WO2019119802A1 - 风轮的轮毂、风轮及风机组件 - Google Patents

风轮的轮毂、风轮及风机组件 Download PDF

Info

Publication number
WO2019119802A1
WO2019119802A1 PCT/CN2018/096682 CN2018096682W WO2019119802A1 WO 2019119802 A1 WO2019119802 A1 WO 2019119802A1 CN 2018096682 W CN2018096682 W CN 2018096682W WO 2019119802 A1 WO2019119802 A1 WO 2019119802A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
permanent magnet
rotor
wind wheel
support portion
Prior art date
Application number
PCT/CN2018/096682
Other languages
English (en)
French (fr)
Inventor
李国雄
吕玉婵
刘鑫
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2019119802A1 publication Critical patent/WO2019119802A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention relates to the field of household electrical appliances, and in particular to a hub, a wind wheel and a fan assembly of a wind wheel.
  • the conventional structure of a fan assembly using a brushless DC motor is to lock the shaft extension of the brushless DC motor to the coupling of the wind turbine assembly through a locking device such as a screw to realize the stator rotation of the brushless DC motor.
  • the magnetic field drives the rotor shaft of the rotor to rotate, and the rotor shaft transmits kinetic energy to the wind wheel assembly through the coupling to drive the wind wheel assembly to rotate.
  • the brushless DC motor used in this scheme is composed of a rotor, a stator, a bearing and a bearing bracket, and generally needs to be provided with bearings on the rotor shafts on both sides of the rotor, and the bearing bracket or the bearing chamber are respectively used. The room is supported and fixed.
  • the brushless DC motor In order to couple the wind wheel assembly, the brushless DC motor must also have a shaft extension extending beyond the body of the motor.
  • the wind wheel assembly of this type requires a coupling at one end of the wind wheel and requires a locking device such as a screw to lock the coupling shaft extension.
  • the fan assembly of this type has many problems such as many components, complicated structure, multiple and complicated assembly steps, and low automation. Due to the large number of components and complicated assembly, the material cost and manufacturing cost are also high. In addition, the axial bearing on both sides of the rotor and the motor having the shaft extension result in a long axial length of the fan assembly, which occupies an assembly space of a household appliance (such as an air conditioner wall hanging machine) using the fan assembly, which is disadvantageous for Its miniaturization is realized.
  • a household appliance such as an air conditioner wall hanging machine
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention proposes a hub for a wind wheel, on which the rotor can be directly driven to rotate by the stator magnetic field to reduce the number of parts of the drive member, and the assembly step is reduced.
  • the invention also aims to propose a wind wheel having the above described hub.
  • the invention also aims to propose a fan assembly having the above described wind wheel.
  • a hub of a wind wheel according to an embodiment of the present invention, the hub being adapted to connect a blade of a wind wheel, the hub having a support portion on which a rotor is disposed.
  • the hub of the wind wheel since the rotor is directly disposed on the hub of the wind wheel, the number of the motor bearing and the bearing bracket is reduced, and the stator magnetic field directly drives the hub provided with the rotor to rotate to drive the wind wheel to rotate. It reduces the assembly difficulty of the whole machine, and also eliminates unnecessary intermediate fittings, which reduces material cost and manufacturing cost.
  • the hub of such a structure when applied to the fan assembly, can make the fan assembly axially compact and greatly shrink the assembly space.
  • the support portion is an injection molded part, and the rotor is coupled to the support portion by integral injection molding. In this way, the connection between the rotor and the support portion is firm and reliable, and it is not easy to fall off.
  • the rotor includes: a rotor core, the rotor core is disposed on the support portion, and the rotor core is provided with a plurality of permanent magnet accommodating cavities; a plurality of permanent magnets, A plurality of permanent magnets are respectively disposed in the plurality of permanent magnet accommodating cavities.
  • the permanent magnet interacts with the stator magnetic field to cause the permanent magnet to rotate. Since the permanent magnet is disposed on the support portion, the wind wheel can be rotated during the rotation of the permanent magnet. Compared with the coil, the permanent magnet solution reduces the line connection, and the permanent magnet does not need to be connected, and the structure can be simplified.
  • the rotor further includes: a permanent magnet holder connected to the support portion, the permanent magnet holder being connected to at least one of the rotor core and the permanent magnet.
  • the rotor core is provided with a through hole
  • the permanent magnet holder includes a first fixing strip fitted in the through hole. Therefore, it is not easy to trip by being fixed by the piercing.
  • the permanent magnet holder includes a second fixing strip that is wrapped on a side of the permanent magnet that is away from the rotation axis.
  • the permanent magnet holder is constrained to the radially outer side of each permanent magnet to prevent the permanent magnet from being thrown out when the hub is rotated.
  • the permanent magnet holder includes a cover plate covering both end faces of the rotor core, and the cover plates are connected to both sides.
  • the permanent magnet holder can be formed with force protection at both axial ends of the rotor.
  • the permanent magnet holder and the support portion are integrally molded.
  • the plurality of permanent magnet accommodating cavities on the rotor core are circumferentially and centrally symmetrically distributed, and the portion of the rotor core surrounded by the plurality of permanent magnet accommodating cavities a portion of the rotor core between the two adjacent permanent magnet receiving cavities is an arm portion, and each of the arm portions is connected to the shaft connecting portion through a bridge portion.
  • the shaft connecting portion is provided with an axially penetrating shaft hole for inserting and engaging the first wind wheel shaft.
  • a convex portion is disposed on the shaft connecting portion toward each of the permanent magnet accommodating cavities.
  • the permanent magnet is inserted into the permanent magnet receiving cavity.
  • the permanent magnet is bonded to the rotor core by an injection molding layer injected into the permanent magnet housing cavity, so that the convex portion is provided to facilitate injection of the injection molding material, and the injection molding material can be connected to the shaft at the permanent magnet.
  • a bonding layer is formed between the portions.
  • the hub includes an end plate for connecting the vanes, the support portion is disposed at a center of the end plate, and at least one of the end plate and the support portion is an insulating member. It can ensure that the blades are not charged, which reduces safety hazards.
  • a wind wheel according to an embodiment of the present invention includes a hub of a wind wheel according to the above embodiment of the present invention.
  • the wind wheel of the embodiment of the present invention since the rotor is directly disposed on the hub of the wind wheel, the number of the motor bearing and the bearing bracket is reduced, and the stator magnetic field directly drives the hub provided with the rotor to rotate to drive the wind wheel to rotate, thereby reducing the number of the rotor.
  • the assembly difficulty of the whole machine also eliminates the need for intermediate fittings, reducing material costs and manufacturing costs.
  • the wind wheel of such a structure can make the fan assembly axially compact and greatly shrink the assembly space.
  • the wind wheel is provided with an auxiliary hub at an end remote from the rotor, the auxiliary hub being supported for rotation by a second wind wheel axle.
  • the axial ends of the wind wheel are supported by bearings, which can ensure the smooth rotation of the wind wheel.
  • a fan assembly according to an embodiment of the present invention includes a wind wheel according to the above embodiment of the present invention.
  • the fan assembly of the embodiment of the present invention since the rotor is integrated on the hub of the wind wheel, the number of the motor bearing and the bearing bracket is reduced, and the stator magnetic field directly drives the hub provided with the rotor to rotate to drive the wind wheel to rotate, thereby reducing the rotor assembly.
