WO2019119761A1 - 一种散热风扇启动方法 - Google Patents

一种散热风扇启动方法 Download PDF

Info

Publication number
WO2019119761A1
WO2019119761A1 PCT/CN2018/092497 CN2018092497W WO2019119761A1 WO 2019119761 A1 WO2019119761 A1 WO 2019119761A1 CN 2018092497 W CN2018092497 W CN 2018092497W WO 2019119761 A1 WO2019119761 A1 WO 2019119761A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving voltage
fan
voltage
switching
starting
Prior art date
Application number
PCT/CN2018/092497
Other languages
English (en)
French (fr)
Inventor
刘洁
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711366725.2A external-priority patent/CN108105119B/zh
Priority claimed from CN201711364755.XA external-priority patent/CN107893774B/zh
Priority claimed from CN201711368266.1A external-priority patent/CN108087315B/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2019119761A1 publication Critical patent/WO2019119761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B6/00Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B6/02Internal feedback arrangements for obtaining particular characteristics, e.g. proportional, integral, differential electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the present disclosure relates to the field of electronic technologies, and in particular, to a method for starting a cooling fan.
  • Laser projection equipment has large projection size, wide color gamut, high brightness and other display characteristics, and strong interactivity, which makes laser projection equipment have wide adaptability in different environments such as home entertainment, business, education, community service, etc. Bring a new viewing experience.
  • the laser projection device light source uses a laser, and its photoelectric conversion efficiency is 20% to 25%, while the general laser projection device power is 300 to 600W. Therefore, the light source generated by the laser projection device has a large heat energy, and a powerful heat dissipation system is required for the whole machine. For heat dissipation, the current mainstream heat dissipation method is air cooling.
  • one or more fans are arranged in the air inlet and the air outlet of the electronic device to form a duct, so that the cold air enters the air duct from the air inlet to take away the heat generated during the operation of the electronic device, and is excluded from the air outlet.
  • the fan is the core component of the air-cooling heat dissipation system. If the fan fails, for example, the motor stops, the laser reaches a relatively high temperature in a short time, and the laser life is reduced, which affects the performance of the whole product, and the laser is damaged. Replace the optical engine.
  • the color wheel such as a fluorescent wheel, whose surface receives a high-energy laser beam for fluorescence conversion, also causes a higher temperature rise, and if the temperature Too high will affect the conversion efficiency of the fluorescence, affect the output brightness of the light source, and even cause the surface of the fluorescent conversion material to burn, causing irreversible damage.
  • the Digital Micromirror Device is the core device in the Digital Light Processing (DLP) projection architecture. The chip is very small, about a few inches at zero, but receives high energy. The laser spot is illuminated, and thousands of tiny mirrors on the surface of the chip are flipped according to the frequency of the light source.
  • the beam is modulated according to the image signal and the beam is reflected, and a large amount of heat is generated during the irradiation and frequent flipping. Therefore, the DMD chip also needs timely heat dissipation. It can be seen that for laser projection equipment, heat dissipation is the basis for ensuring the normal operation of the equipment.
  • the present disclosure provides a cooling fan starting method that can improve the reliability of fan operation.
  • some embodiments of the present disclosure provide a cooling fan starting method, the method comprising:
  • the driving voltage of the fan is switched to a second driving voltage in response to the rotation speed of the fan being zero, wherein the second driving voltage is greater than the first driving voltage.
  • a laser projection apparatus comprising:
  • a non-volatile memory for storing instructions
  • processor coupled to the non-volatile memory, the processor configured to execute instructions stored in the non-volatile memory, and the processor configured to:
  • the driving voltage of the fan is switched to a second driving voltage in response to the rotation speed of the fan being zero, wherein the second driving voltage is greater than the first driving voltage.
  • 1A is a cross-sectional view showing an internal portion of a DC fan provided by the related art
  • FIG. 1B is a schematic structural diagram of a laser projection apparatus provided by the related art
  • FIG. 2 is a flowchart of a method for starting a cooling fan according to some embodiments of the present disclosure
  • FIG. 3 is a flowchart of a method for starting a cooling fan according to another embodiment of the present disclosure
  • FIG. 4 is a flowchart of a cooling fan restarting method for the embodiment shown in FIG. 3 according to some embodiments of the present disclosure
  • FIG. 5 is a flowchart of another cooling fan restarting method for the embodiment shown in FIG. 3 according to another embodiment of the present disclosure
  • FIG. 6 is a flowchart of another cooling fan restarting method for the embodiment shown in FIG. 3 according to another embodiment of the present disclosure
  • FIG. 7 is a flowchart of another cooling fan restarting method for the embodiment shown in FIG. 3 according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of another cooling fan restarting method for the embodiment shown in FIG. 3 according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart of still another cooling fan restarting method for the embodiment shown in FIG. 3 according to still another embodiment of the present disclosure.
  • FIG. 1A a main structure of a DC fan generally used in a heat dissipation system is as shown in FIG. 1A, wherein a rotating shaft 11, a permanent magnet 14, and a blade (not shown) connected to the rotating shaft constitute a rotor 10, and a mounting base 01, the coil 12 fixed on the outer casing 13 outside the shaft 11, and the magnetic floating piece 15 constitute a stator.
  • the coil generates a varying magnetic field, and a suction or repulsive force is generated with the permanent magnet 14, so that the rotor 10 can start to rotate against the inertia of the rotor 10, that is, the blade starts to rotate.
  • the magnetic floating piece 15 is fixed to the mount 01.
  • the magnetic floating piece has magnetic properties, and can generate a repulsive force outward in the center direction of the rotating shaft to push the rotor 10 outward, so that the rotor 10 is suspended relative to the bottom end of the mounting base 01, so that the rotor 10 There is a gap between the mounting seat 01 and the mounting seat 01, which helps to reduce the resistance of the rotor or the blade.
  • the fan can also adopt other known structures.
  • FIG. 1A A DC fan of the related art is shown in FIG. 1A.
  • the speed of the fan is usually proportional to the driving voltage.
  • the fan provides a starting voltage when starting the fan.
  • the fan is adjusted according to the heat dissipation requirement. Drive the voltage so that the required speed is reached. If the fan fails to start normally, usually after the software program detects the abnormal startup result, it will report the error, stop the fan, and even shut down the electronic device for disassemble.
  • FIG. 1B shows a schematic structural view of a laser projection apparatus including a light source 101, a light machine 102, a lens 103, and a projection screen 104.
  • the key optical components in the light source 101 include a laser and a color wheel.
  • the current laser light source is a monochromatic laser light source or a two-color laser light source, that is, a laser that emits one or two colors, and a fluorescent light generated by wavelength conversion.
  • the color wheel assembly comprises a fluorescent wheel, or a fluorescent wheel and a color filter wheel.
  • the fluorescent wheel generates fluorescence corresponding to the wavelength conversion material by laser excitation, and forms a RGB three primary color with the laser light emitted by the laser. Since the fluorescence wavelength conversion requires a high-energy laser spot to illuminate the surface of the fluorescent wheel, the continuous irradiation of the high-energy beam causes a large amount of heat or even burn-through of the fluorescent wheel locally. Therefore, the fluorescent wheel is periodically rotated, so that the laser high-energy beam A circular trajectory is formed on the fluorescent wheel, and the rotating fluorescent wheel facilitates the dissipation of heat.
  • the color filter wheel is disposed in the exiting light path of the fluorescent wheel.
  • the main purpose is to filter the excited fluorescence to improve the color purity. Therefore, the color filter wheel and the fluorescent wheel rotate synchronously.
  • the laser can be a three-color laser, and the color wheel assembly can be eliminated in the portion of the light source 101.
  • the optical machine 102 includes a core component of the DLP projection, the DMD chip is composed of thousands of tiny mirrors, and the receiving light source provides three primary colors of light according to the timing, and receives an image signal to pass the imaging element according to the received image signal.
  • the three primary colors of light are modulated, and the modulated three primary colors of light carrying the image content information are reflected by the micro mirror into the lens 103.
  • the size of the DMD is very small, requiring both the output of the light source to maintain a time-series output while maintaining the uniformity of the brightness of the beam, preventing inconsistencies in the brightness of the screen image, and the attenuation of the brightness of the beam emerging from the source over time.
  • the brightness of the beam received in the DMD light path also changes.
  • the lens 103 is usually an ultra-short-focus lens in a home laser projection apparatus.
  • the three primary colors reflected by the DMD are multiplied and projected onto the projection screen 104, and the light is entered into the human through the reflection of the screen. Eyes, allowing the viewer to see the projected image.
  • the light source, the light machine and the lens part constitute the optical engine of the laser projection device.
  • the laser projection device In addition to the laser, color wheel, DMD chip is a relatively important working component, requiring timely heat dissipation, and the electronics in the lens and laser projection device (such as the drive circuit, not shown) can not withstand higher temperatures. Therefore, usually a plurality of cooling fans are arranged inside the laser projection device, and at the same time, the heat sink is used to guide the heat out, or the laser projection device also has two heat dissipation systems, namely, air cooling heat dissipation and liquid cooling heat dissipation, and the laser projection device. Cool down.
  • some embodiments of the present disclosure provide a cooling fan starting method, including:
  • Step S00 driving the target fan with the first driving voltage
  • the fan has a minimum operating voltage during normal operation, that is, an operating voltage that maintains a minimum rotational speed, such as 5V, a maximum rated operating voltage, that is, an operating voltage that maintains the highest rotational speed, such as 12V, and a starting voltage, which may be a minimum operating voltage. It can also be slightly above the minimum operating voltage, for example 6V, for the fan to spin.
  • the first driving voltage is usually set to the starting voltage of the fan, so that the fan coil obtains a current, and the static friction between the magnet and the magnet is used to overcome the static friction of the rotor, so that the rotor drives the blade to rotate.
  • Step S20 receiving a feedback signal of the target fan.
  • the fan component feeds back the fan operation to the device control chip
  • the feedback signal may be, for example, a fan speed signal, reflecting how many revolutions the current fan is running, or the feedback signal may also reflect the fan speed. Whether the duration of zero exceeds the preset time threshold, or the feedback signal may also be a rotation flag signal of the fan, reflecting whether the current fan is in a rotating state or a non-rotating state.
  • the fan can actively provide timing feedback to the device control chip, and the device control chip can also actively query the fan.
  • the fan provides a feedback signal according to the inquiry command, or the control chip actively detects the fan speed.
  • Step S40 determining, according to the feedback signal, whether the target fan is started normally
  • the fan speed signal can be a specific speed value, for example, 240 rpm or 120 rpm. If it is zero, it means that the fan does not rotate, then it is determined that the fan starts abnormally, if not zero. If the fan has a speed, it is determined that the fan is starting normally.
  • the speed signal of the fan may be the speed signal measured by the Hall sensor of the fan assembly and fed back to the device control chip.
  • the rotation speed of the fan when the rotation speed of the fan is zero, it may be further determined whether the duration of the fan rotation speed is zero or not, and if the fan rotation speed is zero for a duration exceeding a preset time threshold, it is determined that the fan startup is abnormal. If the fan's speed is zero for a period of time that does not exceed the preset time threshold, it is determined that the fan starts normally.
  • the actual speed of the fan feedback may be compared with the speed of the current fan driving voltage. If there is a significant difference, for example, the fan driving voltage theoretical design corresponds to a speed range of 500 to 600 rpm, but the actual speed of the fan feedback is 200 rpm, which means that the fan rotation is blocked.
  • the target fan rotation flag signal may be determined, for example, whether the fan rotation flag signal is true, and the fan will feedback a flag bit value after starting the operation. If not, the fan is not rotated, and the fan startup abnormality is determined. If it is true, it indicates that the fan has turned, then it is judged that the fan is starting normally, or a high and low level signal, for example, a high level represents a successful start and a low level represents a start failure.
  • the fan rotation flag signal may be a sensor of the fan assembly or a pulse signal fed back by the control circuit, and fed back to the device control terminal.
  • the feedback signal of the target fan is actively detected periodically, and if the feedback signal of the target fan is not detected for N times, the startup abnormality is determined, and otherwise, the startup is normal.
  • the feedback signal of the target fan may be a rotation flag signal of the fan or a rotation speed signal of the fan, or the feedback signal of the fan may also reflect whether the time when the fan speed is zero exceeds a preset time threshold.
  • the fan feedback signal may be, for example, a speed signal of the fan or a rotation flag signal of the fan, or the feedback signal of the fan may also reflect whether the time that the fan speed is zero exceeds a preset time threshold.
  • whether the fan is normally started may include whether the fan is running according to the rotation speed corresponding to the driving voltage, whether the fan is normally rotated during the startup process, and whether the fan maintains a normal communication handshake with the device control chip.
  • the foregoing is only an example.
  • the technical solutions of the present disclosure are not limited thereto. Any parameters and signals related to the working process of the fan may be considered according to actual needs, and are used as a judgment condition for measuring whether the fan is normally started.
  • the process of restarting the target fan includes, for example, performing step S60: switching a driving voltage of the fan to a second driving voltage, wherein the second driving voltage is greater than the first driving voltage. After step S60 is performed, the process returns to step S20: receiving a feedback signal of the target fan.
  • the restarting target fan process is entered.
  • the startup process is terminated, and then the processing is not performed, or the corresponding driving voltage is applied to the fan according to the heat dissipation requirement of the device system, thereby adjusting the rotation speed of the fan to the required rotation speed value to perform heat dissipation. , or enter the process of determining whether the fan is operating normally;
  • the process of determining whether the fan is running normally includes receiving a feedback signal of the target fan, and determining whether the target fan is operating normally according to the feedback signal.
  • determining whether the target fan is running normally there are many methods for determining whether the target fan is running normally. For example, reference may be made to the manner of determining whether the fan is started normally in step S40, and details are not described herein again.
