WO2019123672A1 - 腸内環境の異常を抑制又は予防するための組成物 - Google Patents

腸内環境の異常を抑制又は予防するための組成物 Download PDF

Info

Publication number
WO2019123672A1
WO2019123672A1 PCT/JP2018/013541 JP2018013541W WO2019123672A1 WO 2019123672 A1 WO2019123672 A1 WO 2019123672A1 JP 2018013541 W JP2018013541 W JP 2018013541W WO 2019123672 A1 WO2019123672 A1 WO 2019123672A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
intestinal
composition
bacterial
composition according
Prior art date
Application number
PCT/JP2018/013541
Other languages
English (en)
French (fr)
Inventor
光憲 池田
清水 健太郎
裕司 小倉
伸一 平野
亮介 黒川
Original Assignee
MiZ株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017242471A external-priority patent/JP6796290B2/ja
Priority claimed from JP2017242401A external-priority patent/JP6601851B2/ja
Application filed by MiZ株式会社, 国立大学法人大阪大学 filed Critical MiZ株式会社
Priority to CA3017369A priority Critical patent/CA3017369A1/en
Priority to KR1020187024258A priority patent/KR20190087987A/ko
Priority to US16/085,050 priority patent/US11026967B2/en
Publication of WO2019123672A1 publication Critical patent/WO2019123672A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a composition for suppressing or preventing an abnormality in intestinal environment in a subject, which contains hydrogen gas or dissolved hydrogen as an active ingredient.
  • the abnormality of the intestinal environment is selected from the group consisting of bacterial translocation and bacterial species composition abnormality of the intestinal bacterial flora.
  • Intestinal flora exists in the intestinal tract and its homeostasis is important for maintaining health, but it has been pointed out in recent years that disturbance of intestinal flora is associated with various diseases.
  • there is an immune system in the intestinal tract which protects against the entry of harmful substances, but if the intestinal wall barrier is damaged for some reason, harmful substances may enter the body and cause a serious disease. is there. Abnormalities that occur in the intestinal environment in this way have the potential to at times impair human health, as described below.
  • Bacterial translocation is the transfer from the mesenteric lymph node to a distant organ through the gut wall (or gut epithelium) for some reason due to bacteria present in the gut or dead bacteria thereof.
  • the causes of bacterial translocation include changes in the intestinal flora, decreased defense ability of intestinal epithelial cells, and decreased host immune function.
  • Non-Patent Document 2 Non-Patent Document 2
  • the imbalance of the composition includes, for example, inflammatory bowel diseases (eg, ulcerative colitis and Crohn's disease), digestive tract diseases such as irritable bowel syndrome, metabolic syndrome (eg, diabetes and arteriosclerosis), obesity, etc.
  • Non-patent Documents 3, 4 and 5 Non-patent Documents 3, 4 and 5
  • the physiologically active substance such as short-chain fatty acids (eg, butyric acid, acetic acid etc.) produced by enteric bacteria, hormones (eg serotonin, dopamine, precursors thereof etc.)
  • enteric bacteria e.g., butyric acid, acetic acid etc.
  • hormones eg serotonin, dopamine, precursors thereof etc.
  • the intestines are constantly exposed to foreign invaders (eg, pathogens, toxic substances such as toxins), and thus constitute a unique immune system. If the bacterial composition balance of intestinal microbiota breaks down, intestinal environment abnormality or enterobacteria symbiosis imbalance occurs and the homeostasis of brain function and immune function is disturbed. As a result, various diseases such as those mentioned above It is believed to cause the
  • Non-Patent Document 6 describes that a sepsis animal model is inhaled or supplied with hydrogen gas or hydrogen-dissolved water, and that inflammatory cytokines and chemokines are reduced, and that there is a beneficial effect on sepsis-related organ damage etc. It is done.
  • An object of the present invention is to provide a composition for suppressing, ameliorating or preventing (or preventing) abnormality in intestinal environment, particularly bacterial translocation of bacterial translocation and intestinal flora, and abnormality in bacterial species composition.
  • bacterial translocation can be suppressed or prevented, it leads to the suppression of the onset or exacerbation of the above diseases such as sepsis, and can also suppress or prevent the bacterial species composition abnormality of the intestinal bacterial flora. Therefore, it is expected that the onset of diseases associated with dysbiosis can be prevented.
  • the present invention includes the following features.
  • a composition for suppressing or preventing an abnormality in the intestinal environment in a subject comprising hydrogen gas or dissolved hydrogen as an active ingredient, wherein the abnormality comprises bacterial translocation and intestinal bacterial flora.
  • SIRS systemic inflammatory response syndrome
  • MOF multiple organ dysfunction syndrome
  • composition according to (1) or (3) above wherein the bacterial species composition abnormality leads to the onset of a disease associated with dysbiosis.
  • the composition according to any one of (1) to (4) above which improves the damage to intestinal tissue of the subject.
  • the composition according to any one of the above (1) to (5) which is in the form of a hydrogen gas-containing gas or a hydrogen-dissolved liquid.
  • the composition according to (6), wherein the hydrogen concentration of the hydrogen gas-containing gas is 0.5 to 18.5% by volume.
  • the composition according to the above (6), wherein the hydrogen concentration of the hydrogen-dissolved liquid is 1 to 10 ppm.
  • composition according to any one of the above (1) to (8), wherein the administration of the composition to the subject is pulmonary administration or oral administration.
  • composition according to the above (9), wherein the pulmonary administration is performed under an atmospheric pressure environment or under a high pressure environment of 1.02 to 7.0 atm.
  • administration of dissolved hydrogen or hydrogen gas prevents bacterial translocation, as well as reducing intestinal barrier disorders and dysbiosis of intestinal bacterial flora.
  • SIRS systemic inflammatory response syndrome
  • MOF multiple organ dysfunction syndrome
  • the present invention makes it possible to prevent or ameliorate bacterial species composition abnormalities of intestinal microbiota by administration of dissolved hydrogen or hydrogen gas, and to prevent various diseases expected to be caused by such bacterial species composition abnormalities or Novel therapies useful for alleviation are provided.
  • FIG. 6 shows the improvement of the survival rate of the septic mouse model by supersaturated hydrogen dissolved saline.
  • * P ⁇ 0.05, # p ⁇ 0.01 (“p” represents the risk factor (also referred to as "significant probability” by the log-rank test)).
  • FIG. 6 shows suppression of bacterial translocation in the mesenteric lymph node (MLN) of a septic mouse model by hydrogen saturation saline with excess saturated concentration.
  • MN mesenteric lymph node
  • A shows cultures when MLN were aseptically removed 24 hours after cecal ligation and rupture (CLP) and plated on MarConkey agar plates and TSA agar plates for 24 hours.
  • B represents the number of bacteria in MarConkey agar plates as the mean ⁇ SD of colony forming units (log CFU) / g (where “SD” is a standard deviation).
  • sham is a sham group (healthy control not subjected to CLP surgery)
  • H2 is a supersaturated hydrogen-dissolved saline solution
  • saline is a saline solution. It is a group (also called “raw water”).
  • N 3 to 6 per group. * P ⁇ 0.05, # p ⁇ 0.05 ("p" represents the risk factor according to the log-rank test).
  • FIG. 6 shows the attenuation of intestinal epithelial hyperpermeability associated with sepsis by oversaturated concentrations of hydrogen-dissolved saline.
  • sham is a sham group (healthy control not subjected to CLP operation)
  • H2 is an oversaturated concentration hydrogen-dissolved saline solution
  • saline is a saline (“ It is also called “raw water”).
  • N 8 per group. * P ⁇ 0.05 ("p" represents the risk factor according to the log-rank test).
  • the protection (A) and localization (B) of tight junction protein (ZO-1) from intestinal morphological damage in a septic mouse model by oversaturated concentration hydrogen-dissolved saline are shown.
  • Hematoxylin-eosin (HE) stained microscopic image (magnification ⁇ 200) (A) of the small intestine (terminal end of ileum) 24 hours after cecal ligation and rupture (CLP) (A) and fluorescent antibody stained microscopic image (magnification ⁇ 400; ZO) -1 is a bright green spot (brightly lit portion), and the nucleus is blue (dark portion) (B).
  • sham is a sham group (healthy control not subjected to CLP operation)
  • H2 is an oversaturated concentration hydrogen-dissolved saline solution
  • saline is a saline (“ It is also called "raw water”).
  • FIG. 7 shows suppression of overgrowth of enterobacteria in the intestine of a septic mouse model by oversaturated concentration hydrogen-dissolved saline.
  • (A) shows a continuous change in enterobacterial composition on day 0 (Day 0), day 1 (Day 1) and day 7 (Day 7) after cecal ligation and rupture (CLP) .
  • H2 is an oversaturated concentration hydrogen-dissolved saline water group
  • saline is a group of physiological saline (also referred to as “saline water”).
  • FIG. 6 shows the reduction of the inflammatory response in intestinal tissue of the septic mouse model by the oversaturated concentration hydrogen-dissolved saline.
  • Tumor necrosis factor alpha TNF- ⁇
  • iNOS inducible nitric oxide synthase
  • IL-1 beta interleukin 1 beta
  • IL-6 The expression level (arbitrary unit) by the quantitative RT-PCR analysis of the inflammation mediator of IL-6) is shown.
  • the present invention is a composition for suppressing or preventing an abnormality in the intestinal environment in a subject, the composition comprising hydrogen gas or dissolved hydrogen as an active ingredient, wherein the abnormality is bacterial translocation and intestinal bacterial flora.
  • a composition selected from the group consisting of: a bacterial species composition abnormality.
  • the present invention provides a composition for suppressing or preventing bacterial translocation in a subject, which contains hydrogen gas or dissolved hydrogen as an active ingredient, and the above composition Provided are methods for inhibiting or preventing bacterial translocation, comprising administering a substance to a subject.
  • prevention with respect to bacterial translocation means to prevent bacterial translocation from occurring in a subject for any reason to develop a disease such as sepsis.
  • suppression with respect to bacterial translocation means that when a subject develops a disease such as sepsis through bacterigraphic translocation, the disease is aggravated by suppressing bacterial translocation ((2) That is, it means to ameliorate or avoid deterioration of symptoms.
  • bacterial translocation means that bacteria existing in the intestinal tract or dead bacteria thereof somehow pass through the intestinal wall (or intestinal epithelium) and migrate from the mesenteric lymph node to a remote organ.
  • Points to Bacterial translocation causes viable or killed bacteria, and in some cases, toxins such as endotoxin to enter the blood and cause sepsis throughout the body. Patients with sepsis may develop further, leading to generalized inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MOF), possibly even death.
  • SIRS generalized inflammatory response syndrome
  • MOF multiple organ dysfunction syndrome
  • Treatment of sepsis is usually carried out by identifying the causative bacteria and administering to the patient an agent such as an antibiotic effective for the bacteria.
  • the group of bacteria that reach the mesenteric lymph nodes via bacterial translocation in human patients suffering from post-operative sepsis according to the literature (O'Boyle CJ et al., Gut 1998; 42: 29-35) About 60% or more of the total bacteria are the Enterobacteriaceae bacteria, the highest proportion of which is the bacteria of the genus Escherichia, particularly E. coli, and others, the Klebsiella bacteria , Proteus bacteria, Enterobacter bacteria, and the like.
  • Intestinal epithelial permeability of enteric bacteria may be caused by, for example, emergency surgery, infections, inflammatory bowel disease, overgrowth of enteric bacteria, damage to intestinal mucosal tissue, decreased immune function, etc. Translocation is said to occur (O'Boyle, 1998 above).
  • the rate at which a disease such as sepsis actually occurs is about 10 to 15% of patients, but the composition of the present invention is effective for suppressing or preventing bacterial translocation for such patients. is there.
  • bacterial translocation can be suppressed or prevented by administering hydrogen gas or dissolved hydrogen liquid to a subject.
  • MN intestinal membrane lymph node
  • hydrogen gas or dissolved hydrogen fluid may be a therapeutic agent for sepsis (non-patent document 6).
  • hydrogen is an inflammatory cytokine or serum cytokine in a patient's serum or tissue. It has been reported that anti-inflammatory activity is due to the reduction in levels of chemokines, and anti-oxidative activity is due to the reduction of oxidative damage to tissues. However, so far, it has not been known that hydrogen itself has the ability to suppress or prevent bacterial translocation.
  • the composition of the present invention can prevent the onset of such diseases, or can prevent or suppress the sepsis from becoming severe to SIRS or MOF, because it is possible to further suppress or prevent .
  • survival rates are significantly improved by administering dissolved hydrogen fluid to the sepsis mouse model.
  • hydrogen as an active ingredient of the composition of the present invention has an effect of, for example, improving damage to intestinal tissue of a subject, in suppressing or preventing the onset of sepsis and the aggravation after the onset of sepsis. This is considered to be due to the action of suppressing the abnormal growth of certain bacterial species such as bad bacteria (eg, Enterobacteriaceae) in the intestinal flora of the subject.
  • bad bacteria eg, Enterobacteriaceae
  • the abnormal growth of Enterobacteriaceae bacteria is also observed in the sepsis mouse model as shown in FIG. About this, below 2. It is specifically explained in.
  • the reduction of MDA levels after treatment with hydrogen ie the reduction of oxidative stress
  • FIG. 7 in the intestinal tissue after treatment with hydrogen
  • TNF- ⁇ , iNOS, IL-1 ⁇ , IL-6, etc. inflammatory mediators
  • ZO- tight junction proteins
  • the localization of 1) is clearly demonstrated.
  • the inflammatory mediator is released from macrophages, vascular endothelial cells and the like infiltrated at the inflammation site of the tissue to cause vascular hyperpermeability, apoptosis, tissue destruction and the like.
  • the present invention also includes a composition for suppressing or preventing bacterial species composition abnormality of intestinal bacterial flora in a subject, which contains hydrogen gas or dissolved hydrogen as an active ingredient. And providing a method for inhibiting or preventing a bacterial species composition abnormality of the intestinal bacterial flora, comprising administering the composition to a subject.
  • the present invention is based on the finding that hydrogen gas or dissolved hydrogen in a subject makes it possible to prevent or ameliorate bacterial species composition abnormalities of the intestinal flora, as described below.
  • a bacterial species composition abnormality of the intestinal bacterial flora means that the composition (or constitution) of the intestinal bacterial flora is clearly different from the composition of a healthy person, which is associated with a specific disease. Point of abnormality in the composition of said bacterial species.
  • the bacterial species composition abnormality of the intestinal flora is an abnormal increase or an abnormal decrease of at least one bacterium in the intestinal flora, or the bacterial species composition abnormality of the intestinal flora is dysbiosis (dysbiosis) It is possible to develop a disease associated with
  • An individual with some genetic predisposition may cause intestinal flora due to deterioration of some environmental factors. They are said to break the balance of bacterial composition, thereby disrupting the homeostasis of the intestinal ecosystem and causing the onset and exacerbation of various diseases (Ohno H, Jpn J. Clin. Immunol., 37 (5) : 403-411, 2014).
  • Enteric bacteria produce various metabolites depending on their type to maintain the health or homeostasis of the body, but, for example, obesity due to reduction of bacteria groups producing short-chain fatty acids such as butyric acid And that it is more likely to cause type 2 diabetes, and it is more likely to develop an infectious disease caused by pathogenic bacteria because the production of short-chain fatty acids such as lactic acid and acetic acid is reduced by the reduction of bifidobacteria, which are good bacteria. It is known that bacteria that produce serotonin, dopamine or their precursors decrease to develop depression. In addition, butyric acid produced by enteric bacteria is also known to induce colonic regulatory T cells (Tregs), and it is possible to treat pathological conditions such as allergy by negatively controlling abnormal or excessive immune responses. It is said to be involved in the suppression of the immune response. Thus, the diseases caused by bacterial species composition abnormalities of the intestinal flora are diverse.
