond layer (composed of one single crystal diamond layer) was formed on the substrate 1 by microwave plasma CVD method using the formation conditions of the single crystal diamond layer 3 in Example 1. .
  • the cathode luminescence of the formed single crystal diamond layer was measured, and the dislocation density was determined to be 2.1 ⁇ 10 6 cm ⁇ 2 .
  • the apparatus and measurement conditions used for the measurement of cathode luminescence are the same as Example 1.
  • the tungsten source, silicon source and molybdenum source are not present in the microwave plasma CVD apparatus, so the single crystal diamond layer grown by microwave plasma CVD is It does not contain tungsten, silicon and molybdenum (ie point defects). As a result, the dislocation density can not be reduced below that of the substrate. That is, propagation of dislocation density can not be suppressed. It is also the same as when using any of tantalum, rhenium, iron, nickel, cobalt, aluminum, gallium, germanium, iridium and phosphorus instead of tungsten.
  • Example 2 A high temperature / high pressure substrate (Ib substrate manufactured by HPHT) having a dislocation density of 1 ⁇ 10 4 cm ⁇ 2 was used as the substrate 1. Then, a single crystal diamond layer 2 made of p + -type single crystal diamond is formed on the substrate 1 by the hot filament CVD method under the same conditions as the formation conditions of the single crystal diamond layer 2 in Example 1, and thereafter single crystal Single-crystal diamond (substrate 1 / single-crystal) is formed on single-crystal diamond layer 2 by forming single-crystal diamond layer 3 consisting of p-type single-crystal diamond by thermal filament CVD using the same formation conditions as formation of diamond layer 2 Diamond layer 2 / single crystal diamond layer 3) was produced.
  • Ib substrate manufactured by HPHT high temperature / high pressure substrate having a dislocation density of 1 ⁇ 10 4 cm ⁇ 2
  • the dislocation density of the single crystal diamond layer 2 and the single crystal diamond layer 3 was 0 cm ⁇ 2 .
  • the dislocation density of single crystal diamond can be made 0 cm ⁇ 2 by forming both single crystal diamond layer 2 and single crystal diamond layer 3 by the hot filament CVD method.
  • Example 3 In the same manner as in Example 1 except that the substrate 1 having a dislocation density of 1.2 ⁇ 10 6 cm -2 was used, a single crystal diamond consisting of a substrate 1 / single crystal diamond layer 2 / single crystal diamond layer 3 was produced. did.
  • FIG. 7 is a graph showing measurement results of cathode luminescence of single crystal diamond 10-3 in Example 3.
  • the measuring apparatus and measurement conditions used for the measurement of cathode luminescence are as described in Example 1.
  • Example 3 the light emission from single crystal diamond 10-3 in Example 3 is not observed at all. Accordingly, it was found that the dislocation density of single crystal diamond 10-3 in Example 3 was 0 cm.sup.- 2 . Cathodoluminescence was measured for several regions of single crystal diamond 10-3, but no light emission from single crystal diamond 10-3 was observed in all the regions, and single crystal diamond 10-3 was observed. Dislocation density of 0 cm ⁇ 2 was confirmed.
  • Example 4 Hetero diamond was used as the substrate 1. Then, a single crystal diamond layer 2 made of p-type single crystal diamond was formed on the substrate 1 using the same hot filament CVD apparatus as in Example 1.
  • the temperature of the hot filament, the substrate temperature and the pressure in the hot filament CVD apparatus were set to the same as in Example 1.
  • methane (CH 4 ) gas, hydrogen (H 2 ) gas and trimethylboron (TMB: B (CH 3 ) 3 ) gas are used as material gases, and the flow rate of methane (CH 4 ) gas is 30 sccm, The flow rate of hydrogen (H 2 ) gas is 1000 sccm.
  • the film thickness of p-type single crystal diamond is 3 ⁇ m.
  • the cathode luminescence of single crystal diamond 10-4 in Example 4 was measured.
  • the apparatus used for the measurement is the same as the apparatus in the first embodiment.
  • the measurement conditions of the cathode luminescence are an acceleration voltage of 15 kV, a sample temperature of 80 K, and a center wavelength of a band pass filter of 430 nm.
  • FIG. 8 is a graph showing measurement results of cathode luminescence of single crystal diamond 10-4 in Example 4.
  • FIG. 8 (a) shows the measurement result of cathode luminescence of single crystal diamond 10-4 in Example 4
  • the light emission from single crystal diamond 10-4 in Example 4 is less than the light emission from hetero diamond.
  • the dislocation density of single crystal diamond 10-4 in Example 4 is 2 ⁇ 10 6 cm ⁇ 2 and the dislocation density of hetero diamond is 1 ⁇ 10 6 It was 8 cm- 2 .
  • the dislocation density of the single crystal diamond layer 2 can be reduced by about two digits compared to the dislocation density of the substrate 1 by forming the single-layer single crystal diamond layer 2 on the substrate 1.
  • Example 5 The same CVD substrate as in Example 1 was used as the substrate 1. Then, using a hot filament made of tantalum (Ta) having a purity of 99.9%, a single crystal diamond layer 2 is formed on the substrate 1 under the same formation conditions as the formation conditions of the single crystal diamond layer 2 of Example 1; Substrate 1 / single crystal diamond layer 2 was produced.
  • Ta tantalum
  • FIG. 9 is a view showing the measurement results of cathode luminescence of single crystal diamond in Example 5.
  • A) of FIG. 9 shows the measurement result of cathode luminescence of single crystal diamond 10-5 in Example 5, and
  • (b) of FIG. 9 shows the measurement result of cathode luminescence of a diamond substrate (substrate 1 consisting of diamond).
  • the apparatus and measurement conditions used for the measurement of cathode luminescence are the same as Example 1.
  • the dislocation density could be reduced from 2.1 ⁇ 10 6 cm ⁇ 2 to 7.6 ⁇ 10 4 cm ⁇ 2 by forming the single crystal diamond layer 2 using a thermal filament made of Ta. .
  • Ta, Si and Mo enter the single crystal diamond layer 2 by forming the single crystal diamond layer 2 using a thermal filament made of Ta, forming point defects, and propagating dislocations from the substrate 1 Is considered to have been suppressed. Therefore, it has been proved that the propagation of dislocations from the substrate 1 can be suppressed and the dislocation density of the single crystal diamond layer 2 can be reduced also when a thermal filament made of Ta is used.
  • the dislocation density can be reduced to the 10 4 cm ⁇ 2 level , preferably by 2 digits or more.
  • Example 6 The same CVD substrate as in Example 1 was used as the substrate 1. Then, single crystal diamond layer 2 made of p-type single crystal diamond is formed on substrate 1 under the same conditions as the formation conditions of single crystal diamond layer 2 in Example 1, and thereafter single crystal diamond is prepared in the same manner as in Example 1. Crystalline diamond layer 3 was formed on single crystal diamond layer 2 to produce single crystal diamond (substrate 1 / single crystal diamond layer 2 / single crystal diamond layer 3). In this case, 5 sccm of hydrogen-diluted 2% trimethylboron (TMB: B (CH 3 ) 3 ) gas was introduced into the thermal filament CVD apparatus as a material gas for forming p-type single crystal diamond. Further, the B concentration of the single crystal diamond layer 2 is 1 ⁇ 10 20 cm ⁇ 3 .
  • TMB hydrogen-diluted 2% trimethylboron
  • the surface of the single crystal diamond layer 3 was terminated by hydrogen using hydrogen plasma by microwave plasma CVD under conditions of 1000 ° C., 15960 Pa and 5 minutes. Then, Ti / Mo / Au was formed on the single crystal diamond layer 3 as an ohmic electrode by vapor deposition.
  • Ti has a thickness of 10 nm
  • Mo has a thickness of 10 nm
  • Au has a thickness of 30 nm.
  • the surface of the single crystal diamond layer 3 was treated with oxygen plasma.
  • the substrate temperature is room temperature
  • the flow rate of oxygen (O 2 ) gas is 60 sccm
  • the pressure is 5 Pa.
  • Mo / Au was formed on the surface of the single crystal diamond layer 3 as a Schottky electrode by vapor deposition to fabricate a semiconductor element (having a structure shown in FIG. 3).
  • Mo has a thickness of 10 nm and Au has a thickness of 30 nm.
  • Example 2 The same CVD substrate as in Example 1 was used as the substrate 1. Then, a single crystal diamond layer (composed of one single crystal diamond layer) was formed on the substrate 1 by microwave plasma CVD using the same formation conditions as the formation conditions of the single crystal diamond layer 3 in Example 1.
  • Example 6 Thereafter, in the same manner as in Example 6, an ohmic electrode and a Schottky electrode were formed on the single crystal diamond layer to fabricate a semiconductor element (having a structure of substrate / single crystal diamond layer / electrode).
  • FIG. 10 is a diagram showing current-voltage characteristics of the semiconductor devices of Example 6 and Comparative Example 2 at room temperature.
  • the vertical axis represents current
  • the horizontal axis represents voltage.
  • (a) of FIG. 10 shows the current-voltage characteristic of the semiconductor device in Example 6, and (b) of FIG. 10 shows the current-voltage characteristic of the semiconductor device in Comparative Example 2.
  • the semiconductor device of Example 6 exhibits very good rectification characteristics, and the reverse saturation current is less than 1 ⁇ 10 ⁇ 11 A (see (a) of FIG. 10).
  • the semiconductor element of Comparative Example 2 has poor rectification characteristics (see (b) in FIG. 10). Further, in the semiconductor device of Comparative Example 2, the reverse saturation current is 1 ⁇ 10 ⁇ 8 A to 1 ⁇ 10 ⁇ 6 A, which is three to five times greater than the reverse saturation current of the semiconductor device of Example 6. Digits large.
  • FIG. 11 is a diagram showing another current-voltage characteristic of the semiconductor elements of Example 6 and Comparative Example 2.
  • the vertical axis represents current density
  • the horizontal axis represents voltage
  • 11A shows the current-voltage characteristics of 10 semiconductor devices in Example 6
  • FIG. 11B shows the current-voltage characteristics of 10 semiconductor devices in Comparative Example 2. Show.