  • the assembly difficulty of the whole machine also eliminates the need for intermediate fittings, reducing material costs and manufacturing costs.
  • the fan assembly is compact in the axial direction and greatly shrinks the assembly space.
  • FIG. 1 is a schematic view showing the overall structure of a fan assembly according to an embodiment of the present invention.
  • Figure 2 is a partially enlarged schematic view of Figure 1.
  • FIG. 3 is a schematic view showing the overall structure of a wind wheel according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of a front view of a hub according to an embodiment of the present invention.
  • Fig. 5 is a schematic view showing the A-direction structure of the hub shown in Fig. 4.
  • Fig. 6 is a cross-sectional structural view of the hub shown in Fig. 4 taken along the line B-B.
  • Fig. 7 is a schematic view showing the assembly of a rotor core, a permanent magnet and a first wind wheel shaft of a rotor according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural view of a rotor core according to an embodiment of the present invention.
  • Fig. 9 is a schematic view showing an assembly structure of an auxiliary hub according to an embodiment of the present invention.
  • Fig. 10 is a schematic view showing another assembly structure of the auxiliary hub according to the embodiment of the present invention.
  • Figure 11 is a schematic view showing the assembly structure of a stator and a main bearing according to an embodiment of the present invention.
  • Fig. 12 is a schematic structural view of a stator according to an embodiment of the present invention.
  • Figure 13 is a side elevational view of the stator of the embodiment of the present invention.
  • a rotor core 211 a permanent magnet accommodating cavity 2111, a through hole 2112, a shaft connecting portion 2113, an arm portion 2114, a bridge portion 2115, a shaft hole 2116, a convex portion 2117, a card protrusion 2118,
  • stator 220 The stator 220, the casing 221, the central hole 2211, the magnet portion 222, the bearing bracket 223, the mounting ears 224, the circuit board 225, the wire clamp 226, the power cord assembly 227,
  • Main bearing 300 Main bearing 300, sub-bearing 400, and bearing housing 500.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • a hub 110 of a wind wheel according to an embodiment of the present invention will now be described with reference to Figs.
  • the hub 110 is adapted to connect the blades 120 of the wind wheel 100.
  • the hub 110 has a support portion 111 on which the rotor 210 of the motor 200 is disposed. That is, in the embodiment of the present invention, a conventional rotor built in the inside of the motor is integratedly disposed on the hub of the wind wheel.
  • bearings and bearing brackets are required at the axial ends of the individually packaged motors to support rotor rotation.
  • the entire fan needs to support the rotation of the rotor 210 and the hub 110, and the conversion only needs to support the rotation of the hub 110, thereby reducing the motor bearing and the bearing bracket.
  • the number of the stator magnetic field directly drives the rotor 210 disposed on the support portion 111 of the hub 110 to drive the wind wheel 100 to rotate.
  • the rotor 210 is integrated on the support portion 111 of the hub 110, when the fan assembly 1000 is assembled, the rotor 210 is first assembled with the support portion 111, and then fitted with the stator 220, which is compatible with the conventional fan assembly. The assembly process for connecting the packaged motor to the rotor is different.
  • Such an assembly process eliminates the need to couple the rotor shaft and the coupling through a locking device such as a coupling and a screw on the hub 110, thereby reducing the assembly difficulty of the fan assembly 1000 and eliminating unnecessary intermediate fittings. Reduced material costs and manufacturing costs.
  • the fan assembly 1000 of such a structure is compact in the axial direction and greatly tightens the assembly space.
  • the stator magnetic field directly drives the hub 110 provided with the rotor 210. Rotating to drive the wind wheel 100 to rotate, thereby reducing the assembly difficulty of the whole machine, and also eliminating unnecessary intermediate fittings, reducing material costs and manufacturing costs.
  • the hub 110 of such a structure when applied to the fan assembly 1000, can make the fan assembly 1000 axially compact and greatly shrink the assembly space.
  • the hub 110 can be applied to various wind wheels 100, and it can be a cross-flow wind wheel, a centrifugal wind wheel or a hub of an axial flow wind wheel, or other types.
  • the hub of the wind wheel, here the type of the wind wheel 100 is not specifically limited.
  • the wind wheel 100 provided with the hub 110 of the embodiment of the present invention may have only one hub 110 on which the rotor 210 is mounted.
  • the wind wheel 100 may also have a plurality of hubs.
  • One of the plurality of hubs may be a hub 110 provided with a rotor 210 in the embodiment of the present invention, or a plurality of hubs may be a hub 110 provided with a rotor 210 in the embodiment of the present invention. . Therefore, the support portion 111 of the rotor 210 is provided, and the position on the wind wheel 100 has various possibilities.
  • the wind wheel 100 is provided with the support portion 111 only on one side in the axial direction, that is, the wind wheel 100 is provided with the rotor 210 of the motor 200 only on one axial side.
  • the wind wheel 100 is provided with support portions 111 on both sides in the axial direction, such that the rotor 100 is provided with the rotor 210 of the motor 200 on both sides in the axial direction.
  • the wind wheel 100 is provided with a support portion 111 at an axially intermediate position such that the fan assembly 1000 is provided with the motor 200 at an axially intermediate position.
  • the two wind wheels 100 share a single motor 200.
  • the support portion 111 on the two wind wheels 100 is a single piece.
  • the stator 220 cooperates with the rotor 210.
  • the stator magnetic field can drive the two wind wheels 100 to rotate at the same time.
  • the motor 200 includes a stator 220 and two rotors 210. Each of the rotors 210 is disposed on a support portion 111 of a wind wheel 100.
  • a stator magnetic field generated by a stator 220 directly drives the two rotors 210 to rotate.
  • the two wind wheels 100 rotate.
  • the fan assembly 1000 is a cross-flow fan, and the fan assembly 1000 is described by taking the support portion 111 only on the hub 110 on the axial side.
  • the fan assembly 1000 is a fan of other types, the structure thereof can be directly inferred from the following embodiments, and the structure of other types of fans will not be repeated here.
  • the hub 110 includes an end plate 112 for connecting the blades 120, and the support portion 111 is disposed at the center of the end plate 112.
  • the rotor 210 can be relatively firmly connected to the hub 110.
  • the end plate 112 functions as a motor end cap, that is, the rotor 210 is mounted on the end face of the end plate 112, and the end plate 112 has a protective effect on the rotor 210.
  • the designation of the end plate 112 does not indicate that the end plate 112 can only be located at the end of the wind wheel 100, which does not limit the type of wind wheel 100.
  • the support portion 111 is integrally formed with the end plate 112.
  • the support portion 111 and the end plate 112 are separately processed, and the two are connected by bolting or riveting to ensure the reliability of torque transmission.
  • the size of the hub 110 is small, and the rotor 210 is directly disposed on the outer circumference of the hub 110.
  • the hub 110 itself directly constitutes the support portion 111 of the rotor 210, and the structure of the end plate 112 is omitted. .
  • the blades 120 of the wind wheel 100 can be connected (eg, welded, riveted, snapped) to the end plate 112, and the blades 120 can also be integrally formed on the end plate 112.
  • the hub 110 further includes a blade connecting plate (not shown).
  • the blade 120 is directly connected (eg, welded, riveted, snapped, integrally formed) on the blade connecting plate, and the support portion 111 is connected to the end plate.
  • the blade web is coupled to the end plate 112 to effect torque transfer from the support portion 111, to the end plate 112, to the blade web, to the blade 120.
