TW201927321A - 用於抑制或預防腸內環境之異常之組合物 - Google Patents

用於抑制或預防腸內環境之異常之組合物 Download PDF

Info

Publication number
TW201927321A
TW201927321A TW107110995A TW107110995A TW201927321A TW 201927321 A TW201927321 A TW 201927321A TW 107110995 A TW107110995 A TW 107110995A TW 107110995 A TW107110995 A TW 107110995A TW 201927321 A TW201927321 A TW 201927321A
Authority
TW
Taiwan
Prior art keywords
hydrogen
composition
intestinal
bacteria
composition according
Prior art date
Application number
TW107110995A
Other languages
English (en)
Inventor
池田光憲
清水健太郎
小倉裕司
平野伸一
黑川亮介
Original Assignee
日商MiZ股份有限公司
國立大學法人大阪大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017242471A external-priority patent/JP6796290B2/ja
Priority claimed from JP2017242401A external-priority patent/JP6601851B2/ja
Application filed by 日商MiZ股份有限公司, 國立大學法人大阪大學 filed Critical 日商MiZ股份有限公司
Publication of TW201927321A publication Critical patent/TW201927321A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)

Abstract

本申請提供一種組合物,其係包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體之腸內環境之異常者,該異常係選自由細菌移位及腸內菌叢之菌種組成異常所組成之群之中。