  • the semiconductor device of Example 6 exhibits very good rectification characteristics, and the reverse saturation current is about 1 ⁇ 10 ⁇ 7 (A / cm 2 ). In addition, the semiconductor device of Example 6 exhibits current-voltage characteristics with good uniformity (see (a) of FIG. 11).
  • the semiconductor element of Comparative Example 2 has poor rectification characteristics, and the reverse saturation current is in the range of 10 ⁇ 7 (A / cm 2 ) to 10 ⁇ 1 (A / cm 2 ). Therefore, in the semiconductor device of Comparative Example 2, the variation of the current-voltage characteristics is very large (see (b) in FIG. 11).
  • FIG. 12 is a diagram showing the relationship between the leakage current and the electric field strength of the semiconductor element at room temperature.
  • the vertical axis represents leakage current
  • the horizontal axis represents electric field strength.
  • the curve k1 shows the relationship between the leakage current of the semiconductor device in the sixth embodiment and the electric field strength
  • the curve k2 shows the relationship between the leakage current of the semiconductor device in the comparative example 2 and the electric field strength.
  • the leak current of the semiconductor device in Example 6 is smaller than 1 ⁇ 10 ⁇ 10 [A] until the electric field strength is 1.4 [MV / cm], and the electric field strength is 2 [MV]. It increases as it becomes larger than / cm]. Then, the semiconductor device in Example 6 breaks down at an electric field strength of about 4.0 [MV / cm] (see curve k1).
  • the leak current of the semiconductor element in Comparative Example 2 is 1 ⁇ 10 ⁇ 8 [A] or less until the electric field strength is 0.3 [MV / cm]. Then, the semiconductor element in Comparative Example 2 breaks down at an electric field intensity of 0.4 [MV / cm] (see curve k2).
  • the semiconductor device in the sixth embodiment has a leakage current smaller than that of the semiconductor device in the second comparative example, and the breakdown electric field strength is ten times or more.
  • the reason why the large breakdown field strength is obtained is that the dislocation density of the single crystal diamond layers 2 and 3 is reduced.
  • I I 0 [exp (qV / nkT) -1] (1)
  • I current
  • V voltage
  • I 0 reverse saturation current
  • q elementary charge
  • k Boltzmann's constant
  • n It is an ideality factor. It is shown that the current-voltage characteristic is better when n is closer to "1" which is an ideal value.
  • n-values of the semiconductor devices of Example 6 and Comparative Example 2 were determined by fitting the measured current-voltage characteristics to Formula (1). As a result, the n value of the semiconductor device of Example 6 was 1.1, and the n value of the semiconductor device of Comparative Example 2 was 2.7.
  • the barrier height of the Schottky junction was determined for the semiconductor devices of Example 6 and Comparative Example 2. As a result, the barrier height of the semiconductor device of Example 6 was 1.38 eV, and the barrier height of the semiconductor device of Comparative Example 2 was 0.95 eV.
  • the n value is closer to the ideal value and the barrier height is larger than in the semiconductor device of Comparative Example 2. This is considered to be because the dislocation density of the single crystal diamond layers 2 and 3 was reduced as described above.
  • Example 7 A high temperature / high pressure substrate (Ib substrate manufactured by HPHT) having a dislocation density of 1 ⁇ 10 4 cm ⁇ 2 was used as the substrate 1. Then, after producing the substrate 1 / single crystal diamond layer 2 / single crystal diamond layer 3 in Example 2, Ti / Mo / Au is formed on the surface of the single crystal diamond layer 3 as an ohmic electrode in the same manner as in Example 6. Then, Mo / Au was formed on the surface of the single crystal diamond layer 3 as a Schottky electrode to fabricate a semiconductor element (having a structure shown in FIG. 3). In this case, the thickness of each of Ti, Mo, and Au in the ohmic electrode, and the thickness of each of Mo and Au in the Schottky electrode are as described above.
  • FIG. 13 is a diagram showing the current-voltage characteristic of the semiconductor device of Example 7 at room temperature.
  • the vertical axis represents current density
  • the horizontal axis represents voltage.
  • a semiconductor device Schottky device
  • the semiconductor element Schottky element
  • the rectification characteristics can not be obtained if the drift layer contains a B concentration of 10 18 cm ⁇ 3 .
  • Example 8 The same CVD substrate as in Example 1 was used as the substrate 1. Then, a single crystal diamond layer 2 made of p-type single crystal diamond is formed on the substrate 1 by the hot filament CVD method using the same formation conditions as the formation conditions of the single crystal diamond layer 2 in Example 1, and then the substrate 1 The single crystal diamond layer 2 was removed from the thermal filament CVD apparatus, and the substrate 1 / single crystal diamond layer 2 was placed on a support in a 5 kW microwave plasma CVD apparatus manufactured by SEKI DIAMOND SYSTEMS.
  • the inside of the microwave plasma CVD apparatus was evacuated until the pressure in the microwave plasma CVD apparatus became 5 ⁇ 10 ⁇ 5 Pa.
  • the substrate temperature is set to 900 ° C.
  • 20 sccm of methane (CH 4 ) gas and 480 sccm of hydrogen (H 2 ) gas are introduced into the microwave plasma CVD apparatus, and the pressure in the microwave plasma CVD apparatus is set to It was set to 15960 Pa.
  • a high frequency power of 2500 W was applied, and a single crystal diamond layer 3 composed of p-type single crystal diamond was formed on the single crystal diamond layer 2 by microwave plasma CVD for one hour.
  • Example 6 Ti / Mo / Au is formed on the surface of the single crystal diamond layer 3 as an ohmic electrode, and Mo / Au is formed on the surface of the single crystal diamond layer 3 as a Schottky electrode.
  • a device (composed of the structure shown in FIG. 3) was produced. In this case, the thickness of each of Ti, Mo, and Au in the ohmic electrode, and the thickness of each of Mo and Au in the Schottky electrode are as described above.
  • the single crystal diamond layer 2 made of p-type single crystal diamond has a thickness of 1.4 ⁇ m and a B concentration of 2.5 ⁇ 10 18 cm ⁇ 3 .
  • the single crystal diamond layer 3 made of p-type single crystal diamond has a thickness of 5 ⁇ m and a B concentration of 2 ⁇ 10 15 cm ⁇ 3 .
  • Example 3 The same CVD substrate as in Example 1 was used as the substrate 1. Then, under the same formation conditions as the formation conditions of the single crystal diamond layer 3 in Example 8, the single crystal diamond layer 3 made of p-type single crystal diamond was formed on the substrate 1.
  • the single crystal diamond layer 3 has a thickness of 5 ⁇ m and a B concentration of 2 ⁇ 10 15 cm ⁇ 3 .
  • Example 6 Ti / Mo / Au is formed on the surface of the single crystal diamond layer 3 as an ohmic electrode, and Mo / Au is formed on the surface of the single crystal diamond layer 3 as a Schottky electrode. A device was produced.
  • the thickness of each of Ti, Mo and Au in the ohmic electrode and the thickness of each of Mo and Au in the Schottky electrode are the same as in Example 8.
  • FIG. 14 is a diagram showing current-voltage characteristics of the semiconductor devices of Example 8 and Comparative Example 3 at room temperature.
  • the vertical axis represents current density
  • the horizontal axis represents voltage.
  • (a) of FIG. 14 shows the current-voltage characteristic of the semiconductor device in Example 8
  • (b) of FIG. 14 shows the current-voltage characteristic of the semiconductor device in Comparative Example 3.
  • the semiconductor device of Example 8 exhibits very good rectification characteristics, and the reverse saturation current is less than 2 ⁇ 10 ⁇ 7 A (see (a) of FIG. 14).
  • (a) of FIG. 14 shows the current-voltage characteristics of 65 semiconductor elements, the 65 semiconductor elements in Example 8 show current-voltage characteristics with very good uniformity.
  • the semiconductor device of Comparative Example 3 there are 23 semiconductor devices exhibiting rectification characteristics similar to those of the semiconductor device of Example 8, and 42 semiconductor devices have 10 -7 to 10 0 (A / cm). 2 ) The reverse saturation current of a stand is shown (refer (b) of Drawing 14). Thus, the semiconductor device of Comparative Example 3 exhibits current-voltage characteristics with very poor uniformity.
  • the semiconductor device of Example 8 exhibits very uniform rectification characteristics with good uniformity, which is considered to be due to the low dislocation density of the single crystal diamond layer 3.
  • FIG. 15 is a diagram showing ideal factors (n values) of the semiconductor devices of Example 8 and Comparative Example 3.
  • the semiconductor device of Example 8 has an n value in the range of 1.29 to 1.50
  • the semiconductor device of Comparative Example 3 has n in the range of 1.21 to 5.71. It has a value.
  • the n value of the semiconductor device of Example 8 shows a distribution with good uniformity
  • the n value of the semiconductor device of Comparative Example 3 shows a distribution with a very large variation.
  • FIG. 16 is a view showing the barrier heights of the semiconductor devices of Example 8 and Comparative Example 3.
  • the semiconductor device of Example 8 has a barrier height in the range of 1.30 to 1.39
  • the semiconductor device of Comparative Example 3 has a barrier height of 0.68 to 1.34.
  • the semiconductor device of Example 8 exhibits a uniform distribution even at the barrier height, and the semiconductor device of Comparative Example 3 exhibits a very large distribution of variation also at the barrier height.
  • the current is adopted by adopting the structure of single crystal diamond layer 2 / single crystal diamond layer 3. It has been found that the uniformity of the voltage characteristics is dramatically improved. This is because the semiconductor device of Example 8 has n value and barrier height with good uniformity.
  • the present invention is applied to single crystal diamond and semiconductor devices using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

