WO2019123722A1 - 光走査装置、光走査装置の制御方法、および光走査装置の制御プログラム - Google Patents
光走査装置、光走査装置の制御方法、および光走査装置の制御プログラム Download PDFInfo
- Publication number
- WO2019123722A1 WO2019123722A1 PCT/JP2018/031799 JP2018031799W WO2019123722A1 WO 2019123722 A1 WO2019123722 A1 WO 2019123722A1 JP 2018031799 W JP2018031799 W JP 2018031799W WO 2019123722 A1 WO2019123722 A1 WO 2019123722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polygon mirror
- light
- rotation angle
- scanning device
- laser light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
Definitions
- the present invention relates to an optical scanning device, a control method of the optical scanning device, and a control program of the optical scanning device.
- the optical scanning device emits laser light toward the measurement space, and measures the distance to an object in the measurement space from the time from the emission to reception of the reflected light.
- a polygon mirror is provided as an optical scanning means, laser light is reflected by the rotating polygon mirror to scan the measurement space, and the reflected light from the object is received by a light receiving means such as a photodiode. doing.
- the light scanning device Since the light scanning device has a constant pulse light emission period, basically, if the polygon mirror in the light scanning device is rotated at a constant speed, the scanning angle is determined from the reference position for starting the light beam scanning. Can.
- Some conventional optical scanning devices scan a laser beam so as to form a fan-shaped plane perpendicular to the road surface, and receive a reflection from a road surface and a moving object on the road, thereby moving the moving object. There is a device to detect. In such an optical scanning device, the scanning angle is calculated based on the time which is assumed to be perpendicular to the road surface after the start of the irradiation of the laser light.
- the optical scanning device may be inclined due to a time change or the like at the time of installation or after installation.
- the laser beam is not perpendicular to the road surface in a time when it is originally supposed to be perpendicular to the road surface, and an error occurs in the obtained scanning angle.
- a scanning start detection means for detecting the reference position of the scanning start of the light beam is provided, while another part along the light scanning direction of the light beam on the road surface
- a light receiving signal obtained by receiving the reflected light from the differentiating means by the light receiving means with a differentiating means for differentiating so that the reflected light quantity or the light emitting / receiving time is different from the part, and a light reception signal obtained by the light receiving means
- the scanning angle of the light beam is corrected based on the scanning start detection signal (Japanese Patent Application Laid-Open No. 10-253910).
- the prior art corrects the scanning angle, it places the differentiating means for differentiating the reflected light amount on the road surface of the road, and corrects it based on the reflected light from the differentiating means. There is. For this reason, in the prior art, correction can not be performed unless the reflected light from the differentiating means is detected, so that it is not possible to immediately correct the error in the scanning angle caused by the vibration applied to the device suddenly.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an optical scanning device capable of immediately correcting an error even when vibration is added and an error occurs in a scanning angle. It is.
- Another object of the present invention is to provide a control method of an optical scanning device capable of correcting the error immediately even when the vibration causes an error in the scanning angle.
- Another object of the present invention is to provide a control program of an optical scanning device capable of correcting the error immediately even when the vibration causes an error in the scanning angle.
- a laser light source for emitting pulsed laser light;
- a polygon mirror having at least one mirror surface for reflecting the laser light and scanning in the measurement space;
- a photodiode for receiving light reflected from an object in the measurement space;
- a motor for rotating the polygon mirror;
- a motor encoder for detecting a rotation angle of the motor;
- a polygon mirror rotation angle detection unit that detects a rotation angle of the polygon mirror;
- a control unit that controls the light emission timing of the laser light according to the rotational phase difference between the motor and the polygon mirror obtained from the signals of the motor encoder and the polygon mirror rotation angle detection unit;
- An optical scanning device for emitting pulsed laser light;
- a polygon mirror having at least one mirror surface for reflecting the laser light and scanning in the measurement space;
- a photodiode for receiving light reflected from an object in the measurement space;
- a motor for rotating the polygon mirror;
- a motor encoder for detecting a rotation angle of the motor;
- a polygon mirror rotation angle detection unit
- the control unit At the start of emission of the laser beam corresponding to the mirror surface, the control unit The light emission timing of the laser light is controlled to emit the laser light in synchronization with the signal from the motor encoder after a predetermined period has elapsed since the signal from the polygon mirror rotation angle detection unit is received.
- the optical scanning device as described in (1).
- the control unit is configured to reflect the laser light on the mirror surface and scan the mirror The light scanning device according to (1) or (2), wherein the light emission timing of the laser light is controlled so as to emit the laser light simultaneously with receiving a signal from the polygon mirror rotation angle detection unit.
- the resolution of the motor encoder is equal to or smaller than the scanning resolution of the laser beam scanned by the polygon mirror,
- the optical scanning device according to any one of the above (1) to (3), wherein the resolution of the polygon mirror rotation angle detection unit is smaller than the resolution of the motor encoder.
- control unit prevents the light emission interval of the laser light from becoming equal to or less than a predetermined interval determined in advance.
- the polygon mirror rotation angle detection unit with photo interrupter The light scanning device according to any one of (1) to (5), further including: a pin provided on the polygon mirror and blocking a light of the photo interrupter by rotation of the polygon mirror.
- a laser light source for emitting pulsed laser light;
- a polygon mirror having at least one mirror surface for reflecting the laser light and scanning in the measurement space;
- a photodiode for receiving light reflected from an object in the measurement space;
- a motor for rotating the polygon mirror;
- a motor encoder for detecting a rotation angle of the motor;
- a polygon mirror rotation angle detection unit that detects a rotation angle of the polygon mirror.
- the emission timing of the laser beam is controlled to emit the laser beam in synchronization with the signal from the motor encoder after a predetermined period has elapsed.
- the control method of the optical scanning device as described in 4.
- the resolution of the motor encoder is equal to or smaller than the scanning resolution of the laser beam scanned by the polygon mirror,
- the polygon mirror rotation angle detection unit With photo interrupter, The control method of the optical scanning device according to any one of (7) to (11), further including a pin provided on the polygon mirror and blocking a light of the photo interrupter by rotation of the polygon mirror.
- a control program of a light scanning device for causing a computer to execute the control method of a light scanning device according to any one of (7) to (12).
- laser light is reflected by the polygon mirror to scan the inside of the measurement space two-dimensionally, while the reflected light from an object or the like is reflected again by the polygon mirror and guided to the photodiode.
- the obtained information is referred to as a distance image, and includes information on the direction of the object as viewed from the laser light transmitting / receiving unit and the distance to the object.
- FIG. 1 is a cross-sectional view showing an optical scanning device according to the present embodiment.
- the light scanning device 10 includes a light emitting and receiving unit 11 and a control unit 12, and is housed in a housing 57.
- the light emitting and receiving unit 11 includes a semiconductor laser 51, a collimator lens 52, a polygon mirror 53, a lens 54, a photodiode 55, and a motor 56.
- the motor 56 is provided with a motor encoder 61 for detecting the rotational angle of the motor 56.
- the polygon mirror 53 is provided with a polygon mirror rotation angle detection unit 71 that detects the rotation angle of the polygon mirror 53.
- the control unit 12 obtains distance information (distance value) according to the time difference from the light emission of the semiconductor laser 51 to the light reception of the photodiode 55. From the obtained distance information, a distance image composed of a plurality of pixels indicating the distribution of distance values to the object in the measurement space is generated. The distance image is also referred to as distance measurement point cloud data or a distance map. Further, as described later, the control unit 12 also controls the rotation of the motor 56 constituting the light emitting and receiving unit 11 and the light emission timing of the laser light.
- FIG. 2 is a block diagram showing the configuration of the control unit 12.
- the control unit 12 is a computer, and is provided with a CPU 121 which is an arithmetic device, a RAM 122 used as a work area or temporary storage, a ROM 123 storing basic programs, and as necessary, and stores programs and parameter data.
- a nonvolatile memory 124 is provided and connected to one another by a bus 120.
- Such a configuration of the control unit 12 is the same as that of a known computer, and thus the detailed description is omitted. However, each control is performed by the CPU 121 executing a program for performing a control method described later.
- the configuration of the control unit 12 as a computer may be configured by, for example, a circuit such as a field-programmable gate array (FPGA) or an application specific integrated circuit (ASIC).
- FPGA field-programmable gate array
- ASIC application specific integrated circuit
- the light emitting and receiving unit 11 is connected to the control unit 12 through the bus 120 (directly or through an interface for connecting an external device).
- control unit 12 controls the rotational speed of the motor 56 by the signals from the motor encoder 61 and the polygon mirror rotational angle detection unit 71. Further, the control unit 12 controls the light emission timing of the laser beam emitted by the semiconductor laser 51 according to the rotational phase difference between the motor 56 and the polygon mirror 53 obtained from the signals from the motor encoder 61 and the polygon mirror rotation angle detection unit 71. Yes (more on this later).
- the semiconductor laser 51 is a laser light source, and emits pulsed laser light.
- the collimator lens 52 converts divergent light from the semiconductor laser 51 into parallel light.
- the polygon mirror 53 scans and projects the laser light collimated by the collimator lens 52 toward the measurement space by the rotating mirror surface (described later), and reflects the reflected light from the object.
- the lens 54 condenses the reflected light from the object reflected by the polygon mirror 53.
- the photodiode 55 receives the light collected by the lens 54, and has a plurality of pixels arranged in the Z direction.
- the motor 56 rotationally drives the polygon mirror 53.