  • beneficial effects such as suppression of bacterial translocation, reduction of intestinal mucosal tissue damage, reduction of expression of inflammatory cytokines, reduction of oxidative stress and the like by administration of hydrogen are also provided. (See examples below).
  • hydrogen prevents the intestinal epithelial permeation of the bacteria and further the systemic transfer, and protects the tissues of organs including the intestine, thus alleviating or ameliorating the disease caused by the bacterial species composition abnormality of the intestinal bacterial flora Make it
  • hydrogen can improve damage to intestinal tissue due to intestinal diseases (eg, inflammatory bowel disease) that develop due to, for example, a bacterial species composition abnormality of the intestinal bacterial flora.
  • intestinal diseases eg, inflammatory bowel disease
  • a bacterial species composition abnormality of the intestinal bacterial flora Regarding such improvement action of the subject, the above 1.
  • MDA levels after treatment with hydrogen ie reduction of oxidative stress
  • inflammation mediators in intestinal tissue after treatment with hydrogen as shown in FIG. 7 (TNF- ⁇ , INOS, IL-1 ⁇ , IL-6 etc.)
  • ZO-1 tight junction protein
  • bacterial species composition abnormality of intestinal microbiota is a balance of bacterial composition is broken, homeostasis of the intestinal ecosystem (ie, an environmental system based on the interaction between the host intestinal tract and the intestinal microflora) Point to an abnormality that breaks down and causes the onset or exacerbation of various diseases.
  • the bacterial species composition abnormality is, for example, reduction of bacteria producing short-chain fatty acids (eg, butyric acid, acetic acid etc.) associated with obesity, diabetes, allergy, intestinal barrier function etc., bacteria producing carcinogens And decrease in bacteria that produce hormones or hormone precursors that function in the brain.
  • Diseases that develop due to an abnormality in the bacterial species composition of the intestinal bacterial flora according to the present invention by suppression or prevention of the bacterial species composition abnormality such as inflammatory bowel disease (eg, ulcerative colitis and Crohn's disease), irritable bowel Digestive tract diseases such as syndrome, metabolic syndrome (for example, type 2 diabetes, arteriosclerosis etc.), metabolic diseases such as obesity, cancer, rheumatic diseases (for example rheumatoid arthritis etc.), neuropsychiatric diseases (for example autism, depression) , Parkinson's disease, etc.), allergic diseases and other diseases can be prevented, alleviated or ameliorated.
  • inflammatory bowel disease eg, ulcerative colitis and Crohn's disease
  • irritable bowel Digestive tract diseases such as syndrome, metabolic syndrome (for example, type 2 diabetes, arteriosclerosis etc.), metabolic diseases such as obesity, cancer, rheumatic diseases (for example rheumatoid arthritis etc.), neuropsychiatric diseases (for example
  • Analysis of the bacterial composition of the intestinal bacterial flora involves amplification of bacterial DNA extracted from feces by PCR, amplification of the V region of the 16S rRNA gene (eg V1-V2, V3-V4 etc.) by PCR, and amplification products After purification and preparation of the library, adapter sequences for high-speed sequencing are added, and sequencing is performed using a next-generation sequencer. The determined sequences are subjected to homology search against the 16S rRNA database as well as phylogenetic analysis.
  • V region of the 16S rRNA gene eg V1-V2, V3-V4 etc.
  • differences in bacterial flora can be determined by methods such as principal coordinate analysis (PCoA), relative comparison of the number of bacteria in classified bacterial groups (eg, Kamo T et al., PLoS ONE 12 (3): e0174099 , 2017; Nishijima S et al., DNA Research 2016; 238: 126-133).
  • PCoA principal coordinate analysis
  • composition The preferred form of hydrogen gas or dissolved hydrogen which is the active ingredient of the composition of the present invention is in the form of a hydrogen gas-containing gas or a hydrogen-dissolved liquid, respectively.
  • the hydrogen gas-containing gas is preferably air containing hydrogen gas or a mixed gas containing hydrogen gas and oxygen gas.
  • concentration of hydrogen gas in the hydrogen gas-containing gas is greater than zero (0) and not more than 18.5% by volume, for example 0.5 to 18.5% by volume, preferably 1 to 10% by volume, for example 2 to 10%. It is 8% by volume, 3 to 6% by volume, more preferably 4 to 6% by volume, for example 4 to 5% by volume.
  • the concentration of air is, for example, in the range of 81.5 to 99.5% by volume
  • the gas other than hydrogen gas is a gas containing oxygen gas
  • oxygen The concentration of the gas is, for example, in the range of 21 to 99.5% by volume
  • nitrogen gas can be contained as another main gas
  • a gas such as carbon dioxide which is a gas contained in the air can be It may be contained in an amount similar to the amount present.
  • hydrogen since hydrogen is a flammable and explosive gas, it should be contained in the composition at a safe level to a subject such as human and administered to the subject.
  • the hydrogen-dissolved liquid is specifically an aqueous liquid in which hydrogen gas is dissolved, wherein the aqueous liquid is, for example, water, saline, buffer (for example, buffer of pH 4 to 7.4), ethanol Water content (eg, ethanol content: 0.1 to 2% by volume), infusion solution, injection solution, infusion solution, beverage and the like.
  • the hydrogen concentration of the hydrogen-dissolved liquid is, for example, 1 to 10 ppm, preferably 2 to 8 ppm, and more preferably 3 to 7 ppm.
  • the hydrogen gas-containing gas or the hydrogen-dissolved liquid is blended so as to have a predetermined hydrogen gas concentration, and then filled in a pressure container (for example, an aluminum can, a pressure resistant plastic bottle or bag, a pressure resistant plastic bottle, etc.).
  • a pressure container for example, an aluminum can, a pressure resistant plastic bottle or bag, a pressure resistant plastic bottle, etc.
  • the hydrogen gas-containing gas or hydrogen-dissolved liquid may be prepared in situ using a known hydrogen gas supply device or hydrogenation apparatus at the time of administration.
  • the hydrogen gas supply device makes it possible to mix hydrogen gas generated by the reaction of a hydrogen generating agent (eg metal aluminum etc.) with water with a dilution gas (eg air, oxygen etc.) in a predetermined ratio (Japan Japanese Patent No. 5228142 etc.).
  • a hydrogen generating agent eg metal aluminum etc.
  • a dilution gas eg air, oxygen etc.
  • hydrogen gas generated by using water electrolysis is mixed with a dilution gas (Japanese Patent No. 5502973, Japanese Patent No. 5900688, etc.). This makes it possible to prepare a hydrogen gas-containing gas having a hydrogen concentration in the range of 0.5 to 18.5% by volume.
  • a hydrogen addition device is a device that generates hydrogen using a hydrogen generating agent and a pH adjusting agent and dissolves it in a bio-application liquid such as water (Japanese Patent No. 4756102, Japanese Patent No. 4652479, Japanese Japanese Patent No. 4950352, Japanese Patent No. 6159462, Japanese Patent No. 6170605, etc.).
  • the combination of the hydrogen generator and the pH adjuster is, for example, metallic magnesium and a strongly acidic ion exchange resin or an organic acid (eg, malic acid, citric acid, etc.), metallic aluminum powder and calcium hydroxide powder, and the like. In this way, it is possible to prepare a hydrogen-dissolved liquid having a dissolved hydrogen concentration of about 1 to 10 ppm.
  • the composition of the present invention As a method of administering the composition of the present invention to a subject, when hydrogen gas is used as an active ingredient, for example, pulmonary administration by inhalation, aspiration etc. is preferable, and when dissolved hydrogen liquid is used as an active ingredient preferable.
  • the gas can be inhaled from the mouth or nose through a mask-type device covering the mouth and nose, delivered to the lungs, and delivered systemically via blood.
  • the orally administered dissolved hydrogen fluid is preferably stored at low temperature, and the cooled fluid may be administered to the subject.
  • the dissolved hydrogen fluid may be administered to the subject by a parenteral administration route such as intravenous administration, intraarterial administration, etc. when in the form of a drip or injection.
  • Hydrogen gas containing gas of the above hydrogen concentration or hydrogen dissolved liquid of the above dissolved hydrogen concentration once or several times (eg, 2 to 3 times) per day, for 1 week to 6 months or more, preferably 2 weeks to 3 It can be administered to a subject over a period of months.
  • the hydrogen gas-containing gas When the hydrogen gas-containing gas is administered, it can be administered, for example, for 10 minutes to 2 hours or more, preferably for 20 minutes to 40 minutes.
  • the hydrogen gas-containing gas when transpulmonarily administered by inhalation or suction, it is under an atmospheric pressure environment, or, for example, in a range exceeding standard atmospheric pressure (meaning about 1.013 atmospheric pressure) and 7.0 atmospheric pressure or less High pressure, for example 1.02 to 7.0 atm, preferably 1.02 to 5.0 atm, more preferably 1.02 to 4.0 atm, still more preferably 1.02 to 1.35 atm.
  • the subject can be administered the gas under a hyperbaric environment of Administration in a hyperbaric environment promotes the body's absorption of hydrogen in the subject.
  • the high pressure environment has sufficient strength such that it can form a high pressure higher than the standard atmospheric pressure and 7.0 atmospheric pressure or less inside, for example, by injecting the hydrogen gas-containing gas or air. It can be made by the use of a high pressure housing (e.g., a capsule-like housing) designed to The shape of the high-pressure housing is preferably pressure-resistant, so that it is preferably rounded without any corners.
  • the material of the high-pressure housing is preferably light weight and high strength, and examples thereof include reinforced plastic, carbon fiber composite material, titanium alloy, aluminum alloy and the like.
  • the subject can receive a composition comprising hydrogen gas with oxygen gas or air in the hyperbaric capsule.
  • subject as used herein includes mammals, for example, primates including humans, pet animals such as dogs and cats, ornamental animals such as zoos and the like.
  • the preferred subject is a human.
  • Example 1 ⁇ Restriction or amelioration of bacterial species composition of bacterial translocation and / or enteric microbiota, which are abnormalities of the intestinal environment by administration of hydrogen gas dissolved liquid> I.
  • Sepsis animal model A 6-week-old male C57 / BL6 mouse weighing 20-25 g was subjected to cecal ligation and rupture (CLP) to prepare a sepsis model. Briefly, after anesthetizing the mouse and making a 1 cm abdominal midline incision to expose the cecum, ligature a site 1 cm away from the upper end of the cecum, pierce a 23-gauge needle at one point, and moderate it. CLP (Note: 40% survived for 7 days). The cecum was returned to the abdomen and the incision was sutured. Immediately thereafter, all mice were resuscitated by subcutaneous injection of saline (50 mL / kg body weight).
  • the blood was centrifuged at 3000 ⁇ g for 10 minutes at 4 ° C., and plasma was measured at an excitation wavelength of 480 nm and an emission wavelength of 520 nm using an SH9000Lab fluorescent microplate reader (Corona Electric).
  • the concentration of FITC-dextran in plasma was measured by dilution series of FITC-dextran as a standard.
  • mice were sacrificed and perfused transcardially with PBS and then 4% paraformaldehyde in 0.1 M phosphate buffer (PB).
  • PB phosphate buffer
  • the small intestine (terminal ileum) was excised, immersed in the same fixer, and cryoprotected in a series of sucrose solutions (15%, 20% and 25% sucrose in 0.1M PB) for 3 days at 4 ° C.
  • the specimens were frozen in OCT compound (Sakura Finetechnical) and then sliced with an cryostat (CM3050S; Leica Microsystems) into 82 ⁇ m thick sections, and the cooled sections were stained with hematoxylin and eosin.
  • the V5-V6 region of the gene is targeted (Andersson AF et al., PLoS One 3: e2836, 2008).
  • DNA libraries were generated using the Ion PGM Sequencing Hi-Q Kit (Life Technologies) according to the manufacturer's instructions. Also, sequencing was performed using two 318 chips and an Ion PGM Sequencing Hi-Q Kit (Life Technologies) on an Ion PGM sequencer (Life Technologies). The determined sequences were analyzed using QIIME pipeline (Caoraso JG et al., Nat Methods 7: 335-336, 2010).
  • Quantitative real-time PCR was performed using GoTaq qPCR Master Mix (Promega) to quantify the amount of bacterial rRNA gene using ABI PRISM 7900HT Sequence Detection System (Applied Biosystems).
  • the amplification program consists of one cycle of 95 ° C. for 5 minutes followed by multiple cycles of 94 ° C. for 20 seconds, 55 ° C. for 20 seconds and 72 ° C. for 50 seconds. Fluorescent products were detected at the last step of each cycle. Melting curve analysis was performed after amplification to distinguish targeted PCR products from non-target products. Melting curves were obtained by slow heating at a temperature of 60-95 ° C. at a rate of 0.2 ° C./sec using a continuous fluorescence collection. qPCR amplification and detection were performed in 384-well optical plates using ABI PRISM 7900HT Sequence Detection System (Applied Biosystems). The standard curve is E.I.
  • RNA expression of intestinal inflammation mediator by RT-PCR To evaluate inflammatory mediators such as iNOS in the small intestine (terminal ileum), quantitative cycle tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin 1 beta (IL-1 beta) Their mRNA expression was obtained 6 hours after CLP. Total RNA was extracted from tissue samples and reverse transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Life Technologies) according to the manufacturer's protocol. RT-PCR was performed using Fast SYBR Green Master Mix on a StepOne Plus real-time PCR cycler (Applied Biosystems). Each of the specific primers used is summarized in Table 1.
  • PCR products were amplified (95 ° C. 3 sec, 60 ° C. 30 sec, 45 cycles) and detected on Step One Plus (Applied Biosystems). mRNA expression levels are relative to ⁇ -actin levels.
  • Tissue malondialdehyde (MDA) levels were measured at 6 hours after CLP to measure oxidative stress. MDA levels were assayed for lipid peroxidation products observed by measuring thiobarbituric acid reactive substance levels. Tissue samples were flash frozen at -80 ° C and aliquoted into 50 ⁇ g aliquots. The sample was homogenized in RIPA buffer (Wako Pure Chemical Industries) to prevent oxidation of the sample. All samples were centrifuged (4 ° C., 10,000 ⁇ g, 10 minutes) and supernatants were collected and evaluated using the OxiSelect TBARS Assay Kit (Cell Biolabs) according to the manufacturer's instructions. Absorbance at 532 nm was measured using a NanoDrop spectrophotometer (Thermo Fisher Scientific). The MDA concentration was expressed as nmol (nmol / mg) per 1 mg of protein.
  • FIG. 4 (A) Histological findings of intestinal mucosal injury are shown in FIG. 4 (A).
  • FIG. 4 (B) Histological findings of intestinal mucosal injury are shown in FIG. 4 (B).
  • ZO-1 is localized to the intestinal epithelial tight junction, which is shown in the figure as a series of bright green spots in the apical compartment of the cellular junction. Appear as a part). The localization of ZO-1 was destroyed in the saline group and lacked a bright green spot, while the localization of ZO-1 was observed in the H2 group.
  • FIG. 5A shows multiple bacterial taxa from fecal samples determined by 16S rRNA analysis.
  • the bacterial flora is a healthy mouse and is a group S24-7 or Clostridia, Lactobacillus, and Lactospira.
  • the composition of microorganisms significantly changed in the saline water group, and in particular, a dynamic increase of Enterobacteriaceae was observed.
  • the excess increase of Enterobacteriaceae was greatly suppressed.
  • the number of bacteria of the Enterobacteria family increased to about 10 5 on the first day in the saline group, but in the H 2 group, the number was considerably suppressed (FIG. 5B).
  • bacterial translocation which is an abnormality in the intestinal environment, can be suppressed or prevented (or prevented), and thus sepsis, systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MOF). It is possible to further prevent, suppress or ameliorate the onset or malignancy.
  • SIRS systemic inflammatory response syndrome
  • MOF multiple organ dysfunction syndrome
  • the prevention or amelioration of bacterial species composition abnormalities in the intestinal bacterial flora is demonstrated by the administration of hydrogen gas or dissolved hydrogen fluid, as demonstrated in the above animal model, in certain bacterial species in the intestinal bacterial flora of a subject. It is clear from the evidence that the increase is suppressed dramatically. According to the present invention, since it is possible to prevent or suppress the bacterial species composition abnormality of the intestinal bacterial flora in a subject having an abnormality in the intestinal environment, it is possible to prevent, reduce or ameliorate a disease associated with dysbiosis .