  • whether the fan is in normal operation may include whether the fan rotates normally, does not stop, and whether the fan is running according to the speed corresponding to the driving voltage, and may also include whether the fan maintains a normal communication handshake with the device control chip.
  • the foregoing situation is only an example, and the technical solutions of the present disclosure are not limited thereto. Any parameters and signals related to the working process of the fan may be considered according to actual needs, and are used as a judgment condition for measuring whether the fan is normally operated.
  • the fan speed is adjusted to the required speed value by working with the corresponding driving voltage to achieve the heat dissipation effect
  • the driving voltage of the fan is switched to a driving voltage higher than the current driving voltage, and then the feedback signal of the target fan is received, and according to the feedback signal, it is determined whether the target fan is operating normally.
  • FIG. 3 the method includes:
  • Step S10 driving the target fan by using the first driving voltage
  • Step S30 detecting the rotation speed of the target fan
  • Step S50 determining whether the rotation speed of the target fan is zero
  • the process of restarting the target fan includes, for example, performing step S70: switching the driving voltage of the target fan to the second driving voltage.
  • the startup process is terminated, and then no processing is performed, or the corresponding driving voltage is applied to the fan according to the heat dissipation requirement of the equipment system, thereby adjusting the rotation speed of the fan to the required rotation speed value. Work, achieve heat dissipation, or enter a process to determine if the fan is operating normally.
  • step S70: switching the driving voltage of the target fan to the second driving voltage may include:
  • Step S01 switching the target fan driving voltage to the third driving voltage
  • Step S02 switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, wherein the first driving voltage is greater than the third driving voltage;
  • the current driving voltage of the target fan that determines the rotation speed is first reduced to the third driving voltage, and then the target fan is driven from the third driving voltage to the second driving voltage.
  • the starting voltage is lowered to the third driving voltage, and the third driving voltage may be significantly lower than the starting voltage.
  • the driving voltage is raised to the second driving voltage, and the target driving fan is driven by using the second driving voltage, wherein the second driving voltage is significantly higher than the third driving voltage and greater than the current driving voltage of the target fan.
  • the process returns to step S30, and then step S50 is executed to determine whether the startup is successful when the fan is driven by the second driving voltage.
  • the second driving voltage may be a range of values, for example, less than or equal to the maximum rated operating voltage, greater than or equal to 80%* maximum rated operating voltage, or less than or equal to the maximum rated operating voltage, greater than or equal to
  • the first drive voltage is the sum of 50%* (maximum rated operating voltage - minimum operating voltage).
  • the second driving voltage may be less than or equal to 1.2 times the maximum rated operating voltage, greater than the maximum rated operating voltage, and the third driving voltage may be zero, since the driving voltage of the fan may temporarily exceed the rated voltage. And the damage of the fan is not caused.
  • the second driving voltage is greater than the rated voltage, so that when the fan tries to start again, the fan rotor obtains a large voltage difference change, which can be converted into a large starting force, thereby improving the fan.
  • the second driving voltage is less than or equal to 1.2 times the maximum rated operating voltage of the fan and greater than the maximum rated operating voltage
  • the heat dissipation is performed after the driving voltage of the fan is switched to the second driving voltage and the fan is turned off.
  • the fan starting method further includes switching the driving voltage of the fan to be less than or equal to a maximum rated operating voltage of the fan. For example, the driving voltage of the fan is switched from the second driving voltage to the maximum rated operating voltage of the fan within a preset time after the driving voltage of the fan is switched to the second driving voltage.
  • the third driving voltage takes a small value other than zero, for example, a few volts, and the second driving voltage takes a larger voltage value, and a very large driving voltage difference can be obtained, which provides a larger target rotor.
  • the rotation force is conducive to the successful start of the fan.
  • the third driving voltage may take a value range greater than or equal to zero and less than or equal to the minimum operating voltage.
  • the minimum operating voltage is the driving voltage that maintains the fan at the rated minimum speed.
  • the second drive voltage can be set, for example, to the maximum rated operating voltage of the target fan
  • the third drive voltage can be, for example, zero volts.
  • the fan driving control can output a signal corresponding to zero volts, or the system can be powered off, and the effect of the target fan having no driving voltage can be achieved.
  • the target fan with the highest driving voltage (within the driving voltage range carried by the fan) when restarting, and the fan rotor obtains a maximum instantaneous magnetic field change, which interacts with the permanent magnet to produce the highest
  • the rotation force makes the probability of the rotor successfully turning up, which makes it easier to complete the normal start.
  • the third driving voltage may also take a value greater than zero but a small value, such as a few tenths of a volt, to achieve a large turning force of the fan rotor. , Conducive to the success of the rotation.
  • switching from the third driving voltage to the second driving voltage to drive the target fan may, for example, include switching from the third driving voltage to the second driving voltage and maintaining for a first predetermined time period Output.
  • the first preset time period does not limit its length of time, and may be, for example, a time period of seconds or microsecond units.
  • step S50 is performed to determine whether the fan speed is zero again. If the fan speed is not zero, the current start is ended. The process, then do not process, or according to the cooling requirements of the equipment system, the fan speed is adjusted to the required speed value through the corresponding driving voltage, to achieve the heat dissipation effect, or enter the process of determining whether the fan is running normally. . If the rotation speed of the fan is zero, step S01 and step S02 are sequentially executed again, then return to step S30, and step S50 is performed to determine whether the fan is normally started again.
  • switching the target fan driving voltage to the third driving voltage for example, by: switching the target fan driving voltage to the third driving voltage, and maintaining the output for a second preset time period, wherein the second preset time period is less than or Equal to the first preset time period.
  • the second predetermined time period may be zero. That is, after switching from the current driving voltage of the target fan to the third driving voltage, the second driving voltage is switched to the second driving voltage, which may be regarded as the second preset time period length being zero.
  • the second preset time period may be set to have a certain length of time, but the length of time is much smaller than the first preset time period.
  • the fan starting method provided above detects the rotational speed of the target fan during the startup of the cooling fan, and determines whether the rotational speed of the target fan is zero. If it is determined that the rotational speed of the fan is zero, the target fan is restarted, and the target fan is restarted. First, the driving voltage of the target fan is first lowered, and then raised and driven again, which can provide a large voltage difference change to the target fan. According to the electromagnetic driving principle, the internal rotor of the target fan can obtain a higher driving force for the rotation. It is easier to overcome the inertia of the rotor, and it is easy to make the target fan rotate successfully and operate normally.
  • the abnormal fan is self-recovery and starts to improve the probability of successful fan restart.
  • the continuity of the fan operation also improves the reliability of the fan operation.
  • the technical solution of the present disclosure provides a self-recovery mechanism of the fan, which enables the abnormal fan to be automatically restarted, can continue to run after the restart is successful, performs heat dissipation, improves the reliability of the fan control, and does not affect the normal operation of other components of the device. , reducing equipment maintenance costs.
  • step S034 determining to switch to the second driving voltage. If the number of times of the loop is greater than the threshold of the first preset number of times, if the threshold is greater than the first preset number of times, the target fan is stopped and the alarm is stopped; if the threshold is not greater than the first preset number of times, the process returns to step S30, where the first preset is returned.
  • the number of times threshold is an integer greater than or equal to one.
  • the first predetermined number of thresholds can be set to 1 or 2, or 3, or 5, adjustable according to software design requirements. Therefore, after a limited number of attempts to restart, if it is still unsuccessful, the operation of restarting the fan is stopped, and the fan is considered to be malfunctioning, and an early warning is made.
  • the second driving voltage and the third driving voltage may be a range of values, and the second driving voltage may gradually increase with a change of the threshold of the first preset number of times, but is always smaller than the maximum rated operating voltage,
  • the three driving voltages can be gradually decreased with the change of the threshold of the first preset number of times, so that as the number of restart failures increases, the driving voltage can be gradually adjusted and the voltage difference applied by the target fan can be increased, and the next time The probability of success.
  • the third driving voltage and the second driving voltage may be set to the same set value each time.
  • step S034 can be performed at the latest before going to step S30: detecting the rotation speed of the target fan.
  • step S034 may be performed after step S01: switching the driving voltage of the target fan to the third driving voltage, step S02: before switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, Or in step S02: after the driving voltage of the target fan is switched from the third driving voltage to the second driving voltage, step S30: before detecting the rotation speed of the target fan, or, in step S01: switching the driving voltage of the target fan to the first The three driving voltages or step S02: switching the driving voltage of the target fan from the third driving voltage to the second driving voltage or step S30: detecting the rotation speed of the target fan.
  • the warning may include: performing a fan failure report, that is, thinking that the fan is faulty, and shutting down the key working components, for example, first turning off the laser, and then turning off the color wheel and the DMD chip. Or perform a fan failure report and turn off the laser projection device or control the laser projection device to enter standby mode.
  • step S035 is further included:
  • step S30 If it is not greater than the first preset temperature threshold, the process returns to step S30.
  • the fan is used to dissipate heat for the laser projection device or a specific working component in the device. If the fan is not working properly, the temperature inside the device may rise rapidly. Usually, one or more temperature control points are set inside the device for detecting the device. Ambient temperature, especially for critical work components within the equipment, is usually set with temperature control points, such as laser light source components in laser projection equipment, and color wheel components. If the temperature is too high, irreversible damage may occur, so The setting of the handle is very necessary.
  • the system stops the attempt to restart the target fan, and the warning may include: performing fan fault reporting, that is, the fan is faulty, and shutting down the key working components, or performing fan fault reporting, cutting off the working power of the device, or controlling the device to enter standby mode.
  • step S035 may be performed at the latest before proceeding to step S30: detecting the rotational speed of the target fan.
  • step S035 may be performed after step S01: switching the driving voltage of the target fan to the third driving voltage, step S02: before switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, Or in step S02: after the driving voltage of the target fan is switched from the third driving voltage to the second driving voltage, step S30: before detecting the rotation speed of the target fan, or, in step S01: switching the driving voltage of the target fan to the first The three driving voltages or step S02: switching the driving voltage of the target fan from the third driving voltage to the second driving voltage or step S30: detecting the rotation speed of the target fan.
  • the temperature change of the temperature control point is used as a judgment condition for performing fan restart, so that the self-recovery restart process of the fan is in the right
  • the equipment does not cause serious heat accumulation, and is closer to the application requirements of the actual product, and the temperature change at the temperature control point here may be the temperature of the key working component or the ambient temperature around the location of the target fan.
  • the determination as to whether the number of cycles exceeds the preset number of thresholds and the determination of whether the temperature of the temperature control point is greater than a preset temperature threshold may be performed, but the two determination conditions have priority, that is, the judgment In order of sequence, for example, the laser projection device will pay more attention to the temperature rise factor. Therefore, it can be judged whether the temperature of the temperature control point is greater than the preset temperature threshold. If the temperature is not greater than, the number of cycles is more than the preset number. Threshold judgment.
  • step S036 is further included:
  • step S30 If the number of cycles is not greater than the second preset number threshold and the temperature control point temperature is not greater than the second preset temperature threshold, then return to step S30; wherein the second preset number of thresholds is an integer greater than or equal to 1.
  • the number of cycles of switching to the second driving voltage and the temperature of the temperature control point are monitored. If the number of cycles and the temperature of the temperature control point are two, either one reaches the set condition or two simultaneously
  • the condition is set, that is, the number of cycles is greater than the second preset number threshold, or the temperature control point temperature is greater than the second preset temperature threshold or both, the target fan is stopped and the warning is stopped.
  • the process returns to step S30 only if neither of the two determinations reaches the set condition.
  • step S036 may be performed at the latest before proceeding to step S30: detecting the rotational speed of the target fan.
  • step S036 may be performed after step S01: switching the driving voltage of the target fan to the third driving voltage, step S02: before switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, Or in step S02: after the driving voltage of the target fan is switched from the third driving voltage to the second driving voltage, step S30: before detecting the rotation speed of the target fan, or, with S01: switching the driving voltage of the target fan to the third Driving voltage or step S02: switching the driving voltage of the target fan from the third driving voltage to the second driving voltage or step S30: detecting the rotation speed of the target fan.
  • One or more technical solutions provided in some embodiments of the present disclosure can detect the rotation speed of the target fan during the startup of the cooling fan. If it is determined that the rotation speed of the target fan is zero, the target fan is restarted and can be affected. Under the premise of normal operation of other components of the laser projection device, the self-recovery startup process of the abnormal fan improves the continuity of the fan operation and improves the reliability of the fan operation.