Description

用於抑制或預防腸內環境之異常之組合物
本發明係關於一種包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體之腸內環境之異常之組合物。 具體而言,上述腸內環境之異常係選自由細菌移位(Bacterial Translocation)及腸內菌叢之菌種組成異常所組成之群之中。
腸道內存在腸內菌叢,其恆常性對於維持健康而言較重要,近年來業界指出腸內菌叢之紊亂與各種疾病存在關聯性。又,腸道存在免疫系統,其防禦有害物之侵入,但若因某些原因導致腸道壁屏障受到損傷,則存在有害物侵入體內,發生嚴重疾病之情況。如此,腸內環境中所產生之異常如下所記載般有隨時傷害人類健康之可能性。 細菌移位係存在於腸道內之細菌或其死菌因某些原因通過腸道壁(或者腸道上皮),自腸膜淋巴結移位至遠處臟器。作為發生細菌移位之原因,可列舉腸內固有菌叢之變化、腸道上皮細胞之防禦能力降低、宿主免疫功能之降低等。 細菌移位成為原因或部分原因而發病或惡化之疾病包括感染源不明確之感染症、敗血症、高度侵入時之全身性炎症反應症候群(SIRS,systemic inflammatory response syndrome)、多重臟器衰竭症候群(MOF,Multiple organ failure)等(非專利文獻1)。 因此,用於抑制細菌移位之臨床管理於預防上述疾病等方面較重要。然而,作為抑制細菌移位之藥劑,僅已知麩醯胺酸(非專利文獻2)等少數物質。 基於此種狀況,本發明者等人著眼於氫作為用於抑制細菌移位之物質。實際上關於氫之臨床效果之報告極少。 進而,近年來明確於腸內菌叢之菌種組成異常(通常稱為「菌叢失調」(dysbiosis))與疾病之間存在密切之關聯性。具體而言,於人腸道內,存在約1000種細菌、總數100兆個以上之細菌數量,因某些內在因素或者外在因素產生之腸內菌叢之菌種組成(或者構成)之平衡異常例如與炎症性腸疾病(例如潰瘍性結腸炎及Crohn(克羅恩氏)病)、過敏性腸症候群等消化道疾病、新陳代謝症候群(例如糖尿病及動脈硬化)、肥胖等代謝性疾病、癌、風濕性疾病、過敏性疾病、精神神經疾病(例如自閉症及抑鬱症)等疾病之發病有關。因此,腸內菌叢之菌種組成異常之改善可成為上述疾病之治療法之一部分,此情況由藉由糞便微生物移植所獲得之治療成績得到證實(非專利文獻3、4及5)。 正如腸被稱為第二腦,因腸內細菌產生之短鏈脂肪酸(例如丁酸、乙酸等)、激素(例如血清素、多巴胺、其前驅物等)等生理活性物質,腸與腦具有密切相關。又,由於腸不斷地暴露於來自體外之侵入物(例如病原菌、毒素等有害物),故而構建獨特之免疫系統。認為若腸內菌叢之細菌組成失衡,則會引起腸環境異常或腸內菌共生平衡失調,腦功能或免疫功能之恆常性紊亂,結果成為如上所述之各種疾病之部分原因。 關於如何可改善腸內菌叢之菌種組成異常,已知有糞便微生物移植等療法,但亦知其並非萬能。 基於此種狀況,本發明者等人此次於改善細菌移位、以及該研究之過程中,發現分子狀氫有改善腸內菌叢之菌種組成異常之可能性。迄今為止,作為將氫氣或溶氫水用於治療之嘗試,例如報告有用於皮膚疾病、癌、敗血症等治療用途之提案(專利文獻1、專利文獻2、非專利文獻6)。例如非專利文獻6中記載有使敗血症動物模型吸入或對其給與氫氣或溶氫水,炎症性細胞激素或趨化激素會減少,又,具有對敗血症相關之臟器損傷之有益效果等。 然而,目前並無指出氫會抑制細菌移位以及有改善腸內菌叢之菌種組成異常之可能性的報告。 先前技術文獻 專利文獻 專利文獻1:日本專利特開2016-190833號公報 專利文獻2:日本專利特開2016-113425號公報 非專利文獻 非專利文獻1:Moore FA et al, J Trauma 1989; 29:916-923 非專利文獻2:Chun H et al., J Gastroenterology 1997; 32(2):189-195 非專利文獻3:金井隆典、日本內科學會刊、105卷9號、1695~1700頁、2016年(日本) 非專利文獻4:大草敏史、Modern media、60卷11號、325~331頁、2014年(日本) 非專利文獻5:本田賢也、區域融合評論、2,e011(2013);DOI:10. 7875/leading. author. 2e011(日本) 非專利文獻6:Xie K et al., BioMed Research International, Vol. 2014, Article ID 807635, 9 pages
[發明所欲解決之問題] 本發明之目的在於提供一種用於抑制、改善或預防(或者防止)腸內環境之異常、尤其是細菌移位及腸內菌叢之菌種組成異常之組合物。 若可抑制或預防細菌移位,則可期待抑制敗血症等上述疾病之發病或惡化,又,若可抑制或預防腸內菌叢之菌種組成異常,則可期待防止與菌叢失調相關之疾病之發病。 [解決問題之技術手段] 本發明包括以下特徵。 (1)一種組合物,其係包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體之腸內環境之異常者,並且上述異常係選自由細菌移位及腸內菌叢之菌種組成異常所組成之群之中。 (2)如上述(1)之組合物,其中上述細菌移位導致敗血症、全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF)之發病或者惡化。 (3)如上述(1)之組合物,其中上述菌種組成異常係腸內菌叢內之至少1種細菌之異常增加或異常減少。 (4)如上述(1)或(3)之組合物,其中上述菌種組成異常導致與菌叢失調相關之疾病之發病。 (5)如上述(1)至(4)中任一項之組合物,其改善上述受驗體之腸組織之損傷。 (6)如上述(1)至(5)中任一項之組合物,其係含氫氣之氣體或溶氫液體之形態。 (7)如上述(6)之組合物,其中上述含氫氣之氣體之氫濃度為0.5~18.5體積%。 (8)如上述(6)之組合物,其中上述溶氫液體之氫濃度為1~10 ppm。 (9)如上述(1)至(8)中任一項之組合物,其中向上述受驗體之組合物之投予係經肺投予或經口投予。 (10)如上述(9)之組合物,其中上述經肺投予係於大氣壓環境下、或1.02~7.0大氣壓之高氣壓環境下進行。 (11)如上述(1)至(10)中任一項之組合物,其係於投予時使用氫氣供給裝置或加氫器具當場製作。 根據本發明,藉由投予溶氫或氫氣,對於能夠減少腸屏障損傷(intestinal barrier dysfunction)及腸內菌叢之菌種組成異常(dysbiosis),並且防止或抑制細菌移位(bacterial translocation),藉此進而防止或抑制敗血症、全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF)之發病或者惡化,又對於患者之緊急治療或預後改善,提供極有用之新穎療法。 又,根據本發明,藉由投予溶氫或氫氣,對於能夠預防或改善腸內菌叢之菌種組成異常而預防或減輕預想因該菌種組成異常發生之各種疾病,提供有用之新穎療法。 本說明書包括成為本申請優先權基礎之日本專利申請編號2017-242471號(申請日2017年12月19日)及日本專利申請編號2017-242401號(申請日2017年12月19日)之揭示內容。