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)

Abstract

この出願は、水素ガス又は溶存水素を有効成分として含む、被験体において腸内環境の異常を抑制又は予防するための組成物であって、当該異常が、バクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常からなる群から選択される、組成物を提供する。

Description

腸内環境の異常を抑制又は予防するための組成物
 本発明は、有効成分として水素ガス又は溶存水素を含む、被験体において腸内環境の異常を抑制又は予防するための組成物に関する。
 具体的には、前記腸内環境の異常は、バクテリアル・トランスロケーション(Bacterial Translocation)及び腸内細菌叢の細菌種組成異常からなる群から選択される。
 腸管内には腸内細菌叢が存在し、その恒常性が健康維持のために重要であるが、近年、腸内細菌叢の乱れが種々の疾患と関連性があることが指摘されている。また、腸管には免疫系が存在しており有害物の侵入から防御しているが、何らかの原因で腸管壁バリアが障害されると有害物が体内に侵入し重篤な疾患を発症することがある。このように腸内環境に生じる異常は、以下に記載するようにヒトの健康をいつでも害する可能性を有している。
 バクテリアル・トランスロケーションは、腸管内に存在する細菌やその死菌が何らかの原因で腸管壁(もしくは腸管上皮)を通過し、腸管膜リンパ節から遠隔臓器に移行することである。バクテリアル・トランスロケーションが起こる原因として、腸管内常在細菌叢の変化、腸管上皮細胞の防御能低下、宿主免疫機能の低下などが挙げられている。
 バクテリアル・トランスロケーションが原因又は一部原因となって発症する又は憎悪する疾患には、感染源の特定ができない感染症、敗血症、高度侵襲時の全身性炎症反応症候群(SIRS)、多臓器機能不全症候群(MOF)などが含まれる(非特許文献1)。
 このため、バクテリアル・トランスロケーションを抑制するための臨床的な管理が、上記疾患等を予防するうえで重要である。しかしながら、バクテリアル・トランスロケーションを抑制する薬剤としては、グルタミン(非特許文献2)などわずかな物質が知られているに過ぎない。
 このような状況において、本発明者らは、バクテリアル・トランスロケーションを抑制するための物質として水素に注目してきた。実際に水素による臨床効果についての報告は極めて少ない。
 さらに近年、腸内細菌叢の細菌種組成異常(一般に「ディスバイオシス」(dysbiosis)と呼ばれる。)と疾患との間に密接な関連性があることが明らかになってきた。具体的には、ヒト腸管内には、約1000種の細菌、総数100兆個以上の細菌数が存在しており、何らかの内的要因もしくは外的要因により生じた腸内細菌叢の細菌種の組成(もしくは構成)のバランス異常が、例えば、炎症性腸疾患(例えば潰瘍性大腸炎及びCrohn病)、過敏性腸症候群などの消化管疾患、メタボリックシンドローム(例えば糖尿病及び動脈硬化)、肥満などの代謝性疾患、癌、リウマチ性疾患、アレルギー疾患、精神神経疾患(例えば自閉症及びうつ病)などの疾患の発症と関係づけられている。このため、腸内細菌叢の細菌種組成異常の改善が、上記疾患の治療法の一部になりうることが、糞便微生物移植による治療成績から実証されている(非特許文献3、4及び5)。
 腸は第二の脳と言われるほどに、腸内細菌が産生する短鎖脂肪酸(例えば酪酸、酢酸等)、ホルモン(例えばセロトニン、ドーパミン、その前駆物質等)などの生理活性物質によって腸と脳は密接なつながりをもっている。また、腸は、絶えず体外からの侵入物(例えば病原菌、毒素等の有害物)にさらされているため、ユニークな免疫系を構築している。もし腸内細菌叢の細菌組成バランスがくずれると、腸環境異常又は腸内菌共生バランス失調が起こり脳機能や免疫機能の恒常性が乱される結果、一部には上記のような種々の疾患の原因になると考えられている。
 腸内細菌叢の細菌種組成異常を如何にして改善することができるかについて、糞便微生物移植等の療法が知られているが、必ずしも万能でないことも分かっている。
 このような状況において、本発明者らは、今回、バクテリアル・トランスロケーションを改善すること、並びにその研究の過程で、分子状水素が、腸内細菌叢の細菌種組成異常を改善する可能性を見出した。これまで水素ガス又は水素溶存水を治療に用いる試みとして、例えば皮膚疾患、癌、敗血症などの治療用途に用いる提案が報告されている(特許文献1、特許文献2、非特許文献6)。例えば非特許文献6には、敗血症動物モデルに水素ガス又は水素溶存水を吸入又は給与し、炎症性サイトカインやケモカインが減少したこと、また敗血症関連の臓器損傷に対する有益な効果があることなどが記載されている。
 しかしながら、水素が、バクテリアル・トランスロケーションを抑制すること、並びに、腸内細菌叢の細菌種組成異常を改善する可能性を指摘した報告はない。
特開2016-190833号公報 特開2016-113425号公報
Moore FA et al, J Trauma 1989; 29:916-923 Chun H et al., J Gastroenterology 1997; 32(2):189-195 金井隆典,日本内科学会誌,105巻9号,1695~1700頁,2016年(日本) 大草敏史,モダンメディア,60巻11号,325~331頁,2014年(日本) 本田賢也,領域融合レビュー,2,e011(2013);DOI:10.7875/leading.author.2e011(日本) Xie K et al., BioMed Research International, Vol. 2014, Article ID 807635, 9 pages
 本発明は、腸内環境の異常、とりわけバクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常の抑制、改善又は予防(もしくは防止)のための組成物を提供することを目的とする。
 もしバクテリアル・トランスロケーションを抑制又は予防することができるならば、敗血症などの上記疾患の発症又は憎悪の抑制につながるし、また腸内細菌叢の細菌種組成異常を抑制又は予防することができるならば、ディスバイオシスと関連する疾患の発症を防止できることが期待される。
 本発明は、以下の特徴を包含する。
(1)水素ガス又は溶存水素を有効成分として含む、被験体において腸内環境の異常を抑制又は予防するための組成物であって、前記異常が、バクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常からなる群から選択される、組成物。
(2)上記バクテリアル・トランスロケーションが、敗血症、全身性炎症反応症候群(SIRS)又は多臓器機能不全症候群(MOF)の発症もしくは悪性化に導く、上記(1)に記載の組成物。
(3)上記細菌種組成異常が、腸内細菌叢内の少なくとも1種の細菌の異常増加又は異常減少である、上記(1)に記載の組成物。
(4)上記細菌種組成異常が、ディスバイオシスと関連する疾患の発症に導く、上記(1)又は(3)に記載の組成物。
(5)上記被験体の腸組織の損傷を改善する、上記(1)~(4)のいずれかに記載の組成物。
(6)水素ガス含有気体又は水素溶存液体の形態である、上記(1)~(5)のいずれかに記載の組成物。
(7)上記水素ガス含有気体の水素濃度が、0.5~18.5体積%である、上記(6)に記載の組成物。
(8)上記水素溶存液体の水素濃度が、1~10ppmである、上記(6)に記載の組成物。
(9)上記被験体への組成物の投与が、経肺投与又は経口投与である、上記(1)~(8)のいずれかに記載の組成物。
(10)上記経肺投与が、大気圧環境下で、又は1.02~7.0気圧の高気圧環境下で行われる、上記(9)に記載の組成物。
(11)投与時に水素ガス供給装置又は水素添加器具を用いてその場で作製される、上記(1)~(10)のいずれかに記載の組成物。
 本発明により、溶存水素又は水素ガスの投与によって、腸バリア障害(intestinal barrier dysfunction)及び腸内細菌叢の細菌種組成異常(dysbiosis)の低減とともに、バクテリアル・トランスロケーション(bacterial translocation)を防止又は抑制することを可能にし、それによって敗血症、全身性炎症反応症候群(SIRS)又は多臓器機能不全症候群(MOF)の発症もしくは悪性化をさらに防止又は抑制するために、また患者の応急処置や予後改善のために、極めて有用な新規療法が提供される。
 また、本発明により、溶存水素又は水素ガスの投与によって腸内細菌叢の細菌種組成異常を予防又は改善することを可能にし、当該細菌種組成異常によって起こると予想される種々の疾患の予防又は軽減のために有用な新規療法が提供される。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-242471号(出願日 2017年12月19日)および日本国特許出願番号2017-242401号(出願日 2017年12月19日)の開示内容を包含する。
超過飽和濃度水素溶存生食水(Super saturated hydrogen dissolved saline)による敗血症マウスモデルの生存率の改善を示す。図中、「sham」は、擬似群(盲腸結紮・破裂(CLP)手術を実施しなかった健常対照)(n=6)であり、「H2」は、超過飽和濃度水素溶存生食水群(n=26)であり、「saline」は、生理食塩水(「生食水」ともいう)群(n=26)である。p<0.05、p<0.01(「p」はlog-rankテストによる危険率(もしくは「有意確率」ともいう)を表す。)。 超過飽和濃度水素溶存生食水による敗血症マウスモデルの腸管膜リンパ節(MLN)内でのバクテリアル・トランスロケーションの抑制を示す。図中、(A)は、MLNを、盲腸結紮・破裂(CLP)の24時間後に無菌的に取り出し、MarConkeyアガープレート及びTSAアガープレート上で24時間平板培養したときの培養物を示す。また、(B)は、MarConkeyアガープレートの細菌数を、コロニー形成単位(logCFU)/gの平均±SDとして表した(ここで「SD」は標準偏差である。)。また、図中、「sham」は、擬似群(CLP手術を実施しなかった健常対照)であり、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、生理食塩水(「生食水」ともいう)群である。1群あたりn=3~6である。p<0.05、p<0.05(「p」はlog-rankテストによる危険率を表す。)。 超過飽和濃度水素溶存生食水による、敗血症に関連した腸上皮過透過性の減衰を示す。図中、「sham」は、擬似群(CLP手術を実施しなかった健常対照)であり、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、生理食塩水(「生食水」ともいう)群である。1群あたりn=8である。p<0.05(「p」はlog-rankテストによる危険率を表す。)。 超過飽和濃度水素溶存生食水による、敗血症マウスモデルの腸形態学的障害からの保護(A)と密着結合タンパク質(ZO-1)の局在(B)を示す。盲腸結紮・破裂(CLP)の24時間後の小腸(回腸末端部)のヘマトキシリン-エオシン(H-E)染色顕微鏡像(倍率×200)(A)及び蛍光抗体染色顕微鏡像(倍率×400;ZO-1が明るい緑色スポット(明るく光っている部分)であり、核が青色(暗い部分)である)(B)である。図中、「sham」は、擬似群(CLP手術を実施しなかった健常対照)であり、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、生理食塩水(「生食水」ともいう)群である。 超過飽和濃度水素溶存生食水による、敗血症マウスモデルの腸内でのエンテロバクテリアの過剰増殖の抑制を示す。