転位密度を低減した単結晶ダイヤモンドを提供する。単結晶ダイヤモンド(10)は、単結晶ダイヤモンド層(2,3)を備える。単結晶ダイヤモンド層(2)は、ダイヤモンド基板(1)上に形成され、点欠陥を含む。単結晶ダイヤモンド層(3)は、単結晶ダイヤモンド層(2)上に配置される。単結晶ダイヤモンド層(2,3)は、ダイヤモンド基板よりも低い転位密度を有する。

Description

単結晶ダイヤモンドおよびそれを用いた半導体素子
 この発明は、単結晶ダイヤモンドおよびそれを用いた半導体素子に関する。
 従来、ダイヤモンド膜の転位密度を低減する方法として非特許文献1~3に記載のものが知られている。
 非特許文献1に記載の転位密度を低減する方法は、ダイヤモンド膜を厚膜化することによって転位密度を低減する方法である。そして、ダイヤモンド膜の膜厚を1mm以上に厚膜化にすることによって、転位密度を1×1010cm-2から4×10cm-2まで低減できることが記載されているが、低転位化によって転位線の間隔が広くなると、その効果は小さくなるので1×10cm-2を下回る密度まで転位密度を低減することはできない。
 非特許文献2に記載の転位密度を低減する方法は、ヘテロエピタキシャル成長の前処理において核生成領域を限定したパターンを形成し、横方向結晶成長(ELO: Epitaxial Lateral Overgrowth)によって転位伝搬方向を制御することによって転位密度を低減する方法である。そして、この方法によって転位密度を1×10cm-2程度まで低減できる。
 非特許文献3に記載の転位密度を低減する方法は、エッチピット(転位存在箇所)に金属ナノパーティクルを形成し、その後、CVDでダイヤモンドを成長させることによって転位密度を低減する方法である。金属ナノパーティクルの形成を必要とするため、時間とコストを有する他、転位伝搬の制御性にも問題があり、1×10cm-2を下回る低転位化は実現されていない。
C. Stehl, M. Fischer, S. Gsell, E. Berdermann, M. S. Rahman, M. Traeger, O. Klein, and M. Scheck, "Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications," APPLIED PHYSICS LETTERS 103, 151905 (2013). Kimiyoshi Ichikawa, Hideyuki Kodama, Kazuhiro Suzuki, Atsuhito Sawabe, "Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir,"Diamond & Related Materials 72 (2017) 114-118. M. Naamoun, A. Tallaire, P. Doppelt, A. Giccquel, J. Barjon, J. Achard, "Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks," Diamond & Related Materials 58 (2015) 62-68.
 しかし、非特許文献1~3に記載の方法では、ヘテロエピタキシャルダイヤモンドなどの比較的転位密度の大きい試料に対して有効であるが、一貫して1×10cm-2を下回る低転位化は不可能であり、転位の伝搬を完全には抑制できていない。
 そこで、この発明の実施の形態によれば、転位密度を低減した単結晶ダイヤモンドを提供する。
 また、この発明の実施の形態によれば、転位密度を低減した単結晶ダイヤモンドを用いた半導体素子を提供する。
(構成1)
 この発明の実施の形態によれば、単結晶ダイヤモンドは、第1の単結晶ダイヤモンド層を備える。第1の単結晶ダイヤモンド層は、基板上に形成され、点欠陥を含む。そして、第1の単結晶ダイヤモンド層は、基板よりも低い転位密度を有する。
(構成2)
 構成1において、単結晶ダイヤモンドは、第2の単結晶ダイヤモンド層を更に備える。第2の単結晶ダイヤモンド層は、第1の単結晶ダイヤモンド層上に配置され、基板よりも低い転位密度を有する。
(構成3)
 構成1または構成2において、第1の単結晶ダイヤモンド層は、タングステン、タンタル、レニウム、鉄、ニッケル、コバルト、アルミニウム、ガリウム、ゲルマニウム、イリジウムおよびリンのいずれかと、シリコンおよびモリブデンとを含む。
(構成4)
 構成2または構成3において、第2の単結晶ダイヤモンド層は、基板よりも2桁以上少ない転位密度を有する。
(構成5)
 構成1から構成4のいずれかにおいて、第1の単結晶ダイヤモンド層は、1μm以上の膜厚を有する。
(構成6)
 構成2から構成5のいずれかにおいて、第2の単結晶ダイヤモンド層は、200μm以上の膜厚を有する。
(構成7)
 構成2から構成5のいずれかにおいて、第1の単結晶ダイヤモンド層は、更に、p型ドーパントを含む。
(構成8)
 また、この発明の実施の形態によれば、半導体素子は、構成7に記載の単結晶ダイヤモンドと、第1および第2の金属とを備える。第1の金属は、第2の単結晶ダイヤモンド層とショットキー接合を形成する。第2の金属は、第1の単結晶ダイヤモンド層または第2の単結晶ダイヤモンド層とオーミック接合を形成する。
 単結晶ダイヤモンドの転位密度を低減できる。
この発明の実施の形態による単結晶ダイヤモンドの断面図である。 図1に示す単結晶ダイヤモンドの製造方法を示す工程図である。 この発明の実施の形態による半導体素子の断面図である。 この発明の実施の形態による別の半導体素子の断面図である。 実施例1における単結晶ダイヤモンドのカソードルミネッセンスの測定結果を示す図である。 タングステンの深さ方向に対する分布を示す図である。 実施例3における単結晶ダイヤモンドのカソードルミネッセンスの測定結果を示す図である。 実施例4における単結晶ダイヤモンドのカソードルミネッセンスの測定結果を示す図である。 実施例5における単結晶ダイヤモンドのカソードルミネッセンスの測定結果を示す図である。 室温における実施例6および比較例2の半導体素子の電流-電圧特性を示す図である。 実施例6および比較例2の半導体素子の別の電流-電圧特性を示す図である。 室温における半導体素子のリーク電流と電界強度との関係を示す図である。 室温における実施例7の半導体素子の電流-電圧特性を示す図である。 室温における実施例8および比較例3の半導体素子の電流-電圧特性を示す図である。 実施例8および比較例3の半導体素子の理想因子(n値)を示す図である。 実施例8および比較例3の半導体素子のバリアハイトを示す図である。
 図1は、この発明の実施の形態による単結晶ダイヤモンドの断面図である。図1を参照して、この発明の実施の形態による単結晶ダイヤモンド10は、基板1と、単結晶ダイヤモンド層2,3とを備える。
 基板1は、単結晶ダイヤモンドまたはヘテロダイヤモンドからなる。単結晶ダイヤモンドは、例えば、1×10cm-2~1×10cm-2の転位密度を有し、ヘテロダイヤモンドは、例えば、1×10~1×1010cm-2の転位密度を有する。また、基板1は、複数のダイヤモンドを平板状(例えば、碁盤目状)に配列または接合した基板からなっていてもよい。更に、ヘテロダイヤモンドの場合、基板にイリジウム(Ir)、シリコン(Si)、シリコンカーバイド(SiC)、窒化ガリウム(GaN)および炭化タングステン(WC)等のダイヤモンド以外の材料を含んでいてもよく、それらの異種基板を取り除いた自立結晶でもよい。
 単結晶ダイヤモンド層2は、基板1の表面に接して基板1上に配置される。単結晶ダイヤモンド層2は、タングステン(W)、タンタル(Ta)、レニウム(Re)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、アルミニウム(Al)、ガリウム(Ga)、ゲルマニウム(Ge)、イリジウム(Ir)およびリン(P)のいずれかと、シリコン(Si)およびモリブデン(Mo)とを含む。W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPの各々は、原子半径がカーボン(C)よりも大きく、かつ、単結晶ダイヤモンドの格子間に入る元素である。