  • At least one of the end plate 112 and the support portion 111 is an insulator. It can be understood that, since the support portion 111 is connected to the rotor 210, the end plate 112 is connected to the blade 120. If the end plate 112 and the support portion 111 are both conductive members, the blade 120 may be charged when the wind wheel 100 rotates. There will be huge security risks. Therefore, at least one of the end plate 112 and the support portion 111 is provided as an insulating member, which can ensure that the blade 120 is not charged, thereby reducing safety hazards.
  • the hub 110 does not have an end plate 112, the entire hub 110 may be provided as an insulator, or the blade 120 may be provided as an insulator.
  • the support portion 111 may be a resin member, and the support portion 111 may also be other plastic members.
  • the end plate 112 can be a resin piece and the end plate 112 can be other plastic pieces.
  • the support portion 111 and the end plate 112 may be made of the same resin-based material.
  • end plate 112 and support portion 111 are integrally injection molded parts. This not only simplifies the production process, but also ensures that the blade 120 is not charged during the rotation of the rotor 100, which reduces the production cost and improves the safety.
  • the support portion 111 is an injection molded part, and the rotor 210 is coupled to the support portion 111 by integral injection molding.
  • the connection between the rotor 210 and the support portion 111 is firm and reliable, and it is not easy to fall off.
  • the rotor 210 includes a rotor core 211 and a permanent magnet 212.
  • the rotor core 211 is coupled to the support portion 111
  • the permanent magnet 212 is coupled to the rotor core 211.
  • the permanent magnet 212 interacts with the stator 220 to cause the permanent magnet 212 to rotate. Since the permanent magnet 212 is disposed on the support portion 111, the wind wheel can be driven during the rotation of the permanent magnet 212. 100 rotations.
  • the coil 210 may also be provided with a coil.
  • the permanent magnet 212 is adopted to reduce the line connection, and the permanent magnet 212 does not need to be connected, and the structure can be simplified.
  • the permanent magnet 212 is fixed to the support portion 111 by at least one of bonding, injection molding, bundling, and crimping. Therefore, it can be ensured that the permanent magnet 212 does not loosen during the rotation of the wind wheel 100, and the operational reliability of the wind wheel 100 is improved.
  • the permanent magnet 212 is a unitary annular structure. In some embodiments, the permanent magnet 212 is a split sheet structure, that is, the permanent magnet 212 includes magnetic tiles distributed in the circumferential direction. The user can select the structural form of the permanent magnet 212 according to the actual situation, so that the application range of the wind wheel 100 of the embodiment of the present invention can be made wider.
  • the position of the permanent magnet 212 on the rotor 210 may vary depending on the structure of the permanent magnet 212.
  • the permanent magnet 212 is embedded on the outer peripheral wall of the rotor 210.
  • the permanent magnet 212 is embedded on the inner peripheral wall of the rotor 210.
  • the permanent magnet 212 is packaged. Inside the rotor 210.
  • the rotor 210 includes a rotor core 211 and a plurality of permanent magnets 212.
  • the rotor core 211 is disposed on the support portion 111, and the rotor core 211 is provided with a plurality of permanent magnets.
  • the accommodating chamber 2111 has a plurality of permanent magnets 212 disposed in the plurality of permanent magnet accommodating cavities 2111. That is, the permanent magnet 212 is a split sheet structure.
  • each permanent magnet accommodating cavity 2111 penetrates the rotor core 211 in the axial direction, and the permanent magnet 212 is embedded in the permanent magnet accommodating cavity 2111. This arrangement facilitates assembly between the permanent magnet 212 and the rotor core 211.
  • the plurality of permanent magnet accommodating cavities 2111 are symmetrically distributed along the circumferential direction of the rotor core 211 such that the plurality of permanent magnets 212 are also symmetrically distributed along the circumferential direction of the rotor core 211 . This is advantageous in ensuring the circumferential uniformity of the driving force of the magnetic field to the rotor 210.
  • the plurality of permanent magnet accommodating cavities 2111 on the rotor core 211 are circumferentially symmetrically distributed, and the rotor core 211 is composed of a plurality of permanent magnets.
  • the portion surrounding the cavity 2111 is a shaft connecting portion 2113, and the portion of the rotor core 211 located between the adjacent two permanent magnet receiving cavities 2111 is an arm portion 2114, and each arm portion 2114 is connected to the shaft through the bridge portion 2115.
  • the part 2113 is connected.
  • the rotor core 211 thus formed can be integrally formed with the permanent magnet 212 and is inseparable.
  • the center of the rotor core 211 is a circular shaft connecting portion 2113, and the plurality of arm portions 2114 are evenly spaced around the shaft connecting portion 2113.
  • Each of the arm portions 2114 is substantially triangular, and one end of each of the arm portions 2114 facing the shaft connecting portion 2113 is a triangular tip end and is connected to the shaft connecting portion 2113 through the bridge portion 2115.
  • the side of each of the arm portions 2114 away from the shaft connecting portion 2113 is a triangular bottom edge, and the side of each arm portion 2114 constituting the triangular base is a substantially circular arc shape.
  • the permanent magnet accommodating cavities 2111 formed between the adjacent two arm portions 2114 are substantially rectangular, and the distance between the adjacent two arm portions 2114 on the side away from the shaft connecting portion 2113 is spaced. It's open.
  • each arm portion 2114 constituting the bottom edge of the triangle extends toward the circumferential end to form a card protrusion 2118, that is, the side of the permanent magnet accommodating cavity 2111 away from the shaft connecting portion 2113.
  • Card protrusions 2118 are provided at both ends to enable the permanent magnets 212 to be securely caught in the permanent magnet accommodation chamber 2111.
  • the shaft connecting portion 2113 is provided with a convex portion 2117 in each of the permanent magnet accommodating cavities 2111.
  • the permanent magnet 212 can be inserted into the permanent magnet accommodating chamber 2111.
  • the permanent magnet 212 is bonded to the rotor core 211 by an injection molding layer injected into the permanent magnet accommodating cavity 2111, so that the protrusion 2117 is disposed to facilitate injection of the injection molding material, and the injection molding material can be used forever.
  • An adhesive layer is formed between the magnet 212 and the shaft connecting portion 2113.
  • the shaft connecting portion 2113 is provided with an axially extending shaft hole 2116 for inserting and fitting the first wind wheel shaft 113.
  • the first wind wheel shaft 113 is fixedly coupled within the rotor core 211.
  • the shaft bore 2116 is fitted with a main bearing (not shown), the first wind wheel shaft 113 extends into the shaft bore 2116 and mates with the main bearing.
  • the rotor core 211 is composed of a plurality of rotor cores 211 laminated.
  • the rotor 210 further includes: a permanent magnet holder 213, the permanent magnet holder 213 is connected to the support portion 111, the permanent magnet holder 213 and the rotor core 211 and the permanent At least one of the magnets 212 is connected. That is, at least one of the rotor core 211 and the permanent magnet 212 is fixed to the support portion 111 by the permanent magnet holder 213.
  • the rotor core 211 is provided with a through hole 2112.
  • the permanent magnet holder 213 includes a first fixing strip 2131 fitted in the through hole 2112. This is fixed and not easy to trip.
  • the rotor core 211 is provided with a plurality of through holes 2112 penetrating the rotor core 211 in the axial direction of the rotor core 211, and the through holes 2112 are formed on the arm portion 2114.
  • each of the arms 2114 is provided with a plurality of perforations 2112, and the plurality of sets of perforations 2112 are symmetrically distributed along the rotor core 211.
  • the permanent magnet holder 213 includes a second fixing strip 2132 that is wrapped on one side of the permanent magnet 212 away from the rotation axis, such that the permanent magnet holder 213 is constrained to the diameter of each permanent magnet 212. To the outside, the permanent magnet 212 is prevented from being thrown out when the hub 110 is rotated.