図中、(A)は、盲腸結紮・破裂(CLP)後0日目(Day 0)、1日目(Day 1)及び7日目(Day 7)の腸内細菌組成の連続的変化を示す。また、(B)は、盲腸結紮・破裂(CLP)後の0日目及び1日目のマウス糞便1gあたりのエンテロバクテリアの菌数の定量結果(log(細胞数)/g-糞便)を示す。データは、平均±SDとして表し、1群あたりn=8である。図中、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、生理食塩水(「生食水」ともいう)群である。 超過飽和濃度水素溶存生食水による、敗血症マウスモデル腸の酸化ストレスの低減を示す。腸のマロンジアルデヒド(MDA)レベル(nmol/mg-腸組織)の定量によって酸化ストレスの程度を表した。データは、平均±SDとして表し、1群あたりn=4~5である。p<0.05(「p」はlog-rankテストによる危険率を表す。)。図中、「sham」は、擬似群(CLP手術を実施しなかった健常対照)であり、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、生理食塩水(「生食水」ともいう)群である。 超過飽和濃度水素溶存生食水による、敗血症マウスモデルの腸組織内での炎症反応の低減を示す。小腸(回腸末端部)内の腫瘍壊死因子α(TNF-α)、誘導型一酸化窒素合成酵素(inducible nitric oxide synthase(iNOS))、インターロイキン1β(IL-1β)、及びインターロイキン-6(IL-6)の炎症メディエーターの定量RT-PCR分析による発現レベル(任意単位)を示す。データは、平均±SDとして表し、1群あたりn=5~6である。p<0.05、p<0.05、p<0.05(ここで、「p」はlog-rankテストによる危険率を表す。)。図中、「sham」は、擬似群(CLP手術を実施しなかった健常対照)であり、「H2」は、超過飽和濃度水素溶存生食水群であり、「saline」は、対照としての生理食塩水(「生食水」ともいう)群である。
 本発明をさらに詳細に説明する。
 本発明は、水素ガス又は溶存水素を有効成分として含む、被験体において腸内環境の異常を抑制又は予防するための組成物であって、前記異常が、バクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常からなる群から選択される、組成物を提供する。
 以下に、バクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常の抑制又は予防について説明する。
1.バクテリアル・トランスロケーションの抑制又は予防
 上記のとおり、本発明は、水素ガス又は溶存水素を有効成分として含む、被験体内でバクテリアル・トランスロケーションを抑制又は予防するための組成物、並びに、前記組成物を被験体に投与することを含む、バクテリアル・トランスロケーションを抑制又は予防するための方法を提供する。
 本明細書中、バクテリアル・トランスロケーションに関して「予防」という用語は、被験体において何らかの原因でバクテリアル・トランスロケーションが起こって敗血症などの疾患を発症することを防止することを意味する。また、バクテリアル・トランスロケーションに関して「抑制」とは、被験体がバクテリアル・トランスロケーションを介して敗血症などの疾患を発症したとき、バクテリアル・トランスロケーションを抑制することによって当該疾患の重症化(すなわち、症状の悪化)を改善又は回避することを意味する。
 本明細書中、「バクテリアル・トランスロケーション」という用語は、腸管内に存在する細菌やその死菌が何らかの原因で腸管壁(もしくは腸管上皮)を通過し、腸管膜リンパ節から遠隔臓器に移行することを指す。バクテリアル・トランスロケーションによって生菌又は死菌、場合によりエンドトキシン等の毒素が血中に入り全身をめぐり敗血症を発症する。敗血症患者はさらに悪化すると全身性炎症反応症候群(SIRS)や多臓器機能不全症候群(MOF)を発症し、場合により死に至る。敗血症の治療は、通常、原因となる細菌を特定し、その細菌に有効な抗生物質等の薬剤を患者に投与することによって行われる。
 術後敗血症に罹患したヒト患者において、バクテリアル・トランスロケーションを介して腸管膜リンパ節に達する細菌群は、文献(O’Boyle CJ et al., Gut 1998; 42:29-35)によると、その全細菌のうち約60%以上がエンテロバクテリア科(the family Enterobacteriaceae)細菌であり、そのうち最も比率の高い細菌群がエシェリキア(Escherichia)属細菌、特に大腸菌であり、その他、クレブシエラ(Klebsiella)属細菌、プロテウス(Proteus)属細菌、エンテロバクター(Enterobacter)属細菌などが含まれる。
 腸内細菌の腸管上皮透過性が起こる原因として、例えば応急手術、感染症、炎症性腸疾患、腸内細菌の異常増殖、腸粘膜組織の損傷、免疫機能の低下などに起因してバクテリアル・トランスロケーションが起こると言われている(上記O’Boyle,1998)。実際に敗血症などの疾患が発症する割合は、10~15%程度の患者であるが、そのような患者に対して本発明の組成物はバクテリアル・トランスロケーションを抑制又は予防する上で有効である。
 このように本発明によれば、被験体に水素ガス又は溶存水素液体を投与することによってバクテリアル・トランスロケーションを抑制又は予防することができる。この事実は、図2に示されるようにマウスモデルでの腸管膜リンパ節(MLN)内での腸内細菌数の減少や、図3に示されるように腸管上皮からの腸内細菌の過透過性の低減の証拠からも明らかである。
 これまで、水素ガス又は溶存水素液体が敗血症の治療剤になる可能性が指摘されており(非特許文献6)、具体的には、水素には、患者の血清や組織内で炎症性サイトカインやケモカインのレベルが低下することから抗炎症作用がある、組織の酸化性損傷を低減することから抗酸化作用があるなどが報告されている。しかし、これまで、水素自体がバクテリアル・トランスロケーションを抑制又は防止する能力を有することは知られていなかった。
 上記のとおり、本発明によれば、バクテリアル・トランスロケーションを抑制又は防止することができるならば、敗血症、全身性炎症反応症候群(SIRS)又は多臓器機能不全症候群(MOF)の発症もしくは悪性化をさらに抑制又は防止することが可能になるため、本発明の組成物は、このような疾患の発症を防止し、あるいは、敗血症がSIRSやMOFに重症化することを防止又は抑制することができる。図1に示されるように、敗血症マウスモデルに溶存水素液体を投与することによって生存率が有意に改善される。
 このように敗血症の発症や、敗血症発症後の重症化を抑制又は防止するうえで、本発明の組成物の有効成分としての水素がもつ、例えば、被験体の腸組織の損傷を改善する作用、被験体の腸内細菌叢における悪玉菌(例えばエンテロバクテリア科細菌)などのある細菌種の異常増殖を抑制する作用などが有意に働くためであると考えられる。エンテロバクテリア科細菌の異常増殖は、図5に示されるように敗血症マウスモデルでも観察されている。これについては、下記2.に具体的に説明されている。
 さらにまた、腸組織の損傷の改善については、図6に示されるように水素による処置後のMDAレベルの低下、すなわち酸化ストレスの低減、図7に示されるように水素による処置後の腸組織における炎症メディエーター(TNF-α、iNOS、IL-1β、IL-6等)レベルの低下、ならびに、図4に示されるように敗血症マウスモデルの腸形態学的障害からの保護と密着結合タンパク質(ZO-1)の局在が明確に証明されている。当該炎症メディエーターは、組織の炎症部位に浸潤したマクロファージや血管内皮細胞などから放出され、血管透過性亢進、アポトーシス、組織破壊などを引き起こす。
2.腸内細菌叢の細菌種組成異常の抑制又は予防
 本発明はまた、水素ガス又は溶存水素を有効成分として含む、被験体内で腸内細菌叢の細菌種組成異常を抑制又は予防するための組成物、並びに、前記組成物を被験体に投与することを含む、腸内細菌叢の細菌種組成異常を抑制又は予防するための方法を提供する。
 本発明は、以下に説明するように、被験体において水素ガス又は溶存水素が、腸内細菌叢の細菌種組成異常を防止又は改善することを可能にするという知見に基づく。
 本明細書中、「腸内細菌叢の細菌種組成異常」は、腸内細菌叢の組成(もしくは構成)が健常人の組成から明らかに異なっており、そのことが特定の疾患と関連する場合の当該細菌種組成の異常を指す。したがって腸内細菌叢の細菌種組成異常は、腸内細菌叢内の少なくとも1種の細菌の異常増加又は異常減少である、或いは、腸内細菌叢の細菌種組成異常は、ディスバイオシス(dysbiosis)と関連する疾患を発症することが可能である。
 何らかの遺伝素因(例えば肥満などの体質や、2型糖尿病、炎症性腸疾患などの疾患を発症しやすい体質に起因する遺伝素因)をもつ個体が、何らかの環境要因の悪化などにより腸内細菌叢の細菌組成のバランスを崩し、それによって腸エコシステムの恒常性が破綻し、種々の疾患の発症や憎悪の原因になると言われている(Ohno H,Jpn J.Clin.Immunol.,37(5):403-411,2014)。腸内細菌は、その種類に応じて種々の代謝産物を産生して身体の健康又は恒常性を維持しているが、例えば酪酸などの短鎖脂肪酸を産生する細菌群が減少することによって例えば肥満や2型糖尿病を起こしやすくなること、また善玉菌であるビフィズス菌が減少することにより乳酸や酢酸などの短鎖脂肪酸の産生が低下するために病原性細菌による感染症を発症しやくすること、セロトニン、ドーパミン又はその前駆物質を産生する細菌が減少してうつ病を発症することなどが知られている。また、腸内細菌によって産生された酪酸は、大腸制御性T細胞(Treg)を誘導することも知られており、異常又は過剰な免疫反応を負に制御することによって、アレルギーなどの病的な免疫応答の抑制に関与すると言われている。このように、腸内細菌叢の細菌種組成異常が引き起こす疾患は多様である。
 腸内細菌叢の細菌種組成異常の抑制又は予防は、図5に示される敗血症マウスモデルで実証されるように、水素ガス又は溶存水素液体の投与によって被験体の腸内細菌叢におけるエンテロバクテリア科細菌の異常増加が劇的に抑制されるという証拠から明らかである。敗血症が原因したと推定される当該細菌の異常増加は、作用機序は明らかでないが、水素の投与によって防止された。
 術後敗血症に罹患したヒト患者におけるバクテリアル・トランスロケーション(細菌が腸上皮細胞を過剰に透過し、腸管膜リンパ節に達し、さらに遠隔臓器に移行する。)を介して腸管膜リンパ節に達する細菌群は、文献(O’Boyle CJ、上記)によると、その全細菌のうち約60%以上がエンテロバクテリア科(the family Enterobacteriaceae)細菌である。
 また、水素の投与によって、バクテリアル・トランスロケーションが抑制されること、腸粘膜組織損傷が軽減されること、炎症性サイトカインの発現が減少すること、酸化ストレスが低減することなどの有益な効果も得ることができる(後述の実施例参照)。このように水素は細菌の腸上皮透過、さらに全身への移行を回避し、腸を含む臓器の組織を保護するため、腸内細菌叢の細菌種組成異常によって発症した疾患の軽減又は改善を可能にする。
 具体的には、水素は、腸内細菌叢の細菌種組成異常などに起因して発症する腸疾患(例えば炎症性腸疾患など)による腸組織の損傷を改善することができる。被験体のこのような改善作用について、上記1.と同様に、例えば、図6に示されるように水素による処置後のMDAレベルの低下、すなわち酸化ストレスの低減、図7に示されるように水素による処置後の腸組織における炎症メディエーター(TNF-α、iNOS、IL-1β、IL-6等)レベルの低下、ならびに、図4に示されるように敗血症マウスモデルの腸形態学的障害からの保護と密着結合タンパク質(ZO-1)の局在が明確に証明されている。当該炎症メディエーターは、組織の炎症部位に浸潤したマクロファージや血管内皮細胞などから放出され、血管透過性亢進、アポトーシス、組織破壊などを引き起こすことがよく知られている。