 W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPの各々の含有量は、1×1016cm-3~1×1020cm-3である。SiおよびMoの各々の含有量は、W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPのいずれかの含有量よりも2桁以上少ない。単結晶ダイヤモンドにおいては、W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPの含有量は、1×1020cm-3が限度であり、W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPの含有量を1×1020cm-3よりも増加させることは好ましくない。W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPのいずれかと、SiおよびMoとは、単結晶ダイヤモンド層2に含まれることにより点欠陥を生成する。この点欠陥は、ダイヤモンドの格子間に形成される。単結晶ダイヤモンド層2の点欠陥密度は、例えば、1×1016cm-3~1×1020cm-3である。そして、単結晶ダイヤモンド層2は、例えば、1~2μmの厚みを有する。なお、単結晶ダイヤモンド層2は、1μm以上の厚みを有していればよい。1μm以上の厚みを有していれば、後述するように、単結晶ダイヤモンド層2,3の転位密度を基板1の転位密度よりも減少できるからである。
 単結晶ダイヤモンド層2は、ボロン(B)を含んでいてもよく、Bを含んでいなくてもよい。単結晶ダイヤモンド層2がBを含む場合、B濃度は、1×1018cm-3~1×1021cm-3である。
 単結晶ダイヤモンド層3は、単結晶ダイヤモンド層2に接して単結晶ダイヤモンド層2上に配置される。
 単結晶ダイヤモンド層3は、Bを含んでいてもよく、Bを含んでいなくてもよい。単結晶ダイヤモンド層3がBを含む場合、B濃度は、1×1015cm-3~1×1018cm-3である。そして、単結晶ダイヤモンド層3の厚みは、特に限定されないが、単結晶ダイヤモンド層3が宝石に用いられる場合、単結晶ダイヤモンド層3の厚みは、200μm以上である。
 単結晶ダイヤモンド層2は、2×10cm-2以下の転位密度を有する。単結晶ダイヤモンド層3は、例えば、0~1×10cm-2(即ち、1×10cm-2以下)の転位密度を有する。このように、単結晶ダイヤモンド層2が点欠陥を含む(即ち、W、Ta、Re、Fe、Ni、Co、Al、Ga、Ge、IrおよびPのいずれかと、SiおよびMoとを含む)ことにより、単結晶ダイヤモンド層3の転位密度を基板1よりも2桁以上低減できる。
 基板1が単結晶ダイヤモンドからなる場合、単結晶ダイヤモンド層2,3は、ホモエピタキシャル成長され、基板1が単結晶ダイヤモンド以外のSi等からなる場合、単結晶ダイヤモンド層2,3は、ヘテロエピタキシャル成長される。
 図2は、図1に示す単結晶ダイヤモンド10の製造方法を示す工程図である。図2を参照して、まず、基板1を準備する(工程(a)参照)。基板1は、例えば、(100)面を有する単結晶ダイヤモンドである。
 次に、フィラメントが配置された真空容器中に基板1を配置し、炭素源を含むキャリアガスを真空容器内に導入する。そして、熱フィラメントCVD(Chemical Vapor Deposition)法によって単結晶ダイヤモンド層2を基板1上に成長させる(工程(b)参照)。
 引き続いて、CVD法によって単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に成長させる(工程(c)参照)。これによって、単結晶ダイヤモンド10が製造される。CVD法としては、マイクロ波プラズマ、DCプラズマ、燃焼法、アークジェット法および熱フィラメント法を用いることができる。
 なお、基板1が単結晶ダイヤモンド以外のSi等からなる場合も、図2に示す工程図に従って単結晶ダイヤモンド10が製造される。
 また、工程(b)において、単結晶ダイヤモンド層2は、炭素源を含むガスと、タングステン源を含むガス、タンタル源を含むガスおよびレニウム源を含むガスのいずれかと、シリコン源を含むガスと、モリブデン源を含むガスとを用いて、マイクロ波プラズマ、DCプラズマ、燃焼法およびアークジェット法等によって形成されてもよい。
 図3は、この発明の実施の形態による半導体素子の断面図である。図3を参照して、この発明の実施の形態による半導体素子100は、基板1と、単結晶ダイヤモンド層2,3と、電極4,5とを備える。即ち、半導体素子100は、図1に示す単結晶ダイヤモンド10に電極4,5を追加した構成からなる。
 電極4,5は、単結晶ダイヤモンド層3に接して単結晶ダイヤモンド層3上に配置される。電極4は、ショットキー接合用の電極であり、電極5は、オーミック接合用の電極である。
 電極4は、例えば、Mo/Au、Ru/Au、Au、Ru、PtおよびMoのいずれかからなり、電極5は、例えば、Ti/Mo/Au、Ti/Pt/AuおよびTi/Auのいずれかからなる。
 半導体素子100においては、単結晶ダイヤモンド層2は、Bがドープされたp型単結晶ダイヤモンドからなる。B濃度は、例えば、1×1020cm-3である。また、単結晶ダイヤモンド層3は、Bがドープされていてもよいし、Bがドープされていなくてもよい。Bがドープされる場合、B濃度は、1×1015cm-3~1×1018cm-3である。
 半導体素子100は、図2に示す工程図に従って単結晶ダイヤモンド10を製造した後、例えば、蒸着法によって電極4,5を単結晶ダイヤモンド層3上に形成することによって製造される。
 図4は、この発明の実施の形態による別の半導体素子の断面図である。この発明の実施の形態による半導体素子は、図4に示す半導体素子100Aであってもよい。
 図4を参照して、半導体素子100Aは、基板1の一部をエッチングによって除去し、電極5を基板1および単結晶ダイヤモンド層2に接するように形成した構造からなる。半導体素子100Aにおいては、キャリア(正孔および電子)は、電極4,5間を縦方向に移動するので、直列抵抗を低減できる。
 半導体素子100Aは、図2に示す工程図に従って単結晶ダイヤモンド10を製造した後、基板1の一部をエッチング除去し、例えば、蒸着法によって電極4を単結晶ダイヤモンド層3上に形成し、電極5を基板1および単結晶ダイヤモンド層2に接するように形成することによって製造される。
 上述したように、この発明の実施の形態による単結晶ダイヤモンド10は、点欠陥を有する単結晶ダイヤモンド層2を基板1上に形成し、単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成した構造からなる。
 単結晶ダイヤモンドの成長においては、基板1が転位を有する場合、基板1上に形成された単結晶ダイヤモンドは、基板1の転位を引き継いで成長する。しかし、単結晶ダイヤモンド層2を基板1上に形成した場合、単結晶ダイヤモンド層2中の点欠陥が基板1から引き継がれた転位の伝搬(厚み方向の伝搬)を抑制する。
 その結果、単結晶ダイヤモンド層2は、基板1よりも低い転位密度を有する。そして、単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成した場合、単結晶ダイヤモンド層3は、単結晶ダイヤモンド層2中の転位を引き継ぐだけである。その結果、単結晶ダイヤモンド層2,3中の転位密度を基板1の転位密度よりも低減できる。従って、単結晶ダイヤモンド10が基板1/単結晶ダイヤモンド層2/単結晶ダイヤモンド層3の構造からなることによって、基板1の転位密度が単結晶ダイヤモンド層2,3へ伝搬するのを抑制できる。
 なお、この発明の実施の形態による単結晶ダイヤモンドは、図1に示す単結晶ダイヤモンド10から単結晶ダイヤモンド層3を削除したものであってもよい。その理由は、次のとおりである、単結晶ダイヤモンドは、基板1/単結晶ダイヤモンド層2の構造からなるが、基板1から伝搬した転位は、単結晶ダイヤモンド層2の途中(単結晶ダイヤモンド層2の厚み方向の途中)で点欠陥によって単結晶ダイヤモンド層2の厚み方向に更に伝搬するのを抑制される。従って、この発明の実施の形態による単結晶ダイヤモンドが基板1/単結晶ダイヤモンド層2の構造を有していれば、基板1よりも低い転位密度を有する単結晶ダイヤモンドを形成できるからである。
 以下、この発明の実施の形態による単結晶ダイヤモンドおよびそれを用いた半導体素子について実施例を用いて詳細に説明する。
(実施例1)
 CVD製基板を基板1として用いた。CVD製基板は、(100)面を3°オフさせたものである。
 そして、sp3 Diamond Technologies社製、Model-650の熱フィラメントCVD装置を単結晶ダイヤモンド層2の成長に用いた。この熱フィラメントCVD装置は、並列に配置された19本の熱フィラメントを有する。熱フィラメントは、純度99.9%のタングステン(W)からなり、直径が0.12mmであり、長さが40cmである。また、熱フィラメントは、基板1との距離が15mmになるように配置された。