  • the permanent magnet holder 213 includes a cover plate 2133 that is wrapped around both end faces of the rotor core 211, and the side cover plates 2133 are connected by a fixing bar 2130.
  • the permanent magnet holder 213 can be formed with force protection at both axial ends of the rotor 210.
  • the two ends of the first fixing strip 2131 and the second fixing strip 2132 are respectively connected to the two sides of the cover plate 2133, and the first fixing strip 2131 and the second fixing strip 2132 are both part of the fixing strip 2130, and the fixing strip 2130
  • a third fixing strip 2134 disposed in the permanent magnet housing cavity 2111 and connecting the cover plates 2133 on both sides is further included.
  • the permanent magnet holder 213 forms an integral cage structure that covers and pierces the rotor 210.
  • the material of the permanent magnet holder 213 is the same as the material of the support portion 111.
  • the permanent magnet holder 213 and the support portion 111 are integrally molded.
  • the hub 110 of the wind wheel according to the embodiment of the present invention can be rotated by the stator magnetic field by providing the rotor 210.
  • the rotor 210 can be integrally connected to the hub 110 by injection molding, and the connection is firm and the structure is simple.
  • the wind wheel 100 includes a hub 110 according to the above embodiment of the present invention.
  • the hub 110 is provided with a rotor 210.
  • the structure of the hub 110 and the rotor 210 has been described in the above embodiments, and details are not described herein. .
  • the stator magnetic field directly drives the hub 110 provided with the rotor 210 to rotate.
  • the wind wheel 100 is rotated, thereby reducing the assembly difficulty of the whole machine, and eliminating unnecessary intermediate fittings, thereby reducing material cost and manufacturing cost.
  • the wind wheel 100 of such a structure can make the fan assembly 1000 axially compact and greatly shrink the assembly space.
  • the wind wheel 100 may be provided with a second wind wheel shaft 132 at one end away from the rotor 210, and the second wind wheel shaft 132 is supported externally by the sub-bearing 400, such that the axial direction of the wind wheel 100 is two Both ends have bearing support to ensure smooth rotation of the wind wheel 100.
  • the wind wheel 100 is provided with an auxiliary hub 130 at an end remote from the rotor 210, and the auxiliary hub 130 is supported for rotation by the second rotor shaft 132.
  • the second rotor shaft 132, the sub-bearing 400, and the auxiliary hub 130 are fitted.
  • one end of the second rotor shaft 132 is fixed to the auxiliary hub 130
  • the sub-bearing 400 is provided on an outer bracket (not shown), and the other end of the second rotor shaft 132 is inserted.
  • the second rotor shaft 132 may be integrally formed on the auxiliary hub 130.
  • the wind wheel 100 is at an end away from the motor 200, and the auxiliary hub 130 is provided with a sub-bearing cavity 131 for mounting the sub-bearing 400 and the bearing housing 500 supporting the sub-bearing 400.
  • One end of the second wind wheel shaft 132 (not shown) is fixed to an outer bracket (not shown), and the other end of the second wind wheel shaft 132 is inserted into the sub-bearing 400.
  • the hub 110 in the wind wheel 100 may also be provided with only one, and the hub 110 may be supported by the first wind wheel shaft 113 only on one side in the axial direction. The other side is suspended.
  • a fan assembly 1000 according to an embodiment of the present invention, as shown in Figures 1 and 2, includes a wind wheel 100 in accordance with the above-described embodiments of the present invention.
  • the stator magnetic field directly drives the hub 110 provided with the rotor 210 to rotate.
  • the wind wheel 100 is rotated, thereby reducing the assembly difficulty of the whole machine, and eliminating unnecessary intermediate fittings, thereby reducing material cost and manufacturing cost.
  • the fan assembly 1000 is compact in the axial direction and greatly tightens the assembly space.
  • the motor 200 is an inner rotor motor
  • the stator 220 includes a casing 221 and a magnet portion 222
  • the casing 221 is formed in a barrel shape that is open toward one side of the wind wheel 100.
  • the peripheral wall of the casing 221 is jacketed on the support portion 111.
  • the center of the end of the casing 221 is provided with a central hole 2211.
  • the first wind wheel shaft 113 is supported in the central hole 2211.
  • the main bearing 300 is disposed in the center hole 2211, the first wind wheel shaft 113 projects into the center hole 2211 to cooperate with the main bearing 300, and the magnet portion 222 is disposed on the peripheral wall of the casing 221.
  • the casing 221 is a resin member, and the magnet portion 222 is integrally molded into the peripheral wall of the casing 221.
  • the casing 221 is a metal member, and the magnet portion 222 is sleeved in the casing 221 On the inside wall. Therefore, the material type of the casing 221 can be selected according to actual needs, thereby expanding the use range of the wind wheel 100.
  • the casing 221 is a resin-based material BMC material.
  • the stator 220 includes a stator core, a stator winding, and an insulation skeleton.
  • the stator 220 integrally molds the stator core, the stator winding, and the insulation skeleton by using a resin material, and the stator core, the stator winding, and the insulation skeleton are encapsulated in the casing. Within the perimeter of 221.
  • the cavity formed by the peripheral wall of the casing 221 is equivalent to the rotor accommodating cavity, and the outer diameter of the rotor 210 is smaller than the diameter of the rotor accommodating cavity, that is, there is a gap between the magnet portion 222 and the permanent magnet 212.
  • the central aperture 2211 is a through hole in the end of the housing 221 .
  • a bearing bracket 223 for the outer main bearing 300 is provided in the center hole 2211.
  • the bearing bracket 223 is formed in a cylindrical shape with both ends penetrating therethrough.
  • the axial ends of the bearing bracket 223 are provided with tabs for snapping onto the casing 221.
  • the central aperture 2211 is a blind hole in the end of the housing 221 .
  • a bearing bracket 223 for the outer main bearing 300 is provided in the center hole 2211.
  • the bearing bracket 223 is formed in a cylindrical shape in which one side is open on the axial side and the other side is closed.
  • the side of the bearing bracket 223 facing the rotor 210 is provided with an eversion edge for snapping onto the casing 221.
  • the bearing bracket 223 is a metal member, so that the main bearing 300 can be prevented from being pressed against the bearing bracket 223 to deform the bearing bracket 223, thereby causing the main bearing 300 to be unstable in installation.
  • the bearing bracket 223 is integrally molded and fixed to the casing 221.
  • the bearing bracket 223 may also be a resin member or a plastic member, and the structure of the bearing bracket 223 is not limited herein.
  • a plurality of spaced apart mounting ears 224 are disposed on the outer circumference of the stator 220. This facilitates the installation of the stator 220.
  • the mounting ears 224 are integrally injection molded with the housing 221.
  • the stator 220 further includes some or all of the components of the circuit board 225, the wire clamp 226, and the power cord assembly 227.
  • the circuit board 225 is connected to the magnet portion 222.
  • the wire clamp 226 is disposed at the outlet slot of the stator 220 to facilitate the outgoing line.
  • the power line assembly 227 is electrically connected to the circuit board 225 to connect the power supply and the circuit board 225.
  • the fan assembly 1000 can be applied to various home appliances such as an air conditioner, a refrigerator, a fan, a range hood, and the like.
  • the household electric machine 200 since having the wind turbine assembly 1000 described above, is highly advantageous in achieving a miniaturized design using a home appliance.
  • the fan assembly 1000 of the embodiment of the present invention can also be applied to other fields as needed, and is not limited to being applied only in the field of home appliances.
  • the description of the terms “embodiment”, “example” and the like means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present invention. .
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种风轮的轮毂、风轮及风机组件,风轮(100)的轮毂(110)用于连接风轮(100)的叶片(120),轮毂(110)具有支撑部(111),支撑部(111)上设有电机(200)的转子(210)。该风机组件零件少,装配简单,成本低,占用空间小。