更詳細地說明本發明。 本發明提供一種組合物,其係包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體之腸內環境之異常者,並且上述異常係選自由細菌移位及腸內菌叢之菌種組成異常所組成之群之中。 以下,對細菌移位及腸內菌叢之菌種組成異常之抑制或預防進行說明。 1.細菌移位之抑制或預防 如上所述,本發明提供一種包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體內細菌移位之組合物、以及包括將上述組合物投予至受驗體之用於抑制或預防細菌移位之方法。 於本說明書中,關於細菌移位,「預防」之用語係意指防止於受驗體內因某些原因發生細菌移位而引發敗血症等疾病之情況。又,關於細菌移位,所謂「抑制」意指受驗體經由細菌移位而引發敗血症等疾病時藉由抑制細菌移位而改善或避免該疾病之重症化(即症狀之惡化)之情況。 於本說明書中,「細菌移位」之用語係指存在於腸內之細菌或其死菌因某些原因通過腸道壁(或者腸道上皮)並自腸膜淋巴結移位至遠處臟器之情況。藉由細菌移位,活菌或死菌、視情形之內毒素等毒素進入血中,流遍全身,引發敗血症。敗血症患者若進一步惡化,則會引發全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF),視情形會導致死亡。敗血症之治療通常藉由特定出成為原因之細菌,並將對該細菌有效之抗生素等藥劑投予至患者而進行。 根據文獻(O' Boyle CJ et al., Gut 1998; 42:29-35),於術後罹患敗血症之人類患者體內,經由細菌移位到達腸膜淋巴結之細菌群之全部細菌中約60%以上為腸桿菌科(the family Enterobacteriaceae)細菌,其中比率最高之細菌群為埃希氏菌(Escherichia)屬細菌,尤其是大腸桿菌,此外包括克雷伯氏菌(Klebsiella)屬細菌、變形桿菌(Proteus)屬細菌、腸桿菌(Enterobacter)屬細菌等。 作為引起腸內細菌之腸道上皮透過性之原因,例如可認為因緊急手術、感染症、炎症性腸疾病、腸內細菌之異常增殖、腸黏膜組織之損傷、免疫功能之降低等,而發生細菌移位(上述O'Boyle,1998)。實際上引發敗血症等疾病之比率係10~15%左右之患者,對此種患者,本發明之組合物於抑制或預防細菌移位方面有效。 如此,根據本發明,藉由對受驗體投予氫氣或溶氫液體,可抑制或預防細菌移位。該事實亦根據如下證據而明確,即:圖2所示小鼠模型中之腸膜淋巴結(MLN)內之腸內細菌數量減少、或如圖3所示自腸道上皮之腸內細菌之過度透過性降低。 迄今為止,業界已指出氫氣或溶氫液體成為敗血症治療劑之可能性(非專利文獻6),具體而言,報告有由於患者之血清或組織內炎症性細胞激素或趨化激素之量降低,故而氫具有抗炎症作用,由於減少組織之氧化性損傷,故而氫具有抗氧化作用等。但至今為止,未知氫本身具有抑制或防止細菌移位之能力。 如上所述,根據本發明,若可抑制或防止細菌移位,則可進一步抑制或防止敗血症、全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF)之發病或者惡化,因此本發明之組合物可防止此種疾病之發病,或者防止或抑制敗血症重症化為SIRS或MOF。如圖1所示,藉由向敗血症小鼠模型投予溶氫液體,顯著改善存活率。 認為其原因在於:於如此抑制或防止敗血症之發病、或敗血症發病後之重症化時,作為本發明之組合物之有效成分之氫所具有之例如改善受驗體之腸組織之損傷之作用、抑制受驗體之腸內菌叢中之惡菌(例如腸桿菌科細菌)等某菌種之異常增殖之作用等顯著發揮作用。腸桿菌科細菌之異常增殖如圖5所示,於敗血症小鼠模型中亦觀察到。於下述2.對該情況進行具體說明。 進而又,關於腸組織之損傷之改善,如圖6所示利用氫進行治療後MDA量降低、即氧化壓力減少,如圖7所示利用氫進行治療後腸組織中之炎症介質(TNF-α、iNOS、IL-1β、IL-6等)量降低,以及如圖4所示保護敗血症小鼠模型免受腸形態學損傷與緊密連接蛋白質(ZO-1)之局部存在得到明確證明。該炎症介質自浸潤於組織之炎症部位之巨噬細胞或血管內皮細胞等釋出,引起血管透過性亢進、細胞凋亡、組織破壞等。 2.腸內菌叢之菌種組成異常之抑制或預防 又,本發明提供一種包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體內腸內菌叢之菌種組成異常之組合物、以及包括將上述組合物投予至受驗體之用於抑制或預防腸內菌叢之菌種組成異常之方法。 本發明係如下所說明係基於對於受驗體,氫氣或溶氫能夠防止或改善腸內菌叢之菌種組成異常之見解。 於本說明書中,「腸內菌叢之菌種組成異常」係指腸內菌叢之組成(或者構成)明顯不同於健康人之組成,該情況與特定疾病有關之情形時之該菌種組成異常。因此,腸內菌叢之菌種組成異常係腸內菌叢內之至少1種細菌之異常增加或異常減少,或者腸內菌叢之菌種組成異常可引發與菌叢失調(dysbiosis)相關之疾病。 認為具有某些遺傳體質(例如起因於肥胖等體質,容易罹患2型糖尿病、炎症性腸疾病等疾病之體質之遺傳體質)之個體因某些環境因素之惡化等導致腸內菌叢之細菌組成失衡,因此腸生態系統喪失恆常性,成為各種疾病之發病或惡化之原因(Ohno H,Jpn J. Clin. Immunol.,37(5):403-411,2014)。腸內細菌根據其種類產生各種代謝產物而維持身體之健康或恆常性,但已知因產生例如丁酸等短鏈脂肪酸之細菌群減少而變得容易引起例如肥胖或2型糖尿病,又,因作為益菌之雙叉乳酸桿菌減少,乳酸或乙酸等短鏈脂肪酸之產生降低,從而導致變得容易引發病原性細菌之感染症,產生血清素、多巴胺或其前驅物之細菌減少而引發抑鬱症等。又,亦已知藉由腸內細菌產生之丁酸會誘導大腸控制性T細胞(Treg),認為負控制異常或過度之免疫反應,藉此參與過敏等病態免疫應答之抑制。如此,引起腸內菌叢之菌種組成異常之疾病多樣化。 腸內菌叢之菌種組成異常之抑制或預防係由如下證據明確:由圖5所示之敗血症小鼠模型所證實,藉由投予氫氣或溶氫液體,受驗體之腸內菌叢中之腸桿菌科細菌之異常增加急遽受到抑制。推定因敗血症引起之該細菌之異常增加的作用機理尚不明確,但藉由投予氫而得到防止。 根據文獻(O' Boyle CJ,上述),經由罹患術後敗血症之人類患者之細菌移位(細菌過度透過腸道上皮細胞,到達腸膜淋巴結,進而移位至遠處臟器)到達腸膜淋巴結之細菌群之該全部細菌中約60%以上為腸桿菌科(the family Enterobacteriaceae)細菌。 又,藉由投予氫,亦可獲得抑制細菌移位,減輕腸黏膜組織損傷,減少炎症性細胞激素之表現,減少氧化壓力等有益效果(參照下述實施例)。如此,氫避免細菌透過腸道上皮、進而向全身移位,保護包含腸之臟器之組織,因此可減輕或改善因腸內菌叢之菌種組成異常而引發之疾病。 具體而言,氫可改善因腸內菌叢之菌種組成異常等而發病之腸疾病(例如炎症性腸疾病等)引起之腸組織之損傷。對受驗體之此種改善作用,與上述1.相同,例如如圖6所示,利用氫進行治療後MDA量降低、即氧化壓力減少,如圖7所示,利用氫進行治療後腸組織中之炎症介質(TNF-α、iNOS、IL-1β、IL-6等)量降低,以及如圖4所示,保護敗血症小鼠模型免受腸形態學損傷與緊密連接蛋白質(ZO-1)之局部存在得到明確證明。明確可知該炎症介質自浸潤於組織之炎症部位之巨噬細胞或血管內皮細胞等釋出,引起血管透過性亢進、細胞凋亡、組織破壞等。 於本發明中,「腸內菌叢之菌種組成異常」係指如細菌組成失衡,腸生態系統(即,基於宿主腸道與腸內菌叢之相互作用之環境系統)喪失恆常性,成為各種疾病之發病或惡化之原因的異常。具體而言,該菌種組成異常例如係因產生與肥胖、糖尿病、過敏、腸屏障功能等相關之短鏈脂肪酸(例如丁酸、乙酸等)之細菌減少、產生致癌物質之細菌增加、產生於腦中發揮作用之激素或激素前驅物之細菌減少等而發生。 迄今為止,尚未知氫氣或溶氫液體具有抑制或預防腸內菌叢之菌種組成異常之能力。 藉由本發明之腸內菌叢之菌種組成異常之抑制或預防,可預防、減輕或改善因該菌種組成異常而發病之疾病,例如炎症性腸疾病(例如潰瘍性結腸炎及Crohn病)、過敏性腸症候群等消化道疾病、新陳代謝症候群(例如2型糖尿病、動脈硬化等)、肥胖等代謝性疾病、癌、風濕性疾病(例如關節風濕等)、精神神經疾病(例如自閉症、抑鬱症、帕金森症等)、過敏疾病等疾病。 腸內菌叢之細菌組成之分析係將自糞便提取之細菌DNA藉由PCR(polymerase chain reaction,聚合酶鏈反應)進行擴增,進而將16S rRNA基因之V區(例如V1-V2、V3-V4等)藉由PCR進行擴增,並對擴增產物進行純化,而製作基因庫後,附加高速測序用轉接序列,使用下一代定序儀確定序列。