- the semiconductor laser 51 and the collimator lens 52 constitute an emitting unit 501, and the lens 54 and the photodiode 55 constitute a light receiving unit 502. It is preferable that the optical axes of the light emitting unit 501 and the light receiving unit 502 be orthogonal to the polygon mirror rotation shaft 530.
- the box-like housing 57 is fixed to a part of the vehicle 100.
- the housing 57 includes an upper wall 57a, a lower wall 57b opposite to the upper wall 57a, and a side wall 57c connecting the upper wall 57a and the lower wall 57b.
- An opening 57d is formed in part of the side wall 57c, and a transparent plate 58 is attached to the opening 57d.
- the polygon mirror 53 has at least one mirror surface. In this embodiment, eight mirror surfaces are provided.
- the polygon mirror 53 is connected to the motor shaft 56 a of the motor 56 fixed to the housing 57 and is rotationally driven.
- the axis (rotational axis) of the motor shaft 56a extends in the Z direction, which is the vertical direction, and the XY plane formed by the X direction and the Y direction orthogonal to the Z direction is a horizontal plane.
- the axis of the motor shaft 56a may be inclined relative to the vertical direction.
- FIG. 3 is a front view of the polygon mirror 53
- FIG. 4 is a perspective view of the polygon mirror 53 viewed from the bottom direction
- FIG. 5 is a sectional view of the polygon mirror 53. As shown in FIG.
- the polygon mirror 53 has a shape in which two square pyramids are joined in opposite directions and integrated. Therefore, it has four pairs of mirror surfaces that are inclined in the opposite directions. As a pair of mirror surfaces, a first mirror surface M1 and a second mirror surface M2, a third mirror surface M3 and a fourth mirror surface M4 (surface not shown in FIG. 1), a fifth mirror surface M5 and a sixth mirror surface M6 A seventh mirror surface M7 and an eighth mirror surface M8 (surface not shown in FIG. 1).
- the first mirror surface M1, the third mirror surface M3, the fifth mirror surface M5, and the seventh mirror surface M7 have different inclination angles ⁇ with respect to the polygon mirror rotation axis 530.
- the second mirror surface M2, the fourth mirror surface M4, the sixth mirror surface M6, and the eighth mirror surface M8 have different inclination angles ⁇ with respect to the polygon mirror rotation axis 530.
- the inclination angles are angles ⁇ and ⁇ formed by the extension of each mirror surface and the portion where the extension intersects the polygon mirror rotation axis 530.
- FIG. 1 the inclination angle ⁇ of the first mirror surface M1 and the inclination angle ⁇ of the second mirror surface M2 are shown, but the same applies to other mirror surfaces (however, the inclination angle itself is the mirror surface as described above) Every different).
- each mirror surface is described generically or not distinguished, it is referred to as a mirror surface M.
- Each of these mirror surfaces M is formed by vapor deposition of a reflective film on the surface of a resin material (for example, PC (polycarbonate)) in the shape of the polygon mirror 53.
- a resin material for example, PC (polycarbonate)
- a ring member 75 for holding each mirror surface M is provided on the bottom of the polygon mirror 53.
- a support member 76 connected to the motor shaft 56 a is provided at a central portion (junction of two square pyramids) of the polygon mirror 53.
- the inside of the polygon mirror 53 is hollow.
- the ring member 75 is provided with pins 72 at regular intervals.
- a photo interrupter 73 is fixed in the housing 57 at a position where the pin 72 passes.
- the pin 72 and the photo interrupter 73 constitute a polygon mirror rotation angle detection unit 71.
- the pin 72 and the photo interrupter 73 are in a positional relationship in which the pin 72 passes through the inside of the notch 74 of the photo interrupter 73 as the polygon mirror 53 rotates.
- the photo interrupter 73 has a light emitter and a light receiver (not shown) in the notch 74, and the light from the light emitter is irradiated to the light receiver.
- the photo interrupter 73 outputs a pulse signal when the pin 72 passes through the notch 74 and the light is blocked.
- the pulse signal is output to the control unit 12.
- the position of the pin 72 is on the ring member 75 as shown in the figure, which corresponds to the outer periphery of the bottom surface of the polygon mirror 53.
- a motor encoder 61 is attached to the motor 56.
- the motor encoder 61 is referred to as a pulse encoder, a rotary encoder or the like, and outputs a pulse signal at a constant rotation angle in accordance with the rotation of the motor 56.
- the pulse signal is output to the control unit 12.
- the number of times of laser light emitted when scanned by the rotation of the polygon mirror 53 is called scanning resolution.
- the resolution of the motor encoder 61 is preferably equal to or less than the scanning resolution. For example, if the scanning resolution is 923 divisions per mirror surface (3692 divisions per polygon mirror rotation), the resolution of one rotation of the motor encoder 61 is 5536 divisions in this embodiment in order to make the motor encoder 61 the same resolution. And The resolution is the same as the number of pulses, and if the scanning resolution is 923 division, the laser light is scanned and projected to the 923 pulse measurement space, and if the resolution of the encoder 61 is 5536 division, 5536 pulse output per rotation It will be done.
- the resolution (5536 pulses) of the motor encoder 61 per rotation and more than the scanning resolution (3692 pulses) for 4 mirror surfaces is that the laser light is While not firing, the motor encoder 61 also outputs a pulse to indicate the angle at that portion.
- the resolution of the polygon mirror rotation angle detection unit 71 may be smaller than the resolution of the motor encoder 61.
- the resolution of the polygon mirror rotation angle detection unit 71 is determined by the number of pins 72. That is, the resolution of the polygon mirror rotation angle detection unit 71 is the number of pulses output when the pin 72 crosses the photo interrupter 73 while the polygon mirror 53 makes one rotation. In the case of the above scanning resolution, the resolution of the polygon mirror rotation angle detection unit 71 is, for example, 16 divisions (16 pulses). In this case, the number of pins 72 is sixteen.
- FIG. 6 is an explanatory view for explaining an object detection principle, and shows a state in which the inside of the measurement space of the light scanning device 10 is scanned with the laser spot light 600 which is emitted according to the rotation of the polygon mirror 53.
- divergent light intermittently emitted in a pulse form from the semiconductor laser 51 is converted into parallel light by the collimator lens 52, and is incident on the first mirror surface M 1 of the rotating polygon mirror 53. Thereafter, the light is reflected by the first mirror surface M1 and further reflected by the second mirror surface M2, and then transmitted through the transparent plate 58 toward the external measurement space, for example, as shown in FIG.
- the laser spot light 600 (shown by hatching) is scanned and projected.
- the direction in which the emitted laser spot light 600 is reflected by the objects 601 and 602 and returns as the reflected light is referred to as a light transmission / reception direction.
- the laser spot light traveling in the same light emitting and receiving direction is detected by the same pixel.
- an object 601 is a vehicle
- an object 602 is a person. Of course, buildings and structures other than these are also detected as objects.
- each mirror surface of the polygon mirror 53 has a different inclination angle with respect to the polygon mirror rotation axis 530.
- the laser light reflected by the first mirror surface M1 and the second mirror surface M2 of the first pair is horizontally from the left to the right in the region Ln1 of the measurement space according to the rotation of the polygon mirror 53. Is scanned (state of FIG. 6).
- the laser light reflected by the second mirror surface M3 and the fourth mirror surface M4 in the second pair is horizontal from the left in the second region Ln2 from the top of the measurement space according to the rotation of the polygon mirror 53. It is scanned to the right.
- the laser light reflected by the fifth mirror surface M5 of the third pair and the sixth mirror surface M6 horizontally moves the first region Ln3 from the top of the measurement space from the left It is scanned to the right.
- the laser light reflected by the seventh mirror surface M7 and the eighth mirror surface M8 of the fourth pair moves from the left to the right in the lowermost region Ln4 of the measurement space according to the rotation of the polygon mirror 53. Is scanned.
- the control unit 12 obtains distance information according to the time difference between the light emission timing of the semiconductor laser 51 and the light reception timing of the photodiode 55.
- the distance image may be transmitted to a remote monitor via a network (not shown) or the like and displayed, or may be stored in the non-volatile memory 124. Also, the obtained distance image may be stored as background image data for object detection by the background subtraction method.
- FIG. 7 is a logic block diagram for explaining the rotational speed control of motor 56.
- FIG. 8 is a timing chart of phase PI (proportional-integral) control.
- the rotation control of the motor 56 is performed by comparing the motor rotation speed which can be calculated by a signal from the motor encoder 61 (indicated as an encoder signal in the drawing) with the speed command to perform speed PI control.
- the signal of the polygon mirror rotation angle detection unit 71 is compared with the phase command (reference signal) generated by the control unit 12 according to the speed command to perform phase PI control. This can improve rotational stability even at low speeds.
- the polygon mirror 53 uses a resin material made of polycarbonate or the like, and the inside is hollow. Such polygon mirror 53 is suitable for weight reduction. However, sudden vibration is likely to cause axial shake and torsional deformation. The rotation speed of the polygon mirror 53 changes when axial deviation or torsional deformation occurs, and an error occurs in the scanning angle when scanning the laser light into the measurement space.
- a pulse-like laser is generated using pulse signals from the motor encoder 61 and the polygon mirror rotation angle detection unit 71 in order to immediately correct (in real time) such an error in the scanning angle caused by the vibration.
- the control of the light emission timing of the laser light is different between when light emission is started on each mirror surface and while the laser light is reflected on the mirror surface and scanned after the start of pulse light emission (hereinafter referred to as after pulse light emission start).
- FIG. 9 is a timing chart for explaining a control method of light emission timing at the start of light emission on each mirror surface.