 本発明では、「腸内細菌叢の細菌種組成異常」は、細菌組成のバランスが崩れ、腸エコシステム(すなわち、宿主腸管と腸内細菌叢との相互作用に基づいた環境系)の恒常性が破綻し、種々の疾患の発症や憎悪の原因になるような異常を指している。具体的には、当該細菌種組成異常は、例えば、肥満、糖尿病、アレルギー、腸バリア機能などと関連する短鎖脂肪酸(例えば酪酸、酢酸等)を産生する細菌の減少、発癌物質を産生する細菌の増加、脳で機能するホルモン又はホルモン前駆物質を産生する細菌の減少などによって生じる。
 これまで、水素ガス又は溶存水素液体が腸内細菌叢の細菌種組成異常を抑制又は予防する能力を有することは知られていなかった。
 本発明による腸内細菌叢の細菌種組成異常の抑制又は予防によって、当該細菌種組成異常が原因して発症する疾患、例えば炎症性腸疾患(例えば潰瘍性大腸炎及びCrohn病)、過敏性腸症候群などの消化管疾患、メタボリックシンドローム(例えば2型糖尿病、動脈硬化など)、肥満などの代謝性疾患、癌、リウマチ性疾患(例えば関節リウマチなど)、精神神経疾患(例えば自閉症、うつ病、パーキンソン病など)、アレルギー疾患などの疾患の予防、軽減又は改善を可能にする。
 腸内細菌叢の細菌組成の解析は、糞便から抽出した細菌DNAをPCRによって増幅し、さらに16S rRNA遺伝子のV領域(例えばV1-V2、V3-V4等)をPCRによって増幅し、増幅産物を精製しライブラリーを作製したのち、高速シーケンス用アダプター配列を付加し、次世代シークエンサーを用いて配列決定する。決定された配列について、16S rRNAデータベースに対する相同検索、並びに系統分類解析を行う。さらに菌叢の違いを、主座標分析(PCoA)、分類された細菌群の細菌数の相対比較などの手法によって決定することができる(例えばKamo T et al.,PLoS ONE 12(3):e0174099,2017;Nishijima S et al.,DNA Research 2016;2382:126-133)。
3.組成物
 本発明の組成物の有効成分である水素ガス又は溶存水素の好ましい形態はそれぞれ、水素ガス含有気体又は水素溶存液体の形態である。
 水素ガス含有気体は、好ましくは、水素ガスを含む空気又は、水素ガスと酸素ガスを含む混合ガスである。水素ガス含有気体の水素ガスの濃度は、ゼロ(0)より大きく、かつ18.5体積%以下、例えば0.5~18.5体積%であり、好ましくは1~10体積%、例えば2~8体積%、3~6体積%、より好ましくは4~6体積%、例えば4~5体積%である。水素ガス以外の気体が空気であるときには、空気の濃度は、例えば81.5~99.5体積%の範囲であるし、また、水素ガス以外の気体が酸素ガスを含む気体であるときには、酸素ガスの濃度は、例えば21~99.5体積%の範囲であり、その他の主気体として窒素ガスを含有させることができるし、さらに空気中に含有する気体である二酸化炭素などのガスを、空気中の存在量程度の量で含有させてもよい。いずれにしても水素は可燃性かつ爆発性ガスであるため、ヒトなどの被験体に安全なレベルになるように組成物に含有させ、被験体に投与させるべきである。
 水素溶存液体は、具体的には、水素ガスを溶存させた水性液体であり、ここで、水性液体は、例えば水、生理食塩水、緩衝液(例えばpH4~7.4の緩衝液)、エタノール含有水(例えばエタノール含有量0.1~2体積%)、点滴液、注射溶液、輸液、飲料などである。水素溶存液体の水素濃度は、例えば1~10ppm、好ましくは2~8ppm、さらに好ましくは3~7ppmである。
 水素ガス含有気体又は水素溶存液体は、所定の水素ガス濃度になるように配合されたのち、耐圧容器(例えばアルミ缶、耐圧性プラスチックボトルやバッグ、耐圧性ペットボトル、等)に充填される。あるいは、水素ガス含有気体又は水素溶存液体は、投与時に、公知の水素ガス供給装置又は水素添加器具を用いてその場で作製されてもよい。
 水素ガス供給装置は、水素発生剤(例えば金属アルミニウム等)と水の反応により発生する水素ガスを、希釈用ガス(例えば空気、酸素等)と所定の比率で混合することを可能にする(日本国特許第5228142号公報等)。あるいは、水の電気分解を利用して発生した水素ガスを、希釈ガスと混合する(日本国特許第5502973号公報、日本国特許第5900688号公報等)。これによって0.5~18.5体積%の範囲内の水素濃度の水素ガス含有気体を調製することができる。
 水素添加器具は、水素発生剤とpH調整剤を用いて水素を発生し、水などの生体適用液に溶存させる装置である(日本国特許第4756102号公報、日本国特許第4652479号公報、日本国特許第4950352号公報、日本国特許第6159462号公報、日本国特許第6170605号公報等)。水素発生剤とpH調整剤の組み合わせは、例えば、金属マグネシウムと強酸性イオン交換樹脂もしくは有機酸(例えばリンゴ酸、クエン酸等)、金属アルミニウム末と水酸化カルシウム粉末、などである。これによって1~10ppm程度の溶存水素濃度の水素溶存液体を調製できる。
 本発明の組成物を被験体に投与する方法としては、水素ガスを有効成分とするとき、例えば吸入、吸引等による経肺投与が好ましい、また、溶存水素液体を有効成分とするとき経口投与が好ましい。ガスを吸入するときには、口と鼻を覆うマスク型の器具を介して口又は鼻からガスを吸入して肺に送り、血液を介して全身に送達することができる。経口投与する溶存水素液体については、好ましくは低温下に保存し、冷却した液体を被験体に投与してもよい。或いは、溶存水素液体は、点滴液や注射液の形態であるときには、静脈内投与、動脈内投与などの非経口投与経路によって被験体に投与してもよい。
 上記水素濃度の水素ガス含有気体又は上記溶存水素濃度の水素溶存液体を1日あたり1回又は複数回(例えば2~3回)、1週間~6か月又はそれ以上、好ましくは2週間~3か月の期間にわたり被験体に投与することができる。水素ガス含有気体が投与されるときには、1回あたり例えば10分~2時間もしくはそれ以上、好ましくは20分~40分かけて投与することができる。また、水素ガス含有気体を吸入又は吸引によって経肺投与するときには、大気圧環境下で、或いは、例えば標準大気圧(約1.013気圧をいう。)を超える且つ7.0気圧以下の範囲内の高気圧、例えば1.02~7.0気圧、好ましくは1.02~5.0気圧、より好ましくは1.02~4.0気圧、さらに好ましくは1.02~1.35気圧の範囲内の高気圧環境下で被験体に当該気体を投与することができる。高気圧環境下での投与によって被験体での水素の体内吸収が促進される。
 上記高気圧環境は、内部に、例えば上記水素ガス含有気体又は空気を圧入して標準大気圧を超える且つ7.0気圧以下の高気圧を内部に形成することが可能である、十分な強度をもつように設計された高気圧筐体(例えば、カプセル状筐体)の使用によって作ることができる。高気圧筐体の形状は、耐圧性であるため、全体的に角がない丸みを帯びていることが好ましい。また高気圧筐体の材質は、軽量、高強度であることが好ましく、例えば強化プラスチック、炭素繊維複合材、チタン合金、アルミ合金などを挙げることができる。被験体は、上記高気圧カプセル内で酸素ガスもしくは空気とともに水素ガスを含む組成物の投与を受けることができる。
 本明細書中「被験体」という用語は、哺乳動物、例えば、ヒトを含む霊長類、イヌ、ネコなどのペット動物、動物園などの観賞用動物などを含む。好ましい被験体はヒトである。
 以下の実施例を参照しながら、本発明をさらに具体的に説明するが、本発明の範囲は、これらの実施例に制限されないものとする。
[実施例1]
<水素ガス溶存液の投与による腸内環境の異常であるバクテリアル・トランスロケーション及び/又は腸内細菌叢の細菌種組成異常の抑制もしくは改善>
I.実験
[1]敗血症動物モデル
 体重20~25gの6週齢雄C57/BL6マウスに対し、盲腸結紮・破裂(cecal ligation and puncture;CLP)を実施して敗血症モデルを作製した。簡単に説明すると、マウスを麻酔し、1cmの腹部正中切開を行って盲腸を露出したのち、盲腸上端から1cm離れた部位を結紮し、23ゲージの針を1箇所に刺して破裂させて中等度のCLP((注)40%が7日生存した。)を実施した。盲腸を腹部に戻し、切開部を縫合した。その直後に、すべてのマウスに生食水(50mL/kg体重)を皮下注射して蘇生させた。
[2]実験プロトコル
 この実験のプロトコルを、擬似群(sham)と、生食水治療群(saline)と、超過飽和濃度水素溶存生食水治療群(H2)とに分けた。擬似群は、CLP手術を実施しなかった健常対照とした。生食水治療群では、1日あたり15ml/kgの生食水を7日間、強制的に給与された。H2群では、1日あたり同量の超過飽和濃度水素溶存生食水を7日間、強制的に給与された。この超過飽和濃度水素溶存生食水は、製造業者(MiZ株式会社、日本)の製法に従って7ppm水素ガス溶存液として作製された。
[腸透過性]
 腸上皮透過性を決定するために、伝統的に腸粘膜透過を評価するために使用されている4.4kDaのフルオレセインイソチオシアネート標識デキストラン(FITC-デキストラン;Sigma-Aldrich)の血中への出現量を測定した。そのために、マウスに対し、擬似処置又はCLP処置の21時間後に、リン酸緩衝化生食水(PBS)中の25mg/mL FITC-デキストラン0.2mLを強制的に給与した。3時間後、心臓刺針によってマウスから血液サンプルを採取した。この血液を4℃、3000×gで10分間遠心分離にかけ、血漿を、SH9000Lab蛍光マクロプレートリーダー(Corona Electric)を用いて、励起波長480nm及び発光波長520nmで測定した。血漿中のFITC-デキストランの濃度は、標準としてFITC-デキストランの希釈系列によって測定された。
[バクテリアル・トランスロケーションの測定]
 バクテリアル・トランスロケーションは、文献記載の方法(Deitch EA et al., J. Clin. Invest 84:36-42, 1989)によって評価された。簡単に説明すると、5~6個の腸管膜リンパ節(MLN)を、CLPの24時間後に無菌的に取り出し、その重量を測り、PBS中でホモジナイゼーションして、50mg/mL濃度にした。10倍連続希釈の懸濁液を、5%ヒツジ血液を含むトリプシン処理ダイズアガー(TSA)プレート上で、及び、MarConkeyアガープレート上で平板培養して、それぞれ、全細菌及びグラム陰性細菌を増殖した。2つのプレートを、37℃のインキュベーター内で24時間嫌気培養したのち、コロニー数を計数した。MLN中の細菌数を、MLN組織1gあたりのコロニー形成単位(CFU)で表した。
[組織学的分析]
 CLPの24時間後にマウスを犠牲死させ、PBS、そしてその後0.1Mリン酸バッファー(PB)中の4%パラホルムアルデヒドを、経心腔的に灌流した。小腸(回腸末端部)を切除し、同じ定着液に浸漬し、一連のスクロース溶液(0.1M PB中15%、20%及び25%スクロース)の中で4℃、3日間冷却保護した。検体をOCT化合物(Sakura Finetechnical)中で冷凍したのち、それらをクリオスタット(CM3050S;Leica Microsystems)によって厚さ82μmの切片にスライスし、その冷却切片をヘマトキシリン・エオシンで染色した。
[蛍光抗体法]
 冷却切片を、0.005%サポニンを含む0.1M PB中の20%Block Ace(大日本住友製薬)によってブロックし、閉鎖帯-1(ZO-1)に対するラットモノクローナル抗体(Santa Cruz Biotechnology)と一緒に4℃で一晩インキュベーションした。このとき、この抗体は、PBS中1%正常ヤギ血清で1:200に希釈された。PBS中で3回洗浄後、切片を、500倍希釈のAlexa Fluor 488結合ヤギ抗家兎IgG抗体(Invitrogen)及びDAPI(Sigma-Aldrich)と一緒に室温で1時間インキュベーションした。各反応後、切片をPBSで洗浄した。最後に、切片をSlowFade試薬(Invitrogen)を用いて固定した。そのあと、蛍光顕微鏡装置(オリンパス、日本)を用いて画像を観察した。