 CVD製基板を熱フィラメントCVD装置内の支持台上に配置し、熱フィラメントCVD装置内の圧力が1Paになるまで熱フィラメントCVD装置内を真空引きした。
 その後、180V、60Aの直流電力を熱フィラメントに印加し、熱フィラメントを2100℃に昇温した。
 そして、基板温度を700℃~800℃に設定し、30sccmのメタン(CH)ガスと1000sccmの水素(H)ガスとを熱フィラメントCVD装置内に導入し、熱フィラメントCVD装置内の圧力を3990Paに設定した。その後、10時間、単結晶ダイヤモンドを成長させ、2μmの厚みを有する単結晶ダイヤモンド層2を基板1上に形成した。
 単結晶ダイヤモンド層2の形成後、基板1/単結晶ダイヤモンド層2を熱フィラメントCVD装置から取り出し、基板1/単結晶ダイヤモンド層2をSEKI DIAMOND SYSTEMS社製の5kWマイクロ波プラズマCVD装置内の支持台上に設置した。
 そして、マイクロ波プラズマCVD装置内の圧力が5×10-5Paになるまでマイクロ波プラズマCVD装置内を真空引きした。
 引き続いて、基板温度を900℃に設定し、20sccmのメタン(CH)ガスと480sccmの水素(H)ガスとをマイクロ波プラズマCVD装置内に導入し、マイクロ波プラズマCVD装置内の圧力を15960Paに設定した。
 そして、2500Wの高周波電力を印加し、マイクロ波プラズマCVD法によって、1時間、単結晶ダイヤモンドを単結晶ダイヤモンド層2上に成長させ、4μmの厚みを有する単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成した。
 実施例1における単結晶ダイヤモンド10-1のカソードルミネッセンスを測定した。測定に用いた装置は、日本電子社製のJSM-7001Fである。また、カソードルミネッセンスの測定条件は、加速電圧15kV、試料温度300K、バンドパスフィルターの中心波長が430nmである。
 図5は、実施例1における単結晶ダイヤモンド10-1のカソードルミネッセンスの測定結果を示す図である。図5の(a)は、実施例1における単結晶ダイヤモンド10-1のカソードルミネッセンスの測定結果を示し、図5の(b)は、ダイヤモンド基板(ダイヤモンドからなる基板1)のカソードルミネッセンスの測定結果を示す。
 図5を参照して、実施例1における単結晶ダイヤモンド10-1からの発光は、殆ど、観測されない(図5の(a)参照)。一方、ダイヤモンド基板からは、多くの発光が観測された。
 そして、カソードルミネッセンスの測定結果から転位密度を求めた結果、実施例1における単結晶ダイヤモンド10-1の転位密度は、2.6×10cm-2であり、ダイヤモンド基板の転位密度は、2.1×10cm-2であった。
 このように、単結晶ダイヤモンド層2/単結晶ダイヤモンド層3の構成を採用することによって、転位密度を約2桁低減できる。ダイヤモンドの分野においては、研究者は、転位密度を減少できるとの認識を有していない。従って、実施例1に示すように転位密度を減少できるとの効果は、当業者が予測できない効果である。そして、2.1×10cm-2から2.6×10cm-2へと2桁、転位密度を減少できるという効果は、当業者が全く予測できない効果である。このように、単結晶ダイヤモンド層2/単結晶ダイヤモンド層3の構成を採用することによって、当業者が予測できない顕著な効果を享受できる。
 単結晶ダイヤモンド層2中のタングステン濃度を調べるためにSIMS(Secondary Ion Mass Spectrometry)を測定した。SIMSの測定に用いた装置は、CAMECA社製のIMS-7fである。
 図6は、タングステンの深さ方向に対する分布を示す図である。図6において、縦軸は、タングステン濃度を表し、横軸は、深さ方向の距離を表す。なお、SIMSの測定に用いた単結晶ダイヤモンド層2の厚みは、7.5μmである。
 図6を参照して、タングステンは、深さ方向において約2×1018cm-3の濃度で均一に分布することが分かった。このように、タングステンからなる熱フィラメントを用いて熱フィラメントCVD法によって単結晶ダイヤモンドを成長させた場合、タングステンが単結晶ダイヤモンド中に取り込まれることが分かった。また、熱フィラメントCVD法によって成長させたダイヤモンドは、SIMSの測定結果から1.4×1016cm-3のMoおよび1.0×1016cm-3のSiを含むことも分かった。このように、SiおよびMoの含有量は、Wの含有量よりも2桁以上少ない。
 そして、上述したカソードルミネッセンスおよびSIMSの測定結果によれば、単結晶ダイヤモンド層2がタングステン、タンタル、レニウム、鉄、ニッケル、コバルト、アルミニウム、ガリウム、ゲルマニウム、イリジウムおよびリンのいずれかと、MoおよびSiとを含むことによって転位密度を2.6×10cm-2に低減できることが分かった。タングステン、モリブデンおよびシリコンが単結晶ダイヤモンド層2中に含まれることによって単結晶ダイヤモンド10-1の転位密度が低減できることが示されていれば、タングステンと同じように、原子半径がカーボンよりも大きく、かつ、単結晶ダイヤモンドの格子間に入る元素であるタンタル、レニウム、鉄、ニッケル、コバルト、アルミニウム、ガリウム、ゲルマニウム、イリジウムおよびリンのいずれかと、MoおよびSiとが、単結晶ダイヤモンド層2中に入ることによって、単結晶ダイヤモンド10-1の転位密度を低減できることを容易に理解できるからである。
(比較例1)
 実施例1と同じCVD製基板を基板1として用いた。そして、比較例1として、実施例1における単結晶ダイヤモンド層3の形成条件を用いてマイクロ波プラズマCVD法によって単結晶ダイヤモンド層(1層の単結晶ダイヤモンド層からなる)を基板1上に形成した。
 そして、形成した単結晶ダイヤモンド層についてカソードルミネッセンスを測定し、転位密度を求めた結果、2.1×10cm-2であった。なお、カソードルミネッセンスの測定に用いた装置および測定条件は、実施例1と同じである。
 マイクロ波プラズマCVD法によって単結晶ダイヤモンド層を成長させる場合、タングステン源、シリコン源およびモリブデン源は、マイクロ波プラズマCVD装置内に存在しないので、マイクロ波プラズマCVD法によって成長した単結晶ダイヤモンド層は、タングステン、シリコンおよびモリブデン(即ち、点欠陥)を含まない。その結果、転位密度を基板の転位密度よりも低減することができない。つまり、転位密度の伝搬を抑制できない。タングステンの代わりに、タンタル、レニウム、鉄、ニッケル、コバルト、アルミニウム、ガリウム、ゲルマニウム、イリジウムおよびリンのいずれかを用いた場合も、同様である。
(実施例2)
 転位密度が1×10cm-2である高温高圧基板(HPHT製Ib基板)を基板1として用いた。そして、実施例1における単結晶ダイヤモンド層2の形成条件と同じ条件を用いて熱フィラメントCVD法によってp型単結晶ダイヤモンドからなる単結晶ダイヤモンド層2を基板1上に形成し、その後、単結晶ダイヤモンド層2の形成条件と同じ形成条件を用いて熱フィラメントCVD法によってp型単結晶ダイヤモンドからなる単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成して単結晶ダイヤモンド(基板1/単結晶ダイヤモンド層2/単結晶ダイヤモンド層3)を作製した。
 この場合、p型単結晶ダイヤモンドを形成する材料ガスとして水素希釈の2%トリメチルボロン(TMB:B(CH))ガスを5sccm、熱フィラメントCVD装置内に導入した。単結晶ダイヤモンド層2のB濃度は、1×1020cm-3である。また、p型単結晶ダイヤモンドを形成する材料ガスとして水素希釈の2%トリメチルボロン(TMB:B(CH))ガスを1sccm、熱フィラメントCVD装置内に導入した。単結晶ダイヤモンド層3のB濃度は、2×1018cm-3である。
 そして、実施例2における単結晶ダイヤモンド10-2の単結晶ダイヤモンド層2および単結晶ダイヤモンド層3の各々についてカソードルミネッセンスを測定した。その結果、単結晶ダイヤモンド層2および単結晶ダイヤモンド層3の転位密度は、0cm-2であった。
 このように、単結晶ダイヤモンド層2および単結晶ダイヤモンド層3の両方を熱フィラメントCVD法で形成することにより、単結晶ダイヤモンドの転位密度を0cm-2にできることが分かった。
(実施例3)
 1.2×10cm-2の転位密度を有する基板1を用いた以外は、実施例1と同様にして基板1/単結晶ダイヤモンド層2/単結晶ダイヤモンド層3からなる単結晶ダイヤモンドを作製した。
 図7は、実施例3における単結晶ダイヤモンド10-3のカソードルミネッセンスの測定結果を示す図である。カソードルミネッセンスの測定に用いた測定装置および測定条件は、実施例1において説明したとおりである。