- the horizontal axis represents the rotation angle of the motor shaft, and the signal of the motor encoder 61, the signal of the polygon mirror rotation angle detection unit 71, and the signal of the laser light emission timing are shown.
- the signal of laser light emission timing is output from the control unit 12 to the semiconductor laser 51, and the semiconductor laser 51 is turned on / off in accordance with this timing signal.
- FIG. 9 shows three states of the rotation stable state, the polygon delay state, and the polygon leading state.
- the illustrated light emission start pulse is a pulse indicating the light emission start time point on each mirror surface M.
- the light emission start pulse is a pulse at a position obtained by counting a predetermined number of pulses for each mirror surface M from a pulse (for example, a pulse whose pulse width is wider than other pulses) indicating the rotation angle reference output by the motor encoder 61 It is.
- the predetermined number of pulses is stored in advance in the control unit 12 and used.
- 5536 pulses which is the resolution of the motor encoder 61, are divided into four and designated for each mirror pair.
- the light emission start pulse for the pair of mirror surfaces M1 and M2 is the first pulse
- the light emission start pulse for the mirror surfaces M3 and M4 is the 1385th pulse
- the light emission start pulse for the mirror surfaces M5 and M6 is The 2769th pulse
- the light emission start pulse for the mirror surfaces M7 and M8 is the 4153th pulse.
- the end of the laser light emission for each mirror surface M is ended when, for example, the pulsed laser light is emitted until it reaches a predetermined number of times (923 pulses in the above example).
- the number of such pulses is merely an example, and is determined according to the size of the mirror surface, the scanning resolution, etc., and the present invention is not limited to the use of these numbers of pulses.
- the control unit 12 receives the pulse of the polygon mirror rotation angle detection unit 71 simultaneously with the reception of the light emission start pulse. Then, upon reception of the pulse of the polygon mirror rotation angle detection unit 71, counting of the pulse of the motor encoder 61 is started to count the second pulse and light emission is started at the same time. Thereafter, the control unit 12 synchronizes with the pulse of the motor encoder 61 to emit light. In this rotation stable state, the rotation angle A0 from the detection of the pulse of the polygon mirror rotation angle detection unit 71 to the emission of the laser beam is not corrected (there is no rotation phase difference).
- the pulse of the polygon mirror rotation angle detection unit 71 is delayed by the rotation phase difference ph1 with respect to the light emission start pulse of the motor encoder 61.
- the control unit 12 receives the pulse of the polygon mirror rotation angle detection unit 71, and detects the difference as the rotation phase difference ph1. Then, after the control unit 12 receives the pulse from the polygon mirror rotation angle detection unit 71, it starts counting the pulse of the motor encoder 61 to count the second pulse and simultaneously to start light emission. After that, the control unit 12 synchronizes the laser light with the pulse of the motor encoder 61 to emit light. In this case, after the pulse of the polygon mirror rotation angle detection unit 71 is detected, the rotation angle up to the laser light emission becomes A1, and the rotation phase difference ph1 is corrected.
- the pulse of the polygon mirror rotation angle detection unit 71 is ahead of the light emission start pulse of the motor encoder 61 by the rotation phase difference ph2.
- the control unit 12 rotates the polygon mirror before detecting the rotation start pulse of the motor encoder 61 in a state where the laser light is not emitted (or while it corresponds to the mirror surface joint in the rotation direction).
- the pulse of the angle detection unit 71 is received.
- a rotation start pulse of the motor encoder 61 is received. That is, before detecting the rotation start pulse of the motor encoder 61, the mirror surface is rotated in advance to the scanning start position. The difference between these pulses is the rotational phase difference ph2.
- the control unit 12 After receiving the pulse of the polygon mirror rotation angle detection unit 71, the control unit 12 starts counting the pulse of the motor encoder 61, counts the second pulse, and simultaneously starts light emission. Let Thereafter, the control unit 12 synchronizes with the pulse of the motor encoder 61 to emit light. As a result, the rotation angle from the detection of the pulse of the polygon mirror rotation angle detection unit 71 to the laser light emission becomes A2, and the correction according to the rotation phase difference ph2 is performed.
- the light emission timing of the laser light detects the polygon mirror rotation angle even if the rotation of the polygon mirror 53 is delayed with respect to the rotation of the motor 56 or precedes After the pulse of the unit 71 is received, counting of the pulse of the motor encoder 61 is started, and the second pulse is counted to emit light at the same time.
- the amount can be corrected to start emission of laser light. Therefore, it is possible to correct in real time the error of the scanning angle of the laser beam caused by the vibration.
- the timing at which the laser light emission start of each mirror surface M can be corrected by the same control.
- the first light emission after the pulse from the polygon mirror rotation angle detection unit 71 is detected is counted by the pulse from the motor encoder 61, and the second pulse is counted simultaneously (this two pulses).
- the period to count be a predetermined period). This is to ensure that the first light emission can be corrected after a period of time when one mirror surface moves to the next mirror surface.
- the predetermined period is not limited to two pulses, and may be a timing that can be corrected in a period in which one mirror surface moves to the next mirror surface, and after the pulse from the polygon mirror rotation angle detection unit 71 is detected.
- the pulse may be synchronized from the pulse of the motor encoder 61 detected first, or may be synchronized after counting two or more pulses. However, since the start of scanning by the next mirror surface will be delayed if the predetermined period is too long, such delay is set so as not to occur.
- FIG. 10 is a timing chart for explaining a control method of light emission timing after the start of pulse light emission.
- the horizontal axis represents the rotation angle of the motor shaft, and the signal of the motor encoder 61, the signal of the polygon mirror rotation angle detection unit 71, and the signal of the laser light emission timing are shown.
- three states of the rotation stable state, the polygon delay state A, and the polygon delay state B at another timing are shown.
- the polygon mirror rotation angle detection unit 71 is detected even when the rotation of the polygon mirror 53 precedes the rotation of the motor 56 (polygon lead state).
- the pulse will be received after the pulse of motor encoder 61 previously detected. Therefore, it is not necessary to consider the polygon leading state, and when the control unit 12 receives the pulse of the polygon mirror rotation angle detection unit 71 after receiving the pulse of the motor encoder 61, the received pulse of the motor encoder 61 and the polygon mirror
- the angular difference of the pulses of the rotation angle detection unit 71 is referred to as a rotational phase difference.
- the control of the light emission timing after the start of the pulse light emission is basically the same in both the rotation stable state and the polygon delay states A and B. That is, the control unit 12 emits the laser at the same time as receiving the pulse of the polygon mirror rotation angle detection unit 71. At this time, if the rotational phase difference is detected, it is stored in the control unit 12. Thereafter, while synchronizing with each pulse of the motor encoder 61, light emission is delayed from each pulse by the rotational phase difference.
- the detected rotational phase difference is stored as time in the RAM 122 or the like in the control unit 12 The time is counted by the internal clock (clock for computer operation) of the control unit 12 and delayed.
- the control unit 12 prohibits light emission.
- the safety standard is determined by IEC 60825-1 and JIS C6802 (domestic standard, according to IEC 60825-1) as a standard that classifies the emission level of laser products in consideration of the effects on the human body (eye and skin). ing.
- IEC 60825-1 and JIS C6802 domestic standard, according to IEC 60825-1
- allowable energy within a reference time is defined, and when there are multiple pulses within a certain time, they are calculated together as one pulse. Therefore, when a plurality of pulses emit light continuously at an extremely short time interval, it is necessary to reduce the energy of one pulse or to increase the light emission interval of the pulses.
- the present embodiment in the case where the energy becomes such that the safety standard is not satisfied by the continuous light emission, the light emission interval of the laser is opened. To this end, the present embodiment prohibits laser light emission when the light emission time interval is equal to or less than a predetermined predetermined interval. As described above, the predetermined time is determined to be the laser intensity that meets the safety standard.
- the controller 12 synchronizes with each pulse of the motor encoder 61 after emission prohibited in the polygon delay state B (that is, simultaneously with detection of a pulse of the polygon mirror rotation angle detector 71). The light is emitted with the rotational phase difference ph 4 delayed from each pulse.
- the light emission interval of the pulse can be made equal to or less than the safety standard that does not damage the human body.
- the rotation control of the motor 56 is controlled by the signal of the polygon mirror rotation angle detection unit 71 that detects the rotation angle of the motor encoder 61 and the polygon mirror 53.
- the controllability of the motor 56 is good without being affected by the shaft shake or torsional deformation of the polygon mirror 53.
- the polygon mirror rotation angle detection unit 71 is disposed on the polygon mirror 53, when an axial shake or torsional deformation of the polygon mirror 53 occurs, the change thereof can be detected with certainty.
- control unit 12 controls the light emission timing of the laser light according to the rotational phase difference between the motor 56 and the polygon mirror 53 obtained from the signals of the motor encoder 61 and the polygon mirror rotation angle detection unit 71. For this reason, it is possible to immediately (in real time) correct the error of the scanning angle caused by this rotational phase difference.
- the laser beam can be safely scanned and projected to the measurement space.
- the optical scanning device 10 of the present embodiment is suitable, for example, for a laser radar that measures in three dimensions the distance to an object (object) present in the measurement space.
- Laser radar is also referred to as LiDER (Light Detection and Ranging or Laser Imaging Detection and Ranging).
- the control program of the optical scanning device can also be realized by a dedicated hardware circuit.
- this control program is provided by a computer readable recording medium such as a USB (Universal Serial Bus) memory or a DVD (Digital Versatile Disc) -ROM (Read Only Memory), or the recording medium is not dependent on the Internet etc. It is also possible to provide online via a network.