Description

风轮的轮毂、风轮及风机组件 技术领域
本发明涉及家电设备领域,尤其涉及一种风轮的轮毂、风轮及风机组件。
背景技术
使用直流无刷电机的风机组件其常规结构是,通过螺钉等锁紧装置,将直流无刷电机的轴伸部与风轮组件的联轴器锁紧连接,以实现直流无刷电机的定子旋转磁场驱动转子的转子轴旋转,转子轴再通过联轴器将动能传递到风轮组件,以驱动风轮组件旋转。此种方案使用的直流无刷电机,由转子、定子、轴承和轴承托架等组装构成,且一般需要在转子轴向两侧的转子轴上分别设置轴承,并分别使用轴承托架或轴承腔室进行支撑固定。为了联接所述风轮组件,直流无刷电机还必须具有伸出电机本体的轴伸部。另外,此种方案的风轮组件需要在风轮的一端设置联轴器,并需要使用螺钉等锁紧装置锁紧联接轴伸部。
综上,此种方案的风机组件存在零部件多,结构复杂,装配步骤多且复杂,自动化程度不高等问题。且由于零部件多,装配复杂等问题,导致材料成本和制造费用也较高。另外,转子轴向两侧装配轴承和电机具有轴伸部导致此种风机组件的轴向长度较长,占用了使用此种风机组件的家用电器(如空调壁挂机等)的装配空间,不利于其小型化的实现。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种风轮的轮毂,该轮毂上可通过设置转子以由定子磁场直接驱动转动,使其驱动部件零部减少,装配步骤减少。
本发明还旨在提出一种具有上述轮毂的风轮。
本发明还旨在提出一种具有上述风轮的风机组件。
根据本发明实施例的风轮的轮毂,所述轮毂适于连接风轮的叶片,所述轮毂具有支撑部,所述支撑部上设有转子。
根据本发明实施例的风轮的轮毂,由于转子直接设置在风轮的轮毂上,使得电机轴承和 轴承托架的数量减少,定子磁场直接驱动设置有转子的轮毂转动以带动风轮旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,此种结构的轮毂,当应用在风机组件上,可使风机组件轴向上结构紧凑,大幅缩紧装配空间。
在一些实施例中,所述支撑部为注塑件,所述转子通过一体注塑连接在所述支撑部上。这样转子与支撑部之间的连接牢固、可靠,不易脱落。
在一些实施例中,所述转子包括:转子铁芯,所述转子铁芯设在所述支撑部上,所述转子铁芯上设有多个永磁体容置腔;多个永磁体,所述多个永磁体分别设在所述多个永磁体容置腔内。由此,在工作时,永磁体与定子磁场发生相互作用,使得永磁体旋转,由于永磁体设在支撑部上,因此在永磁体转动的过程中可带动风轮旋转。相对于线圈而言,采用永磁体的方案,减少了线路连接,永磁体无需接电,结构可得到简化。
具体地,所述转子还包括:永磁体固定架,所述永磁体固定架与所述支撑部相连,所述永磁体固定架与所述转子铁芯和所述永磁体中至少一个相连。
具体地,所述转子铁芯上设有穿孔,所述永磁体固定架包括配合在所述穿孔内的第一固定条。由此,通过穿设固定,不易脱扣。
具体地,所述永磁体固定架包括包覆在所述永磁体的远离旋转轴线的一侧的第二固定条。这样永磁体固定架约束在每个永磁体的径向外侧,避免轮毂旋转时永磁体被甩出。
具体地,所述永磁体固定架包括包覆在所述转子铁芯的两侧端面处的盖板,两侧所述盖板相连。这样永磁体固定架可在转子的轴向两端形成有力保护。
可选地,所述永磁体固定架与所述支撑部为一体注塑成型件。
在一些实施例中,所述转子铁芯上的所述多个永磁体容置腔沿周向且呈中心对称分布,所述转子铁芯上由所述多个永磁体容置腔环绕的部分为轴连接部,所述转子铁芯上位于相邻两个所述永磁体容置腔之间的部分为臂部,每个所述臂部均通过桥部与所述轴连接部相连,所述轴连接部上设有轴向贯通的轴孔,所述轴孔用于插入配合第一风轮轴。
具体地,所述轴连接部上朝向每个所述永磁体容置腔内均设有凸部。由此,可以节省铁芯材料用量,方便永磁体插入永磁体容置腔内。在一些示例中,永磁体通过注入永磁体容置腔内的注塑层粘结在转子铁芯上,因此凸部的设置,可方便注塑材料的注入,且使注塑材料能够在永磁体与轴连接部之间形成粘结层。
在一些实施例中,所述轮毂包括:用于连接所述叶片的端板,所述支撑部设在所述端板的中心,所述端板和所述支撑部中至少一个为绝缘件。可以保证叶片不带电,降低安全隐患。
根据本发明实施例的风轮,包括根据本发明上述实施例所述的风轮的轮毂。
根据本发明实施例的风轮,由于转子直接设置在风轮的轮毂上,使得电机轴承和轴承托架的数量减少,定子磁场直接驱动设置有转子的轮毂转动以带动风轮旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,此种结构的风轮,可使风机组件轴向上结构紧凑,大幅缩紧装配空间。
在一些实施例中,所述风轮在远离所述转子的一端设有辅助轮毂,所述辅助轮毂通过第二风轮轴支撑转动。这样风轮的轴向两端均有轴承支撑,可保证风轮平稳旋转。
根据本发明实施例的风机组件,包括根据本发明上述实施例所述的风轮。
根据本发明实施例的风机组件,由于将转子整合到风轮的轮毂上,使得电机轴承和轴承托架的数量减少,定子磁场直接驱动设置有转子的轮毂转动以带动风轮旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,风机组件轴向上结构紧凑,大幅缩紧装配空间。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例的风机组件的整体结构示意图。
图2是图1中局部放大示意图。
图3是本发明实施例的风轮的整体结构示意图。
图4是本发明实施例的轮毂的主视方向结构示意图。
图5是图4所示的轮毂的A向结构示意图。
图6是图4所示的轮毂的沿B-B方向的剖面结构示意图。
图7是本发明实施例的转子的转子铁芯、永磁体及第一风轮轴的装配示意图。
图8是本发明实施例的转子铁芯的结构示意图。
图9是本发明实施例的辅助轮毂的一种装配结构示意图。
图10是本发明实施例的辅助轮毂的另一种装配结构示意图。
图11是本发明实施例的定子与主轴承的装配结构示意图。
图12是本发明实施例的定子的结构示意图。
图13是本发明实施例的定子的侧视方向示意图。
附图标记:
附图标记:
风机组件1000、
风轮100、
轮毂110、支撑部111、端板112、第一风轮轴113、
叶片120、
辅助轮毂130、副轴承腔131、第二风轮轴132、
电机200、
转子210、
转子铁芯211、永磁体容置腔2111、穿孔2112、轴连接部2113、臂部2114、桥部2115、轴孔2116、凸部2117、卡凸2118、
永磁体212、
永磁体固定架213、固定条2130、第一固定条2131、第二固定条2132、盖板2133、第三固定条2134、
定子220、机壳221、中心孔2211、磁体部222、轴承支架223、安装耳224、电路板225、导线夹226、电源线总成227、
主轴承300、副轴承400、轴承座500。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图13描述根据本发明实施例的风轮的轮毂110。
根据本发明实施例的风轮的轮毂110,如图4所示,轮毂110适于连接风轮100的叶片120,轮毂110具有支撑部111,支撑部111上设有电机200的转子210。也就是说,本发明实施例,将传统的内置于电机内部的转子整合设置到风轮的轮毂上。
需要说明的是,传统风机组件中,采用的电机通常为独立封装部件。独立封装的电机的轴向两端需要设置轴承及轴承托架(轴承托架也可称为电机端盖),以支撑转子转动。
而本发明实施例中,由于将转子210整合到风轮的轮毂110上,整个风机由原来需要支撑转子210和轮毂110转动,转变为只需要支撑轮毂110转动,减少了电机轴承和轴承托架的数量,实现了定子磁场直接驱动设置于轮毂110的支撑部111上的转子210,以带动风轮100旋转。
这里需要说明的是,由于转子210整合到轮毂110的支撑部111上,因此风机组件1000装配时,转子210先与支撑部111装配,后与定子220套设配合,这与传统风机组件中,将封装好的电机连接到风轮的装配过程是不同的。
这样的装配过程,无需再通过轮毂110上的联轴器和螺钉等锁紧装置将转子轴和联轴器联接,降低了风机组件1000的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,此种结构的风机组件1000,在轴向方向上结构紧凑,大幅缩紧了装配空间。
根据本发明实施例的风轮的轮毂110,由于电机200的转子210直接设置在风轮的轮毂110上,使得电机轴承和轴承托架的数量减少,定子磁场直接驱动设置有转子210的轮毂110转动以带动风轮100旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,此种结构的轮毂110,当应用在风机组件1000上,可使风机组件1000轴向上结构紧凑,大幅缩紧装配空间。
需要补充说明的是,本发明实施例所指的轮毂110,它能够应用在各种风轮100上,它可以是贯流风轮、离心风轮或者轴流风轮的轮毂,也可以是其他类型风轮的轮毂,这里对风轮100的类型不作具体限制。