  • the technical solution of the present disclosure provides a self-recovery mechanism of the fan, which enables the abnormal fan to automatically restart. After the restart is successful, the fan can continue to operate, perform heat dissipation, and does not affect the normal operation of other components of the device, thereby reducing the maintenance cost of the device.
  • the driving voltage of the target fan is first lowered and then raised to provide a large voltage difference for the fan rotor, and a relatively large driving force for the rotation is provided, which can improve the fan. The probability of success in turning.
  • the process of restarting the target fan after abnormality determination is performed in a limited number of attempts and without causing serious heat accumulation in the device.
  • the operation has reduced the adverse effects on the equipment, and is more practical and meets the actual operational requirements of the product.
  • FIGS. 3-7 when determining that the fan is abnormal, the method switches the driving voltage of the target fan to the second driving voltage. At the same time, the driving voltage of at least one surrounding fan disposed around the target fan is also switched, for example, the driving voltage of the at least one surrounding fan may be increased to have an increased wind pressure driving force in the direction of the target fan speed.
  • the improvement may be an improvement based on the flow method shown in FIG. 4, which is as shown in FIG. 8, for example:
  • Step S71 Switching the target fan driving voltage to the third driving voltage
  • the third drive voltage may be significantly lower than the first drive voltage.
  • Step S72 Switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, and simultaneously increasing the driving voltage of the at least one surrounding fan to the fourth driving voltage, wherein the first driving voltage is greater than the third driving voltage
  • the fourth driving voltage is greater than the driving voltage of the at least one surrounding fan before switching.
  • step S72 the driving voltage of the target fan is switched from the third driving voltage to the second driving voltage, and at the same time, after the driving voltage of the at least one surrounding fan is raised to the fourth driving voltage, the process returns to step S30, and then step S50 is performed. : Determine if the speed of the target fan is zero.
  • the startup process is terminated, and then no processing is performed, or according to the heat dissipation requirement of the equipment system, the fan speed is adjusted to the required speed value through the corresponding driving voltage, and the operation is realized. Heat dissipation, or enter the process of determining whether the fan is operating normally;
  • step S71 and step S72 are sequentially executed again, and then the process returns to step S30, and step S50 is executed to determine whether the fan is normally started again.
  • the driving voltage of the target fan is first lowered, and then raised and driven again.
  • This change of driving voltage can provide a large voltage difference change to the target fan.
  • the internal rotor of the target fan can obtain a higher driving force for the rotation, and at the same time, raising the driving voltage of at least one surrounding fan disposed around the target fan can drive the rapid flow of the airflow around the target fan, thereby generating the target fan.
  • An auxiliary driving force combined with its own driving force, is easier to overcome the inertia of the rotor and improve the probability of successful fan operation.
  • the difference between the second driving voltage and the third driving voltage is larger, the turning force for giving the fan to operate again is changed more.
  • the higher the fourth driving voltage the greater the driving force of the auxiliary airflow provided to the target fan, so the fan The probability of a successful restart is higher.
  • the second driving voltage and the fourth driving voltage may be the target rated maximum operating voltage, or a range of values close to the maximum rated operating voltage, such as less than or equal to the maximum rated operating voltage, greater than or equal to 80%*max.
  • the rated working voltage is less than or equal to the maximum rated working voltage, greater than or equal to the sum of the first driving voltage and 50%* (maximum rated working voltage - minimum working voltage), or less than or equal to 1.2 times the maximum rated working voltage of the fan. Greater than the maximum rated voltage.
  • the cooling fan starting method further comprises switching the driving voltage of the fan from the second driving voltage to the maximum rated operating voltage of the fan and/or the driving of the at least one surrounding fan.
  • the voltage is switched to the maximum rated operating voltage of the fan. For example, after the driving voltage of the fan is switched to the second driving voltage, the driving voltage of the fan is switched from the second driving voltage to the maximum rated working voltage of the fan, and the driving voltage of the at least one surrounding fan is increased.
  • the driving voltage of at least one surrounding fan is switched from the fourth driving voltage to the maximum rated operating voltage of the fan within a preset time after the fourth driving voltage.
  • the surrounding fan refers to other fans located in the vicinity of the fan.
  • the air inlet and the air outlet are arranged to form a air duct.
  • the cold air enters from the air inlet, and after being carried, the heat is turned into hot air and discharged from the air outlet, and the general direction of the fan is also Set along the flow direction of the airflow.
  • raising the driving voltage of at least one surrounding fan disposed around the target fan may drive a rapid flow of the airflow, thereby generating a larger assist to the target fan.
  • the driving force combined with its own driving force, can greatly improve the probability of successful starting of the target fan, which is conducive to the normal start of the fan.
  • the fan that is closest to the target fan and has a high wind direction you can select the fan that is closest to the target fan and has a high wind direction.
  • the number is not limited here, and can be determined according to actual needs.
  • the second driving voltage may be a range of values, for example, less than or equal to the maximum rated operating voltage, greater than or equal to 80%* maximum rated operating voltage, or less than or equal to the maximum rated operating voltage, greater than or It is equal to the sum of the first driving voltage and 50%* (maximum rated working voltage - minimum working voltage), and the fourth driving voltage may also be a value range, for example, less than or equal to the maximum rated working voltage, greater than or equal to the work before the switching.
  • the voltage in this way, the driving voltage obtained when the fan tries to start again is higher, and the fan rotor obtains a large voltage difference change, which can be converted into a larger starting force, thereby increasing the probability of the fan successfully starting.
  • At least one surrounding fan disposed around the target fan can provide a certain wind pressure driving force.
  • switching the driving voltage of the target fan from the third driving voltage to the second driving voltage to drive the target fan may, for example, include switching the driving voltage of the target fan from the third driving voltage to the second driving voltage, and The output is maintained for the first predetermined time period.
  • the first predetermined time period does not limit its length of time, such as a time period of seconds or microsecond units.
  • switching the target fan driving voltage to the third driving voltage includes, for example, switching the driving voltage when the target fan determines that the startup is abnormal to the third driving voltage, and maintaining the output for the second predetermined time period.
  • the second preset time period is less than or equal to the first preset time period.
  • the second predetermined time period can be zero.
  • the second preset time period can be set to have a certain length of time, but the length of time is significantly smaller than the first preset time period.
  • Raising a driving voltage of the at least one surrounding fan disposed around the target fan to a fourth driving voltage for example, increasing a driving voltage of the at least one surrounding fan to a fourth driving voltage
  • Maintaining an output wherein the third preset time period is less than or equal to the first preset time period, for example, the third preset time period is earlier than or ends simultaneously with the first preset time period, or the third preset time period is later than Or start at the same time as the first preset time period.
  • the action time of the at least one surrounding fan may be the same as the duration of the second driving voltage, that is, the third preset time period starts with the first preset time period and ends together. It may also be a duration in which the action time is shorter than the second driving voltage. For example, the third preset time period starts simultaneously with the first preset time period, but the advance ends earlier than the first preset time period.
  • the method of the above embodiment provides an auxiliary driving force by increasing the driving voltage of the target fan itself, and on the other hand, by increasing the driving voltage by the surrounding fan disposed around the fan, and the probability that the target fan can restart and rotate. Improve, help the fan to enter normal operation as soon as possible, and play a role in heat dissipation.
  • step S01 while the driving voltage of the target fan is switched to the third driving voltage in step S01, it is further included to be disposed around the target fan.
  • the driving voltage of at least one of the surrounding fans is reduced to a fifth driving voltage.
  • Switching the target fan driving voltage to the third driving voltage includes, for example, switching the target fan driving voltage to the third driving voltage, and maintaining the output for a second predetermined time period, and reducing the driving voltage of the at least one surrounding fan
  • the fifth driving voltage includes, for example, reducing a driving voltage of the at least one surrounding fan to a fifth driving voltage, and maintaining the output for a fourth preset time period, wherein the fourth preset time period is earlier than or with the second preset The time period ends at the same time.
  • the third driving voltage is zero
  • the fifth driving voltage is a minimum operating voltage of the fan
  • the second driving voltage and the fourth driving voltage are both maximum rated operating voltages.
  • the driving voltage of the target fan is first minimized, that is, zero volts, and then raised to the maximum rated working voltage, so that the target fan obtains a maximum voltage difference.
  • the driving force of the fan rotor is the largest, which is advantageous for overcoming the inertia of the fan rotor and the rotation is successful.
  • the fan driving control can output a signal corresponding to zero volts, and the system can be powered off, and the effect of the target fan having no driving voltage can be achieved.
  • the second driving voltage is the maximum rated working voltage
  • the second preset time period is zero, or is non-zero but significantly smaller than the first preset time period, so that the target fan can be shorter
  • the restart is completed with the greatest self-driving force.
  • the driving voltage of at least one surrounding fan is first reduced to a minimum operating voltage, the minimum minimum rotational speed of the fan is ensured to be in a rotating state, and then raised to the maximum rated operating voltage of the at least one surrounding fan, and the maximum rated operation is performed.
  • the voltage can drive the flow rate around the target fan at the fastest flow rate, and because the voltage difference between the maximum rated working voltage and the minimum working voltage is large, it can bring about a significant change in the air flow rate, thereby generating a maximum auxiliary push for the target fan.
  • the force, in conjunction with the driving force of the target fan itself, is easier to overcome the inertia of the rotor and greatly increase the probability of successful cranking of the fan.
  • multiple fans are installed in one device, and the fan models are the same, so the parameters such as minimum operating voltage, maximum rated operating voltage and starting voltage are the same.
  • the fourth predetermined time period may be shorter than the third predetermined time period, that is, the duration of the low voltage driving of the at least one surrounding fan is shorter, and the driving time by the high voltage is longer. Therefore, the heat dissipation effect of the fan is less affected.
  • the second preset time period and the fourth preset time period may take a shorter duration, which are significantly shorter than the first preset time period and the third preset time period, respectively.
  • the process of performing the first driving voltage to the third driving voltage and then switching to the second driving voltage is performed instantaneously, and the second predetermined time period may be considered to be substantially zero.
  • the switching is instantaneously completed, and then the fourth preset time period may also be considered. Basically zero.
  • a second preset time period may be appropriately taken, and the fourth preset time period is a period of time. This also ensures that the fan is driven at a relatively high voltage for a relatively long period of time, and the total length of time can be compressed so that the fan completes the restart process faster.
  • the foregoing technical solution provided by the other embodiments of the present disclosure in the process of starting the cooling fan, determining that the rotation speed of the fan is zero, restarting the target fan, and performing self-recovery startup processing on the abnormal fan, thereby improving The continuity of the fan operation also improves the reliability of the fan operation.
  • the technical solution of the present disclosure provides a self-recovery mechanism of the fan, so that the abnormal fan can be automatically restarted by switching to a higher driving voltage. After the restart is successful, the normal running state can be resumed, the operation continues, the heat is dissipated, and the heat is not affected. The normal operation of other parts of the equipment reduces equipment maintenance costs.
  • the wind pressure assisting driving force generated after the driving voltage is increased.
  • the probability of restarting the target fan can be greatly improved, and the fan can quickly enter the normal running state to exert the heat dissipation effect, and the influence on the surrounding fan is small, thereby ensuring the continuity of the working of the device.
  • the above implementation process is completed inside the laser projection device, and does not require maintenance personnel and users to participate, providing an intelligent device self-recovery mechanism, which has high product application value and can improve product competitiveness.
  • the method further includes: determining whether the number of cycles of switching to the second driving voltage is greater than a first preset number of thresholds, if greater than the first preset If the threshold is exceeded, the target fan is stopped and the alarm is stopped. If the threshold is less than the first preset number of times, the process returns to step S30, where the first preset number of thresholds is an integer greater than or equal to 1.
  • the first predetermined number of thresholds can be set to 1 or 2, or 3, or 5, adjustable according to software design requirements. Therefore, after a limited number of attempts to restart, if it is still unsuccessful, the operation of restarting the fan is stopped, and the fan is considered to be faulty, and an early warning is made.
  • the method further includes:
  • step S30 If it is not greater than the first preset temperature threshold, the process returns to step S30.
  • the method further includes: determining whether the number of cycles of switching to the second driving voltage is greater than a second preset number of thresholds or detecting a temperature control point temperature Whether it is greater than the second preset temperature threshold,
  • step S30 If the number of cycles is not greater than the second preset number threshold and the temperature control point temperature is not greater than the second preset temperature threshold, then return to step S30; wherein the second preset number of thresholds is an integer greater than or equal to 1.
  • these techniques can be implemented with modules (eg, programs, functions, etc.) that implement the functions described herein.
  • the software code can be stored in a memory unit and executed by the processor.
  • the memory unit can be implemented within the processor or external to the processor.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种散热风扇启动方法,包括:利用第一驱动电压驱动风扇(S10),并检测风扇的转速(S30);响应于风扇的转速为零,将风扇的驱动电压切换至第二驱动电压(S70),其中,第二驱动电压大于第一驱动电压。其能够提高设备风扇运行的可靠性。