針對所確定之序列,進行對16S rRNA資料庫之相同檢索、以及系統分類分析。進而,可藉由主座標分析(PCoA)、經分類之細菌群之細菌數量之相對比較等方法確定菌叢之差別(例如Kamo T et al., PLoS ONE 12(3): e0174099, 2017; Nishijima S et al., DNA Research 2016; 2382: 126-133)。 3.組合物 作為本發明之組合物之有效成分的氫氣或溶氫之較佳之形態分別為含氫氣之氣體或溶氫液體之形態。 含氫氣之氣體較佳為包含氫氣之空氣、或包含氫氣與氧氣之混合氣體。含氫氣之氣體之氫氣之濃度大於零(0),且為18.5體積%以下,例如為0.5~18.5體積%,較佳為1~10體積%,例如2~8體積%、3~6體積%,更佳為4~6體積%,例如4~5體積%。於氫氣以外之氣體為空氣時,空氣之濃度例如為81.5~99.5體積%之範圍,又,於氫氣以外之氣體為包含氧氣之氣體時,氧氣之濃度例如為21~99.5體積%之範圍,可含有氮氣作為其他主要氣體,進而亦可以空氣中之存在量程度之量含有作為空氣中所含氣體之二氧化碳等氣體。總之,氫係可燃性且爆炸性氣體,因此應以成為對人等受驗體而言安全之量之方式含有於組合物中,並投予至受驗體。 具體而言,溶氫液體係使氫氣溶存之水性液體,此處水性液體例如為水、生理食鹽水、緩衝液(例如pH值4~7.4之緩衝液)、含乙醇之水(例如乙醇含量為0.1~2體積%)、點滴液、注射溶液、輸液、飲料等。溶氫液體之氫濃度例如為1~10 ppm,較佳為2~8 ppm,進而較佳為3~7 ppm。 含氫氣之氣體或溶氫液體係以成為特定氫氣濃度之方式調配後,填充至耐壓容器(例如鋁罐、耐壓性塑膠瓶或袋、耐壓性PET瓶等)中。或者,含氫氣之氣體或溶氫液體亦可於投予時,使用公知之氫氣供給裝置或加氫器具當場製作。 氫氣供給裝置可將藉由氫產生劑(例如金屬鋁等)與水之反應所產生之氫氣以特定比率與稀釋用氣體(例如空氣、氧氣等)加以混合(日本專利第5228142號公報等)。或者,將利用水之電解而產生之氫氣與稀釋氣體加以混合(日本專利第5502973號公報、日本專利第5900688號公報等)。藉此,可製備0.5~18.5體積%之範圍內之氫濃度之含氫氣之氣體。 加氫器具係使用氫產生劑與pH值調整劑產生氫,並使之溶存於水等生物體適用液之裝置(日本專利第4756102號公報、日本專利第4652479號公報、日本專利第4950352號公報、日本專利第6159462號公報、日本專利第6170605號公報等)。氫產生劑與pH值調整劑之組合例如為金屬鎂與強酸性離子交換樹脂或者有機酸(例如蘋果酸、檸檬酸等)、金屬鋁末與氫氧化鈣粉末等。藉此,可製備1~10 ppm左右之溶氫濃度之溶氫液體。 作為將本發明之組合物投予至受驗體之方法,於將氫氣設為有效成分時,例如較佳為藉由吸入、抽吸等所進行之經肺投予,又,於將溶氫液體設為有效成分時,較佳為經口投予。於吸入氣體時,可經由覆蓋口與鼻之口罩型器具,自口或鼻吸入氣體而輸送至肺,並經由血液送達至全身。關於進行經口投予之溶氫液體,較佳為於低溫下保存,亦可將冷卻之液體投予至受驗體。或者,於溶氫液體為點滴液或注射液之形態時,亦可藉由靜脈內投予、動脈內投予等非經口投予路徑投予至受驗體。 可將上述氫濃度之含氫氣之氣體或上述溶氫濃度之溶氫液體,每天1次或複數次(例如2~3次),持續1週~6個月或其以上,較佳為2週~3個月之期間投予至受驗體。於投予含氫氣之氣體時,可每次以例如10分鐘~2小時或者其以上、較佳為20分鐘~40分鐘進行投予。又,於藉由吸入或抽吸經肺投予含氫氣之氣體時,可於大氣壓環境下,或者於例如超過標準大氣壓(係指約1.013大氣壓)且為7.0大氣壓以下之範圍內之高氣壓、例如1.02~7.0大氣壓、較佳為1.02~5.0大氣壓、更佳為1.02~4.0大氣壓、進而較佳為1.02~1.35大氣壓之範圍內之高氣壓環境下對受驗體投予該氣體。藉由高氣壓環境下之投予,促進受驗體內之氫之體內吸收。 上述高氣壓環境可於內部例如壓入上述含氫氣之氣體或空氣,而於內部形成超過標準大氣壓且為7.0大氣壓以下之高氣壓,可藉由使用以具有充分之強度之方式設計之高氣壓殼體(例如膠囊狀殼體)而形成。關於高氣壓殼體之形狀,整體帶無角之弧度由於具有耐壓性,故而較佳。又,高氣壓殼體之材質較佳為輕量、高強度,例如可列舉強化塑膠、碳纖維複合材、鈦合金、鋁合金等。受驗體可接受於上述高氣壓膠囊內包含氧氣或者空氣以及氫氣之組合物之投予。 本說明書中「受驗體」之用語係哺乳動物,例如含有包括人在內之靈長類、狗、貓等寵物動物、動物園等之觀賞用動物等。較佳之受驗體為人類。 [實施例] 參照以下之實施例更具體地說明本發明,但本發明之範圍設為不受該等實施例所限制者。 [實施例1] <藉由投予氫氣溶存液所獲得之作為腸內環境異常之細菌移位及/或腸內菌叢之菌種組成異常之抑制或者改善> I.實驗 [1]敗血症動物模型 對體重20~25 g之6週齡雄C57/BL6小鼠實施盲腸結紮、穿孔(cecal ligation and puncture;CLP)而製作敗血症模型。若簡單說明,則將小鼠麻醉,切開1 cm之腹部中央而露出盲腸後,將距盲腸上端1 cm之部位結紮,用23 gauge之針刺穿1個部位而使之破裂,實施中度之CLP((注)7天存活40%)。將盲腸放回腹部,縫合切開部。其後,直接對全部小鼠皮下注射生理食鹽水(50 mL/kg體重)使之蘇醒。 [2]實驗操作說明 關於該實驗之方案,分為假手術群(sham)、生理食鹽水治療群(saline)、及超飽和濃度溶氫生理食鹽水治療群(H2)。假手術群設為未實施CLP手術之健康對照。對於生理食鹽水治療群,每天強制性給與15 ml/kg之生理食鹽水,共7天。對於H2群,每天強制性給與相同量之超飽和濃度溶氫生理食鹽水,共7天。該超飽和濃度溶氫生理食鹽水係依據製造業者(MiZ股份有限公司,日本)之製法製成7 ppm氫氣溶存液。 [腸透過性] 為了確定腸道上皮透過性,對傳統上用以評價腸黏膜透過之4.4 kDa之螢光異硫氰酸鹽標記葡聚糖(FITC-葡聚糖;Sigma-Aldrich)於血中之出現量進行測定。為此,對於小鼠,於模擬治療或CLP治療21小時後,強制性給與磷酸緩衝生理食鹽水(PBS,phosphate buffer saline)中之25 mg/mL FITC-葡聚糖0.2 mL。3小時後,藉由心臟穿刺自小鼠採取血液樣品。對於該血液,於4℃、3000×g下進行10分鐘離心分離,對於血漿,使用SH9000Lab螢光微盤讀取器(Corona Electric)於激發波長480 nm及發光波長520 nm下進行測定。以血漿中之FITC-葡聚糖之濃度為標準,藉由FITC-葡聚糖之稀釋系列進行測定。 [細菌移位之測定] 細菌移位係藉由文獻所記載之方法(Deitch EA et al., J. Clin. Invest 84:36-42, 1989)進行評價。若簡單進行說明,則於CLP之24小時後,無菌取出5~6個腸膜淋巴結(MLN),測量其重量,於PBS中進行均質化,並製成50 mg/mL濃度。對於10倍連續稀釋之懸浮液,於包含5%羊血之胰蛋白酶處理大豆瓊脂(TSA)平板上,及麥康凱瓊脂平板上進行平板培養,分別增殖全部細菌及革蘭氏陰性細菌。將兩個平板於37℃之培養箱內進行24小時厭氧培養後,計數群落數量。將MLN中之細菌數量以每克MLN組織之群落形成單位(CFU,Colony-Forming Units)表示。 [組織學分析] 於CLP之24小時後,處死小鼠,經心腔灌注PBS,其後灌注0.1 M磷酸緩衝液(PB)中之4%多聚甲醛。切除小腸(回腸末端部),浸漬於相同之固定液中,於一系列之蔗糖溶液(0.1 M PB中15%、20%及25%蔗糖)中,於4℃下冷卻保護3天。