设置有本发明实施例的轮毂110的风轮100,可以仅具有一个轮毂110,该轮毂110上 安装有转子210。风轮100也可以具有多个轮毂,多个轮毂中可以有一个是本发明实施例中设置有转子210的轮毂110,也可以多个轮毂均是本发明实施例中设置有转子210的轮毂110。因此设有转子210的支撑部111,在风轮100上的位置也就具有了多种可能性。
有的实施例中,风轮100仅在轴向上一侧设置支撑部111,即该风轮100仅在轴向一侧设置有电机200的转子210。
有的实施例中,风轮100在轴向上两侧均设置有支撑部111,这样该风轮100在轴向两侧均设置有电机200的转子210。
有的实施例中,风轮100在轴向上中间位置设置有支撑部111,这样该风机组件1000在轴向中间位置设置有电机200。
还有的实施例中,两个风轮100共用一个电机200,例如两个风轮100上的支撑部111为一体件,转子210设置在该支撑部111上后,定子220与该转子210配合,定子磁场可带动两个风轮100同时转动。又例如,电机200包括一个定子220和两个转子210,每个转子210设置在一个风轮100的支撑部111上,一个定子220产生的定子磁场,可直接驱动两个转子210转动,从而带动两个风轮100旋转。
为便于描述,下文中均以风机组件1000为贯流风机,风机组件1000仅在轴向一侧的轮毂110上设置有支撑部111为例进行说明。当然,当风机组件1000为其他类型风机时,其结构可由下述实施例直接推断,这里对其他类型风机的结构不再一一赘述。
在一些实施例中,如图3-图5所示,轮毂110包括:用于连接叶片120的端板112,支撑部111设在端板112的中心。由此,可以将转子210较为稳固地连接在轮毂110上。这里,端板112充当电机端盖的作用,即转子210安装在端板112的端面上,端板112对转子210具有保护作用。当然,端板112的命名并不表明该端板112仅能位于风轮100的端部,它对风轮100的类型并不具有限制作用。
需要说明的是,在有的实施例中,支撑部111与端板112一体成型。在有的实施例中,支撑部111与端板112分别独立加工,二者之间通过螺栓连接或铆接等方式连接,以保证扭矩传递的可靠性。
也有的实施例中,轮毂110的尺寸较小,转子210直接设在轮毂110的外周上,即该实施例中轮毂110本身就直接构成设置转子210的支撑部111,省略了端板112的结构。
另外,风轮100的叶片120可连接(例焊接、铆接、卡接)在端板112上,叶片120也可一体成型在端板112上。
有的实施例中,轮毂110还包括叶片连板(图未示出),叶片120直接连接(例焊接、铆接、卡接、一体成型连接)在叶片连板上,支撑部111连接在端板112上,叶片连板与 端板112相连,从而可实现转矩从支撑部111、到端板112、到叶片连板、到叶片120的传递。
在一些实施例中,端板112和支撑部111中至少一个为绝缘件。可以理解的是,由于支撑部111与转子210相连接,端板112与叶片120相连接,如果端板112与支撑部111都为导电件,则可能导致风轮100转动时叶片120带电,这样会产生巨大的安全隐患。因此,将端板112和支撑部111中至少一个设置为绝缘件,可以保证叶片120不带电,降低安全隐患。
在有的实施例中,轮毂110不具有端板112,可以将整个轮毂110设置成绝缘件,也可以将叶片120也设置成绝缘件。
可选地,支撑部111可为树脂件,支撑部111也可为其他塑料件。可选地,端板112可为树脂件,端板112也可为其他塑料件。
可选地,支撑部111和端板112可为使用相同的树脂类材料。
在一些可选实施例中,端板112和支撑部111为一体注塑成型件。这样不但可以简化生产工艺,还可以保证风轮100在转动过程中叶片120不会带电,既降低了生产成本,又提高了安全性。
可选地,支撑部111为注塑件,转子210通过一体注塑连接在支撑部111上。这样转子210与支撑部111之间的连接牢固、可靠,不易脱落。
在一些实施例中,如图4、图6和图7所示,转子210包括:转子铁芯211和永磁体212,转子铁芯211与支撑部111相连,永磁体212与转子铁芯211相连。可以理解的是,在工作时,永磁体212与定子220发生相互作用,使得永磁体212发生旋转,由于永磁体212设在支撑部111上,因此在永磁体212转动的过程中可带动风轮100旋转。
当然,本发明实施例中,转子210上也可以设置线圈,但是相对于线圈而言,采用永磁体212的方案,减少了线路连接,永磁体212无需接电,结构可得到简化。
可选地,永磁体212通过粘接、注塑、捆绑、压接中的至少一种方式固定于支撑部111上。由此可以保证在风轮100转动过程中永磁体212不会松动,提高了风轮100的运行可靠性。
在有的实施例中,永磁体212为一体式环形结构。在有的实施例中,永磁体212为分体式片状结构,即永磁体212包括沿周向分布的磁瓦。用户可以根据实际情况选择永磁体212的结构形式,这样可以使得本发明实施例的风轮100的应用范围更广。
另外,根据永磁体212的结构的需要,永磁体212在转子210上的位置也可多变。有的实施例中,永磁体212嵌设在转子210的外周壁上,有的实施例中,永磁体212嵌设在转 子210的内周壁上,还有的实施例中,永磁体212封装包裹在转子210内部。
在一些具体实施例中,如图6所示,转子210包括:转子铁芯211和多个永磁体212,转子铁芯211设在支撑部111上,转子铁芯211上设有多个永磁体容置腔2111,多个永磁体212分别设在多个永磁体容置腔2111内。也就是说,永磁体212为分体式片状结构。
具体地,每个永磁体容置腔2111沿轴向贯通转子铁芯211,永磁体212嵌设于永磁体容置腔2111。这样设置可方便永磁体212与转子铁芯211之间的装配。
具体地,如图6所示,多个永磁体容置腔2111沿转子铁芯211的周向呈中心对称分布,从而多个永磁体212也沿转子铁芯211的周向呈中心对称分布,这样有利于保证磁场对转子210的驱动力的周向均匀性。
在一个具体实施例中,如图7和图8所示,转子铁芯211上的多个永磁体容置腔2111沿周向且呈中心对称分布,转子铁芯211上由多个永磁体容置腔2111环绕的部分为轴连接部2113,转子铁芯211上位于相邻两个永磁体容置腔2111之间的部分为臂部2114,每个臂部2114均通过桥部2115与轴连接部2113相连。这样形成的转子铁芯211,能够与永磁体212嵌合形成一体,牢不可分。
具体地,如图8所示,转子铁芯211的中心为圆形的轴连接部2113,多个臂部2114环绕轴连接部2113呈均匀间隔分布。每个臂部2114均大体为三角形,每个臂部2114的朝向轴连接部2113的一端为三角形的顶端,并通过桥部2115与轴连接部2113相连。每个臂部2114的远离轴连接部2113的一侧为三角形的底边,且每个臂部2114的构成三角形底边的一侧为大体圆弧形。
具体地,如图8所示,相邻两个臂部2114之间形成的永磁体容置腔2111为大体矩形,相邻两个臂部2114之间在远离轴连接部2113的一侧是间隔开的。
可选地,如图8所示,每个臂部2114的构成三角形底边的一侧向周向两端延伸形成卡凸2118,即永磁体容置腔2111在远离轴连接部2113的一侧两端设置有卡凸2118,以使永磁体212能够牢固地卡在永磁体容置腔2111内。
具体地,如图8所示,轴连接部2113上朝向每个永磁体容置腔2111内均设有凸部2117。由此,可以节省铁芯材料用量,方便永磁体212插入永磁体容置腔2111内。在一些示例中,永磁体212通过注入永磁体容置腔2111内的注塑层粘结在转子铁芯211上,因此凸部2117的设置,可方便注塑材料的注入,且使注塑材料能够在永磁体212与轴连接部2113之间形成粘结层。
具体地,如图7和图8所示,轴连接部2113上设有轴向贯通的轴孔2116,轴孔2116用于插入配合第一风轮轴113。
在一些示例中,如图5所示,第一风轮轴113固定连接在转子铁芯211内,在另一些示例中,轴孔2116内配合有主轴承(图未示出),第一风轮轴113伸入至轴孔2116内且与主轴承配合。
可选地,转子铁芯211由多片转子铁芯211冲片叠压组成。
在一些具体实施例中,如图5-图7所示,转子210还包括:永磁体固定架213,永磁体固定架213与支撑部111相连,永磁体固定架213与转子铁芯211和永磁体212中至少一个相连。也就是说,转子铁芯211和永磁体212中至少一个通过永磁体固定架213固定在支撑部111上。
可选地,如图6-图8所示,转子铁芯211上设有穿孔2112,永磁体固定架213包括配合在穿孔2112内的第一固定条2131。这样穿设固定,不易脱扣。
进一步可选地,转子铁芯211上设置有多个沿转子铁芯211的轴向方向贯穿转子铁芯211的穿孔2112,且穿孔2112形成在臂部2114上。有利地,如图8所示,每个臂部2114上设有一组穿孔2112,多组穿孔2112沿转子铁芯211呈中心对称分布。
具体地,如图6所示,永磁体固定架213包括包覆在永磁体212的远离旋转轴线的一侧的第二固定条2132,这样永磁体固定架213约束在每个永磁体212的径向外侧,避免轮毂110旋转时永磁体212被甩出。
具体地,如图4和图5所示,永磁体固定架213包括包覆在转子铁芯211的两侧端面处的盖板2133,两侧盖板2133通过固定条2130相连。这样永磁体固定架213可在转子210的轴向两端形成有力保护。