- the control program is usually stored in a magnetic disk drive or the like that constitutes a storage unit.
- this control program can be provided as a single application software, or can be provided as one function by being incorporated into another software.
- 10 light scanning devices 11 emitting and receiving units, 12 controls, 51 semiconductor lasers, 53 polygon mirrors, 55 photodiodes, 56 motor, 56a motor shaft, 61 motor encoder, 71 polygon mirror rotation angle detection unit, 72 pins, 73 photo interrupters, 75 ring members, 120 buses, 530 Polygon mirror rotation axis.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optics & Photonics (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
本発明は、振動が加わってポリゴンミラーの走査角に誤差が生じた場合でも、即座にその誤差を補正することができる光走査装置を提供する。 本発明は、パルス状のレーザー光を出射する半導体レーザー51と、レーザー光を反射させて測定空間内で走査するためのミラー面を有するポリゴンミラー53と、測定空間内の物体から反射した光を受光するフォトダイオード55と、ポリゴンミラー53を回転させるモーター56と、モーター56の回転角を検出するモーターエンコーダー61と、ポリゴンミラー53の回転角を検出するポリゴンミラー回転角検出部71と、モーターエンコーダー61とポリゴンミラー回転角検出部71との信号から得られるモーター56とポリゴンミラー53の回転位相差に応じて、レーザー光の発光タイミングを制御する制御部12と、を有する光走査装置10である。
Description
本発明は、光走査装置、光走査装置の制御方法、および光走査装置の制御プログラムに関する。
光走査装置は、レーザー光を測定空間へ向けて発射し、その発射から反射光の受光までの時間などから測定空間内の物体までの距離を測定する。
従来、このような光走査装置では、光走査手段としてポリゴンミラーを備え、回転するポリゴンミラーにレーザー光を反射させて測定空間を走査し、物体からの反射光をフォトダイオードなどの受光手段で受光している。
光走査装置はパルス発光の周期を一定にしているので、光走査装置内のポリゴンミラーを一定速度で回転させれば、基本的には、光ビームの走査開始の基準位置から走査角を求めることができる。
従来の光走査装置の中には、レーザー光を道路の路面に対して垂直な扇状の平面となるように走査して、路面および道路上の移動体からの反射を受光することで移動体を検知する装置がある。このような光走査装置では、レーザー光を照射開始してからレーザー光が路面に対して垂直になると想定される時間を基にして走査角を算出している。
光走査装置では、設置の際、あるいは設置後の経時変化等によって、光走査装置が傾いてしまうことがある。そうなると、本来レーザー光が路面に対して垂直になると想定される時間では、レーザー光が路面に対して垂直にならず、求められた走査角に誤差が生じてしまう。
従来、このような走査角の誤差を補正するために、光ビームの走査開始の基準位置を検出する走査開始検出手段を備える一方、路面上に光ビームの光走査方向に沿う一部が他の部分に比べて反射光量あるいは投受光時間が異なるように差別化する差別化手段を置いて、差別化手段からの反射光を受光手段で受光して得られる受光信号と、走査開始検出手段からの走査開始検出信号とに基づいて光ビームの走査角を補正している(特開平10-253910号公報)。
ところで、光走査装置は、自動車などの移動体に設置した場合においては、突発的な振動が装置に加わることがある。このような場合、光走査装置は、加わった振動によってポリゴンミラーの回転が乱れて、走査角に誤差が生じ、レーザー光の発射方向にむらができてしまうことがある。
しかしながら、従来の技術は、走査角の補正を行っているものの、道路の路面上に反射光量を差別化する差別化手段を置いて、この差別化手段からの反射光を基に補正を行っている。このため従来の技術では、差別化手段からの反射光を検出しなければ補正ができないので、突発的に装置に加わる振動によって発生した走査角の誤差については即座に補正することができない。
本発明は、上記事情に鑑みなされたものであり、本発明の目的は、振動が加わって走査角に誤差が生じた場合でも、即座にその誤差を補正することができる光走査装置を提供することである。
また、本発明の他の目的は、振動が加わって走査角に誤差が生じた場合でも、即座にその誤差を補正することができる光走査装置の制御方法を提供することである。
さらに、本発明の他の目的は、振動が加わって走査角に誤差が生じた場合でも、即座にその誤差を補正することができる光走査装置の制御プログラムを提供することである。
本発明の上記目的は、下記の手段によって達成される。
(1)パルス状のレーザー光を出射するレーザー光源と、
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する制御部と、
を有する、光走査装置。
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する制御部と、
を有する、光走査装置。
(2)前記制御部は、前記ミラー面に対応したレーザー光の発光開始時において、
前記ポリゴンミラー回転角検出部からの信号を受信してから所定期間経過後、前記モーターエンコーダーからの信号に同期させて前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(1)に記載の光走査装置。
前記ポリゴンミラー回転角検出部からの信号を受信してから所定期間経過後、前記モーターエンコーダーからの信号に同期させて前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(1)に記載の光走査装置。
(3)前記制御部は、前記レーザー光を前記ミラー面に反射させて走査している間において、
前記ポリゴンミラー回転角検出部からの信号を受信すると同時に前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(1)または(2)に記載の光走査装置。
前記ポリゴンミラー回転角検出部からの信号を受信すると同時に前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(1)または(2)に記載の光走査装置。
(4)前記モーターエンコーダーの分解能は、前記ポリゴンミラーによって走査される前記レーザー光の走査分解能と同じか、または当該走査分解能より小さく、
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、上記(1)~(3)のいずれか1つに記載の光走査装置。
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、上記(1)~(3)のいずれか1つに記載の光走査装置。
(5)前記制御部は、前記レーザー光の発光間隔があらかじめ決められた所定間隔以下にならないようにする、上記(1)~(4)のいずれか1つに記載の光走査装置。
(6)前記ポリゴンミラー回転角検出部は、
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンと、を有する、上記(1)~(5)のいずれか1つに記載の光走査装置。
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンと、を有する、上記(1)~(5)のいずれか1つに記載の光走査装置。
(7)パルス状のレーザー光を出射するレーザー光源と、
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、を有する光走査装置の制御方法であって、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する、光走査装置の制御方法。
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、を有する光走査装置の制御方法であって、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する、光走査装置の制御方法。
(8)前記ミラー面に対応したレーザー光の発光開始時においては、
前記ポリゴンミラー回転角検出部からの信号を受信後、所定期間経過後、前記モーターエンコーダーからの信号に同期させてレーザー光を発光させるように前記レーザー光の発光タイミングを制御する、上記(7)に記載の光走査装置の制御方法。
前記ポリゴンミラー回転角検出部からの信号を受信後、所定期間経過後、前記モーターエンコーダーからの信号に同期させてレーザー光を発光させるように前記レーザー光の発光タイミングを制御する、上記(7)に記載の光走査装置の制御方法。
(9)前記レーザー光を前記ミラー面に反射させて走査している間においては、
前記ポリゴンミラー回転角検出部からの信号を受信すると同時にレーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(7)または(8)に記載の光走査装置の制御方法。
前記ポリゴンミラー回転角検出部からの信号を受信すると同時にレーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、上記(7)または(8)に記載の光走査装置の制御方法。
(10)前記モーターエンコーダーの分解能は、前記ポリゴンミラーによって走査される前記レーザー光の走査分解能と同じか、または当該走査分解能より小さく、
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、上記(7)~(9)のいずれか1つに記載の光走査装置の制御方法。
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、上記(7)~(9)のいずれか1つに記載の光走査装置の制御方法。
(11)前記レーザー光の発光間隔があらかじめ決められた所定間隔以下にならないようにする、上記(7)~(10)のいずれか1つに記載の光走査装置の制御方法。
(12)前記ポリゴンミラー回転角検出部は、
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンを有する、上記(7)~(11)のいずれか1つに記載の光走査装置の制御方法。
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンを有する、上記(7)~(11)のいずれか1つに記載の光走査装置の制御方法。
(13)上記(7)~(12)のいずれか1つに記載の光走査装置の制御方法をコンピューターに実行させるための、光走査装置の制御プログラム。