[統計分析]
 データは、平均±標準偏差(SD)として表した。実験群間の差は、Tukeyのポストホック(Tukey’s post hoc)比較テストを用いるANOVAによって決定された。生存率は、Kaplan-Meier分析法で分析され、グループ間の差を、log-rankテストで比較した。統計分析を、Graph Pad Prism 7.0(Graph Pad Software, Inc.)を用いて行い、p<0.05を有意であるとした。
[16S rRNA配列決定によるマイクロバイオームの測定]
 CLP後0日目、1日目、3日目及び7日目に、マウスからの糞便サンプルを回収し、マイクロバイオーム(microbiome)を測定した。具体的には、PowerSoil DNA抽出キット(MOBIO)を用いて糞便サンプルからDNAを抽出し、KAPA HiFi HotStart Ready Mix(KAPA Biosystems)を用いてPCRを行った。PCRに使用したプライマーセットは、784F:5'-AGGATTAGATACCCTGGT-3'(配列番号1)及び1061R:5'-CRRCACGAGCTGACGAC-3'(配列番号2;ここでR=A又はG)であり、16S rRNA遺伝子のV5-V6領域を標的とする(Andersson AF et al.,PLoS One 3:e2836,2008)。DNAライブラリーは、製造業者の説明書に従いIon PGM Sequencing Hi-Q Kit(Life Technologies)を用いて作製された。また、配列決定は、Ion PGM シークエンサー(Life Technologies)上で2つの318チップとIon PGM Sequencing Hi-Q Kit(Life Technologies)を用いて行われた。決定された配列をQIIME pipeline(Caoraso JG et al.,Nat Methods 7:335-336,2010)を用いて解析した。
[エンテロバクテリア科の定量分析]
 核酸抽出のための各糞便サンプルの重さを測り、9容量のPBS(-)に懸濁して糞便ホモジネート(100mg糞便/mL)を作った。従来の記載のとおりに細菌DNAを抽出した(Matsuki T et al.,Appl Environ Microbiol 70:167-173,2004)。簡単に説明すると、200μLの糞便ホモジネート又は細菌培養物に、ガラスビーズ(0.3g;直径0.1mm;BioSpec Products)、300μl Tris-SDS溶液及び500μl TE飽和フェノールを加え、その混合物を、FastPrep-24ホモジナイザー(M.P. Biomedicals)を用いて、パワーレベル5.0で30秒間激しくボルテックスした。4℃、2000×gで5分間遠心分離したのち、懸濁液400μLを回収し、等量(容量)のフェノール-クロロホルム-イソアミルアルコール(25:24:1)を上清に加えた。さらに4℃、2000×gで5分間遠心分離したのち、懸濁液250μLを回収し、イソプロパノール沈降にかけた。最後に、200μL TEバッファーに懸濁し、-30℃で保存した。定量リアルタイムPCR(qPCR)を、GoTaq qPCR Master Mix(Promega)を用いて行い、ABI PRISM 7900HT配列検出システム(Applied Biosystems)を用いて、細菌rRNA遺伝子の量を定量した。エンテロバクテリア科に特異的なプライマーセット、En-lsu-3F: 5'-TGCCGTACTTCGGGAGAAGGCA-3'(配列番号3)及びEn-lsu-3'R: 5'-TCAAGGACCAGTGTTCAGTGTC-3'(配列番号4)を使用した(Kurakawa T et al.,J Microbiol Methods 2013;92(2):213-219)。各反応で、プライマーを1μMの濃度で加えた。増幅プログラムは、95℃5分を1サイクルと、その後の、94℃20秒、55℃20秒及び72℃50秒の複数サイクルからなる。各サイクルの最後のステップで蛍光産物が検出された。融解曲線分析を増幅後に行い、標的指向されたPCR産物を非標的産物と区別した。融解曲線は、連続的蛍光コレクションを用い、0.2℃/秒の速度で60~95℃の温度でゆっくり加熱することによって得られた。qPCR増幅及び検出を、ABI PRISM 7900HT配列検出システム(Applied Biosystems)を用いて、384ウエル光学プレート内で行った。標準曲線は、E.coli JCM1649から抽出されたDNAの定量サイクル(Cq)値を用いて作成された。この細菌株の細菌数は、文献記載のDAPI染色法を用いて顕微鏡観察によって測定された(Jansen GJ et al.,J Microbiol Methods 37:215-221,1999)。このアッセイの直線範囲におけるCq値を、同じ実験で作成された分析曲線に使用して、各核酸サンプル中の対応する細菌数を得、これをサンプルあたりの細菌数に変換した。
[RT-PCRによる腸内炎症メディエーターのmRNA発現]
 小腸(回腸末端部)内のiNOS、定量サイクル腫瘍壊死因子α(TNF-α)、インターロイキン-6(IL-6)及びインターロイキン1β(IL-1β)などの炎症メディエーターを評価するために、それらのmRNA発現をCLPの6時間後に得た。全RNAが組織サンプルから抽出され、High-Capacity cDNA Reverse Transcription Kit(Life Technologies)を用い、製造業者のプロトコルに従ってcDNAに逆転写された。RT-PCRは、StepOne Plus real-time PCR cycler(Applied Biosystems)上でFast SYBR Green Master Mixを用いて行われた。使用した特異的プライマーのそれぞれは、表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 PCR産物を増幅(95℃3秒、60℃30秒、45サイクル)し、Step One Plus(Applied Biosystems)上で検出した。mRNA発現レベルは、β-アクチンレベルに対するものである。
[酸化ストレスの評価]
 酸化ストレスを測定するために、CLP後6時間の時点で組織マロンジアルデヒド(MDA)レベルを測定した。MDAレベルは、チオバルビツール酸反応性物質レベルを測定することによって観察される脂質過酸化産物についてアッセイされた。組織サンプルを-80℃に急速凍結し、50μgずつのサンプルに小分けした。そのサンプルをRIPAバッファー(和光純薬工業)中でホモジナイゼーションし、サンプルの酸化を防止した。全サンプルを遠心分離(4℃、10,000×g、10分)にかけて、上清を回収し、OxiSelect TBARS Assay Kit(Cell Biolabs)を用いて製造業者の説明書に従って評価した。NanoDrop分光光度計(Thermo Fisher Scientific)を用いて532nmの吸光度を測定した。MDA濃度は、タンパク質1mgあたりのnmol(nmol/mg)で表した。
II.結果
[超過飽和濃度水素溶存生食水による生存の改善]
 超過飽和濃度水素溶存生食水が敗血症マウスの生存率を改善することが可能であるか否かを調べるために、超過飽和濃度水素溶存生食水15ml/kgを、CLP術後7日間、毎日マウスに給与した。図1に生存曲線を示した。7日の実験期間の生存率は、擬似群(n=10)で100%、生食水群(n=26)で31%、H2群(n=26)で69%であった。H2群の生存率は、生食水群より有意に高くなった(p<0.01)。
[超過飽和濃度水素溶存生食水によるバクテリアル・トランスロケーションの防止]
 MLN培養の分析において、TSAアガープレート及びMacConkeyアガープレート上のコロニーの数を、CLPの24時間後に計数して、バクテリアル・トランスロケーションが起こったか否かを決定した。擬似群では、コロニーは全く観察されなかった。生食水群では、TSA及びMacConkeyアガープレート上にコロニーが生じたが、H2群では、コロニーは存在したものの抑制された(図2A)。生食水群と比較してH2群では、MacConkeyアガープレート上に存在するコロニー数の大きな減少が観察された(p<0.05)(図2B)。
[超過飽和濃度水素溶存生食水による腸からの過透過性の減衰]
 CLPの24時間後、血漿中のFITC-デキストランの出現を測定することによって腸透過性を評価した。その結果、擬似群と比べて生食水群で、有意に高いレベルのFITC-デキストランが観察され、またH2群では減衰された(図3)。
[超過飽和濃度水素溶存生食水による腸の形態学的障害の軽減と密着結合の防止]
 図4(A)に、腸粘膜障害の組織学的知見を示した。腸絨毛の短縮化又は欠損などの特徴が、生食水群で認められたが、H2群では軽減された。さらにまた、腸密着結合タンパク質ZO-1の発現を蛍光抗体染色で調べた。図4(B)に示されるように、ZO-1は、腸上皮密着結合部に局在しており、これは、図中、細胞結合部の頂端コンパートメントに一連の明るい緑色スポット(明るく光っている部分)として現れている。ZO-1の局在は、生食水群で破壊されており、明るい緑色スポットが欠損しているが、一方、H2群ではZO-1の局在が認められた。
[超過飽和濃度水素溶存生食水による腸マイクロバイオーム変化の制御]
 図5Aに、16S rRNA分析により決定された糞便サンプルからの多数の細菌分類群を示した。菌叢は、健康状態のマウスで、S24-7群又はクロストリジウム科、ラクトバシラス科、及びラクノスピラ科である。これに対し、CLPの1日目に、生食水群で、微生物組成が著しく変化し、特にエンテロバクテリア科の動的な増加がみられた。H2群では、エンテロバクテリア科の過剰増加は大きく抑制された。定量分析の結果、エンテロバクテリア科の菌数は、生食水群で、1日目に約10まで増加したが、H2群では、当該菌数は相当に抑制された(図5B)。
[超過飽和濃度水素溶存生食水による酸化ストレスの低減]
 CLPの6時間後のMDAの組織レベルが酸化ストレスの分析のために測定された。3つの群の間でMDAレベルに有意な差はなかったが、H2群では他の2つの群と比べて低い傾向がみられた(図6)。
[超過飽和濃度水素溶存生食水による腸組織内の炎症反応の低減]
 CLPの6時間後の腸組織内の炎症メディエーターのmRNA発現が定量RT-PCRによって測定された結果、TNF-α、IL-1β及びIL-6のレベルは、擬似群と比べて生食水群でかなり高くなった(図7)。生食水群では、iNOSレベルもまた高い傾向がみられた。しかし、H2群では、これらの炎症メディエーターのmRNA発現は有意に抑制された(p<0.05)。
 本発明により、腸内環境の異常であるバクテリアル・トランスロケーションを抑制又は予防(もしくは防止)することができるため、敗血症、全身性炎症反応症候群(SIRS)又は多臓器機能不全症候群(MOF)の発症もしくは悪性化をさらに防止、抑制又は改善することが可能になる。
 また、腸内細菌叢の細菌種組成異常の予防又は改善は、上記の動物モデルで実証されるように、水素ガス又は溶存水素液体の投与によって被験体の腸内細菌叢におけるある細菌種の異常増加が劇的に抑制されるという証拠から明らかである。本発明により、腸内環境の異常である被験体内で腸内細菌叢の細菌種組成異常を予防又は抑制することができるため、ディスバイオシスと関連する疾患の予防、軽減又は改善が可能である。
配列番号1~12: プライマー
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (11)