 図7を参照して、実施例3における単結晶ダイヤモンド10-3からの発光は、全く、観測されない。従って、実施例3における単結晶ダイヤモンド10-3の転位密度は、0cm-2であることが分かった。なお、カソードルミネッセンスは、単結晶ダイヤモンド10-3の数か所の領域について測定されたが、その全ての領域において、単結晶ダイヤモンド10-3からの発光が観測されず、単結晶ダイヤモンド10-3の転位密度が0cm-2であることを確認した。
(実施例4)
 ヘテロダイヤモンドを基板1として用いた。そして、実施例1と同様の熱フィラメントCVD装置を用いてp型単結晶ダイヤモンドからなる単結晶ダイヤモンド層2を基板1上に形成した。
 この場合、熱フィラメントの温度、基板温度および熱フィラメントCVD装置内の圧力は、実施例1と同じに設定された。また、材料ガスとして、メタン(CH)ガス、水素(H)ガスおよびトリメチルボロン(TMB:B(CH))ガスを用い、メタン(CH)ガスの流量は、30sccmであり、水素(H)ガスの流量は、1000sccmである。p型単結晶ダイヤモンドの膜厚は、3μmである。
 実施例4における単結晶ダイヤモンド10-4のカソードルミネッセンスを測定した。測定に用いた装置は、実施例1における装置と同じである。カソードルミネッセンスの測定条件は、加速電圧15kV、試料温度80K、バンドパスフィルターの中心波長が430nmである。
 図8は、実施例4における単結晶ダイヤモンド10-4のカソードルミネッセンスの測定結果を示す図である。図8の(a)は、実施例4における単結晶ダイヤモンド10-4のカソードルミネッセンスの測定結果を示し、図8の(b)は、ヘテロダイヤモンド(=基板)のカソードルミネッセンスの測定結果を示す。
 図8を参照して、実施例4における単結晶ダイヤモンド10-4からの発光は、ヘテロダイヤモンドからの発光よりも少ない。
 そして、カソードルミネッセンスの測定結果から転位密度を求めた結果、実施例4における単結晶ダイヤモンド10-4の転位密度は、2×10cm-2であり、ヘテロダイヤモンドの転位密度は、1×10cm-2であった。
 このように、単層の単結晶ダイヤモンド層2を基板1上に形成することによって、単結晶ダイヤモンド層2の転位密度を基板1の転位密度よりも約2桁低減できることが分かった。
(実施例5)
 実施例1と同じCVD製基板を基板1として用いた。そして、純度99.9%のタンタル(Ta)からなる熱フィラメントを用いて、実施例1の単結晶ダイヤモンド層2の形成条件と同じ形成条件で基板1上に単結晶ダイヤモンド層2を形成し、基板1/単結晶ダイヤモンド層2を作製した。
 図9は、実施例5における単結晶ダイヤモンドのカソードルミネッセンスの測定結果を示す図である。図9の(a)は、実施例5における単結晶ダイヤモンド10-5のカソードルミネッセンスの測定結果を示し、図9の(b)は、ダイヤモンド基板(ダイヤモンドからなる基板1)のカソードルミネッセンスの測定結果を示す。なお、カソードルミネッセンスの測定に用いた装置および測定条件は、実施例1と同じである。
 図9を参照して、実施例5における単結晶ダイヤモンド10-5からの発光は、殆ど、観測されない(図9の(a)参照)。一方、ダイヤモンド基板からは、多くの発光が観測された。
 そして、カソードルミネッセンスの測定結果から転位密度を求めた結果、実施例5における単結晶ダイヤモンド10-5の転位密度は、7.6×10cm-2であり、ダイヤモンド基板の転位密度は、2.1×10cm-2であった。
 このように、Taからなる熱フィラメントを用いて単結晶ダイヤモンド層2を形成することによって、転位密度を2.1×10cm-2から7.6×10cm-2へと減少できた。これは、Taからなる熱フィラメントを用いて単結晶ダイヤモンド層2を形成することによって、Ta、SiおよびMoが単結晶ダイヤモンド層2中に入り、点欠陥を形成し、基板1からの転位の伝搬が抑制されたためと考えられる。従って、Taからなる熱フィラメントを用いた場合も、基板1からの転位の伝搬を抑制し、単結晶ダイヤモンド層2の転位密度を低減できることが実証された。
 実施例1~5に示したように、単結晶ダイヤモンド層2の厚みが1μm以上であれば、転位密度を10cm-2台に低減でき、好ましくは、2桁以上低減できることが分かった。
(実施例6)
 実施例1と同じCVD製基板を基板1として用いた。そして、実施例1における単結晶ダイヤモンド層2の形成条件と同じ条件を用いてp型単結晶ダイヤモンドからなる単結晶ダイヤモンド層2を基板1上に形成し、その後、実施例1と同様にして単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成して単結晶ダイヤモンド(基板1/単結晶ダイヤモンド層2/単結晶ダイヤモンド層3)を作製した。この場合、p型単結晶ダイヤモンドを形成する材料ガスとして水素希釈の2%トリメチルボロン(TMB:B(CH))ガスを5sccm、熱フィラメントCVD装置内に導入した。また、単結晶ダイヤモンド層2のB濃度は、1×1020cm-3である。
 その後、1000℃、15960Pa、5分の条件でマイクロ波プラズマCVD法による水素プラズマを用いて、単結晶ダイヤモンド層3の表面を水素によって終端した。
 そして、蒸着法によって、オーミック電極としてTi/Mo/Auを単結晶ダイヤモンド層3上に形成した。この場合、Tiは、10nmの厚みを有し、Moは、10nmの厚みを有し、Auは、30nmの厚みを有する。
 オーミック電極の形成後、単結晶ダイヤモンド層3の表面を酸素プラズマによって処理した。この場合、基板温度は、室温であり、酸素(O)ガスの流量は、60sccmであり、圧力は、5Paである。
 酸素プラズマによる処理を行った後、蒸着法によって、ショットキー電極としてMo/Auを単結晶ダイヤモンド層3の表面に形成して半導体素子(図3に示す構造からなる)を作製した。この場合、Moは、10nmの厚みを有し、Auは、30nmの厚みを有する。
(比較例2)
 実施例1と同じCVD製基板を基板1として用いた。そして、実施例1における単結晶ダイヤモンド層3の形成条件と同じ形成条件を用いてマイクロ波プラズマCVD法によって単結晶ダイヤモンド層(1層の単結晶ダイヤモンド層からなる)を基板1上に形成した。
 その後、実施例6と同様にして単結晶ダイヤモンド層上にオーミック電極およびショットキー電極を形成して半導体素子(基板/単結晶ダイヤモンド層/電極の構造からなる)を作製した。
 実施例6における半導体素子および比較例2における半導体素子について室温における電流-電圧特性を測定した。
 図10は、室温における実施例6および比較例2の半導体素子の電流-電圧特性を示す図である。図10において、縦軸は、電流を表し、横軸は、電圧を表す。また、図10の(a)は、実施例6における半導体素子の電流-電圧特性を示し、図10の(b)は、比較例2における半導体素子の電流-電圧特性を示す。
 図10を参照して、実施例6の半導体素子は、非常に良い整流特性を示し、逆方向飽和電流が1×10-11A未満である(図10の(a)参照)。
 一方、比較例2の半導体素子は、整流特性が悪い(図10の(b)参照)。また、比較例2の半導体素子においては、逆方向飽和電流は、1×10-8A~1×10-6Aであり、実施例6の半導体素子の逆方向飽和電流よりも3桁~5桁大きい。
 図11は、実施例6および比較例2の半導体素子の別の電流-電圧特性を示す図である。図11において、縦軸は、電流密度を表し、横軸は、電圧を表す。また、図11の(a)は、実施例6における10個の半導体素子の電流-電圧特性を示し、図11の(b)は、比較例2における10個の半導体素子の電流-電圧特性を示す。
 図11を参照して、実施例6の半導体素子は、非常に良い整流特性を示し、逆方向飽和電流が1×10-7(A/cm)程度である。また、実施例6の半導体素子は、均一性の良い電流-電圧特性を示す(図11の(a)参照)。
 一方、比較例2の半導体素子は、整流特性が悪く、逆方向飽和電流が10-7(A/cm)~10-1(A/cm)台である。従って、比較例2の半導体素子においては、電流-電圧特性のバラツキが非常に大きい(図11の(b)参照)。
 図12は、室温における半導体素子のリーク電流と電界強度との関係を示す図である。図12において、縦軸は、リーク電流を表し、横軸は、電界強度を表す。また、曲線k1は、実施例6における半導体素子のリーク電流と電界強度との関係を示し、曲線k2は、比較例2における半導体素子のリーク電流と電界強度との関係を示す。