於OCT(optimal cutting temperature,最佳切割溫度)化合物(Sakura Finetechnical)中冷凍檢體後,利用低溫恆溫器(CM3050S;Leica Microsystems)將該等切成厚度82 μm之切片,利用蘇木精-曙紅對該冷卻切片染色。 [螢光抗體法] 對於冷卻切片,利用包含0.005%皂苷之0.1 M PB中之20%Block Ace(大日本住友製藥)進行阻斷,與對閉合小帶-1(ZO-1)之大鼠單株抗體(Santa Cruz Biotechnology)一起於4℃下培養一晩。此時,該抗體係於PBS中利用1%正常山羊血清稀釋為1:200。於PBS中清洗3次後,將切片與500倍稀釋之Alexa Fluor 488結合山羊抗家兔IgG抗體(Invitrogen)及DAPI(Sigma-Aldrich)一起於室溫下培養1小時。各反應後,利用PBS清洗切片。最後,使用SlowFade試劑(Invitrogen)固定切片。其後,使用螢光顯微鏡裝置(Olympus,日本)觀察圖像。 [統計分析] 資料表示為平均±標準偏差(SD)。實驗群間之差係藉由使用Tukey之事後(Tukey's post hoc)比較測試之ANOVA(Analysis of Variance,變異數分析)而確定。存活率係利用Kaplan-Meier分析法進行分析,利用log-rank檢定對群組間之差加以比較。使用Graph Pad Prism 7.0(Graph Pad Software, Inc.)進行統計分析,將p<0.05設為顯著。 [利用16S rRNA序列測定進行之微生物組之測定] 於CLP後第0天、第1天、第3天及第7天,回收來自小鼠之糞便樣品,測定微生物組(microbiome)。具體而言,使用PowerSoil DNA提取套組(MOBIO)自糞便樣品提取DNA,使用KAPA HiFi HotStart Ready Mix(KAPA Biosystems)進行PCR。用於PCR之引子組係784F:5'-AGGATTAGATACCCTGGT-3'(序列編號1)及1061R:5'-CRRCACGAGCTGACGAC-3'(序列編號2;此處R=A或G),將16S rRNA基因之V5-V6區域設為靶(Andersson AF et al.,PLoS One 3:e2836,2008)。DNA基因庫係依據製造業者之說明書,使用Ion PGM Sequencing Hi-Q Kit(Life Technologies)而製作。又,序列測定係於Ion PGM定序儀(Life Technologies)上使用兩個318晶片與Ion PGM Sequencing Hi-Q Kit(Life Technologies)進行。使用QIIME pipeline(Caoraso JG et al.,Nat Methods 7:335-336,2010)對所測得之序列進行分析。 [腸桿菌科之定量分析] 測定用於核酸提取之各糞便樣品之重量,使之懸浮於9容量之PBS(-)而製作糞便勻漿(100 mg糞便/mL)。如先前所記載,提取細菌DNA(Matsuki T et al.,Appl Environ Microbiol 70:167-173,2004)。若簡單進行說明,則於200 μL之糞便勻漿或細菌培養物中添加玻璃珠(0.3 g;直徑0.1 mm;BioSpec Products)、300 μl Tris-SDS溶液及500 μl TE飽和苯酚,對其混合物使用FastPrep-24均質機(M.P. Biomedicals)以功率級別5.0劇烈旋轉30秒鐘。以4℃、2000×g進行5分鐘離心分離後,回收懸浮液400 μL,將等量(容量)之苯酚-氯仿-異戊醇(25:24:1)添加至上清液。進而,以4℃、2000×g進行5分鐘離心分離後,回收懸浮液250 μL,供於異丙醇沈澱。最後,懸浮於200 μL TE緩衝液,於-30℃下加以保存。使用GoTaq qPCR Master Mix(Promega)進行定量即時PCR(qPCR),使用ABI PRISM 7900HT序列檢測系統(Applied Biosystems)對細菌rRNA基因之量進行定量。使用對於腸桿菌科具有特異性之引子組、En-lsu-3F: 5'-TGCCGTACTTCGGGAGAAGGCA-3'(序列編號3)及En-lsu-3'R: 5'-TCAAGGACCAGTGTTCAGTGTC-3'(序列編號4)(Kurakawa T et al.,J Microbiol Methods 2013;92(2):213-219)。於各反應中,以1 μM之濃度添加引子。擴增程式以95℃、5分鐘為1個循環,包含其後之94℃20秒、55℃20秒及72℃50秒之複數個循環。於各循環之最後步驟檢測螢光產物。於擴增後進行溶解曲線分析,將經靶向之PCR產物區分為非標靶產物。溶解曲線係藉由使用連續螢光收集,以0.2℃/秒之速度於60~95℃之溫度下緩慢進行加熱而獲得。使用ABI PRISM 7900HT序列檢測系統(Applied Biosystems),於384孔光學平板內進行qPCR擴增及檢測。標準曲線係使用自E.coli JCM1649提取之DNA之定量循環(Cq)值而製成。該細菌株之細菌數量係使用文獻所記載之DAPI染色法,藉由顯微鏡觀察而測得(Jansen GJ et al.,J Microbiol Methods 37:215-221,1999)。將該檢定之直線範圍內之Cq值用於相同實驗中製成之分析曲線,而獲得各核酸樣品中之對應之細菌數量,將其轉換為每個樣品之細菌數量。 [利用RT-PCR所獲得之腸內炎症介質之mRNA表現] 為了對小腸(回腸末端部)內之iNOS、定量循環腫瘤壞死因子α(TNF-α)、介白素-6(IL-6)及介白素1β(IL-1β)等炎症介質進行評價,於CLP之6小時後獲得該等之mRNA表現。全部RNA係自組織樣品提取,使用High-Capacity cDNA Reverse Transcription Kit(大容量cDNA反轉錄套組)(Life Technologies),根據製造業者之操作說明而反轉錄為cDNA。RT-PCR係於StepOne Plus real-time PCR cycler(Applied Biosystems)上使用Fast SYBR Green Master Mix而進行。將所使用之特異性引子分別彙總示於表1。 [表1] 擴增PCR產物(95℃3秒、60℃30秒、45個循環),於Step One Plus(Applied Biosystems)上進行檢測。mRNA表現量係相對於β-肌動蛋白量者。 [氧化壓力之評價] 為了測定氧化壓力,於CLP後6小時之時間點對組織丙二醛(MDA)量進行測定。MDA量係對藉由測定硫巴比妥酸反應性物質量而觀察到之脂質過氧化產物進行檢定。將組織樣品快速冷凍至-80℃,分為每份50 μg之小份樣品。使該樣品於RIPA緩衝液(和光純藥工業)中均質化,而防止樣品之氧化。對全部樣品實施離心分離(4℃,10,000×g,10分鐘),回收上清液,並使用OxiSelect TBARS分析套組(Cell Biolabs)依據製造業者之說明書進行評價。使用NanoDrop分光光度計(Thermo Fisher Scientific),測定532 nm之吸光度。MDA濃度係以每1 mg蛋白質之nmol(nmol/mg)表示。 II.結果 [利用超飽和濃度溶氫生理食鹽水所獲得之存活之改善] 為了調查超飽和濃度溶氫生理食鹽水能否改善敗血症小鼠之存活率,CLP術後7天,每天給與小鼠超飽和濃度溶氫生理食鹽水15 ml/kg。將存活曲線示於圖1。關於7天之實驗期間之存活率,假手術群(n=10)為100%,生理食鹽水群(n=26)為31%,H2群(n=26)為69%。H2群之存活率較生理食鹽水群顯著提高(p<0.01)。 [利用超飽和濃度溶氫生理食鹽水防止細菌移位] 於MLN培養之分析中,於CLP之24小時後計數TSA平板及MacConkey平板上之群落之數量,確定是否發生細菌移位。