WO2019119355A1 - 无人机飞行路径的确定方法及装置 - Google Patents

无人机飞行路径的确定方法及装置 Download PDF

Info

Publication number
WO2019119355A1
WO2019119355A1 PCT/CN2017/117773 CN2017117773W WO2019119355A1 WO 2019119355 A1 WO2019119355 A1 WO 2019119355A1 CN 2017117773 W CN2017117773 W CN 2017117773W WO 2019119355 A1 WO2019119355 A1 WO 2019119355A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
flight path
base stations
base station
accessible
Prior art date
Application number
PCT/CN2017/117773
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/117773 priority Critical patent/WO2019119355A1/zh
Priority to US16/770,597 priority patent/US11557212B2/en
Priority to CN201780002322.1A priority patent/CN108401438B/zh
Priority to EP17935454.3A priority patent/EP3731056B1/en
Priority to ES17935454T priority patent/ES2928658T3/es
Publication of WO2019119355A1 publication Critical patent/WO2019119355A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for determining a flight path of a drone.
  • Unmanned Aerial Vehicle UAV
  • UAV Unmanned Aerial Vehicle
  • the 3rd Generation Partnership Project (3GPP) proposed in the discussion of the "Enhanced Support for UAVs" project to provide cellular networks for drones. More standardized research on services that meet demand, designed to provide good network services for drones.
  • 3GPP 3rd Generation Partnership Project
  • the base station on the flight path may not provide satisfactory network service to the drone due to load or coverage problems, so it is necessary to propose a A new solution to solve the problem of how to achieve satisfactory network service for drones while flying according to flight path.
  • embodiments of the present disclosure provide a method and a device for determining a flight path of a drone, which are used for determining that if the drone is flying according to an initial flight path set by the controller, Satisfactory network service, make reasonable adjustments to the initial flight path of the drone, so that the cellular network can provide satisfactory network services for the drone.
  • a method for determining a flight path of a drone is provided, which is applied to a core network device, and includes:
  • the flight path corresponding to the second group of accessible base stations is determined as the target flight path.
  • the method further includes:
  • the coverage of each of the serviceable base stations does not fully cover the initial flight path, it is determined that the first set of accessible base stations cannot provide continuous cellular network services for the drone.
  • obtaining a second set of accessible base stations capable of providing continuous cellular network services to the drone includes:
  • acquiring coverage and load information of each of the first set of accessible base stations including:
  • the method further includes:
  • obtaining an initial flight path set by the drone management platform for the drone includes:
  • a device for determining a flight path of a drone which is applied to a core network device, and includes:
  • a first obtaining module configured to acquire an initial flight path set by the drone management platform for the drone
  • a first determining module configured to determine, according to the initial flight path acquired by the first acquiring module, a first group of accessible base stations of the drone on the initial flight path, where the first group is connectable
  • the input base station is an accessible base station when the drone is flying based on the initial flight path
  • a second obtaining module configured to: when the first set of accessible base stations determined by the first determining module cannot provide continuous cellular network services for the drone, the acquiring can provide the drone A second group of consecutive cellular network services can access the base station;
  • the second determining module is configured to determine a flight path corresponding to the second group of accessible base stations acquired by the second acquiring module as a target flight path.
  • the method further includes:
  • a third acquiring module configured to acquire coverage and load information of each of the first set of accessible base stations
  • a third determining module configured to determine a serviceable base station capable of serving the drone based on load information of each of the base stations
  • a fourth determining module configured to not completely cover the initial flight path at a coverage of each of the serviceable base stations, determining that the first group of accessible base stations cannot provide a continuous cellular network for the drone service.
  • the second obtaining module comprises:
  • a first determining submodule configured to determine that the unmanned aircraft cannot obtain a non-coverage range of the cellular network service based on a coverage of the serviceable base station of the drone;
  • a second determining submodule configured to determine the second set of accessible base stations based on the first set of accessible base stations and the target base station.
  • the third obtaining module comprises:
  • a sending submodule configured to send a request message to each of the first set of accessible base stations
  • the first receiving submodule is configured to receive coverage and load information returned by each of the base stations based on the request message.