另外,第一固定条2131和第二固定条2132的轴向两端分别与两侧的盖板2133相连,第一固定条2131和第二固定条2132均属于固定条2130的一部分,固定条2130还包括设在永磁体容置腔2111内且连接两侧的盖板2133的第三固定条2134。由此,永磁体固定架213形成包覆及穿设转子210的整体式笼结构。
可选地,永磁体固定架213的材料与支撑部111的材料相同,可选地,永磁体固定架213与支撑部111为一体注塑成型件。
综上,根据本发明实施例的风轮的轮毂110,通过设置转子210,能够由定子磁场驱动转动,转子210可通过注塑一体连接在轮毂110上,连接牢固,结构简单。
下面参照图3-图10描述根据本发明实施例的风轮100的结构。
根据本发明实施例的风轮100,包括根据本发明上述实施例的轮毂110,该轮毂110上设有转子210,对于轮毂110及转子210的结构已在上述实施例中说明,这里不再赘述。
根据本发明实施例的风轮100,由于电机200的转子210直接设置在风轮的轮毂110上,使得电机轴承和轴承托架的数量减少,定子磁场直接驱动设置有转子210的轮毂110转动以带动风轮100旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,此种结构的风轮100,可使风机组件1000轴向上结构紧凑,大幅缩紧装配空间。
在一些实施例中,如图3所示,风轮100在远离转子210的一端可设置第二风轮轴132,第二风轮轴132通过副轴承400支撑在外部,这样风轮100的轴向两端均有轴承支撑,可保证风轮100平稳旋转。
可选地,风轮100在远离转子210的一端设有辅助轮毂130,辅助轮毂130通过第二风轮轴132支撑转动。这里,第二风轮轴132、副轴承400与辅助轮毂130的配合方式有多种。例如,在图9所示的实施例中,第二风轮轴132的一端固定在辅助轮毂130上,副轴承400设在外部支架(图未示出)上,第二风轮轴132的另一端插入到副轴承400内。可选地,第二风轮轴132可一体形成在辅助轮毂130上。
在图10所示的实施例中,风轮100在远离电机200的一端,辅助轮毂130上设有副轴承腔131,副轴承腔131用于安装副轴承400及支撑副轴承400的轴承座500,第二风轮轴132(图中未示出)的一端固定在外部支架(图未示出)上,第二风轮轴132的另一端插入到副轴承400内。
在本发明其他实施例中,根据风机组件1000的结构的选择,风轮100中的轮毂110也可仅设有一个,该轮毂110可仅在轴向上一侧通过第一风轮轴113支撑,另一侧悬空。
下面参照图1-图13,描述根据本发明实施例的风机组件1000的结构。
根据本发明实施例的风机组件1000,如图1和图2所示,包括根据本发明上述实施例的风轮100。
根据本发明实施例的风机组件1000,由于电机200的转子210直接设置在风轮的轮毂110上,使得电机轴承和轴承托架的数量减少,定子磁场直接驱动设置有转子210的轮毂110转动以带动风轮100旋转,从而降低了整机的装配难度,也省去了非必要的中间装配件,降低了材料成本和制造费用。此外,风机组件1000轴向上结构紧凑,大幅缩紧装配空间。
在一些实施例中,如图1-图2所示,电机200为内转子电机,定子220包括:机壳221和磁体部222,机壳221形成为朝向风轮100的一侧敞开的桶形,机壳221的周壁外套在支撑部111上,机壳221的端部中心设有中心孔2211,第一风轮轴113支撑在中心孔2211内。
具体地,主轴承300设在中心孔2211内,第一风轮轴113伸入到中心孔2211内与主轴承300相配合,磁体部222设在机壳221的周壁上。
在有的实施例中,机壳221为树脂件,磁体部222一体注塑在机壳221的周壁内,在有的实施例中,机壳221为金属件,磁体部222内套在机壳221的内壁上。由此可以根据实际需要选择机壳221的材料类型,从而扩大了风轮100的使用范围。
可选地,机壳221为树脂类材料BMC材料。可选地,定子220包括定子铁芯、定子绕组、绝缘骨架,定子220采用树脂类材料将定子铁芯、定子绕组、绝缘骨架一体注塑成型,定子铁芯、定子绕组、绝缘骨架封装在机壳221的周壁内。
在图2的示例中,机壳221的周壁合围形成的腔体相当于转子容置腔,转子210的外径小于转子容置腔的直径,即磁体部222与永磁体212之间存在缝隙。
在一些实施例中,如图11-图13所示,中心孔2211为机壳221端部上的通孔。具体地,如图11所示,中心孔2211内设有用于外套主轴承300的轴承支架223,可选地,轴承支架223形成为两端贯通的筒形。有利地,轴承支架223的轴向两端设有用于卡在机壳221上的卡凸。
在另一些实施例中,中心孔2211为机壳221端部上的盲孔。具体地,中心孔2211内设有用于外套主轴承300的轴承支架223,可选地,轴承支架223形成为轴向一侧敞开、另一侧封闭的筒形。有利地,轴承支架223的朝向转子210的一侧设有用于卡在机壳221上的外翻边。
可选地,轴承支架223为金属件,这样可以避免主轴承300挤压轴承支架223使得轴承支架223变形,从而导致主轴承300安装不稳定。有利地,轴承支架223一体注塑固定在机壳221上。
可选地,轴承支架223也可以是树脂件或者塑胶件,这里对轴承支架223的结构不作限制。
在一些实施例中,如图13所示,定子220的外周缘上设有多个间隔开设置的安装耳224。这样可以方便定子220的安装。可选地,安装耳224与机壳221一体注塑成型。
在一些实施例中,如图11-图13所示,定子220还包括:电路板225、导线夹226和电源线总成227中的部分或者全部部件。电路板225与磁体部222相连,导线夹226设在定子220的出线槽处以方便出线,电源线总成227与电路板225电连接以连接电源和电路板225。
根据本发明实施例的风机组件1000,可以应用在各种家用电器中,例如空调器、冰箱、 风扇、抽油烟机等。
根据本发明实施例的家用电机200,由于具有前文所述的风机组件1000,非常利于实现使用家用电器的小型化设计。当然,本发明实施例的风机组件1000也可以应用到需要的其他领域中,可不限于仅应用在家电领域。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种风轮的轮毂,所述轮毂适于连接风轮的叶片,其特征在于,所述轮毂具有支撑部,所述支撑部上设有转子。
  2. 根据权利要求1所述的风轮的轮毂,其特征在于,所述支撑部为注塑件,所述转子通过一体注塑连接在所述支撑部上。
  3. 根据权利要求1或2所述的风轮的轮毂,其特征在于,所述转子包括:
    转子铁芯,所述转子铁芯设在所述支撑部上,所述转子铁芯上设有多个永磁体容置腔;
    多个永磁体,所述多个永磁体分别设在所述多个永磁体容置腔内。
  4. 根据权利要求3所述的风轮的轮毂,其特征在于,所述转子还包括:永磁体固定架,所述永磁体固定架与所述支撑部相连,所述永磁体固定架与所述转子铁芯和所述永磁体中至少一个相连。
  5. 根据权利要求4所述的风轮的轮毂,其特征在于,所述转子铁芯上设有穿孔,所述永磁体固定架包括配合在所述穿孔内的第一固定条。
  6. 根据权利要求4或5所述的风轮的轮毂,其特征在于,所述永磁体固定架包括包覆在所述永磁体的远离旋转轴线的一侧的第二固定条。
  7. 根据权利要求4所述的风轮的轮毂,其特征在于,所述永磁体固定架包括包覆在所述转子铁芯的两侧端面处的盖板,两侧所述盖板相连。
  8. 根据权利要求4-7中任一项所述的风轮的轮毂,其特征在于,所述永磁体固定架与所述支撑部为一体注塑成型件。
  9. 根据权利要求3-8中任一项所述的风轮的轮毂,其特征在于,所述转子铁芯上的所述多个永磁体容置腔沿周向且呈中心对称分布,所述转子铁芯上由所述多个永磁体容置腔环绕的部分为轴连接部,所述转子铁芯上位于相邻两个所述永磁体容置腔之间的部分为臂部,每个所述臂部均通过桥部与所述轴连接部相连,所述轴连接部上设有轴向贯通的轴孔,所述轴孔用于插入配合第一风轮轴。
  10. 根据权利要求9所述的风轮的轮毂,其特征在于,所述轴连接部上朝向每个所述永磁体容置腔内均设有凸部。
  11. 根据权利要求1-10中任一项所述的风轮的轮毂,其特征在于,所述轮毂包括:用于连接所述叶片的端板,所述支撑部设在所述端板的中心,所述端板和所述支撑部中至少一个为绝缘件。
  12. 一种风轮,其特征在于,包括根据权利要求1-11中任一项所述的风轮的轮毂。
  13. 根据权利要求12所述的风轮,其特征在于,所述风轮在远离所述转子的一端设有辅助轮毂,所述辅助轮毂通过第二风轮轴支撑转动。
  14. 一种风机组件,其特征在于,包括根据权利要求12-13中任一项所述的风轮。
PCT/CN2018/096682 2017-12-18 2018-07-23 风轮的轮毂、风轮及风机组件 WO2019119802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711363399.X 2017-12-18
CN201711363399.XA CN108105149A (zh) 2017-12-18 2017-12-18 风轮的轮毂、风轮及风机组件