Description

一种散热风扇启动方法
本申请要求于2017年12月18日提交中国专利局、申请号为201711366725.2、发明名称为“一种目标风扇启动方法”的中国专利申请、于2017年12月18日提交中国专利局、申请号为201711368266.1、发明名称为“一种激光投影设备风扇运行方法”的中国专利申请和于2017年12月18日提交中国专利局、申请号为201711364755.X、发明名称为“一种激光投影设备风扇运行方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子技术领域,具体涉及一种散热风扇启动方法。
背景技术
激光投影设备具有投影尺寸大,画面色域广,亮度高等显示特性,并且交互性强,这使得激光投影设备在家庭娱乐、商务、教育、社区服务等不同环境中具有广泛的适应性,为消费者带来崭新的观看体验。
激光投影设备光源采用激光器,其光电转换效率在20%~25%,而一般激光投影设备功率在300~600W,因此,激光投影设备的光源产生的热能较大,需要强大的散热系统对整机进行散热,目前主流的散热方式还是风冷散热。
风冷散热系统中,通过在电子设备中进风口以及出风口设置一个或多个风扇,形成风道,这样冷空气从进风口进入风道带走电子设备运行中产生的热量,从出风口排除,保证电子设备的工作环境温度,防止高温环境对器件的损坏或者导致设备工作性能的劣化。风扇是风冷散热系统的核心器件,如果风扇发生故障,例如停转,则激光器短时间内就达到比较高的温度,轻则减少激光器使用寿命,影响产品整机性能,重则激光器损坏,需要更换光学引擎。以及,在激光投影设备中,除了激光器光源作为主动的发热源之外,色轮,例如荧光轮,其表面接收高能的激光光束照射进行荧光转换,也会导致较高的温升,而如果温度过高,则会影响荧光的转换效率,影响光源输出亮度,甚至会造成表面的荧光转换材料灼伤,造成不可逆的损伤。再例如,数字微镜器件(Digital Micromirror Device,DMD),是数字光处理(Digital Light Processing,DLP)投影架构中的核心器件,该芯片尺寸非常小,在零点几个英寸左右,但是要接收高能的激光光斑照射,并且芯片表面成千上万的微小反射镜根据光源频率进行翻转,根据图像信号对光束进行调制并将光束反射出去,在接受照射和频繁的翻转过程中也会产生大量的热,因此,DMD芯片也需要及时的散热。可见,对于激光投影设备来说,散热是保障设备正常运转的基础。
本部分披露的信息仅为和本公开相关的技术信息,并不能构成本公开的现有技术。
发明内容
本公开提供了一种散热风扇启动方法,能够提高风扇运行的可靠性。
为实现上述技术目的,本公开的一些实施例提供了一种散热风扇启动方法,该方法包括:
利用第一驱动电压驱动风扇,并检测所述风扇的转速;
响应于所述风扇的转速为零,将所述风扇的驱动电压切换至第二驱动电压,其中,所述第二驱动电压大于所述第一驱动电压。
本公开的另一些实施例提供了一种激光投影设备,该激光投影设备包括:
风扇;
非易失性存储器,用于存储指令;
处理器,与所述非易失性存储器耦合,所述处理器被配置为执行存储在所述非易失性存储器中的指令,且所述处理器被配置为:
利用第一驱动电压驱动所述风扇,并检测所述风扇的转速;
响应于所述风扇的转速为零,将所述风扇的驱动电压切换至第二驱动电压,其中,所述第二驱动电压大于所述第一驱动电压。
附图说明
图1A为相关技术提供的一种直流风扇的内部局部结构截面图;
图1B为相关技术提供的一种激光投影设备的结构示意图;
图2为本公开的一些实施例提供的一种散热风扇启动方法的流程图;
图3为本公开的另一些实施例提供的一种散热风扇启动方法的流程图;
图4为本公开的一些实施例提供的用于图3所示的实施例的一种散热风扇重新启动方法流程图;
图5为本公开的另一些实施例提供的用于图3所示的实施例的另一种散热风扇重新启动方法流程图;
图6为本公开的另一些实施例提供的用于图3所示的实施例的另一种散热风扇重新启动方法流程图;
图7为本公开的另一些实施例提供的用于图3所示的实施例的另一种散热风扇重新启动方法流程图;
图8为本公开的另一些实施例提供的用于图3所示的实施例的另一种散热风扇重新启动方法流程图;
图9为本公开的又一些实施例提供的用于图3所示的实施例的又一种散热风扇重新启动方法流程图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
相关技术中,通常散热系统采用的一种直流风扇的主要结构如图1A所示,其中,转轴11,永磁铁14,以及与转轴连接的扇叶(未示出)组成了转子10,安装座01,转轴11外面的外壳13上固定的线圈12,以及磁浮片15组成定子。在直流风扇的启动过程中,通过对线圈通电,使线圈产生变化的磁场,与永磁铁14产生相吸力或相斥力,从而转子10可以克服转子10的惯性而开始转动,即扇叶开始转动。磁浮片15,固定于安装座01上,磁浮片具有磁性,能够产生沿转轴中心方向向外的斥力以向外推动转子10,使得转子10相对于安装座01底端处于悬浮状态,从而转子10与安装座01之间保持有间距,利于减少转子或者扇叶的起转阻力。当然,风扇还可以采用已知的其他结构。
相关技术的直流风扇,如图1A所示,在实际应用中,风扇的转速通常与其驱动电压成正比,通常风扇在进行启动时会提供一个启动电压,当风扇正常转动后,再根据散热需求调整驱动电压,使达到所需的转速。而如果风扇不能正常启动,通常软件程序检测到异常启动结果后,会进行报错处理,停止启动风扇,甚至关闭电子设备,进行拆机查看。
图1B示出了一种激光投影设备的结构示意图,包括光源101、光机102、镜头103以及投影屏幕104。
其中,光源101中关键的光学部件包括激光器和色轮,目前的激光光源为单色激光光源或双色激光光源,即由发出一种或两种颜色的激光器,以及波长转换产生的荧光组成光源,色轮组件包括荧光轮,或者荧光轮和滤色轮,荧光轮通过受激光激发产生与波长转换材料对应颜色的荧光,并与激光器发出的激光组成RGB三基色。由于荧光波长转换需要高能的激光光斑照射到荧光轮的表面,而高能光束的持续照射会使得荧光轮局部产生大量的热,甚至烧穿,因此,荧光轮是周期性旋转的,这样激光高能光束在荧光轮上形成一个圆周轨迹,并且旋转的荧光轮有利于热量的散发。
滤色轮设置在荧光轮的出射光路中,主要目的是为了对受激产生的荧光进行过滤,提高色彩纯度,因此,滤色轮和荧光轮是同步旋转的。
或者,激光器可以为三色激光器,光源101部分中可以不必再设置色轮组件。
光机102中包括DLP投影的核心元件,DMD芯片,由成千上万的微小的反射镜组成,接收光源按照时序提供的三基色光,接收图像信号以根据接收的图像信号通过成像元件对该三基色光进行调制,将调制后的携带有图像内容信息的三基色光通过微小反射镜的反射进入镜头103中。
DMD的尺寸非常小,既要求光源出射的光束保持时序性的输出,同时又要保持光束亮度的均匀性,防止屏幕图像的亮度不一致性,以及随着从光源出射的光束的亮度随时间的衰减性,DMD光路中接收到的光束亮度也会发生变化。
镜头103,在家用的激光投影设备中通常为超短焦镜头,作为成像组件,将DMD反射的三基色光进行倍数放大后投射到投影屏幕104上显示,并通过屏幕的反射作用使得光线进入人眼,使观看者看到投影图像。
其中,光源,光机和镜头部分组成激光投影设备的光学引擎。
如前所述,除了激光器,色轮,DMD芯片是比较关键的工作组件,需要及时散热,镜头以及激光投影设备中的电子器件(例如驱动电路,未示出)也不能承受较高的温 度,因此通常激光投影设备内部设置多个散热风扇,同时还辅助以散热器,将热量导出,或者,激光投影设备内部还会同时设置风冷散热和液冷散热两种散热系统,同时对激光投影设备进行散热。
如图2所示,本公开的一些实施例提供了一种散热风扇启动方法,该方法包括:
步骤S00:利用第一驱动电压驱动目标风扇;
风扇在正常运转时具有最小工作电压,即维持最低转速的工作电压,例如5V,最大额定工作电压,即维持最高转速的工作电压,例如12V,以及启动电压,该启动电压可以是最小工作电压,也可以稍高于最小工作电压,例如6V,用于使得风扇起转。第一驱动电压通常设置为风扇的启动电压,这样使得风扇线圈获得电流,与磁铁之间利用磁力的作用克服转子的静摩擦力,从而转子带动扇叶转动。
步骤S20:接收目标风扇的反馈信号;
在一些实施例中,风扇组件会将风扇运行情况反馈给设备控制芯片,反馈信号例如可以是风扇的转速信号,反映当前风扇以多少转的转速在运行,或者反馈信号也可以反映风扇的转速为零所持续的时间是否超过预设时间阈值,或者反馈信号也可以是风扇的转动标志信号,反映当前风扇是处于转动状态还是非转动状态。
风扇可以主动定时向设备控制芯片提供运行情况的反馈信号,设备控制芯片也可以主动询问风扇,风扇根据询问指令提供反馈信号,亦或,控制芯片主动检测风扇的转速。
步骤S40:根据所述反馈信号,判断目标风扇是否启动正常;
在一些实施例中,判断目标风扇是否启动正常有较多种方法,例如:
可以判断目标风扇转速信号是否为零,风扇转速信号可以是具体的转速值,例如每秒240转或120转,若为零,则说明风扇未发生转动,则判断风扇启动异常,若不为零,说明风扇具有转速,则判断风扇启动正常。风扇的转速信号可以是风扇组件的霍尔传感器测得的转速信号,反馈给设备控制芯片。
或者,当风扇的转速为零时,可以进一步判断风扇的转速为零所持续的时间是否超过预设时间阈值,若风扇的转速为零所持续的时间超过预设时间阈值,则判断风扇启动异常,若风扇的转速为零所持续的时间未超过预设时间阈值,则判断风扇启动正常。
或者,可以根据风扇反馈的实际转速与当前风扇的驱动电压对应的转速比对,如果存在明显区别,例如,风扇驱动电压理论设计对应的转速范围为500~600转,但是风扇反馈的实际转速为200转,这说明风扇转动受阻。
或者,可以判断目标风扇转动标志信号,例如可以是风扇转动标志信号是否为真,风扇在开始运行后会反馈一个标志位取值,若不为真,说明风扇未转动,则判断风扇启动异常,若为真,说明风扇已转动,则判断风扇启动正常,或者一个高低电平信号,例如高电平代表起转成功,低电平代表起转失败。风扇转动标志信号可以是风扇组件的传感器或者控制电路反馈的脉冲信号,反馈给设备控制端。
或者,定时主动检测目标风扇的反馈信号,若连续N次检测不到目标风扇的反馈信号,则判断启动异常,反之,判断启动正常。其中,目标风扇的反馈信号可以是风扇的转动标志信号或者风扇的转速信号,或者风扇的反馈信号也可以反映风扇的转速 为零所持续的时间是否超过预设时间阈值。
或者,在时间阈值内,例如预设一段时间范围,等待接收目标风扇反馈信号,若在时间阈值内未接收到风扇的反馈信号,则判断启动异常,反之,判断启动正常。其中,风扇反馈信号例如可以是风扇的转速信号或者风扇的转动标志信号,或者风扇的反馈信号也可以反映风扇的转速为零所持续的时间是否超过预设时间阈值。
因此,风扇是否正常启动,既可以包括风扇是否按照驱动电压对应的转速在运转,也可以包括风扇在开机过程中是否正常起转,还可以包括风扇是否与设备控制芯片保持正常的通信握手。上述情况仅为举例,本公开的技术方案并不限定于此,凡是与风扇的工作过程相关的参数、信号都可以根据实际需求考虑,作为衡量风扇是否正常启动的判断条件。
若判断启动异常,则进入重新启动目标风扇的进程。在一些实施例中,重新启动目标风扇的进程例如包括:执行步骤S60:将风扇的驱动电压切换至第二驱动电压,其中,第二驱动电压大于第一驱动电压。在执行完步骤S60后,返回执行步骤S20:接收目标风扇的反馈信号。
在本公开的一些实施例中,当设备控制端根据风扇的反馈信号判断风扇启动异常之后,则进入重新启动目标风扇进程。
若判断启动正常,则结束启动进程,然后不做处理,或者根据设备系统散热需求,对风扇通以对应的驱动电压,从而将风扇的转速调整至所需的转速数值上进行工作,实现散热作用,或者进入判断风扇是否运行正常的进程;
判断风扇是否运行正常的进程包括接收目标风扇的反馈信号,根据该反馈信号,判断目标风扇是否运行正常。在一些实施例中,判断目标风扇是否运行正常有较多种方法,例如可以参考步骤S40中判断风扇是否启动正常的方式,在此不再赘述。
因此,风扇是否正常运行,既可以包括风扇是否正常转动,未发生停转,也包括风扇是否按照驱动电压对应的转速在运转,还可以包括风扇是否与设备控制芯片保持正常的通信握手。上述情况仅为举例,本公开技术方案并不限定于此,凡是与风扇的工作过程相关的参数、信号都可以根据实际需求考虑,作为衡量风扇是否正常运行的判断条件。
若判断运行正常,则不做处理,或者根据设备系统散热需求,将风扇转速通过通以对应的驱动电压,调整至所需的转速数值上进行工作,实现散热作用;
若判断启动异常,则将风扇的驱动电压切换至比当前驱动电压更高的驱动电压,然后接收目标风扇的反馈信号,并根据该反馈信号,判断目标风扇是否运行正常。
本公开的另一些实施例提供了一种散热风扇启动方法,如图3所示,该方法包括:
步骤S10:利用第一驱动电压驱动目标风扇;
步骤S30:检测目标风扇的转速;
步骤S50:判断目标风扇的转速是否为零;
若判断目标风扇的转速为零,则进入重新启动目标风扇的进程。在一些实施例中,重新启动目标风扇的进程例如包括:执行步骤S70:将目标风扇的驱动电压切换至第二驱动电压。