  • the apparatus further includes:
  • a first sending module configured to send the target flight path to a current access base station of the drone, and the current access base station for the drone forwards the target flight path to the unmanned Machine;
  • a second sending module configured to send the target flight path to a current access base station of the UAV management platform, and the current access base station for the UAV management platform forwards the target flight path to The drone management platform.
  • the first obtaining module comprises:
  • a second receiving submodule configured to receive the initial flight path sent by the drone through a current access base station of the drone
  • a third receiving submodule configured to receive the initial flight path sent by the UAV management platform through a current access base station of the UAV management platform.
  • a core network device including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the flight path corresponding to the second group of accessible base stations is determined as the target flight path.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
  • the flight path corresponding to the second group of accessible base stations is determined as the target flight path.
  • the core network device can obtain the initial flight path set by the drone management platform for the drone, and determine that if the drone is unable to obtain satisfactory network service according to the initial flight path set by the controller, the drone is The initial flight path is reasonably adjusted to obtain the target flight path, so that the cellular network can provide satisfactory network services for the drone, which helps to improve the mobility of the drone.
  • FIG. 1A is a flowchart of a method for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 1B is a scene diagram of a method for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 2 is a flow chart showing still another method of determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 3A is a flowchart of another method for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 3B is a schematic diagram of a non-coverage range according to an exemplary embodiment.
  • FIG. 4 is a flow chart 1 showing interaction between various communication entities in a method for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 5 is a second flowchart of interaction between various communication entities in a method for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a determining device for a UAV flight path, according to an exemplary embodiment.
  • FIG. 7 is a block diagram of another apparatus for determining a flight path of a drone according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a determining apparatus suitable for a flight path of a drone, according to an exemplary embodiment.
  • the drone is a cellular network drone that accesses the cellular network.
  • FIG. 1A is a flowchart of a method for determining a flight path of a drone according to an exemplary embodiment
  • FIG. 1B is a scene diagram of a method for determining a flight path of a drone according to an exemplary embodiment
  • the method for determining the flight path of the UAV can be applied to the core network device.
  • the method for determining the flight path of the UAV includes the following steps 101-104:
  • step 101 an initial flight path set by the drone management platform for the drone is obtained.
  • the UAV management platform may directly send the initial flight path to the core network device through the current access base station currently accessed by itself, thereby the core network device.
  • the drone management platform may send the initial flight path to the drone after setting the initial flight path of the drone, The drone transmits the initial flight path to the core network device through the current access base station currently accessed by itself, whereby the core network device can receive the initial flight path set by the drone management platform.
  • the drone management platform may pre-set the flight path for the drone, and when the flight mode of the drone is the dynamic mode, that is, by the user When the UAV is remotely controlled by the controller, the UAV management platform cannot set the flight path in advance.
  • step 102 based on the initial flight path, the first set of accessible base stations of the drone on the initial flight path are determined.
  • the core network device may determine the first set of accessible base stations when the drone is flying according to the flight path based on the coverage of each base station and the flight path of the drone.
  • the first group of accessible base stations can be understood as a base station that the UAV can pass when flying based on the flight path. For example, the flight path of the UAV passes through the base station 1, the base station 2, the base station 3, and the base station 4.
  • the coverage area of the base station 5, the first group of accessible base stations may include the base station 1, the base station 2, the base station 3, the base station 4, and the base station 5, but the base station 2 and the base station 4 may be overloaded, and there is no remaining resources for other
  • the drone may only access the base station 1, the base station 3, and the base station 5 during the flight, that is, the accessible base station is a base station that the drone may access but does not have to access.
  • step 103 if the first set of accessible base stations are unable to provide continuous cellular network services for the drone, then a second set of accessible base stations capable of providing continuous cellular network services for the drone are obtained.
  • the coverage of each of the first set of accessible base stations may not be continuous, that is, there is a coverage vulnerability, so that the drone cannot obtain the cellular network service at the location of the coverage vulnerability, and the first group is determined.