 図12を参照して、実施例6における半導体素子のリーク電流は、電界強度が1.4[MV/cm]までは、1×10-10[A]よりも小さく、電界強度が2[MV/cm]よりも大きくなるに従って増加する。そして、実施例6における半導体素子は、約4.0[MV/cm]の電界強度でブレークダウンする(曲線k1参照)。
 一方、比較例2における半導体素子のリーク電流は、電界強度が0.3[MV/cm]までは、1×10-8[A]以下である。そして、比較例2における半導体素子は、0.4[MV/cm]の電界強度でブレークダウンする(曲線k2参照)。
 従って、実施例6における半導体素子は、比較例2における半導体素子よりもリーク電流が小さく、ブレークダウン電界強度が10倍以上大きい。このように、大きいブレークダウン電界強度が得られるのは、単結晶ダイヤモンド層2,3の転位密度が低減されたからであると考えられる。
 ショットキー接合を有する半導体素子の電流-電圧特性は、次式によって表される。
 I=I[exp(qV/nkT)-1]・・・(1)
 式(1)において、Iは、電流であり、Vは、電圧であり、Iは、逆方向飽和電流であり、qは、素電荷であり、kは、ボルツマン定数であり、nは、理想因子である。nが理想値である“1”に近い方が電流-電圧特性が良いことを表す。
 実測した電流-電圧特性を式(1)にフィッティングすることによって、実施例6および比較例2の半導体素子についてn値を求めた。その結果、実施例6の半導体素子のn値は、1.1であり、比較例2の半導体素子のn値は、2.7であった。
 また、ショットキー接合の障壁高さ(Barrier Height)を実施例6および比較例2の半導体素子について求めた。その結果、実施例6の半導体素子の障壁高さは、1.38eVであり、比較例2の半導体素子の障壁高さは、0.95eVであった。
 このように、実施例6の半導体素子は、比較例2の半導体素子よりもn値が理想値に近く、障壁高さが大きいことが分かった。これは、上述したように単結晶ダイヤモンド層2,3の転位密度が低減されたからであると考えられる。
(実施例7)
 転位密度が1×10cm-2である高温高圧基板(HPHT製Ib基板)を基板1として用いた。そして、実施例2における基板1/単結晶ダイヤモンド層2/単結晶ダイヤモンド層3を作製した後、実施例6と同様にして、オーミック電極としてTi/Mo/Auを単結晶ダイヤモンド層3の表面に形成し、ショットキー電極としてMo/Auを単結晶ダイヤモンド層3の表面に形成して半導体素子(図3に示す構造からなる)を作製した。この場合、オーミック電極におけるTi,Mo,Auの各々の厚み、およびショットキー電極におけるMo,Auの各々の厚みは、上述したとおりである。
 図13は、室温における実施例7の半導体素子の電流-電圧特性を示す図である。図13において、縦軸は、電流密度を表し、横軸は、電圧を表す。図13を参照して、p型単結晶ダイヤモンドからなる単結晶ダイヤモンド層3をドリフト層として用いた半導体素子(ショットキー素子)は、整流特性を示すことが分かった。実施例2に示すように、単結晶ダイヤモンド層3が2.0×1018cm-3のB濃度を含んでいるのにも拘わらず、半導体素子(ショットキー素子)は、整流特性を示すことが実証された。従来の半導体素子(ショットキー素子)においては、ドリフト層が1018cm-3台のB濃度を含んでいれば、整流特性が得られない。
(実施例8)
 実施例1と同じCVD製基板を基板1として用いた。そして、実施例1における単結晶ダイヤモンド層2の形成条件と同じ形成条件を用いて熱フィラメントCVD法によってp型単結晶ダイヤモンドからなる単結晶ダイヤモンド層2を基板1上に形成し、その後、基板1/単結晶ダイヤモンド層2を熱フィラメントCVD装置から取り出し、基板1/単結晶ダイヤモンド層2をSEKI DIAMOND SYSTEMS社製の5kWマイクロ波プラズマCVD装置内の支持台上に設置した。
 そして、マイクロ波プラズマCVD装置内の圧力が5×10-5Paになるまでマイクロ波プラズマCVD装置内を真空引きした。
 引き続いて、基板温度を900℃に設定し、20sccmのメタン(CH)ガスと480sccmの水素(H)ガスとをマイクロ波プラズマCVD装置内に導入し、マイクロ波プラズマCVD装置内の圧力を15960Paに設定した。
 そして、2500Wの高周波電力を印加し、マイクロ波プラズマCVD法によって、1時間、p型単結晶ダイヤモンドからなる単結晶ダイヤモンド層3を単結晶ダイヤモンド層2上に形成した。
 その後、実施例6と同様にして、オーミック電極としてTi/Mo/Auを単結晶ダイヤモンド層3の表面に形成し、ショットキー電極としてMo/Auを単結晶ダイヤモンド層3の表面に形成して半導体素子(図3に示す構造からなる)を作製した。この場合、オーミック電極におけるTi,Mo,Auの各々の厚み、およびショットキー電極におけるMo,Auの各々の厚みは、上述したとおりである。
 p型単結晶ダイヤモンドからなる単結晶ダイヤモンド層2は、1.4μmの厚みを有し、2.5×1018cm-3のB濃度を有する。また、p型単結晶ダイヤモンドからなる単結晶ダイヤモンド層3は、5μmの厚みを有し、2×1015cm-3のB濃度を有する。
(比較例3)
 実施例1と同じCVD製基板を基板1として用いた。そして、実施例8における単結晶ダイヤモンド層3の形成条件と同じ形成条件を用いて、p型単結晶ダイヤモンドからなる単結晶ダイヤモンド層3を基板1上に形成した。単結晶ダイヤモンド層3は、5μmの厚みを有し、2×1015cm-3のB濃度を有する。
 そして、実施例6と同様にして、オーミック電極としてTi/Mo/Auを単結晶ダイヤモンド層3の表面に形成し、ショットキー電極としてMo/Auを単結晶ダイヤモンド層3の表面に形成して半導体素子を作製した。オーミック電極におけるTi,Mo,Auの各々の厚み、およびショットキー電極におけるMo,Auの各々の厚みは、実施例8と同じである。
 図14は、室温における実施例8および比較例3の半導体素子の電流-電圧特性を示す図である。図14において、縦軸は、電流密度を表し、横軸は、電圧を表す。また、図14の(a)は、実施例8における半導体素子の電流-電圧特性を示し、図14の(b)は、比較例3における半導体素子の電流-電圧特性を示す。
 図14を参照して、実施例8の半導体素子は、非常に良い整流特性を示し、逆方向飽和電流が2×10-7A未満である (図14の(a)参照)。図14の(a)においては、65個の半導体素子の電流-電圧特性を示すが、実施例8における65個の半導体素子は、非常に均一性が良い電流-電圧特性を示す。
 一方、比較例3の半導体素子においては、実施例8の半導体素子と同程度の整流特性を示す半導体素子が23個であり、42個の半導体素子は、10-7~10(A/cm)台の逆方向飽和電流を示す(図14の(b)参照)。このように、比較例3の半導体素子は、均一性が非常に悪い電流-電圧特性を示す。
 このように、実施例8の半導体素子は、非常に均一性が良い整流特性を示すが、これは、単結晶ダイヤモンド層3の転位密度が低いためであると考えられる。
 なお、図14に示す実施例8および比較例3の半導体素子の電流-電圧特性においては、順方向飽和電流密度が約10(A/cm)と同じレベルであるので、図14に示す電流-電圧特性は、電流が単結晶ダイヤモンド層3を基板1に平行な方向に流れるときの電流-電圧特性を示すものである。
 図15は、実施例8および比較例3の半導体素子の理想因子(n値)を示す図である。図15を参照して、実施例8の半導体素子は、1.29~1.50の範囲のn値を有し、比較例3の半導体素子は、1.21~5.71の範囲のn値を有する。
 このように、実施例8の半導体素子のn値は、均一性の良い分布を示し、比較例3の半導体素子のn値は、非常にバラツキの大きい分布を示す。
 図16は、実施例8および比較例3の半導体素子のバリアハイトを示す図である。図16を参照して、実施例8の半導体素子は、1.30~1.39の範囲のバリアハイトを有し、比較例3の半導体素子は、0.68~1.34のバリアハイトを有する。
 このように、実施例8の半導体素子は、バリアハイトにおいても均一性の良い分布を示し、比較例3の半導体素子は、バリアハイトにおいても非常にバラツキの大きい分布を示す。
 上述したように、電流が単結晶ダイヤモンド層3を基板1に平行な方向に流れる半導体素子(ショットキー素子)において、単結晶ダイヤモンド層2/単結晶ダイヤモンド層3の構成を採用することによって、電流-電圧特性の均一性が飛躍的に向上することが分かった。これは、実施例8の半導体素子が均一性の良いn値およびバリアハイトを有するためである。
 この発明は、単結晶ダイヤモンドおよびそれを用いた半導体素子に適用される。
 1 基板
 2,3 単結晶ダイヤモンド層
 4,5 電極
 10 単結晶ダイヤモンド
 100,100A 半導体素子。