  1.  水素ガス又は溶存水素を有効成分として含む、被験体において腸内環境の異常を抑制又は予防するための組成物であって、前記異常が、バクテリアル・トランスロケーション及び腸内細菌叢の細菌種組成異常からなる群から選択される、組成物。
  2.  前記バクテリアル・トランスロケーションが、敗血症、全身性炎症反応症候群(SIRS)又は多臓器機能不全症候群(MOF)の発症もしくは悪性化に導く、請求項1に記載の組成物。
  3.  前記細菌種組成異常が、腸内細菌叢内の少なくとも1種の細菌の異常増加又は異常減少である、請求項1に記載の組成物。
  4.  前記細菌種組成異常が、ディスバイオシスと関連する疾患の発症に導く、請求項1又は3に記載の組成物。
  5.  前記被験体の腸組織の損傷を改善する、請求項1~4のいずれか1項に記載の組成物。
  6.  水素ガス含有気体又は水素溶存液体の形態である、請求項1~5のいずれか1項に記載の組成物。
  7.  前記水素ガス含有気体の水素濃度が、0.5~18.5体積%である、請求項6に記載の組成物。
  8.  前記水素溶存液体の水素濃度が、1~10ppmである、請求項6に記載の組成物。
  9.  前記被験体への組成物の投与が、経肺投与又は経口投与である、請求項1~8のいずれか1項に記載の組成物。
  10.  前記経肺投与が、大気圧環境下で、又は1.02~7.0気圧の高気圧環境下で行われる、請求項9に記載の組成物。
  11.  投与時に水素ガス供給装置又は水素添加器具を用いてその場で作製される、請求項1~10のいずれか1項に記載の組成物。
PCT/JP2018/013541 2017-12-19 2018-03-30 腸内環境の異常を抑制又は予防するための組成物 WO2019123672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3017369A CA3017369A1 (en) 2017-12-19 2018-03-30 Composition for suppressing or preventing abnormality in intestinal environment
KR1020187024258A KR20190087987A (ko) 2017-12-19 2018-03-30 장내 환경의 이상을 억제 또는 예방하기 위한 조성물
US16/085,050 US11026967B2 (en) 2017-12-19 2018-03-30 Composition for suppressing or preventing abnormality in intestinal environment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017242471A JP6796290B2 (ja) 2017-12-19 2017-12-19 バクテリアル・トランスロケーションの防止又は抑制のための組成物
JP2017-242471 2017-12-19
JP2017242401A JP6601851B2 (ja) 2017-12-19 2017-12-19 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物
JP2017-242401 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019123672A1 true WO2019123672A1 (ja) 2019-06-27