  • the method for accessing the base station to provide continuous cellular network services for the drone can be seen in the embodiment shown in FIG. 2, which will not be described in detail herein.
  • the second set of accessible base stations can provide continuous cellular network services for the drone so that the drone can always receive network support during the flight.
  • the method for acquiring the second group of accessible base stations can be referred to the embodiment shown in FIG. 3A, which is not described in detail herein.
  • step 104 the flight path corresponding to the second set of accessible base stations is determined as the target flight path.
  • the target flight path may be composed of a plurality of coordinate points for indicating the flight path of the drone.
  • the core network device may determine the approximate flight path of the drone based on the base station location information of the second set of accessible base stations, thereby determining the target flight path.
  • a drone management platform 10 in the scenario shown in FIG. 1B, a drone management platform 10, a drone 20, a core network device 30, at least one base station 40, and the like are included, wherein After setting the initial flight path of the drone 20, the aircraft management platform 10 may send the initial flight path to the core network device 30, if the core network device 30 determines that the drone 20 is flying according to the initial flight path based on the initial flight path.
  • the continuous cellular network service may not be obtained, a target flight path may be determined for the drone 20, and the target flight path is indicated to the drone management platform 10, so that the drone management platform 10 indicates the drone 20 Fly in accordance with the target flight path so that the cellular network can provide satisfactory network services for the drone.
  • the core network device can obtain an initial flight path set by the UAV management platform for the UAV, and determine that if the UAV is flying according to the initial flight path set by the controller, When the network service is satisfactory, the initial flight path of the drone can be reasonably adjusted to obtain the target flight path, so that the cellular network can provide satisfactory network services for the drone, which helps to improve the mobility of the drone.
  • FIG. 2 is a flowchart of still another method for determining a flight path of a drone according to an exemplary embodiment.
  • the present embodiment uses the above method provided by the embodiment of the present disclosure to determine whether the core network device needs to adjust an initial flight.
  • the path is exemplified for example. As shown in FIG. 2, the following steps are included:
  • step 201 an initial flight path set by the drone management platform for the drone is obtained.
  • step 202 based on the initial flight path, the first set of accessible base stations of the drone on the initial flight path are determined.
  • the first set of accessible base stations is an accessible base station when the drone is flying based on the initial flight path.
  • step 201 and step 202 can be referred to the description of step 101 and step 102 of the embodiment shown in FIG. 1A, and details are not described herein.
  • step 203 the coverage and load information of each of the first set of accessible base stations are obtained.
  • the core network device may send a request message to each of the first set of accessible base stations, request the base station to report its coverage and load information, and then receive the coverage returned by each base station based on the request message. And load information.
  • the coverage of each base station may be determined and indicated to the base station when the mobile operator deploys the base station, and the coverage may be a spatial range of a stereo, for example, the coverage is centered on the geographic location of the base station. A three-dimensional range with a radius of 15km.
  • the coverage of each base station is quite a fixed value.
  • the core network device can be obtained from the base station side, or can be obtained from the mobile operator management system, and the coverage of each base station is stored locally after one acquisition.
  • the load information of each base station may indicate whether the base station currently has the remaining resources to access the new device, and the load information of the base station may be updated in real time, and the base station may report the request message of the core network device after receiving the request message of the core network device. Load information, the base station can also periodically report load information.
  • step 204 based on the load information of each base station, a serviceable base station capable of serving the drone is determined.
  • the serviceable base station may be a base station accessible to the drone when flying according to the initial path, or the serving base station may not only cover the coverage of the drone, but also the load information allows the drone to access. .
  • step 205 if the coverage of each serviceable base station does not fully cover the initial flight path, then it is determined that the first set of accessible base stations cannot provide continuous cellular network services for the drone.
  • the drone can fly over the range covered by the base station when flying according to the initial flight path, and then the first group can be determined to be connected.
  • the incoming base station cannot provide continuous cellular network services for the drone.
  • step 206 a second set of accessible base stations capable of providing continuous cellular network services to the drone are obtained.
  • the method for acquiring the second group of accessible base stations can be referred to the embodiment shown in FIG. 3A, which is not described in detail herein.