 

Claims (8)

  1.  基板上に形成され、点欠陥を含む第1の単結晶ダイヤモンド層を備え、
     前記第1の単結晶ダイヤモンド層は、前記基板よりも低い転位密度を有する、単結晶ダイヤモンド。
  2.  前記第1の単結晶ダイヤモンド層上に配置され、前記基板よりも低い転位密度を有する第2の単結晶ダイヤモンド層を更に備える、請求項1に記載の単結晶ダイヤモンド。
  3.  前記第1の単結晶ダイヤモンド層は、タングステン、タンタル、レニウム、鉄、ニッケル、コバルト、アルミニウム、ガリウム、ゲルマニウム、イリジウムおよびリンのいずれかと、シリコンおよびモリブデンとを含む、請求項1または請求項2に記載の単結晶ダイヤモンド。
  4.  前記第2の単結晶ダイヤモンド層は、前記基板よりも2桁以上少ない転位密度を有する、請求項2または請求項3に記載の単結晶ダイヤモンド。
  5.  前記第1の単結晶ダイヤモンド層は、1μm以上の膜厚を有する、請求項1から請求項4のいずれか1項に記載の単結晶ダイヤモンド。
  6.  前記第2の単結晶ダイヤモンド層は、200μm以上の膜厚を有する、請求項2から請求項5のいずれか1項に記載の単結晶ダイヤモンド。
  7.  前記第1の単結晶ダイヤモンド層は、更に、p型ドーパントを含む、請求項2から請求項5のいずれか1項に記載の単結晶ダイヤモンド。
  8.  請求項7に記載の単結晶ダイヤモンドと、
     前記第2の単結晶ダイヤモンド層とショットキー接合を形成する第1の金属と、
     前記第1の単結晶ダイヤモンド層または前記第2の単結晶ダイヤモンド層とオーミック接合を形成する第2の金属とを備える半導体素子。

     
PCT/JP2018/034651 2017-12-20 2018-09-19 単結晶ダイヤモンドおよびそれを用いた半導体素子 WO2019123745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880081889.7A CN111492098A (zh) 2017-12-20 2018-09-19 单晶金刚石和使用该单晶金刚石的半导体元件
US16/956,499 US11355591B2 (en) 2017-12-20 2018-09-19 Single crystal diamond and semiconductor element using same
EP18890500.4A EP3730677A4 (en) 2017-12-20 2018-09-19 SINGLE CRYSTAL DIAMOND AND SEMICONDUCTOR ELEMENT WITH IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-243965 2017-12-20
JP2017243965 2017-12-20
JP2018-124605 2018-06-29
JP2018124605A JP6703683B2 (ja) 2017-12-20 2018-06-29 単結晶ダイヤモンドおよびそれを用いた半導体素子

Publications (1)

Publication Number Publication Date
WO2019123745A1 true WO2019123745A1 (ja) 2019-06-27

Family

ID=66994600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034651 WO2019123745A1 (ja) 2017-12-20 2018-09-19 単結晶ダイヤモンドおよびそれを用いた半導体素子

Country Status (1)

Country Link
WO (1) WO2019123745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840846B (zh) 2022-06-21 2024-05-01 宋健民 一種單晶鑽石晶圓及單晶鑽石的製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263594A (ja) * 1993-03-15 1994-09-20 Canon Inc ダイヤモンド結晶、ダイヤモンド結晶膜、ダイヤモンド発光素子およびそれらの形成方法
JP2012176889A (ja) * 2012-05-10 2012-09-13 Apollo Diamond Inc 合成ダイヤモンドを生成するためのシステム及び方法
JP2013517631A (ja) * 2010-01-18 2013-05-16 エレメント シックス リミテッド Cvd単結晶ダイヤモンド材料
WO2014003110A1 (ja) * 2012-06-29 2014-01-03 住友電気工業株式会社 ダイヤモンド単結晶及びその製造方法並びに単結晶ダイヤモンド工具
JP2016213409A (ja) * 2015-05-13 2016-12-15 国立研究開発法人産業技術総合研究所 不純物ドープダイヤモンド及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263594A (ja) * 1993-03-15 1994-09-20 Canon Inc ダイヤモンド結晶、ダイヤモンド結晶膜、ダイヤモンド発光素子およびそれらの形成方法
JP2013517631A (ja) * 2010-01-18 2013-05-16 エレメント シックス リミテッド Cvd単結晶ダイヤモンド材料
JP2012176889A (ja) * 2012-05-10 2012-09-13 Apollo Diamond Inc 合成ダイヤモンドを生成するためのシステム及び方法
WO2014003110A1 (ja) * 2012-06-29 2014-01-03 住友電気工業株式会社 ダイヤモンド単結晶及びその製造方法並びに単結晶ダイヤモンド工具
JP2016213409A (ja) * 2015-05-13 2016-12-15 国立研究開発法人産業技術総合研究所 不純物ドープダイヤモンド及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C. STEHLM. FISCHERS. GSELLE. BERDERMANNM.S. RAHMANM. TRAEGERO. KLEINM. SCHECK: "Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications", APPLIED PHYSICS LETTERS, vol. 103, 2013, pages 151905
KIMIYOSHI ICHIKAWAHIDEYUKI KODAMAKAZUHIRO SUZUKIATSUHITO SAWABE: "Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir", DIAMOND & RELATED MATERIALS, vol. 72, 2017, pages 114 - 118, XP029913697, DOI: 10.1016/j.diamond.2017.01.002
M. NAAMOUNA. TALLAIREP. DOPPELTA. GICCQUELJ. BARJONJ. ACHARD: "Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks", DIAMOND & RELATED MATERIALS, vol. 58, 2015, pages 62 - 68
See also references of EP3730677A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840846B (zh) 2022-06-21 2024-05-01 宋健民 一種單晶鑽石晶圓及單晶鑽石的製造方法

Similar Documents

Publication Publication Date Title
Kato et al. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface
JP4964672B2 (ja) 低抵抗率炭化珪素単結晶基板
EP2700739B1 (en) Process for producing an epitaxial silicon carbide single-crystal substrate
US8574528B2 (en) Methods of growing a silicon carbide epitaxial layer on a substrate to increase and control carrier lifetime
US20100289033A1 (en) Single-crystal silicon carbide ingot, and substrate and epitaxial wafer obtained therefrom
JP4818754B2 (ja) 炭化珪素単結晶インゴットの製造方法
US20220336589A1 (en) Contact structures for n-type diamond
JP6858384B2 (ja) 単結晶ダイヤモンドおよびそれを用いた半導体素子
CN112813409A (zh) 金刚石衬底及其制造方法
JP3769642B2 (ja) n型半導体ダイヤモンド及びその製造方法
CN104867818A (zh) 一种减少碳化硅外延材料缺陷的方法
JP4662034B2 (ja) 炭化珪素単結晶の製造方法
US8119241B2 (en) Method for manufacturing diamond monocrystal having a thin film, and diamond monocrystal having a thin film
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2019123745A1 (ja) 単結晶ダイヤモンドおよびそれを用いた半導体素子
JP2004343133A (ja) 炭化珪素製造方法、炭化珪素及び半導体装置
WO2018016403A1 (ja) 不純物ドープダイヤモンド
Kato et al. N-type doping on (001)-oriented diamond
US20210066078A1 (en) Stack comprising single-crystal diamond substrate
JP5540331B2 (ja) 電界電子放出素子及びその製造方法
JP2005354109A (ja) n型ダイヤモンドを用いた半導体デバイス
JP2017226573A (ja) 積層基板の製造方法および積層基板
US20220367643A1 (en) Method of manufacturing a silicon carbide epitaxial substrate
Teraji Chemical vapor deposition of homoepitaxial diamond films
Koizumi N-type diamond growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018890500

Country of ref document: EP

Effective date: 20200720