(14)上記(13)に記載の制御プログラムを記録したコンピューター読み取り可能な記録媒体。
以下、図面を参照して、本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
本実施形態の光走査装置は、ポリゴンミラーにレーザー光を反射させて測定空間内を二次元的に走査する一方、物体などからの反射光を再びポリゴンミラーに反射させてフォトダイオードへ導く。これにより、測定空間を向いた複数の方向に関する情報を得ることができる。得られた情報は距離画像と称し、レーザー光の送受部から見た物体の方向と、その物体までの距離という情報を有する。
図1は、本実施形態に係る光走査装置を示す断面図である。
光走査装置10は、投受光ユニット11、および制御部12を備え、筐体57に収容されている。
投受光ユニット11は、半導体レーザー51、コリメートレンズ52、ポリゴンミラー53、レンズ54、フォトダイオード55、およびモーター56を有する。
後述するように(図2~5参照)、モーター56には、モーター56の回転角度を検出するモーターエンコーダー61が設けられている。ポリゴンミラー53には、ポリゴンミラー53の回転角度を検出するポリゴンミラー回転角検出部71が設けられている。
制御部12は、半導体レーザー51の発光からフォトダイオード55の受光までの時間差に応じて距離情報(距離値)を求める。得られた距離情報から、測定空間内の物体までの距離値の分布を示す複数の画素で構成される距離画像が生成される。距離画像は測距点群データまたは距離マップとも称される。また、制御部12は、後述するように、投受光ユニット11を構成するモーター56の回転制御およびレーザー光の発光タイミングも制御している。
図2は、制御部12の構成を示すブロック図である。
制御部12は、コンピューターであり、演算装置であるCPU121、ワークエリアや一時記憶に用いられるRAM122、基本プログラムを記憶しているROM123、および必要に応じて設けられ、プログラムやパラメーターデータなどを記憶する不揮発性メモリ124を有し、互いにバス120によって接続されている。制御部12のこのような構成は、周知のコンピューターと同様であるので詳細な説明は省略するが、後述する制御方法を行うためのプログラムがCPU121により実行されることで、各制御が行われる。なお、コンピューターとしての制御部12の構成は、たとえば、FPGA(Field-Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などの回路によって構成されていてもよい。
制御部12には、バス120を通じて(直接または外部機器接続のためのインターフェースを介して)投受光ユニット11が接続されている。
また、制御部12は、モーターエンコーダー61およびポリゴンミラー回転角検出部71からの信号によりモーター56の回転速度を制御している。また、制御部12は、モーターエンコーダー61およびポリゴンミラー回転角検出部71からの信号から得られるモーター56とポリゴンミラー53の回転位相差に応じて、半導体レーザー51が発するレーザー光の発光タイミングを制御している(詳細後述)。
半導体レーザー51は、レーザー光源であり、パルス状のレーザー光を出射する。コリメートレンズ52は、半導体レーザー51からの発散光を平行光に変換する。ポリゴンミラー53は、コリメートレンズ52で平行とされたレーザー光を、回転するミラー面(後述)により測定空間に向かって走査投光するとともに、物体からの反射光を反射させる。レンズ54は、ポリゴンミラー53で反射された物体からの反射光を集光する。フォトダイオード55は、レンズ54により集光された光を受光し、Z方向に並んだ複数の画素を有する。モーター56はポリゴンミラー53を回転駆動する。
半導体レーザー51とコリメートレンズ52とで出射部501を構成し、レンズ54とフォトダイオード55とで受光部502を構成する。出射部501、受光部502の光軸は、ポリゴンミラー回転軸530に対して直交していることが好ましい。
ボックス状の筐体57は、車両100の一部に固定されている。筐体57は、上壁57aと、これに対向する下壁57bと、上壁57aと下壁57bとを連結する側壁57cとを有する。側壁57cの一部に開口57dが形成され、開口57dには透明板58が取り付けられている。
ポリゴンミラー53は、少なくとも1つのミラー面を有する。本実施形態では8面のミラー面を有している。ポリゴンミラー53は、筐体57に固定されたモーター56のモーター軸56aに連結され、回転駆動される。本実施形態では、たとえば、モーター軸56aの軸線(回転軸線)が鉛直方向であるZ方向に延在しており、Z方向に直交するX方向およびY方向よりなるXY平面が水平面となっているが、モーター軸56aの軸線を鉛直方向に対して傾けても良い。
ポリゴンミラー53およびモーター56の詳細を説明する。図3はポリゴンミラー53の正面図、図4はポリゴンミラー53を底面方向から見た斜視図、および図5はポリゴンミラー53の断面図である。
ポリゴンミラー53は、2つの四角錐を逆向きに接合して一体化した形状を有している。したがって、対になって向き合う方向に傾いたミラー面を4対有している。一対のミラー面としては、第1ミラー面M1と第2ミラー面M2、第3ミラー面M3と第4ミラー面M4(図1で図示されない面)、第5ミラー面M5と第6ミラー面M6、第7ミラー面M7と第8ミラー面M8(図1で図示されない面)である。第1ミラー面M1、第3ミラー面M3、第5ミラー面M5、第7ミラー面M7は、互いにポリゴンミラー回転軸530に対する傾斜角αが異なる。同様に第2ミラー面M2、第4ミラー面M4、第6ミラー面M6、第8ミラー面M8は、互いにポリゴンミラー回転軸530に対する傾斜角βが異なる。傾斜角は各ミラー面の延長線と、この延長線がポリゴンミラー回転軸530と交わる部分のなす角αおよびβである。図1においては、第1ミラー面M1の傾斜角αと第2ミラー面M2の傾斜角βを示したが、他のミラー面においても同様である(ただし傾斜角そのものは既に説明したとおりミラー面ごとに異なる)。なお、各ミラー面を総称または区別しないで記す場合はミラー面Mとする。
これら各ミラー面Mは、ポリゴンミラー53の形状をした樹脂素材(たとえばPC(ポリカーボネート))の表面に、反射膜を蒸着することにより形成されている。
ポリゴンミラー53の底面部分は、各ミラー面Mを保持するためのリング部材75が設けられている。ポリゴンミラー53の中央部(2つの四角錐の接合部分)にモーター軸56aと接続される支持部材76が設けられている。ポリゴンミラー53の内部は中空である。
リング部材75には、一定間隔でピン72が設けられている。一方、筐体57内部にはピン72が通過する位置にフォトインタラプター73が固定されている。ピン72とフォトインタラプター73によりポリゴンミラー回転角検出部71を構成している。ピン72とフォトインタラプター73は、ポリゴンミラー53が回転することで、ピン72がフォトインタラプター73の切り欠き74内を通過する位置関係にある。フォトインタラプター73は、周知のように切り欠き74内に発光器と受光器(不図示)を有していて、発光器からの光が受光器へ照射されている。フォトインタラプター73は、ピン72が切り欠き74を通過して光が遮られることでパルス信号を出力する。このパルス信号は、制御部12へ出力される。
このピン72の位置は、図示するように、リング部材75上であり、これはポリゴンミラー53の底面の外周に相当する位置である。このようなポリゴンミラー53の底面の外周にピン72を設けたことで、回転軸の近くに取り付けるよりも、ポリゴンミラー53の速度の変化をとらえやすくなる。
モーター56には、モーターエンコーダー61が取り付けられている。モーターエンコーダー61は、パルスエンコーダー、ロータリーエンコーダーなどと称されており、モーター56の回転に合わせて一定の回転角度ごとにパルス信号を出力する。このパルス信号は、制御部12へ出力される。
ポリゴンミラー53の回転によって走査される際に発射されるレーザー光の回数を走査分解能という。モーターエンコーダー61の分解能は、走査分解能と同じか、またはそれより小さいことが好ましい。たとえば、走査分解能がミラー1面当たり923分割とした場合(ポリゴンミラー1回転では3692分割)、モーターエンコーダー61を同じ分解能とするために、本実施形態ではモーターエンコーダー61の1回転の分解能を5536分割とした。分解能は、すなわちパルス数と同じであり、走査分解能が923分割であればレーザー光を923パルス測定空間に走査投光するものとなり、エンコーダー61の分解能が5536分割であれば1回転で5536パルス出力するものとなる。
上記の例では、モーターエンコーダー61の分解能(5536パルス)が1回転当たり、ミラー4面分の走査分解能(3692パルス)より多いのは、回転方向に隣接するミラー面の接続部分では、レーザー光を発射しない一方、モーターエンコーダー61ではその部分でも角度を示すためのパルスを出力するからである。
一方、ポリゴンミラー回転角検出部71の分解能は、モーターエンコーダー61の分解能より小さくてよい。ポリゴンミラー回転角検出部71の分解能は、ピン72の数によって決まる。つまりポリゴンミラー回転角検出部71の分解能は、ポリゴンミラー53が1回転する間に、ピン72がフォトインタラプター73を横切ることで出力されるパルス数となる。上記の走査分解能の場合、ポリゴンミラー回転角検出部71の分解能は、たとえば、16分割(16パルス)とする。この場合、ピン72の数は16個である。もちろんこの値は、さらに多くてもよいが、あまり多くすると1回転当たりの補正処理(詳細後述)の回数が多くなりすぎて、処理が追い付かなくなる可能性があるので、補正処理ができる範囲の分解能(ピン72の数)とする。
次に、光走査装置10の物体検出原理について説明する。図6は物体検出原理について説明する説明図であり、ポリゴンミラー53の回転に応じて、出射するレーザースポット光600で光走査装置10の測定空間内を走査する状態を示している。
図1において半導体レーザー51からパルス状に間欠的に出射された発散光は、コリメートレンズ52で平行光に変換され、回転するポリゴンミラー53の第1ミラー面M1に入射する。その後、第1ミラー面M1で反射され、さらに第2ミラー面M2で反射した後、透明板58を透過して外部の測定空間に向けて、たとえば、図6に示すように、縦長の矩形断面を持つレーザースポット光600(ハッチングで示す)として走査投光される。なお、出射されたレーザースポット光600が物体601や602で反射し、反射光として戻ってくる方向を投受光方向という。同一の投受光方向に進行するレーザースポット光は、同一の画素で検出される。図において物体601は車両であり、物体602は人である。もちろんこれら以外の建物や構造物なども物体として検知される。
ここで、ポリゴンミラー53の各ミラー面は、既に説明したように、ポリゴンミラー回転軸530に対する傾斜角が異なっている。まず、1番対の第1ミラー面M1と第2ミラー面M2にて反射したレーザー光は、ポリゴンミラー53の回転に応じて、測定空間の一番上の領域Ln1を水平方向に左から右へと走査される(図6の状態)。次に、2番対の第3ミラー面M3と第4ミラー面M4で反射したレーザー光は、ポリゴンミラー53の回転に応じて、測定空間の上から2番目の領域Ln2を水平方向に左から右へと走査される。次に、3番対の第5ミラー面M5と第6ミラー面M6で反射したレーザー光は、ポリゴンミラー53の回転に応じて、測定空間の上から1番目の領域Ln3を水平方向に左から右へと走査される。次に、4番対の第7ミラー面M7と第8ミラー面M8で反射したレーザー光は、ポリゴンミラー53の回転に応じて、測定空間の最も下の領域Ln4を水平方向に左から右へと走査される。