若判断目标风扇的转速不为零,则结束启动进程,然后不做处理,或者根据设备 系统散热需求,对风扇通以对应的驱动电压,从而将风扇的转速调整至所需的转速数值上进行工作,实现散热作用,或者进入判断风扇是否运行正常的进程。
在一些实施例中,如图4所示,步骤S70:将目标风扇的驱动电压切换至第二驱动电压可以包括:
步骤S01:将目标风扇驱动电压切换至第三驱动电压;
步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压,其中,第一驱动电压大于第三驱动电压;
首先,将判断转速为零的目标风扇的当前驱动电压先降至第三驱动电压,然后,再从第三驱动电压升高至第二驱动电压对目标风扇进行驱动。一种情况是,如果判断风扇的转速为零,并且风扇当前的驱动电压为启动电压,则将启动电压降低至第三驱动电压,第三驱动电压可以明显低于启动电压。然后,再将驱动电压升高至第二驱动电压,使用第二驱动电压对目标风扇进行驱动,其中,第二驱动电压明显高于第三驱动电压,也大于目标风扇当前驱动电压。接下来,返回步骤S30,然后执行步骤S50,判断以第二驱动电压对风扇进行驱动时,是否启动成功。
在一些实施例中,第二驱动电压可以为一个取值范围,例如,小于或等于最大额定工作电压,大于或等于80%*最大额定工作电压,或者小于或等于最大额定工作电压,大于或等于第一驱动电压与50%*(最大额定工作电压-最小工作电压)之和。在一些实施例中,第二驱动电压可以小于或等于最大额定工作电压的1.2倍,大于最大额定工作电压,而第三驱动电压可以取值为零,由于风扇的驱动电压可以短暂的超出额定电压且不造成风扇的损坏,这样,可以是第二驱动电压大于额定电压,使得风扇在再次尝试启动时,风扇转子获得较大的电压差变化,可以转化为较大的起转力,从而提高风扇成功起转的概率。在第二驱动电压小于或等于风扇的最大额定工作电压的1.2倍,大于最大额定工作电压的实施例中,在将风扇的驱动电压切换至第二驱动电压并完成风扇的起转后,该散热风扇启动方法进一步包括将风扇的驱动电压切换至小于或等于风扇的最大额定工作电压。例如,在将风扇的驱动电压切换至第二驱动电压后一个预设时间内,将风扇的驱动电压由第二驱动电压切换至风扇的最大额定工作电压。
或者,第三驱动电压取非零的较小的值,例如零点几伏,第二驱动电压取较大的一个电压数值,也可以获得非常大的驱动电压差,给目标风扇转子提供较大的起转力,利于风扇成功起转。或者,第三驱动电压可以取大于或等于零,小于或等于最小工作电压的数值范围。最小工作电压是指维持风扇能够以额定最低转速运转的驱动电压。
在一些实施例中,第二驱动电压可以例如设置为目标风扇的最大额定工作电压,而第三驱动电压可以例如为零伏。在实现第三驱动电压为零时,风扇驱动控制可以输出对应零伏电压的信号,也可以将系统断电,均可实现目标风扇无驱动电压的效果。这样,就可以在再次启动时,提供给目标风扇一个最高的驱动电压(在风扇所承载的驱动电压范围内),风扇转子获得了一个最大的瞬时磁场变化,与永磁铁相互作用,产生一个最高的起转力,使得转子成功转起来的概率大大提高,从而更加容易完成正常启动。
以及,当第二驱动电压设置为最大额定工作电压时,第三驱动电压也可以取大于零但较小的数值,例如零点几伏,也可以达到使得风扇转子获得较大的起转力的目的, 利于起转成功。
在本公开的一些实施例中,从第三驱动电压切换至第二驱动电压驱动目标风扇,可以例如包括,从第三驱动电压切换至第二驱动电压,并在第一预设时间周期内保持输出。在本公开的一些实施例中,第一预设时间周期并不限定其时间长短,例如可以是秒级或者微秒级单位的时间段。通过将第二驱动电压保持输出一段时间,能够使得驱动电压稳定输出,在一段持续时间内持续进行电磁能量到动能的转换,也有助于克服摩擦力,起转成功。
这样,给目标风扇提供一个新的较高的驱动电压后,返回步骤S30,并执行步骤S50,进行再一次风扇的转速是否为零的判断,若风扇的转速不为零,则结束本次启动进程,接下来不做处理,或者根据设备系统散热需求,将风扇转速通过通以对应的驱动电压,调整至所需的转速数值上进行工作,实现散热作用,或者进入判断风扇是否运行正常的进程。若风扇的转速为零,则再次顺序执行步骤S01和步骤S02,然后返回步骤S30,并执行步骤S50,进行再一次风扇是否启动正常的判断。
以及,将目标风扇驱动电压切换至第三驱动电压例如包括:将目标风扇驱动电压切换至第三驱动电压,并在第二预设时间周期内保持输出,其中,第二预设时间周期小于或等于第一预设时间周期。
在本公开的一些实施例中,第二预设时间周期可以为零。也就是,从目标风扇当前驱动电压切换至第三驱动电压后,瞬间再切换至第二驱动电压,这种情况可视为第二预设时间周期长度为零。
在实际操作中,考虑到信号切换所用的时间,减小频繁切换对电路的冲击,可设置第二预设时间周期具有一定的时间长度,但是这个时间长度远远小于第一预设时间周期。
上述提供的风扇启动方法,在散热风扇启动过程中,检测目标风扇的转速,判断目标风扇的转速是否为零,若判断风扇的转速为零,则重新启动目标风扇,在进行目标风扇重启的过程中,先将目标风扇的驱动电压降低,然后升高进行再次驱动,能够给目标风扇提供一个较大的电压差变化,根据电磁驱动原理,目标风扇内部磁性转子可以获得较高的起转驱动力,更易克服转子的惯性,容易使目标风扇起转成功,并正常运行,在不影响激光投影设备其他组件正常工作的前提下,对异常风扇进行自恢复启动处理,提高了风扇重启成功的概率和风扇运行的连续性,也提高了风扇运行的可靠性。本公开的技术方案提供了一种风扇的自恢复机制,使异常风扇能够自动重启,重启成功后能够继续运行,进行散热,提高了风扇控制的可靠性,并且还不影响设备其他部件的正常工作,降低了设备维护成本。
基于图4所示的散热风扇重新启动方法的实施例,在另一些实施例中,如图5所示,在步骤S02之后,返回步骤S30之前,还包括步骤S034:判断切换至第二驱动电压的循环次数是否大于第一预设次数阈值,若大于第一预设次数阈值,则停止重启目标风扇,并预警;若不大于第一预设次数阈值,则返回步骤S30,其中第一预设次数阈值为大于或等于1的整数。
在一些实施例中,第一预设次数阈值可以设定为1或2,或3,或5,根据软件设计需求可调整。从而,经过有限次的尝试重启后,如果仍不成功,则停止重启风扇的 动作,认为风扇故障,进行预警。
在一些实施例时,第二驱动电压,第三驱动电压可为一个取值范围,第二驱动电压可以随着第一预设次数阈值的变化逐渐增大,但始终小于最大额定工作电压,第三驱动电压可以随着第一预设次数阈值的变化逐渐减小,这样随着重启失败次数的增多,可以逐渐调整增大驱动电压,以及增大目标风扇所施加的电压差,提高下一次起转成功的概率。或者,也可以将第三驱动电压、第二驱动电压设定为每次都是相同的设定数值。
需要说明的是,步骤S034可以最迟在转至步骤S30:检测目标风扇的转速之前执行。如图5所示,步骤S034可以在步骤S01:将目标风扇的驱动电压切换至第三驱动电压之后,步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之前进行,或者在步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之后,步骤S30:检测目标风扇的转速之前进行,或者,与步骤S01:将目标风扇的驱动电压切换至第三驱动电压或者步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压或者步骤S30:检测目标风扇的转速同步进行。
以及,预警例如可以包括:进行风扇故障上报,即认为风扇故障,并关断关键工作组件,例如,首先关闭激光器,再关闭色轮和DMD芯片。或者进行风扇故障上报,并关闭激光投影设备或者控制激光投影设备进入待机模式。
本公开的一些实施例中通过对目标风扇重启次数的限定,可以避免陷入无限次的重启过程中,实现有效的运行控制,及时发现故障问题。
以及,与上述设定循环次数不同的是,在另一些实施例中,如图6所示,在步骤S02之后,返回步骤S30之前,还包括步骤S035:
检测温控点温度是否大于第一预设温度阈值,
若大于第一预设温度阈值,则停止重启目标风扇,并预警;
若不大于第一预设温度阈值,则返回步骤S30。
风扇用于为激光投影设备或设备内的具体工作组件散热,如果风扇不能正常运转,则易导致设备内温度迅速上升,通常设备内部会设置一处或多处温控点,用于检测设备内环境温度,尤其是对设备内的关键工作组件也通常会设置温控点,例如激光投影设备内的激光器光源部件,以及色轮部件,如果温度过高,可能会造成不可逆转的损坏,因此温控点的设置是非常必要的。
在本公开的一些实施例方法中,检测一个或多个温控点的温度是否大于第一预设温度阈值,如果大于第一预设温度阈值,说明设备内温升过快,需要优先考虑温度因素,此时停止尝试重启目标风扇,并预警,预警可以包括:进行风扇故障上报,即认为风扇故障,并关断关键工作组件,或者进行风扇故障上报,切断设备工作电源或控制设备进入待机模式。
在一些产品应用中,例如对于激光投影设备,如果设备内温升较高,说明由于风扇不能正常运转已经导致了热量的大量积累,如果再继续重启风扇,则有可能产生不良后果,例如引起部件的损坏,色轮表面的荧光粉被灼伤,或者光学镜片表面变形,甚至产生光学器件被高能激光击穿,因此,此时需要作出风扇故障的判定,需要迅速采取预警措施,例如关闭激光器,进行风扇故障上报,或者切断激光投影设备电源或 控制激光投影设备进入待机状态,进行风扇故障上报。
与图5所示的实施例相类似,在本公开的一些实施例方法中,步骤S035可以最迟在转至步骤S30:检测目标风扇的转速之前执行。如图6所示,步骤S035可以在步骤S01:将目标风扇的驱动电压切换至第三驱动电压之后,步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之前进行,或者在步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之后,步骤S30:检测目标风扇的转速之前进行,或者,与步骤S01:将目标风扇的驱动电压切换至第三驱动电压或者步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压或者步骤S30:检测目标风扇的转速同步进行。
在本公开的一些实施例方法中,通过对风扇所在工作环境中温控点温度的考虑,将温控点的温度变化作为进行风扇重新启动的判断条件,使得风扇的自恢复重启过程是在对设备未造成严重积热情况进行的,更加贴近实际产品的应用需求,以及,此处温控点的温度变化可以是关键工作组件的温度,也可以是目标风扇所在位置周围的环境温度。
或者,在另一些实施例中,对于循环次数是否超过预设次数阈值的判断和对温控点温度是否大于预设温度阈值的判断可以都进行,但是两个判断条件具有优先级,即判断的先后顺序,例如,激光投影设备会相对更关注温升因素,因此,可以先进行温控点温度是否大于预设温度阈值的判断,在不大于的情况下,再进行循环次数是否超过预设次数阈值的判断。
或者,在另一些实施例中,在步骤S02之后,返回步骤S30之前,如图7所示,还包括步骤S036:
判断切换至第二驱动电压的循环次数是否大于第二预设次数阈值或检测温控点温度是否大于第二预设温度阈值,
若循环次数大于第二预设次数阈值或温控点温度大于第二预设温度阈值,则停止重启目标风扇,并预警;
若循环次数不大于第二预设次数阈值并且温控点温度也不大于第二预设温度阈值,则返回步骤S30;其中,第二预设次数阈值为大于或等于1的整数。
在本实施中,对切换至第二驱动电压的循环次数和温控点的温度均进行监控,如果循环次数和温控点温度两个判断条件中,任何一个达到设定条件或者两个同时达到设定条件时,即循环次数大于第二预设次数阈值,或者温控点温度大于第二预设温度阈值或者两者兼具,则停止重启目标风扇,并预警。只有当这两个判断均未达到设定条件时才返回步骤S30。
与图5和6所示的实施例相类似,在本公开的一些实施例方法中,步骤S036可以最迟在转至步骤S30:检测目标风扇的转速之前执行。如图7所示,步骤S036可以在步骤S01:将目标风扇的驱动电压切换至第三驱动电压之后,步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之前进行,或者在步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压之后,步骤S30:检测目标风扇的转速之前进行,或者,与S01:将目标风扇的驱动电压切换至第三驱动电压或者步骤S02:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压或者步骤S30:检测目标 风扇的转速同步进行。
通过对上述两种限定条件的判断,综合考虑了温度因素和启动时间长度的因素,使得风扇的重启过程是在有限次的尝试和对设备未造成严重积热情况下进行的,更加具有实际操作性,可以提高设备工作的可靠性。
本公开的一些实施例中提供的一个或多个技术方案,能够在散热风扇启动过程中,检测目标风扇的转速,若判断目标风扇的转速为零,则对目标风扇重新启动,能够在不影响激光投影设备其他组件正常工作的前提下,对异常风扇进行自恢复启动处理,提高了风扇运行的连续性,也提高了风扇运行的可靠性。本公开的技术方案提供了一种风扇的自恢复机制,使异常风扇能够自动重启,重启成功后能够继续运行,进行散热,并且还不影响设备其他部件的正常工作,降低了设备维护成本。