對於假手術群,完全未觀察到群落。對於生理食鹽水群,對於TSA及MacConkey平板上產生群落,但對於H2群,雖然存在群落但受到抑制(圖2A)。與生理食鹽水群相比,對於H2群觀察到存在於MacConkey平板上之群落數量大量減少(p<0.05)(圖2B)。 [利用超飽和濃度溶氫生理食鹽水所獲得之自腸之過度透過性之衰減] 於CLP之24小時後,藉由測定血漿中之FITC-葡聚糖之出現而對腸透過性進行評價。其結果為,與假手術群相比,對於生理食鹽水群觀察到明顯較高之量之FITC-葡聚糖,又,於H2群衰減(圖3)。 [利用超飽和濃度溶氫生理食鹽水減輕腸之形態學損傷及防止緊密連接] 圖4(A)中顯示有腸黏膜損傷之組織學上之見解。對於生理食鹽水群見到腸絨毛之縮短化或缺損等特徵,但於H2群得到減輕。進而又,利用螢光抗體染色調查腸緊密連接蛋白質ZO-1之表現。如圖4(B)所示,ZO-1局部存在於腸道上皮緊密連接部,其於圖中於細胞結合部之頂端室體以一系列之亮綠色點(明亮發光之部分)之形式出現。關於ZO-1之局部存在,於生理食鹽水群中被破壞,亮綠色點缺損,另一方面,對於H2群見到ZO-1之局部存在。 [利用超飽和濃度溶氫生理食鹽水控制腸微生物組變化] 圖5A中顯示有藉由16S rRNA分析所確定之來自糞便樣品之大量之細菌分類群。對於健康狀態之小鼠,菌叢為S24-7群或芽孢梭菌科、乳桿菌科、及毛螺旋菌科。相對於此,於CLP之第1天,對於生理食鹽水群,微生物組成發生明顯變化,尤其是見到腸桿菌科之動態增加。對於H2群,腸桿菌科之過度增加受到較大抑制。定量分析之結果為,關於腸桿菌科之菌數,生理食鹽水群於第1天增加至約105 ,但H2群之該菌數受到較大抑制(圖5B)。 [利用超飽和濃度溶氫生理食鹽水所產生之氧化壓力減少] 為了進行氧化壓力分析,對CLP之6小時後之MDA之組織量進行測定。於3個群間,MDA量無顯著差異,但對於H2群見到低於其他兩個群之傾向(圖6)。 [利用超飽和濃度溶氫生理食鹽水所產生之腸組織內之炎症反應之減少] CLP之6小時後之腸組織內之炎症介質之mRNA表現係藉由定量RT-PCR進行測定,其結果為,關於TNF-α、IL-1β及IL-6之量,與假手術群相比,生理食鹽水群變得相當高(圖7)。對於生理食鹽水群見到iNOS量亦較高之傾向。但是,對於H2群,該等炎症介質之mRNA表現明顯受到抑制(p<0.05)。 [產業上之可利用性] 根據本發明,可抑制或預防(或者防止)作為腸內環境之異常之細菌移位,因此進而可防止、抑制或改善敗血症、全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF)之發病或者惡化。 又,腸內菌叢之菌種組成異常之預防或改善係由如下證據明確:如利用上述動物模型所證實,藉由投予氫氣或溶氫液體,受驗體之腸內菌叢中之某菌種之異常增加迅速地得到抑制。根據本發明,可預防或抑制作為腸內環境異常之受驗體內腸內菌叢之菌種組成異常,因此可預防、減輕或改善與菌叢失調相關之疾病。 [序列表非關鍵文字] 序列編號1~12:引子 本說明書中所引用之全部刊物、專利及專利申請係藉由引用而直接併入本說明書中。
圖1表示利用超飽和濃度溶氫生理食鹽水(Super saturated hydrogen dissolved saline)所獲得之敗血症小鼠模型之存活率之改善。圖中,「假手術」係假手術群(未實施盲腸結紮、穿孔(CLP,cecal ligation puncture)手術之健康對照)(n=6),「H2」係超飽和濃度溶氫生理食鹽水群(n=26),「生理食鹽水」係生理食鹽水(亦稱為「生理鹽水」)群(n=26)。﹡p<0.05,#p<0.01(「p」表示藉由log-rank檢定所獲得之危險率(或稱為「顯著概率」))。 圖2表示利用超飽和濃度溶氫生理食鹽水所獲得之敗血症小鼠模型之腸膜淋巴結(MLN,mesenteric lymph node)內之細菌移位之抑制。圖中,(A)表示於盲腸結紮、穿孔(CLP)24小時後無菌取出MLN,於麥康凱瓊脂平板及TSA(Tryptic Soy Agar,胰蛋白大豆瓊脂)平板上進行24小時平板培養時之培養物。又,(B)將麥康凱瓊脂平板之細菌數量表示為群落形成單位(logCFU)/g之平均±SD(standard deviation)(此處「SD」為標準偏差)。又,圖中,「假手術」係假手術群(未實施CLP手術之健康對照),「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係生理食鹽水(亦稱為「生理鹽水」)群。每群n=3~6。﹡p<0.05,#p<0.05(「p」表示藉由log-rank檢定所獲得之危險率)。 圖3表示利用超飽和濃度溶氫生理食鹽水所獲得之與敗血症相關之腸道上皮過度透過性之衰減。圖中,「假手術」係假手術群(未實施CLP手術之健康對照),「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係生理食鹽水(亦稱為「生理食鹽水」)群。每群n=8。﹡p<0.05(「p」表示藉由log-rank檢定所獲得之危險率)。 圖4表示利用超飽和濃度溶氫生理食鹽水所獲得之保護敗血症小鼠模型免受腸形態學損傷(A)與緊密連接蛋白質(ZO-1)之局部存在(B)。其係盲腸結紮、穿孔(CLP)24小時後之小腸(回腸末端部)之蘇木精-曙紅(H-E)染色顯微鏡圖像(倍率×200)(A)及螢光抗體染色顯微鏡圖像(倍率×400;ZO-1為亮綠色點(明亮發光之部分),核為藍色(發暗部分))(B)。圖中,「假手術」係假手術群(未實施CLP手術之健康對照),「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係生理食鹽水(亦稱為「生理食鹽水」)群。 圖5表示利用超飽和濃度溶氫生理食鹽水所獲得之敗血症小鼠模型之腸內之腸桿菌之過剩增殖之抑制。圖中,(A)表示盲腸結紮、穿孔(CLP)後第0天(Day 0)、第1天(Day 1)及第7天(Day 7)之腸內細菌組成之連續變化。又,(B)表示盲腸結紮、穿孔(CLP)後之第0天及第1天之每克小鼠糞便之腸桿菌之菌數之定量結果(log(細胞數量)/g-糞便)。資料表示為平均±SD,每群n=8。圖中,「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係生理食鹽水(亦稱為「生理食鹽水」)群。 圖6表示利用超飽和濃度溶氫生理食鹽水所獲得之敗血症小鼠模型腸之氧化壓力之減少。藉由腸之丙二醛(MDA,Malonaldehyde)量(nmol/mg-腸組織)之定量表示氧化壓力之程度。資料表示為平均±SD,每群n=4~5。p<0.05(「p」表示藉由log-rank檢定所獲得之危險率)。圖中,「假手術」係假手術群(未實施CLP手術之健康對照),「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係生理食鹽水(亦稱為「生理食鹽水」)群。 圖7表示利用超飽和濃度溶氫生理食鹽水所獲得之敗血症小鼠模型之腸組織內之炎症反應之減少。表示利用小腸(回腸末端部)內之腫瘤壞死因子α(TNF-α)、誘導型一氧化氮合成酵素(inducible nitric oxide synthase(iNOS))、介白素1β(IL-1β)、及介白素-6(IL-6)之炎症介質之定量RT-PCR(real-time polymerase chain reaction,即時聚合酶鏈反應)分析所獲得之表現量(任意單位)。資料表示為平均±SD,每群n=5~6。﹡p<0.05,#p<0.05,† p<0.05(此處,「p」表示藉由log-rank檢定所獲得之危險率)。圖中,「假手術」係假手術群(未實施CLP手術之健康對照),「H2」係超飽和濃度溶氫生理食鹽水群,「生理食鹽水」係作為對照之生理食鹽水(亦稱為「生理鹽水」)群。