  • step 207 the flight path corresponding to the second group of accessible base stations is determined as the target flight path.
  • the core network device may determine, according to the coverage and load information of each of the first set of accessible base stations, whether the initial flight path set by the UAV management platform enables the drone to always obtain Network services to determine if the initial flight path needs to be adjusted.
  • FIG. 3A is a flowchart of a method for determining another flight path of a drone according to an exemplary embodiment
  • FIG. 3B is a schematic diagram of a non-coverage according to an exemplary embodiment.
  • This embodiment utilizes an embodiment of the present disclosure.
  • the above method is provided as an example of how the core network device determines the second group of accessible base stations. As shown in FIG. 3A, the method includes the following steps:
  • step 301 an initial flight path set by the drone management platform for the drone is obtained.
  • step 302 based on the initial flight path, the first set of accessible base stations of the drone on the initial flight path are determined.
  • the first set of accessible base stations is an accessible base station when the drone is flying based on the initial flight path.
  • step 301 and step 302 can be referred to the description of step 101 and step 102 of the embodiment shown in FIG. 1A, and details are not described herein.
  • step 303 the coverage and load information of each of the first set of accessible base stations is obtained.
  • step 304 based on the load information of each base station, a serviceable base station capable of serving the drone is determined.
  • step 305 if the coverage of each serviceable base station does not fully cover the initial flight path, then it is determined that the first set of accessible base stations cannot provide continuous cellular network services for the drone.
  • steps 301 to 305 can be referred to the description of step 201 to step 205 of the embodiment shown in FIG. 2, and details are not described herein.
  • step 306 based on the coverage of the drone's serviceable base station, it is determined that the drone cannot obtain the non-coverage range of the cellular network service.
  • step 307 the target base station is determined based on the non-coverage range.
  • the core network device may determine, according to the coverage of each serviceable base station, whether there is a non-coverage range, and further determine the target base station, based on the coverage of the target base station, The human machine can avoid flight through non-coverage.
  • the flight path is the line indicated by reference numeral 31, which passes through the coverage of the base station 32 and the base station 33, but there is a non-coverage range between the base station 31 and the base station 32, reference numeral 34
  • the indicated area is non-coverage
  • the core network device can determine from the neighboring base stations of the base station 31 and/or the base station 32 whether the coverage of the base station can connect the coverage between the base station 31 and the base station 32.
  • the range such as the base station 35 in FIG. 3B, is the target base station.
  • a second set of accessible base stations is determined based on the first set of accessible base stations and the target base station.
  • the target base station may be added to the first group of accessible base stations to obtain a second group of accessible base stations; in an embodiment, the target base station may also be used to replace the first group of accessible base stations. A portion of the base stations, in turn, a second set of accessible base stations capable of providing continuous network services to the drone.
  • step 309 the flight path corresponding to the second set of accessible base stations is determined as the target flight path.
  • the core network device may determine, according to the coverage and load information of each of the first set of accessible base stations, a non-coverage range that cannot be covered by the cellular network on the initial flight path, thereby determining that the coverage area can be covered.
  • the target base station of coverage is obtained with the adjusted target flight path.
  • FIG. 4 is a flowchart 1 of interaction between various communication entities in a method for determining a flight path of a drone according to an exemplary embodiment; the present embodiment utilizes the foregoing method provided by an embodiment of the present disclosure to each communication entity. The interaction is performed to determine the target flight path of the drone as an example. As shown in FIG. 4, the following steps are included:
  • step 401 the drone management platform sends an initial flight path to the current access base station.
  • the initial flight path can be directly sent to the current access base station.
  • step 402 the current access base station of the UAV management platform sends an initial flight path to the core network device.
  • the core network device determines, according to the initial flight path, the first group of accessible base stations on the initial flight path of the drone, and the first group of accessible base stations is the time when the drone is based on the initial flight path. Access to the base station.
  • step 404 the core network device sends a request message to each of the first set of accessible base stations.
  • step 405 the core network device receives the coverage and load information returned by each base station based on the request message.