并且,在对风扇重启动的过程中,先对目标风扇的驱动电压进行降低,再升高,为风扇转子提供一个较大的电压差,提供一个相对较大的起转驱动力,能够提高风扇起转成功的概率。
以及,通过在对风扇的重启过程中设定循环次数,或者温控点的监控,使得对异常判断后目标风扇重启的过程,是在有限次的尝试和未在设备内造成严重积热情况下进行的,减轻了对设备的不良影响,更加具有实际操作性,符合产品的实际操作需求。
本公开的另一些实施例提供了一种散热风扇启动方法,与图3-7的实施例不同的是,当判断风扇启动异常后,该方法在将目标风扇的驱动电压切换至第二驱动电压的同时,还对设置在目标风扇周围的至少一个周围风扇的驱动电压进行切换,例如可以是提高该至少一个周围风扇的驱动电压,使得沿目标风扇转速方向具有增大的风压推动力。
该改进方案可以是在图4所示的流程方法基础上的改进,该启动方法例如如图8所示:
步骤S71:将目标风扇驱动电压切换至第三驱动电压;
在本公开的一些实施例时,第三驱动电压取值可以明显低于第一驱动电压。
步骤S72:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压,同时,将至少一个周围风扇的驱动电压升高至第四驱动电压,其中,第一驱动电压大于第三驱动电压,第四驱动电压大于至少一个周围风扇切换前的驱动电压。
执行完步骤S72:将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压,同时,将至少一个周围风扇的驱动电压升高至第四驱动电压之后,返回步骤S30,然后执行步骤S50:判断目标风扇的转速是否为零。
若目标风扇的转速不为零,则结束启动进程,接下来不做处理,或者根据设备系统散热需求,将风扇转速通过通以对应的驱动电压,调整至所需的转速数值上进行工作,实现散热作用,或者进入判断风扇是否运行正常的进程;
若目标风扇的转速为零,则再次顺序执行步骤S71和步骤S72,然后返回步骤S30,并执行步骤S50,进行再一次风扇是否启动正常的判断。
在对目标风扇进行重启的过程中,先将目标风扇的驱动电压降低,然后升高进行再次驱动,这种驱动电压的改变能够给目标风扇提供一个较大的电压差变化,根据电磁驱动原理,目标风扇内部磁性转子可以获得较高的起转驱动力,与此同时,升高设 置在目标风扇周围的至少一个周围风扇的驱动电压,可以带动目标风扇周围气流的快速流动,从而对目标风扇产生一个辅助的推动力,再配合其自身的驱动力,较容易克服转子的惯性,提高风扇运行成功的概率。当第二驱动电压与第三驱动电压的差值越大,给予风扇再次运行的起转力改变则越大,第四驱动电压越高,给予目标风扇提供的辅助气流推动力越大,因此风扇重启成功的概率就越高。
在一些实施例中,第二驱动电压、第四驱动电压可以为目标风扇最大额定工作电压,或者靠近最大额定工作电压的数值范围,例如小于或等于最大额定工作电压,大于或等于80%*最大额定工作电压,小于或等于最大额定工作电压,大于或等于第一驱动电压与50%*(最大额定工作电压-最小工作电压)之和,或者小于或等于风扇的最大额定工作电压的1.2倍,大于最大额定电压。在第二驱动电压、第四驱动电压小于或等于所述风扇的最大额定工作电压的1.2倍,大于最大额定电压的实施例中,在将风扇的驱动电压切换至第二驱动电压和/或将至少一个周围风扇的驱动电压升高至第四驱动电压之后,该散热风扇启动方法进一步包括将风扇的驱动电压由第二驱动电压切换至风扇的最大额定工作电压和/或至少一个周围风扇的驱动电压切换至风扇的最大额定工作电压。例如,在将风扇的驱动电压切换至第二驱动电压后一个预设时间内,将风扇的驱动电压由第二驱动电压切换到风扇的最大额定工作电压,在将至少一个周围风扇的驱动电压升高至第四驱动电压后一个预设时间内,将至少一个周围风扇的驱动电压由第四驱动电压切换至风扇的最大额定工作电压。其中,周围风扇,是指位于风扇临近位置的其他风扇。
在实际电子设备散热系统中,通常设置不只一个风扇,并设置进风口和出风口,形成风道,冷风从进风口进入,携带热量后变成热风并从出风口排出,风扇的大致方向也会沿着风道气流流动方向设置。当目标风扇第一次未正常启动时,除了对风扇进行增加驱动电压外,还可以利用设置在其周围的周围风扇产生的风压,作为辅助推动力,帮助目标风扇成功起转。为了增加目标风扇周围的风压,在一些实施例中,将设置在目标风扇周围的至少一个周围风扇的驱动电压进行升高,可以带动气流的快速流动,从而对目标风扇产生一个较大的辅助的推动力,配合其自身的驱动力,可以大大提高目标风扇成功起转的概率,利于风扇的正常启动。
对于目标风扇周围的风扇的选择,可以选择距离目标风扇最近的,风向一致度较高的风扇,数目在此并不做具体限定,可以根据实际需求而定。
在另一些实施例中,第二驱动电压可以为一个取值范围,例如,小于或等于最大额定工作电压,大于或等于80%*最大额定工作电压,或者小于或等于最大额定工作电压,大于或等于第一驱动电压与50%*(最大额定工作电压-最小工作电压)之和,第四驱动电压也可以为一个取值范围,例如小于或等于最大额定工作电压,大于或等于切换前的工作电压,这样,风扇再次尝试启动时获得的驱动电压较高,风扇转子获得较大的电压差变化,可以转化为较大的起转力,从而提高风扇成功起转的概率。设置在目标风扇周围的至少一个周围风扇可以提供一定的风压推动力。
在一些实施例时,将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压驱动目标风扇,可以例如包括,将目标风扇的驱动电压由第三驱动电压切换至第二驱动电压,并在第一预设时间周期内保持输出。在本公开的一些实施例中,第一预设时间 周期并不限定其时间长短,例如可以是秒级或者微秒级单位的时间段。通过将第二驱动电压保持输出一段时间,能够使得驱动电压稳定输出,在一段持续时间内持续进行电磁能量到动能的转换,也有助于克服转子惯性,起转成功。
以及,将目标风扇驱动电压切换至第三驱动电压,例如包括:将目标风扇判断启动异常时的驱动电压切换至第三驱动电压,并在第二预设时间周期内保持输出。
其中,第二预设时间周期小于或等于第一预设时间周期。
在一些实施例中,第二预设时间周期可以为零。在实际操作中,考虑到信号切换所用的时间,减小频繁切换对电路的冲击,第二预设时间周期可设置具有一定的时间长度,但是这个时间长度明显小于第一预设时间周期。
将设置在目标风扇周围的至少一个周围风扇的驱动电压升高至第四驱动电压,例如包括,将至少一个周围风扇的驱动电压升高至第四驱动电压,并在第三预设时间周期内保持输出,其中,第三预设时间周期小于或等于第一预设时间周期,例如第三预设时间周期早于或者与第一预设时间周期同时结束,或者第三预设时间周期晚于或者与第一预设时间周期同时开始。
由于至少一个周围风扇利用转速增加带来的气流流动形成风压,对目标风扇起到的是辅助推动的作用。因此,该至少一个周围风扇的作用时间可以与第二驱动电压的持续时间相同,即第三预设时间周期和第一预设时间周期一起开始,一起结束。也可以是其作用时间短于第二驱动电压的持续时间,例如第三预设时间周期与第一预设时间周期同时开始,但提前早于第一预设时间周期结束。
上述实施例方法,一方面,通过提高目标风扇自身驱动电压,另一方面借助设置在其周围的周围风扇提高驱动电压后产生的风压,提供一个辅助推动力,能够目标风扇重启起转的概率提高,利于风扇尽快进入正常运转状态,发挥散热作用。
以及,在另一些实施例中,在图8的基础上,如图9所示,在步骤S01中将目标风扇的驱动电压切换至第三驱动电压的同时,还包括将设置在目标风扇周围的至少一个周围风扇的驱动电压降至第五驱动电压。
将目标风扇驱动电压切换至第三驱动电压例如包括:将目标风扇驱动电压切换至第三驱动电压,并在第二预设时间周期内保持输出,以及,将至少一个周围风扇的驱动电压降至第五驱动电压例如包括:将至少一个周围风扇的驱动电压降至第五驱动电压,并在第四预设时间周期内保持输出,其中,第四预设时间周期早于或者与第二预设时间周期同时结束。
在一些实施例中,第三驱动电压为零,第五驱动电压为风扇最小工作电压,第二驱动电压、第四驱动电压均为最大额定工作电压。
当判断出目标风扇启动异常后,对风扇进行重新启动时,先将目标风扇的驱动电压降至最低,即零伏,然后再升高至最大额定工作电压,使得目标风扇获得一个最大的电压差,这样,对于磁性驱动的风扇来说,风扇转子获得的驱动力是最大的,利于克服风扇转子的惯性,起转成功。
同时,在实现第三驱动电压为零时,风扇驱动控制可以输出对应零伏电压的信号,也可以将系统断电,均可实现目标风扇无驱动电压的效果。
当第三驱动电压为零,第二驱动电压为最大额定工作电压,且第二预设时间周期 为零,或者非零但明显小于第一预设时间周期时,使得目标风扇能够在较短的时间内,以最大的自身驱动力完成重启。同时,将至少一个周围风扇的驱动电压先降低到最小工作电压,保证风扇基本的最低转速,处于转动状态,然后再升高至到该至少一个周围风扇的最大额定工作电压,而最大的额定工作电压可以带动目标风扇周围气流的以最快的流速流动,并且由于最大额定工作电压和最小工作电压的电压差较大,可以带来明显的气流流速变化,从而对目标风扇产生一个最大辅助的推动力,再配合目标风扇自身的驱动力,较容易克服转子的惯性,大大提高风扇成功起转的概率。
通常情况下,一个设备中设置有多个风扇,风扇的型号相同,因此其最小工作电压,最大额定工作电压和启动电压等参数均一致。
在一些实施例中,第四预设时间周期可以较小于第三预设时间周期,即,该至少一个周围风扇的被低电压驱动的持续时间较短,而被高电压驱动的时间较长,因此对风扇的散热作用发挥影响较小。
在一些实施例中,第二预设时间周期和第四预设时间周期可以取较短的时长,分别明显短于第一预设时间周期和第三预设时间周期。或者,在进行由第一驱动电压到第三驱动电压,再切换至第二驱动电压的过程,是瞬时完成的,也可以认为第二预设时间周期基本为零。以及,在对目标风扇周围的至少一个风扇的驱动电压从当前工作电压降至第五驱动电压,再切换至第四驱动电压的过程,是瞬时完成切换,那么也可以认为第四预设时间周期基本为零。
通常,为了减小频繁切换对电路造成的冲击,可以适当取第二预设时间周期,第四预设时间周期为一段时长。这样也可以保证风扇被以较高电压驱动的时间相对较长,并且总的时间长度可以被压缩,使得风扇较快完成重启过程。
本公开的该另一些实施例提供的上述技术方案,一方面,在散热风扇启动过程中,判断风扇的转速为零,则对目标风扇重新启动,能够对异常风扇进行自恢复启动处理,提高了风扇运行的连续性,也提高了风扇运行的可靠性。本公开的技术方案提供了一种风扇的自恢复机制,使异常风扇能够通过切换至较高的驱动电压进行自动重启,重启成功后能够恢复正常运转状态,继续运行,进行散热,并且还不影响设备其他部件的正常工作,降低了设备维护成本。
另一方面,在对目标风扇进行重启的过程中,不仅通过提高目标风扇自身驱动电压,利用自身的驱动力,还借助设置在其周围的周围风扇在提高驱动电压后产生的风压辅助推动力,可以大大提高目标风扇重启起转的概率,能够使风扇快速进入正常运转状态,发挥散热作用,同时对周围风扇的影响程度较小,保证了设备工作的连续性。
上述实施过程均在激光投影设备内部完成,不需要维修人员和用户参与,提供了一种智能的设备自恢复机制,具有较高的产品应用价值,能够提高产品的竞争力。
在图8和9所示的实施例的基础上,本公开的另一些实施例的技术方案也同样可以参考图5-7的实施例中的一种。
在一些实施例中,在风扇重启过程中,在步骤S72之后,返回步骤S30之前,还包括:判断切换至第二驱动电压的循环次数是否大于第一预设次数阈值,若大于第一预设次数阈值,则停止重启目标风扇,并预警;若小于第一预设次数阈值,则返回步骤S30,其中第一预设次数阈值为大于或等于1的整数。
在一些实施例中,第一预设次数阈值可以设定为1或2,或3,或5,根据软件设计需求可调整。从而,经过有限次的尝试重启后,如果仍不成功,则停止重启风扇的动作,认为风扇故障,进行预警。
在另一些实施例中,在风扇重启过程中,在步骤S72之后,返回步骤S30之前,还包括:
检测温控点温度是否大于第一预设温度阈值,
若大于第一预设温度阈值,则停止重启目标风扇,并预警;
若不大于第一预设温度阈值,则返回步骤S30。
在另一些实施例中,在风扇重启过程中,在步骤S72之后,返回步骤S30之前,还包括:判断切换至第二驱动电压的循环次数是否大于第二预设次数阈值或检测温控点温度是否大于第二预设温度阈值,
若循环次数大于第二预设次数阈值或温控点温度大于第二预设温度阈值,则停止重启目标风扇,并预警;
若循环次数不大于第二预设次数阈值并且温控点温度也不大于第二预设温度阈值,则返回步骤S30;其中,第二预设次数阈值为大于或等于1的整数。
对于软件实施,这些技术可以用实现这里描述的功能的模块(例如程序、功能等等)实现。软件代码可以储存在存储器单元中,并且由处理器执行。存储器单元可以在处理器内或者在处理器外实现。
本公开是参照根据本公开的一些实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的一些实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括这些实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (21)