このようにして光走査装置10が測定可能な測定空間全体の1回の走査が完了する。この領域Ln1~Ln4の走査により得られた画像を組み合わせて、1つのフレームFLが得られる。そして、ポリゴンミラー53が1回転した後、再び1番対の第1ミラー面M1と第2ミラー面M2に戻り、以降は測定空間の一番上の領域Ln1から最も下の領域Ln4までの走査を繰り返し、次のフレームFLが得られる。
図1において、走査投光されたレーザー光のうち物体に当たって反射したレーザー光の一部は、再び透明板58を透過して筐体57内のポリゴンミラー53の第2ミラー面M2に入射し、ここで反射され、さらに第1ミラー面M1で反射されて、レンズ54により集光され、それぞれフォトダイオード55の受光面で画素ごとに検知される。このとき、制御部12が半導体レーザー51の発光タイミングとフォトダイオード55の受光タイミングとの時間差に応じて距離情報を求める。これにより測定空間内の全領域で物体の検出を行って、画素ごとに距離情報を持つ距離画像としてのフレームFLを得ることができる。なお、かかる距離画像は、不図示のネットワーク等を介して遠方のモニターに送信されて表示されたり、不揮発性メモリ124に記憶されたりする。また、得られた距離画像を背景差分法による物体検出のために背景画像データとして記憶してもよい。
次に、制御について説明する。
図7は、モーター56の回転速度制御を説明するための論理ブロック図である。図8は、位相PI(proportional-integral)制御のタイミングチャートである。
モーター56の回転制御は、モーターエンコーダー61からの信号(図中、エンコーダー信号と記した)で算出できるモーター回転速度を速度指令と比較して速度PI制御を行いつつ、図8に示すように、ポリゴンミラー回転角検出部71の信号と、速度指令に合わせて制御部12で生成される位相指令(基準信号)とを比較して位相PI制御を行う。これにより、低速でも回転安定性を高めることができる。
次に、レーザー光の発光制御を説明する。
ポリゴンミラー53は、既に説明したようにポリカーボネートなどを用いた樹脂素材を使用していて、しかも内部が中空である。このようなポリゴンミラー53は、軽量化に向いている。しかし、突発的な振動で、軸ブレやねじれ変形を起こしやすい。ポリゴンミラー53は、軸ブレやねじれ変形を起こすと回転速度が変化して、レーザー光を測定空間に走査する際の走査角に誤差が生じてしまう。
ポリゴンミラー53のような回転体の振動耐性を上げるためには、高速に回転させてフライホイール効果を大きく発生させることが考えられる。しかし、光走査装置10ではポリゴンミラー53を高速回転させると受光データの処理が追い付かない問題が発生したり、レーザー光のパルス発光間隔が目に障害を与えない光強度の安全基準を超えるほど短くなったりしてしまうおそれがある。このため、ポリゴンミラー53の回転速度は300~3000rpm程度の低速回転にする必要がある。このようなことから、ポリゴンミラー53を高速回転できないため、振動が加わると回転速度に変化が生じて走査角に誤差が生じやすいのである。
本実施形態では、このような振動起因の走査角の誤差を即座(リアルタイム)に補正するために、モーターエンコーダー61とポリゴンミラー回転角検出部71とからのパルス信号を用いて、パルス状のレーザー光の発光タイミングを制御することとした。
レーザー光の発光タイミングの制御は、各ミラー面における発光開始時と、パルス発光開始後レーザー光をミラー面に反射させて走査している間(以下パルス発光開始後という)で異なる。
各ミラー面における発光開始時の発光タイミングの制御方法を説明する。図9は、各ミラー面における発光開始時の発光タイミングの制御方法を説明するためのタイミングチャートである。図9においては、横軸をモーター軸の回転角度として、モーターエンコーダー61の信号、ポリゴンミラー回転角検出部71の信号、およびレーザー発光タイミングの信号について示した。レーザー発光タイミングの信号は、制御部12から半導体レーザー51へ出力され、半導体レーザー51は、このタイミング信号に合わせて点消灯する。
また、図9においては、回転安定状態、ポリゴン遅延状態、およびポリゴン先行状態の3つの状態を示している。図示した発光開始パルスは、各ミラー面Mにおける発光開始時点を示すパルスである。この発光開始パルスは、モーターエンコーダー61が出力している回転角基準を示すパルス(たとえば他のパルスよりパルス幅が広いパルス)から、各ミラー面Mごとに所定のパルス数をカウントした位置のパルスである。この所定のパルス数は、あらかじめ制御部12に記憶しておいて使用する。上述した走査分解能923パルスの例では、モーターエンコーダー61の分解能である5536パルスを4分割して各ミラー対ごとに指定することになる。そうすると所定のパルス数は、一対のミラー面M1およびM2に対する発光開始パルスを1パルス目とした場合、ミラー面M3およびM4に対する発光開始パルスは1385パルス目、ミラー面M5およびM6に対する発光開始パルスは2769パルス目、ミラー面M7およびM8に対する発光開始パルスは4153パルス目となる。一方、各ミラー面Mごとのレーザー発光の終了は、たとえばパルス状のレーザー光をあらかじめ決められた回数(上記の例では923パルス)となるまで発光させたら終了とする。なお、このようなパルス数はあくまでも例示であり、ミラー面の大きさや走査分解能などに応じて決定されるものであって、本発明はこれらパルス数を用いることに限定されるものではない。
図9を参照して説明する。回転安定状態は、モーターエンコーダー61の発光開始パルスとポリゴンミラー回転角検出部71のパルスが一致している状態である。この状態の場合、制御部12は、発光開始パルス受信と同時にポリゴンミラー回転角検出部71のパルスを受信する。そしてポリゴンミラー回転角検出部71のパルスを受信から、モーターエンコーダー61のパルスのカウントを開始して2パルス目をカウントすると同時に発光を開始させる。その後、制御部12は、モーターエンコーダー61のパルスに同期させて発光させる。この回転安定状態においては、ポリゴンミラー回転角検出部71のパルスが検出された後からレーザー光発光までの回転角A0は補正なし(回転位相差なし)となる。
なお、本明細書において、上記「同時」とは、制御部12などの回路遅延分の差があっても同時と見做す。
ポリゴン遅延状態は、モーターエンコーダー61の発光開始パルスに対して、ポリゴンミラー回転角検出部71のパルスが回転位相差ph1分遅れている状態である。この状態では、制御部12はモーターエンコーダー61の回転開始パルスを受信後、ポリゴンミラー回転角検出部71のパルスを受信することになり、その差を回転位相差ph1として検出する。そして、制御部12は、ポリゴンミラー回転角検出部71のパルスを受信してから、モーターエンコーダー61のパルスのカウントを開始して2パルス目をカウントすると同時に発光を開始させる。その後、制御部12は、レーザー光をモーターエンコーダー61のパルスに同期させて発光させる。この場合、ポリゴンミラー回転角検出部71のパルスが検出された後からレーザー光発光までの回転角がA1となって、回転位相差ph1が補正されることになる。
ポリゴン先行状態は、モーターエンコーダー61の発光開始パルスに対して、ポリゴンミラー回転角検出部71のパルスが回転位相差ph2分進んでいる状態である。この状態では、制御部12は、レーザー光を発光させていない状態で(または回転方向のミラー面接合部に相当する間において)、モーターエンコーダー61の回転開始パルスを検出する前に、ポリゴンミラー回転角検出部71のパルスを受信する。その後、モーターエンコーダー61の回転開始パルスを受信する。つまり、モーターエンコーダー61の回転開始パルスを検出する前に、ミラー面は走査開始位置まで先行して回転しているのである。これらパルスの差が回転位相差ph2となる。このようなポリゴン先行状態においては、制御部12は、ポリゴンミラー回転角検出部71のパルスを受信してから、モーターエンコーダー61のパルスのカウントを開始して2パルス目をカウントすると同時に発光を開始させる。その後、制御部12は、モーターエンコーダー61のパルスに同期させて発光させる。これにより、ポリゴンミラー回転角検出部71のパルスが検出された後からレーザー光発光までの回転角がA2となって、回転位相差ph2に応じた補正が行われることになる。
このように各ミラー面におけるレーザー発光開始においては、レーザー光の発光タイミングは、ポリゴンミラー53の回転がモーター56の回転に対して遅延していても、先行していても、ポリゴンミラー回転角検出部71のパルスを受信してから、モーターエンコーダー61のパルスのカウントを開始して、2パルス目をカウントすると同時に発光させている。これにより、ポリゴンミラー53の回転速度が振動によって変化したとしても、その分を補正してレーザー光の発光を開始させることができる。したがって、振動で起こるレーザー光の走査角の誤差をリアルタイムで補正することができる。しかも、回転安定状態、ポリゴン遅延状態、およびポリゴン先行状態のいずれの状態でも、同じ制御により各ミラー面Mごとのレーザー光の発光開始のタイミングを補正することができる。
ここでは、ポリゴンミラー回転角検出部71からのパルスが検出された後の最初の発光を、モーターエンコーダー61からのパルスをカウントして、2パルス目をカウントすると同時に発光させている(この2パルスカウントする期間を所定期間とする)。これは、1のミラー面から次のミラー面に移る期間後、最初の発光で確実に補正できるようにするためである。この所定期間は、2パルスに限定されず、1のミラー面から次のミラー面に移る期間で補正できるようなタイミングであればよく、ポリゴンミラー回転角検出部71からのパルスが検出された後、最初に検出されたモーターエンコーダー61のパルスから同期させてもよいし、2パルス以上カウントしてから同期させてもよい。ただし、所定期間が長すぎると、次のミラー面による走査開始が遅くなるので、そのような遅延が発生しないように設定する。
次に、パルス発光開始後、レーザー光を反射させて走査している間における発光タイミングの制御方法を説明する。図10は、パルス発光開始後における発光タイミングの制御方法を説明するためのタイミングチャートである。図10においても図9同様に、横軸をモーター軸の回転角度として、モーターエンコーダー61の信号、ポリゴンミラー回転角検出部71の信号、およびレーザー発光タイミングの信号について示した。また、ここでは回転安定状態、ポリゴン遅延状態A、および別のタイミングとなるポリゴン遅延状態Bの3つの状態を示している。ここでパルス発光開始後の発光では、モーター56の回転に対してポリゴンミラー53の回転が先行している状態(ポリゴン先行状態)であっても、検出されるポリゴンミラー回転角検出部71からのパルスは、その前に検出されたモーターエンコーダー61のパルスの後に受信することになる。このためポリゴン先行状態は考慮する必要はなく、制御部12がモーターエンコーダー61のパルスを受信後、ポリゴンミラー回転角検出部71のパルスを受信したなら、それら受信したモーターエンコーダー61のパルスとポリゴンミラー回転角検出部71のパルスの角度差が回転位相差ということになる。
また、ここで例示した処理においては、回転位相差として検出された角度の間には、さらに細かい角度を検出する信号がない。このため、位相差の間の細かい角度は対応する時間を用いて制御する。もちろん位相差として検出された角度の間に、さらに細かい角度を検出する信号がある場合は、それを利用してもよい。