Claims (11)

  1. 一種組合物,其係包含氫氣或溶氫作為有效成分之用於抑制或預防受驗體之腸內環境之異常者,並且上述異常係選自由細菌移位及腸內菌叢之菌種組成異常所組成之群之中。
  2. 如請求項1之組合物,其中上述細菌移位導致敗血症、全身性炎症反應症候群(SIRS)或多重臟器衰竭症候群(MOF)之發病或者惡化。
  3. 如請求項1之組合物,其中上述菌種組成異常係腸內菌叢內之至少1種細菌之異常增加或異常減少。
  4. 如請求項1或3之組合物,其中上述菌種組成異常導致與菌叢失調相關之疾病之發病。
  5. 如請求項1至4中任一項之組合物,其改善上述受驗體之腸組織之損傷。
  6. 如請求項1至5中任一項之組合物,其係含氫氣之氣體或溶氫液體之形態。
  7. 如請求項6之組合物,其中上述含氫氣之氣體之氫濃度為0.5~18.5體積%。
  8. 如請求項6之組合物,其中上述溶氫液體之氫濃度為1~10 ppm。
  9. 如請求項1至8中任一項之組合物,其中向上述受驗體之組合物之投予為經肺投予或經口投予。
  10. 如請求項9之組合物,其中上述經肺投予係於大氣壓環境下、或1.02~7.0大氣壓之高氣壓環境下進行。
  11. 如請求項1至10中任一項之組合物,其係於投予時使用氫氣供給裝置或加氫器具當場製作。
TW107110995A 2017-12-19 2018-03-29 用於抑制或預防腸內環境之異常之組合物 TW201927321A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-242401 2017-12-19
JP2017242471A JP6796290B2 (ja) 2017-12-19 2017-12-19 バクテリアル・トランスロケーションの防止又は抑制のための組成物
JP2017-242471 2017-12-19
JP2017242401A JP6601851B2 (ja) 2017-12-19 2017-12-19 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物