  1. 一种散热风扇启动方法,包括:
    利用第一驱动电压驱动风扇,并检测所述风扇的转速;
    响应于所述风扇的转速为零,将所述风扇的驱动电压切换至第二驱动电压,其中,所述第二驱动电压大于所述第一驱动电压。
  2. 根据权利要求1所述的散热风扇启动方法,其特征在于,将所述风扇的驱动电压切换至所述第二驱动电压包括:先将所述风扇的驱动电压切换至第三驱动电压,再将所述风扇的驱动电压由所述第三驱动电压切换至所述第二驱动电压,其中所述第三驱动电压小于所述第一驱动电压。
  3. 根据权利要求2所述的散热风扇启动方法,其特征在于,所述第三驱动电压为0V。
  4. 根据权利要求1所述的散热风扇启动方法,其特征在于,所述第二驱动电压小于或等于所述风扇的最大额定工作电压;
  5. 根据权利要求1所述的散热风扇启动方法,其特征在于,所述第二驱动电压小于或等于所述风扇的最大额定工作电压的1.2倍且大于所述风扇的最大额定工作电压。
  6. 根据权利要求1所述的散热风扇启动方法,其特征在于,所述第二驱动电压大于或等于所述第一驱动电压+50%*(最大额定工作电压-最小工作电压)。
  7. 根据权利要求2所述的散热风扇启动方法,其特征在于,所述先将所述风扇的驱动电压切换至第三驱动电压,再将所述风扇的驱动电压由所述第三驱动电压切换至所述第二驱动电压包括以下中的至少一个:
    先将所述风扇的驱动电压切换至第三驱动电压,再将所述风扇的驱动电压由所述第三驱动电压切换至所述第二驱动电压,并在第一预设时间周期内保持输出所述第二驱动电压;和,
    先将所述风扇的驱动电压切换至所述第三驱动电压,并在第二预设时间周期内保持输出所述第三驱动电压,再将所述风扇的驱动电压由所述第三驱动电压切换至所述第二驱动电压。
  8. 根据权利要求2所述的散热风扇启动方法,其特征在于,所述风扇的周围设置有至少一个周围风扇;
    在将所述风扇的驱动电压由所述第三驱动电压切换至第二驱动电压的同时,还包括将所述至少一个周围风扇的驱动电压升高至第四驱动电压。
  9. 根据权利要求8所述的散热风扇启动方法,其特征在于,在将所述风扇的驱动 电压切换至所述第三驱动电压的同时,还包括将所述至少一个周围风扇的驱动电压降至第五驱动电压。
  10. 根据权利要求9所述的散热风扇启动方法,其特征在于,所述第四驱动电压和所述第五驱动电压满足以下条件中的至少一个:
    所述第五驱动电压为所述至少一个周围风扇的最小工作电压;
    所述第四驱动电压为所述至少一个周围风扇的最大额定工作电压。
  11. 根据权利要求9所述的散热风扇启动方法,其特征在于,所述将所述至少一个周围风扇的驱动电压降至第五驱动电压,和所述将所述至少一个周围风扇的驱动电压升高至第四驱动电压包括以下中的至少一个:
    先将所述至少一个周围风扇的驱动电压降至第五驱动电压,再将所述至少一个周围风扇的所述驱动电压升高至所述第四驱动电压,并在第三预设时间周期内保持输出所述第四驱动电压,其中,所述第四预设时间周期早于或者与所述第二预设时间周期同时结束;
    先将所述至少一个周围风扇的所述驱动电压降至所述第五驱动电压,并在第四预设时间周期内保持输出所述第五驱动电压,再将所述至少一个周围风扇的驱动电压升高至第四驱动电压,其中,所述第三预设时间周期晚于或者与所述第一预设时间周期同时开始。
  12. 根据权利要求11所述的散热风扇启动方法,其特征在于,所述第三预设时间周期小于或等于所述第一预设时间周期。
  13. 根据权利要求2所述的散热风扇启动方法,其特征在于,在检测所述风扇的转速之后,还包括:
    响应于切换至所述第二驱动电压的循环次数大于第一预设次数阈值,停止启动所述风扇,并预警;
    响应于切换至所述第二驱动电压的循环次数不大于第一预设次数阈值,当所述风扇的转速为零时,将所述风扇的驱动电压切换至所述第二驱动电压;其中所述第一预设次数阈值为大于或等于1的整数。
  14. 根据权利要求2所述的散热风扇启动方法,其特征在于,在检测所述风扇的转速之后,还包括:
    响应于温控点的温度大于第一预设温度阈值,停止启动所述风扇,并预警,所述温控点包括设置在包括所述风扇的激光投影设备内部用于检测所述激光投影设备内的环境温度的点,响应于温控点的温度不大于所述第一预设温度阈值,当所述风扇的转速为零时,将所述风扇的驱动电压切换至所述第二驱动电压。
  15. 根据权利要求2所述的散热风扇启动方法,其特征在于,在检测所述风扇的 转速之后,还包括:
    响应于切换至所述第二驱动电压的循环次数大于第二预设次数阈值或温控点的温度大于第二预设温度阈值,停止启动所述风扇,并预警;
    响应于所述循环次数不大于所述第二预设次数阈值并且所述温控点的温度不大于所述第二预设温度阈值,当所述风扇的转速为零时,将所述风扇的驱动电压切换至所述第二驱动电压;其中所述第二预设次数阈值为大于或等于1的整数。
  16. 根据权利要求1所述的散热风扇启动方法,其特征在于,所述响应于所述风扇的转速为零,将所述风扇的驱动电压切换至第二驱动电压包括:
    响应于所述风扇的转速为零,当所述风扇的转速为零所持续的时间超过预设时间阈值时,将所述风扇的驱动电压切换至第二驱动电压。
  17. 一种激光投影设备,包括:
    风扇;
    非易失性存储器,用于存储指令;
    处理器,与所述非易失性存储器耦合,所述处理器被配置为执行存储在所述非易失性存储器中的指令,且所述处理器被配置为:
    利用第一驱动电压驱动所述风扇,并检测所述风扇的转速;
    响应于所述风扇的转速为零,将所述风扇的驱动电压切换至第二驱动电压,其中,所述第二驱动电压大于所述第一驱动电压。
  18. 根据权利要求17所述的激光投影设备,其特征在于,将所述风扇的驱动电压切换至所述第二驱动电压包括:先将所述风扇的驱动电压切换至第三驱动电压,再将所述风扇的驱动电压由所述第三驱动电压切换至所述第二驱动电压,其中所述第三驱动电压小于所述第一驱动电压。
  19. 根据权利要求18所述的激光投影设备,其特征在于,所述第三驱动电压为0V。
  20. 根据权利要求18所述的激光投影设备,其特征在于,所述风扇的周围设置有至少一个周围风扇;
    在将所述风扇的驱动电压由所述第三驱动电压切换至第二驱动电压的同时,还包括将所述至少一个周围风扇的驱动电压升高至第四驱动电压。
  21. 根据权利要求20所述的激光投影设备,其特征在于,在将所述风扇的驱动电压切换至所述第三驱动电压的同时,还包括将所述至少一个周围风扇的驱动电压降至第五驱动电压。
PCT/CN2018/092497 2017-12-18 2018-06-22 一种散热风扇启动方法 WO2019119761A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201711368266.1 2017-12-18
CN201711366725.2A CN108105119B (zh) 2017-12-18 2017-12-18 一种目标风扇启动方法
CN201711364755.X 2017-12-18
CN201711364755.XA CN107893774B (zh) 2017-12-18 2017-12-18 一种激光投影设备风扇运行方法
CN201711366725.2 2017-12-18
CN201711368266.1A CN108087315B (zh) 2017-12-18 2017-12-18 一种激光投影设备风扇运行方法