Publications (1)

Publication Number Publication Date
WO2019119802A1 true WO2019119802A1 (zh) 2019-06-27

Family

ID=62209867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096682 WO2019119802A1 (zh) 2017-12-18 2018-07-23 风轮的轮毂、风轮及风机组件

Country Status (2)

Country Link
CN (1) CN108105149A (zh)
WO (1) WO2019119802A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105149A (zh) * 2017-12-18 2018-06-01 广东威灵电机制造有限公司 风轮的轮毂、风轮及风机组件
CN114567097A (zh) * 2019-09-26 2022-05-31 广东威灵电机制造有限公司 转子和电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328900A (zh) * 2007-06-19 2008-12-24 深圳市联创实业有限公司 超薄型家用空气调节装置
CN101487478A (zh) * 2008-01-15 2009-07-22 台达电子工业股份有限公司 风扇及其内转子马达
WO2010130577A2 (de) * 2009-05-15 2010-11-18 Robert Bosch Gmbh Lüfter-rotor-verbindung für ein kühlgebläse eines kraftfahrzeugs
CN104632662A (zh) * 2015-01-20 2015-05-20 广东威灵电机制造有限公司 风机和具有其的空调器
CN107919766A (zh) * 2017-12-18 2018-04-17 广东威灵电机制造有限公司 风机组件及家用电器
CN108105149A (zh) * 2017-12-18 2018-06-01 广东威灵电机制造有限公司 风轮的轮毂、风轮及风机组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201307810Y (zh) * 2008-11-04 2009-09-09 珠海格力电器股份有限公司 电机转子及电机
CN201466819U (zh) * 2009-07-16 2010-05-12 珠海格力电器股份有限公司 电机转子及电机
CN105471141A (zh) * 2015-12-29 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 转子铁芯及具有其的电机
CN105471140B (zh) * 2015-12-29 2019-08-27 珠海格力电器股份有限公司 转子铁芯及具有其的电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328900A (zh) * 2007-06-19 2008-12-24 深圳市联创实业有限公司 超薄型家用空气调节装置
CN101487478A (zh) * 2008-01-15 2009-07-22 台达电子工业股份有限公司 风扇及其内转子马达
WO2010130577A2 (de) * 2009-05-15 2010-11-18 Robert Bosch Gmbh Lüfter-rotor-verbindung für ein kühlgebläse eines kraftfahrzeugs
CN104632662A (zh) * 2015-01-20 2015-05-20 广东威灵电机制造有限公司 风机和具有其的空调器
CN107919766A (zh) * 2017-12-18 2018-04-17 广东威灵电机制造有限公司 风机组件及家用电器
CN108105149A (zh) * 2017-12-18 2018-06-01 广东威灵电机制造有限公司 风轮的轮毂、风轮及风机组件

Also Published As

Publication number Publication date
CN108105149A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP4860867B2 (ja) モータケーシングを有する流体ポンプ並びにモータケーシングを製造するための方法
US8203242B2 (en) Electrically commutated DC motor for a liquid pump
CN203933264U (zh) 马达
JP2017189093A (ja) ステータ、これを備えるモータ、及びこれを製作する方法
US20080122300A1 (en) Motor
EP0354156A2 (en) Ventilated electric motor assembly
JP2016144394A (ja) 電気モータ
WO2019119802A1 (zh) 风轮的轮毂、风轮及风机组件
JP6012022B2 (ja) ブラシレスモータ
WO2019119803A1 (zh) 风机组件及家用电器
CN102457120B (zh) 马达及其构成的散热风扇
CN110249137A (zh) 风机
CN101931300B (zh) 无刷直流马达及其定子
WO2021203909A1 (zh) 电动工具、电机及其转子
JP2016116442A (ja) ロータ、モータ、ポンプ、及び洗浄装置
CN201860197U (zh) 用于缝纫设备的无轴承电动机
CN107887998B (zh) 直流电机和具有其的流体驱动装置
US9966814B2 (en) Motor having a fan cover that is latched to a foot plate, pump, and method for manufacturing the motor
US11489391B2 (en) Stator, motor, and blowing device
JP6843627B2 (ja) ファン装置およびその製造方法
CN201478976U (zh) 无刷直流马达及其定子
CN108306452A (zh) 风机组件及家用电器
CN209389901U (zh) 一种无刷直流电机
KR100578191B1 (ko) 아우터 로터형 모터의 샤프트 연결 구조
CN212850016U (zh) 一种高速直流无刷电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18891926

Country of ref document: EP

Kind code of ref document: A1