Publications (1)

Publication Number Publication Date
TW201927321A true TW201927321A (zh) 2019-07-16

Family

ID=66993350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107110995A TW201927321A (zh) 2017-12-19 2018-03-29 用於抑制或預防腸內環境之異常之組合物

Country Status (4)

Country Link
KR (1) KR20190087987A (zh)
CA (1) CA3017369A1 (zh)
TW (1) TW201927321A (zh)
WO (1) WO2019123672A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6972449B2 (ja) * 2020-01-21 2021-11-24 MiZ株式会社 炎症性腸疾患を予防および/または改善するための分子状水素含有組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228142B1 (ja) * 2012-11-26 2013-07-03 ミズ株式会社 生体用高濃度水素ガス供給装置
JP2016113425A (ja) 2014-12-17 2016-06-23 中山 敏正 抗腫瘍剤
JP2016190833A (ja) 2015-03-30 2016-11-10 H2bank株式会社 水素分子による乾癬患者における皮膚関節症状およびサイトカイン改善作用
JP6340033B2 (ja) * 2015-12-02 2018-06-06 MiZ株式会社 水素含有液体の生成装置及び方法

Also Published As

Publication number Publication date
KR20190087987A (ko) 2019-07-25
WO2019123672A1 (ja) 2019-06-27
CA3017369A1 (en) 2019-09-30

Similar Documents

Publication Publication Date Title
Keir et al. The role of IL-22 in intestinal health and disease
Gao et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function
Li et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier
Meng et al. Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization
Fan et al. Bacteroides fragilis strain ZY-312 defense against Cronobacter sakazakii-induced necrotizing enterocolitis in vitro and in a neonatal rat model
Asha et al. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action
Liu et al. Therapeutic effects of hyaluronic acid in bacterial pneumonia in ex vivo perfused human lungs
Klempner et al. Case 25-2010: a 24-year-old woman with abdominal pain and shock
US10646556B2 (en) Methods for treatment of and prophylaxis against inflammatory disorders
Zhang et al. Muscle-derived mitochondrial transplantation reduces inflammation, enhances bacterial clearance, and improves survival in sepsis
Pan et al. Ferroptotic MSCs protect mice against sepsis via promoting macrophage efferocytosis
US11026967B2 (en) Composition for suppressing or preventing abnormality in intestinal environment
Chen et al. Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages
JP6601851B2 (ja) 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物
JP6089130B2 (ja) 抗生剤及びリゾホスファチジルコリンを含む免疫増強または細菌性感染疾患治療用の組成物
Wu et al. The probiotic Lactobacillus casei Zhang-mediated correction of gut dysbiosis ameliorates peritoneal fibrosis by suppressing macrophage-related inflammation via the butyrate/PPAR-γ/NF-κB pathway
TW201927321A (zh) 用於抑制或預防腸內環境之異常之組合物
Yin et al. Artificial cells delivering itaconic acid induce anti-inflammatory memory-like macrophages to reverse acute liver failure and prevent reinjury
Gu et al. A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis
JP6796290B2 (ja) バクテリアル・トランスロケーションの防止又は抑制のための組成物
WO2018045371A2 (en) nNIF AND nNIF-RELATED PEPTIDES AND RELATED METHODS
JP2019116518A (ja) 腸内細菌叢の細菌種組成異常の予防又は改善のための組成物
Yang et al. Metformin alleviates liver fibrosis in mice by enriching Lactobacillus sp. MF-1 in the gut microbiota
Ma et al. The beneficial effects of genetically engineered Escherichia coli Nissle 1917 in obese C57BL/6J mice
Guo et al. Interactions between host and intestinal crypt-resided biofilms are controlled by epithelial fucosylation