パルス発光開始後における発光タイミングの制御は、基本的には、回転安定状態もポリゴン遅延状態AおよびBのいずれでも同じである。すなわち、制御部12は、ポリゴンミラー回転角検出部71のパルスを受信すると同時にレーザーを発光させる。このとき、回転位相差が検出されれば制御部12内で記憶される。その後は、モーターエンコーダー61の各パルスと同期をとりつつ、各パルスから回転位相差分だけ遅らせて発光させる。モーターエンコーダー61の各パルスと同期をとりつつ、各パルスから回転位相差分だけ遅らせて発光させるためには、たとえば、制御部12内のRAM122などに、検出した回転位相差を時間として記憶しておき、その時間分、制御部12の内部クロック(コンピューター動作ためのクロック)によりカウントして遅らせる。
したがって、回転安定状態の場合は、回転位相差は0であるので、そのままモーターエンコーダー61の各パルスに合わせて発光させる。ポリゴン遅延状態Aの場合は、モーターエンコーダー61の各パルスと同期をとりつつ、各パルスから回転位相差ph3分遅らせて発光させる。
ポリゴン遅延状態Bにおいては、ポリゴンミラー回転角検出部71のパルスを受信すると同時にレーザーを発光させると、その前の発光との時間間隔が極めて短いものとなる。このような場合、制御部12は発光を禁止することとした。
この発光禁止は安全基準を考慮したもので、安全基準よりも時間間隔が短くなる場合に発光禁止としたのである。安全基準は、IEC 60825-1およびJIS C6802(国内規格、IEC 60825-1に準拠)により、人体(目や皮膚)への影響を考慮してレーザー製品の放出レベルをクラス分けした規格として決められている。これらの規格では、基準時間内の許容エネルギーが規定されていて、ある時間内に複数パルスが存在する場合はそれらを合わせて1つのパルスと見做して計算される。したがって、複数のパルスが極めて短い時間間隔で連続発光する場合、1パルスのエネルギーを少なくするか、パルスの発光間隔を長くする必要がある。本実施形態では連続発光により安全基準を満たさなくなるようなエネルギーとなる場合に、レーザーの発光間隔を開けることとした。このために、本実施形態は、発光時間間隔があらかじめ決められた所定間隔以下となる場合にレーザー発光を禁止する。この所定時間は既に説明したように、安全基準を満たすレーザー強度となるように決められるものである。
制御部12は、ポリゴン遅延状態Bにおいては禁止された発光(すなわち、ポリゴンミラー回転角検出部71のパルスが検出されると同時)の後は、モーターエンコーダー61の各パルスと同期をとりつつ、各パルスから回転位相差ph4分遅らせて発光させる。
これによりパルス発光開始後においても、回転安定状態、ポリゴン遅延状態(ポリゴン先行状態も同じ)のいずれであっても、リアルタイムで走査角の補正が行われる。しかも、しかも、パルスの発光間隔を人体に障害を与えない安全基準以下にすることができる。
本実施形態によれば以下の効果を奏する。
モーター56の回転制御を、モーターエンコーダー61とポリゴンミラー53の回転角を検出するポリゴンミラー回転角検出部71の信号により制御することとした。特に、モーターエンコーダー61は、モーター軸56aに直結しているため、ポリゴンミラー53の軸ブレやねじれ変形の影響を受けずモーター56の制御性が良い。一方、ポリゴンミラー回転角検出部71はポリゴンミラー53に配置するので、ポリゴンミラー53の軸ブレやねじれ変形が起きた場合に、それらの変化を確実に検出することができる。
そして、制御部12がモーターエンコーダー61とポリゴンミラー回転角検出部71の信号から得られるモーター56とポリゴンミラー53との回転位相差に応じてレーザー光の発光タイミングを制御することとした。このため、この回転位相差によって発生する走査角の誤差を即座に(リアルタイムで)補正することができる。
また、レーザー光の発光間隔が安全基準を満たさなくなるような場合には、その分の発光を禁止することとした。このため補正された発光タイミングであっても、安全にレーザー光を測定空間に走査投光することができる。
本実施形態の光走査装置10は、たとえば、測定空間に存在する物体(対象物)までの距離を3次元測定するレーザーレーダーに好適である。レーザーレーダーは、LiDER(Light Detection and Ranging、またはLaser Imaging Detection and Ranging)と称されることもある。
本発明に係る光走査装置の制御プログラムは、専用のハードウェア回路によって実現することも可能である。また、この制御プログラムは、USB(Universal Serial Bus)メモリやDVD(Digital Versatile Disc)-ROM(Read Only Memory)などのコンピューター読み取り可能な記録媒体によって提供したり、記録媒体によらず、インターネットなどのネットワークを介してオンラインで提供したりすることも可能である。この場合、この制御プログラムは、通常、記憶部を構成する磁気ディスク装置等に記憶される。また、この制御プログラムは、単独のアプリケーションソフトウェアとして提供したり、一機能として別のソフトウェアに組み込んで提供したりすることも可能である。
以上本発明を適用した実施形態を説明したが、本発明は、これら実施形態に限定されるものではない。本発明は特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。
10 光走査装置、
11 投受光ユニット、
12 制御部、
51 半導体レーザー、
53 ポリゴンミラー、
55 フォトダイオード、
56 モーター、
56a モーター軸、
61 モーターエンコーダー、
71 ポリゴンミラー回転角検出部、
72 ピン、
73 フォトインタラプター、
75 リング部材、
120 バス、
530 ポリゴンミラー回転軸。
11 投受光ユニット、
12 制御部、
51 半導体レーザー、
53 ポリゴンミラー、
55 フォトダイオード、
56 モーター、
56a モーター軸、
61 モーターエンコーダー、
71 ポリゴンミラー回転角検出部、
72 ピン、
73 フォトインタラプター、
75 リング部材、
120 バス、
530 ポリゴンミラー回転軸。
Claims (14)
- パルス状のレーザー光を出射するレーザー光源と、
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する制御部と、
を有する、光走査装置。 - 前記制御部は、前記ミラー面に対応したレーザー光の発光開始時において、
前記ポリゴンミラー回転角検出部からの信号を受信してから所定期間経過後、前記モーターエンコーダーからの信号に同期させて前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、請求項1に記載の光走査装置。 - 前記制御部は、前記レーザー光を前記ミラー面に反射させて走査している間において、
前記ポリゴンミラー回転角検出部からの信号を受信すると同時に前記レーザー光を発光させるように、前記レーザー光の発光タイミングを制御する、請求項1または2に記載の光走査装置。 - 前記モーターエンコーダーの分解能は、前記ポリゴンミラーによって走査される前記レーザー光の走査分解能と同じか、または当該走査分解能より小さく、
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、請求項1~3のいずれか1つに記載の光走査装置。 - 前記制御部は、前記レーザー光の発光間隔があらかじめ決められた所定間隔以下にならないようにする、請求項1~4のいずれか1つに記載の光走査装置。
- 前記ポリゴンミラー回転角検出部は、
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンと、を有する、請求項1~5のいずれか1つに記載の光走査装置。 - パルス状のレーザー光を出射するレーザー光源と、
前記レーザー光を反射させて測定空間内で走査するための少なくとも1つのミラー面を有するポリゴンミラーと、
前記測定空間内の物体から反射した光を受光するフォトダイオードと、
前記ポリゴンミラーを回転させるモーターと、
前記モーターの回転角を検出するモーターエンコーダーと、
前記ポリゴンミラーの回転角を検出するポリゴンミラー回転角検出部と、を有する光走査装置の制御方法であって、
前記モーターエンコーダーと前記ポリゴンミラー回転角検出部との信号から得られる前記モーターと前記ポリゴンミラーの回転位相差に応じて、前記レーザー光の発光タイミングを制御する、光走査装置の制御方法。 - 前記ミラー面に対応したレーザー光の発光開始時においては、
前記ポリゴンミラー回転角検出部からの信号を受信後、所定期間経過後、前記モーターエンコーダーからの信号に同期させてレーザー光を発光させるように前記レーザー光の発光タイミングを制御する、請求項7に記載の光走査装置の制御方法。 - 前記レーザー光を前記ミラー面に反射させて走査している間においては、
前記ポリゴンミラー回転角検出部からの信号を受信すると同時にレーザー光を発光させるように前記レーザー光の発光タイミングを制御する、請求項7または8に記載の光走査装置の制御方法。 - 前記モーターエンコーダーの分解能は、前記ポリゴンミラーによって走査される前記レーザー光の走査分解能と同じか、または当該走査分解能より小さく、
前記ポリゴンミラー回転角検出部の分解能は前記モーターエンコーダーの分解能より小さい、請求項7~9のいずれか1つに記載の光走査装置の制御方法。 - 前記レーザー光の発光間隔があらかじめ決められた所定間隔以下にならないようにする、請求項7~10のいずれか1つに記載の光走査装置の制御方法。
- 前記ポリゴンミラー回転角検出部は、
フォトインタラプターと、
前記ポリゴンミラーに設けられ、前記ポリゴンミラーの回転よって前記フォトインタラプターの光を遮光するピンを有する、請求項7~11のいずれか1つに記載の光走査装置の制御方法。 - 請求項7~12のいずれか1つに記載の光走査装置の制御方法をコンピューターに実行させるための、光走査装置の制御プログラム。
- 請求項13に記載の制御プログラムを記録したコンピューター読み取り可能な記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019560036A JP7078061B2 (ja) | 2017-12-22 | 2018-08-28 | 光走査装置、光走査装置の制御方法、および光走査装置の制御プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017246651 | 2017-12-22 | ||
JP2017-246651 | 2017-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019123722A1 true WO2019123722A1 (ja) | 2019-06-27 |
Family
ID=66994553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031799 WO2019123722A1 (ja) | 2017-12-22 | 2018-08-28 | 光走査装置、光走査装置の制御方法、および光走査装置の制御プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7078061B2 (ja) |