Publications (1)

Publication Number Publication Date
WO2019119761A1 true WO2019119761A1 (zh) 2019-06-27

Family

ID=62816329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092497 WO2019119761A1 (zh) 2017-12-18 2018-06-22 一种散热风扇启动方法

Country Status (3)

Country Link
US (1) US20190191592A1 (zh)
EP (1) EP3499308B1 (zh)
WO (1) WO2019119761A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221516A1 (de) * 2013-10-23 2015-04-23 Bayerische Motoren Werke Aktiengesellschaft Luftversorgungseinrichtung für einen Fahrzeugsitz und Verfahren zum Betreiben der Luftversorgungseinrichtung
US11510338B2 (en) * 2019-02-01 2022-11-22 Arista Networks, Inc. Low temperature threshold fan gating
CN113382593B (zh) * 2020-03-09 2022-11-08 株洲中车时代电气股份有限公司 一种应用于轻轨列车的制冷装置
CN114060295A (zh) * 2020-07-31 2022-02-18 广东芬尼克兹节能设备有限公司 一种风机启动控制方法、装置、电子设备及存储介质
CN112954957A (zh) * 2021-01-26 2021-06-11 阳光电源股份有限公司 一种散热装置控制方法、控制器及散热系统
CN114415454B (zh) * 2022-01-21 2023-07-11 峰米(重庆)创新科技有限公司 投影设备散热控制方法、装置、投影设备和存储介质
CN115016621A (zh) * 2022-06-22 2022-09-06 联宝(合肥)电子科技有限公司 一种用于笔记本电脑背光键盘的温度控制方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2472264Y (zh) * 2000-11-14 2002-01-16 建准电机工业股份有限公司 利用微处理器系统定速控制的风扇马达
US20020192078A1 (en) * 1998-07-15 2002-12-19 Flexxaire Manufacturing Inc. Variable pitch fan
CN1952848A (zh) * 2005-10-21 2007-04-25 联想(北京)有限公司 一种风扇启动控制装置和方法
CN104236250A (zh) * 2014-10-14 2014-12-24 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱的控制装置
CN107893774A (zh) * 2017-12-18 2018-04-10 青岛海信激光显示股份有限公司 一种激光投影设备风扇运行方法
CN108087315A (zh) * 2017-12-18 2018-05-29 青岛海信激光显示股份有限公司 一种激光投影设备风扇运行方法
CN108105138A (zh) * 2017-12-18 2018-06-01 青岛海信激光显示股份有限公司 一种目标风扇启动方法
CN108105119A (zh) * 2017-12-18 2018-06-01 青岛海信激光显示股份有限公司 一种目标风扇启动方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228864B (en) * 2003-09-03 2005-03-01 Ampson Technology Inc A driving method and a driving circuit for a DC motor
JP2006301279A (ja) * 2005-04-20 2006-11-02 Funai Electric Co Ltd 画像形成装置
US8192177B2 (en) * 2008-04-29 2012-06-05 Yeou Chih Corporation Auxiliary cooling device
JP5355031B2 (ja) * 2008-10-23 2013-11-27 キヤノン株式会社 画像形成装置及び画像形成装置の制御方法
CN101509498B (zh) * 2009-03-18 2011-07-20 东芝兴仪控制系统(西安)有限公司 一种直接空冷风机变频调速驱动系统运行参数优化的方法
US20110005734A1 (en) * 2009-07-10 2011-01-13 Keihin Corporation Vehicular air conditioning apparatus
CN103080834B (zh) * 2010-08-16 2015-12-02 Nec显示器解决方案株式会社 图像显示设备及光源冷却方法
US8868362B2 (en) * 2012-01-06 2014-10-21 General Electric Company Electric power metering accuracy
TWI579685B (zh) * 2015-01-13 2017-04-21 技嘉科技股份有限公司 風扇系統及風扇控制方法
US10165240B2 (en) * 2016-05-20 2018-12-25 Hisense Co., Ltd. Apparatus and method for controlling laser projector to operate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192078A1 (en) * 1998-07-15 2002-12-19 Flexxaire Manufacturing Inc. Variable pitch fan
CN2472264Y (zh) * 2000-11-14 2002-01-16 建准电机工业股份有限公司 利用微处理器系统定速控制的风扇马达
CN1952848A (zh) * 2005-10-21 2007-04-25 联想(北京)有限公司 一种风扇启动控制装置和方法
CN104236250A (zh) * 2014-10-14 2014-12-24 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱的控制装置
CN107893774A (zh) * 2017-12-18 2018-04-10 青岛海信激光显示股份有限公司 一种激光投影设备风扇运行方法
CN108087315A (zh) * 2017-12-18 2018-05-29 青岛海信激光显示股份有限公司 一种激光投影设备风扇运行方法
CN108105138A (zh) * 2017-12-18 2018-06-01 青岛海信激光显示股份有限公司 一种目标风扇启动方法
CN108105119A (zh) * 2017-12-18 2018-06-01 青岛海信激光显示股份有限公司 一种目标风扇启动方法

Also Published As

Publication number Publication date
EP3499308B1 (en) 2020-07-08
EP3499308A1 (en) 2019-06-19
US20190191592A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019119761A1 (zh) 一种散热风扇启动方法
EP3246752B1 (en) Apparatus and method for controlling a laser projector
JPWO2015141044A1 (ja) 光源装置及びこの光源装置を有する画像投影装置
JP6090695B2 (ja) 投写型表示装置
CN108087315B (zh) 一种激光投影设备风扇运行方法
CN107893774B (zh) 一种激光投影设备风扇运行方法
CN111025832A (zh) 激光投影设备及其开机方法、关机方法
JP2004333698A (ja) プロジェクタ
JP2005181412A (ja) プロジェクタ
WO2022120779A1 (zh) 电机启动方法、装置、存储介质和电子设备
JP2000241883A (ja) プロジェクタ装置
US10371937B2 (en) Projection display apapratus
JP2001092015A (ja) 投射型表示装置
CN112162455A (zh) 投影仪温度控制方法、装置、设备和投影仪
US20200186770A1 (en) Projection system, protection circuit and current monitoring method of image resolution enhancement device
JPWO2018225254A1 (ja) 光源装置およびプロジェクタ、光源装置の起動方法
US9906763B2 (en) Projection type display apparatus and method of controlling the same
TW201344404A (zh) 具有過熱保護系統的電子裝置及其使用方法
JP4977924B2 (ja) 物体検出装置、物体検出方法およびプログラム
JP6287116B2 (ja) 画像表示装置、画像表示方法及びプログラム
JP2010225095A (ja) 情報処理装置
JP2018136507A (ja) 照明装置、画像投射装置、回転体の破損判定方法
JP6520238B2 (ja) プロジェクターおよびプロジェクターの制御方法
JP4848908B2 (ja) 画像形成装置
JP2016020954A (ja) 画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891407

Country of ref document: EP

Kind code of ref document: A1