Family

ID=66993350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013541 WO2019123672A1 (ja) 2017-12-19 2018-03-30 腸内環境の異常を抑制又は予防するための組成物

Country Status (4)

Country Link
KR (1) KR20190087987A (ja)
CA (1) CA3017369A1 (ja)
TW (1) TW201927321A (ja)
WO (1) WO2019123672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116290A (ja) * 2020-01-21 2021-08-10 MiZ株式会社 炎症性腸疾患を予防および/または改善するための分子状水素含有組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122148A (ja) * 2012-11-26 2014-07-03 Mizu Kk 生体用高濃度水素ガス供給装置
JP2017104842A (ja) * 2015-12-02 2017-06-15 MiZ株式会社 水素含有液体の生成装置及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113425A (ja) 2014-12-17 2016-06-23 中山 敏正 抗腫瘍剤
JP2016190833A (ja) 2015-03-30 2016-11-10 H2bank株式会社 水素分子による乾癬患者における皮膚関節症状およびサイトカイン改善作用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122148A (ja) * 2012-11-26 2014-07-03 Mizu Kk 生体用高濃度水素ガス供給装置
JP2017104842A (ja) * 2015-12-02 2017-06-15 MiZ株式会社 水素含有液体の生成装置及び方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BUCHHOLZ B. M. ET AL.: "Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury", AM J TRANSPLANT, vol. 8, no. 10, August 2008 (2008-08-01), pages 2015 - 2024, XP055620485 *
IKEDA, MITSUNORI ET AL.: "Intestinal tract failure is controlled: effect of high-concentration hydrogen water", JOURNAL OF THE JAPANESE ASSOCIATION FOR ACUTE MEDICINE, vol. 28, no. 9, 15 September 2017 (2017-09-15), pages 439 *
ISHIBASHI TORU ET AL.: "Consumpiton of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study", MEDICAL GAS RESERCH, vol. 2, no. 1, 2012, pages 27, XP021140449 *
KAJIYA MIKIHITO ET AL.: "Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate", BIOCHEM BIOPHYS RES COMMUN, vol. 386, no. 1, 2009, pages 11 - 15, XP026467410 *
NAKAO ATSUNORI ET AL.: "Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study", J CLIN BIOCHEM NUTR, vol. 46, 2010, pages 140 - 149, XP002655319 *
NAKASONE, YASUSHI ET AL.: "Effects of hydrogen-containing beverage ingestion on obesity - Comparative study between double blinded placebo control parallel groups", JAPANESE PHARMACOLOGY & THERAPEUTICS, vol. 45, no. 11, 20 November 2017 (2017-11-20), pages 1821 - 1830 *
XIAO HUI-WEN ET AL.: "Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88' s effects on the gut microbiota", EXPEROMENTAL & MOLECULAR MEDICINE, vol. 50, no. 1, 26 January 2018 (2018-01-26), pages e433, XP055620493 *
XIE KELIANG ET AL.: "Hydrogen gas presents a promising therapeutic strategy for sepsis", BIOMED RES INT (WEB, vol. 2014, pages 1 - 9, XP055620482 *
YAMAMOTO, HIROSHI ET AL.: "Bacterial translocation and its clinical significance. Digestive troubles - state of arts I. Digestive duct", 2006, pages 33 - 36 *
YU SHAOQING ET AL.: "Hydrogen-rich saline attenuates eosinophil activation in a guinea pig model of allergic rhinitis via reducing oxidative stress", J INFLAMM, vol. 14, no. 1, 13 January 2017 (2017-01-13), pages 1 - 12, XP055620489 *
ZHANG HONGTAO ET AL.: "Effect of hydrogen gas on intestinal Rho/ROCK signaling pathway in septic mice", CHIN J ANESTHESIOL, vol. 35, no. 4, 2015, pages 477 - 480 *
ZHANG YI ET AL.: "Effects of hydrogen-rich water on depressive-like behavior in mice", SCI REP, vol. 6, June 2016 (2016-06-01), pages 1 - 7, XP055620490 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116290A (ja) * 2020-01-21 2021-08-10 MiZ株式会社 炎症性腸疾患を予防および/または改善するための分子状水素含有組成物

Also Published As

Publication number Publication date
CA3017369A1 (en) 2019-09-30
KR20190087987A (ko) 2019-07-25
TW201927321A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
De Vries et al. Prospective randomized study of once-daily versus thrice-daily netilmicin regimens in patients with intraabdominal infections
US10646556B2 (en) Methods for treatment of and prophylaxis against inflammatory disorders
Burgos-Portugal et al. The role of autophagy in the intracellular survival of Campylobacter concisus
US11026967B2 (en) Composition for suppressing or preventing abnormality in intestinal environment
JP6601851B2 (ja) 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物
Ou et al. α-Defensins promote Bacteroides colonization on mucosal reservoir to prevent antibiotic-induced dysbiosis
US11524056B2 (en) Thymosin alpha 1 for use in treatment of cystic fibrosis
WO2019123672A1 (ja) 腸内環境の異常を抑制又は予防するための組成物
US10857201B2 (en) NNIF and nNIF-related peptides and related methods
JP6796290B2 (ja) バクテリアル・トランスロケーションの防止又は抑制のための組成物
JP2019116518A (ja) 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物
JP2019116519A (ja) バクテリアル・トランスロケーションの防止又は抑制のための組成物
US11324801B2 (en) NNIF and nNIF-related peptides and related methods
Dong et al. Protection of intestinal immune barrier against ischemia/reperfusion injury in a swine model using anisodamine hydrobromide
JP4914200B2 (ja) 感染症の予防又は治療のための薬剤及びその製造方法、評価方法及びスクリーニング方法、並びに、病原性細菌の病原性の評価方法及び感染症の検査方法
Angelova et al. Effects of partial liquid ventilation on lipopolysaccharide-induced inflammatory responses in rats
Manarin et al. Beneficial effects of benznidazole during an infectious-based situation of systemic inflammatory response: cecal ligation and puncture
Hammer Role of the Interleukin-22 and STAT3 Signaling Pathway in Gut Barrier Maintenance Following Intoxication and Burn Injury
Raikhelkar et al. The efficacy of post-cardiopulmonary bypass dosing of vancomycin in cardiac surgery
CN108866177A (zh) hsa-miRNA-423-5p和hsa-miRNA-423-5p抑制剂的用途
Hughes et al. Sulfacytine: A New Sulfonamide. Double-Blind Comparison with Sulfisoxazole in Acute Uncomplicated Urinary Tract Infections
Marquet et al. COMPARISON OF A NEW ENZYMATIC ASSAY WITH LC-MS/MS FOR THE DETERMINATION OF PLASMA MYCOPHENOLATE IN PATIENTS WITH DIFFERENT GRAFT TYPES AND ASSOCIATED IMMUNOSUPPRESSANTS.
Seo Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles
Cairo et al. INCIDENCE OF THROMBOTIC MICROANGIOPATHY SYNDROME IN SOLID ORGAN TRANSPLANTATION: IMPACT OF IMMUNOSUPPRESSION.
Deng et al. Gut Microbe-Derived Milnacipran Enhances Tolerance to Sepsis Induced by Gut Ischemia/Reperfusion

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187024258

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891158

Country of ref document: EP

Kind code of ref document: A1