WO (1) | WO2019123722A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111352236A (zh) * | 2020-04-13 | 2020-06-30 | 陕西伟景机器人科技有限公司 | 一种激光扫描装置 |
WO2021045003A1 (ja) * | 2019-09-04 | 2021-03-11 | 株式会社デンソー | 光測距装置 |
WO2021153304A1 (en) * | 2020-01-31 | 2021-08-05 | Denso Corporation | Lidar device and method for calculating distance to object |
JP7563045B2 (ja) | 2019-09-04 | 2024-10-08 | 株式会社デンソー | 光測距装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1184006A (ja) * | 1997-07-18 | 1999-03-26 | Denso Corp | 車載レーダ装置 |
JP2003295311A (ja) * | 2002-04-01 | 2003-10-15 | Matsushita Electric Ind Co Ltd | カラー画像表示装置 |
JP2011085577A (ja) * | 2009-09-18 | 2011-04-28 | Denso Wave Inc | レーザレーダ装置 |
JP2014109686A (ja) * | 2012-12-03 | 2014-06-12 | Hokuyo Automatic Co | 偏向装置、光走査装置及び走査式測距装置 |
US20150323350A1 (en) * | 2014-05-12 | 2015-11-12 | Faro Technologies, Inc. | Robust index correction of an angular encoder based on read head runout |
JP2016070974A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社デンソー | レーザ照射制御装置 |
WO2017010197A1 (ja) * | 2015-07-14 | 2017-01-19 | コニカミノルタ株式会社 | 成形装置、成形品、ミラーユニット及び成形方法 |
JP2017054020A (ja) * | 2015-09-10 | 2017-03-16 | キヤノン株式会社 | 光走査装置 |
JP2017062398A (ja) * | 2015-09-25 | 2017-03-30 | 株式会社豊田中央研究所 | 回転角検出装置及びレーザレーダ装置 |
JP2017227569A (ja) * | 2016-06-23 | 2017-12-28 | オプテックス株式会社 | レーザースキャンセンサ |
-
2018
- 2018-08-28 WO PCT/JP2018/031799 patent/WO2019123722A1/ja active Application Filing
- 2018-08-28 JP JP2019560036A patent/JP7078061B2/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1184006A (ja) * | 1997-07-18 | 1999-03-26 | Denso Corp | 車載レーダ装置 |
JP2003295311A (ja) * | 2002-04-01 | 2003-10-15 | Matsushita Electric Ind Co Ltd | カラー画像表示装置 |
JP2011085577A (ja) * | 2009-09-18 | 2011-04-28 | Denso Wave Inc | レーザレーダ装置 |
JP2014109686A (ja) * | 2012-12-03 | 2014-06-12 | Hokuyo Automatic Co | 偏向装置、光走査装置及び走査式測距装置 |
US20150323350A1 (en) * | 2014-05-12 | 2015-11-12 | Faro Technologies, Inc. | Robust index correction of an angular encoder based on read head runout |
JP2016070974A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社デンソー | レーザ照射制御装置 |
WO2017010197A1 (ja) * | 2015-07-14 | 2017-01-19 | コニカミノルタ株式会社 | 成形装置、成形品、ミラーユニット及び成形方法 |
JP2017054020A (ja) * | 2015-09-10 | 2017-03-16 | キヤノン株式会社 | 光走査装置 |
JP2017062398A (ja) * | 2015-09-25 | 2017-03-30 | 株式会社豊田中央研究所 | 回転角検出装置及びレーザレーダ装置 |
JP2017227569A (ja) * | 2016-06-23 | 2017-12-28 | オプテックス株式会社 | レーザースキャンセンサ |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021045003A1 (ja) * | 2019-09-04 | 2021-03-11 | 株式会社デンソー | 光測距装置 |
CN114341664A (zh) * | 2019-09-04 | 2022-04-12 | 株式会社电装 | 光测距装置 |
JP7563045B2 (ja) | 2019-09-04 | 2024-10-08 | 株式会社デンソー | 光測距装置 |
WO2021153304A1 (en) * | 2020-01-31 | 2021-08-05 | Denso Corporation | Lidar device and method for calculating distance to object |
CN115038985A (zh) * | 2020-01-31 | 2022-09-09 | 株式会社电装 | 用于计算到对象的距离的lidar装置和方法 |
JP2023507384A (ja) * | 2020-01-31 | 2023-02-22 | 株式会社デンソー | 物体までの距離を計算するためのlidar装置及び方法 |
US11668832B2 (en) | 2020-01-31 | 2023-06-06 | Denso Corporation | LIDAR device and method for calculating distance to object |
US11953604B2 (en) | 2020-01-31 | 2024-04-09 | Denso Corporation | LIDAR device and method for calculating distance to object |
JP7468661B2 (ja) | 2020-01-31 | 2024-04-16 | 株式会社デンソー | 物体までの距離を計算するためのlidar装置及び方法 |
CN115038985B (zh) * | 2020-01-31 | 2024-09-27 | 株式会社电装 | 用于计算到对象的距离的lidar装置和方法 |
CN111352236A (zh) * | 2020-04-13 | 2020-06-30 | 陕西伟景机器人科技有限公司 | 一种激光扫描装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7078061B2 (ja) | 2022-05-31 |
JPWO2019123722A1 (ja) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10989794B2 (en) | Scanning optical system and radar | |
WO2019123722A1 (ja) | 光走査装置、光走査装置の制御方法、および光走査装置の制御プログラム | |
US10782392B2 (en) | Scanning optical system and light projecting and receiving apparatus | |
CA3012691C (en) | Lidar based 3-d imaging with far-field illumination overlap | |
US20170219696A1 (en) | Optical scanning type object detection device | |
KR102020037B1 (ko) | 하이브리드 라이다 스캐너 | |
EP3206074B1 (en) | Scanning optical system and light projection and reception device | |
US10012831B2 (en) | Optical monitoring of scan parameters | |
US10649071B2 (en) | Scanning optical system and radar | |
JPWO2017135224A1 (ja) | 光走査型の対象物検出装置 | |
US20210270938A1 (en) | Eye-Safe Scanning Lidar with Virtual Protective Housing | |
JP2017227569A (ja) | レーザースキャンセンサ | |
JP7087633B2 (ja) | ライダー、およびライダーの制御方法 | |
EP4141385A1 (en) | Surveying instrument | |
JP6676974B2 (ja) | 対象物検出装置 | |
EP3364229B1 (en) | Optical-scanning-type object detection device | |
JP2022043268A (ja) | 照射装置及び受信装置 | |
JP6749191B2 (ja) | スキャナ装置および測量装置 | |
WO2017065049A1 (ja) | 光走査型の対象物検出装置 | |
CN220855345U (zh) | 一种光路结构和混合固态激光雷达 | |
WO2017126356A1 (ja) | 対象物検出装置 | |
JP2023050683A (ja) | 測量装置 | |
JP2020016529A (ja) | 物体検出装置および物体検出方法 | |
JP2023050684A (ja) | 測量装置 | |
WO2016059948A1 (ja) | 走査光学装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18891164 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019560036 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18891164 Country of ref document: EP Kind code of ref document: A1 |