  • the coverage of each base station may be determined and indicated to the base station when the mobile operator deploys the base station, and the coverage may be a spatial range of a stereo, for example, the coverage is centered on the geographic location of the base station. A three-dimensional range with a radius of 15km.
  • the coverage of each base station is quite a fixed value.
  • the core network device can be obtained from the base station side, or can be obtained from the mobile operator management system, and the coverage of each base station is stored locally after one acquisition.
  • the load information of each base station may indicate whether the base station currently has the remaining resources to access the new device, and the load information of the base station may be updated in real time, and the base station may report the request message of the core network device after receiving the request message of the core network device. Load information, the base station can also periodically report load information.
  • the core network device determines, based on the coverage and load information returned by each base station based on the request message, whether the first group of accessible base stations can provide continuous cellular network services for the drone, if the first group is reachable The ingress base station can provide continuous cellular network services for the drone, and step 407 is performed. If the first group of accessible base stations cannot provide continuous cellular network services for the drone, step 409 is performed.
  • step 407 the core network device returns a path determination message to the current access base station of the UAV management platform.
  • the path determination message is used to indicate that the core network device has determined that the initial flight path set by the drone management platform is an executable target flight path.
  • step 408 the current access base station of the drone management platform forwards the path determination message to the drone management platform, and the process ends.
  • the core network device may not perform step 407 and step 408, and the drone management platform may monitor whether there is a return target flight path within a set time period after the initial flight path is sent, if not, You can then determine that the initial flight path you set is a reasonable flight path that does not need to be adjusted.
  • step 409 the core network device acquires a second set of accessible base stations and determines a target flight path based on the second set of accessible base stations.
  • step 410 the core network device sends a target flight path to the current access base station of the drone management platform.
  • step 411 the current access base station of the drone management platform forwards the target flight path to the drone management platform.
  • an implementation method for determining a flight path of a drone may send an initial flight path to a core network device after setting an initial flight path of the drone, and the core network device Determining whether the path needs to be adjusted based on the coverage and load information of the accessible base station on the initial flight path, and determining a reasonable target flight path when adjustment is needed, so that the cellular network can provide satisfactory network service for the drone To help improve the mobility of drones.
  • FIG. 5 is a second flowchart of interaction between various communication entities in a method for determining a flight path of a drone according to an exemplary embodiment; the present embodiment utilizes the foregoing method provided by an embodiment of the present disclosure to perform various communications.
  • the entity interacts to determine the target flight path of the drone as an example. As shown in FIG. 5, the following steps are included:
  • step 501 the drone management platform sends an initial flight path to the drone.
  • step 502 the drone sends an initial flight path to the current access base station.
  • step 503 the current access base station of the drone transmits an initial flight path to the core network device.
  • step 501-step 503 if the drone management platform itself does not access any base station, the initial flight path may be sent to the drone, and the drone passes the current access.
  • the incoming base station transmits the initial flight path to the core network device.
  • step 504 the core network device determines a first set of accessible base stations on the initial flight path of the drone based on the initial flight path.
  • the first set of accessible base stations is an accessible base station when the drone is flying based on the initial flight path.
  • step 505 the core network device sends a request message to each of the first set of accessible base stations.
  • step 506 the core network device receives the coverage and load information returned by each base station based on the request message.
  • the core network device determines, based on the coverage and load information returned by each base station based on the request message, whether the first group of accessible base stations can provide continuous cellular network services for the drone, if the first group is reachable
  • the incoming base station can provide continuous cellular network services for the drone, and step 508 is performed. If the first set of accessible base stations cannot provide continuous cellular network services for the drone, step 511 is performed.
  • step 508 the core network device returns a path determination message to the currently visited base station of the drone.
  • step 509 the current access base station of the drone forwards the path determination message to the drone.
  • step 510 the drone forwards the path determination message to the drone management platform, and the process ends.
  • the core network device acquires a second set of accessible base stations and determines a target flight path based on the second set of accessible base stations.
  • step 512 the core network device transmits a target flight path to the currently visited base station of the drone.
  • step 513 the currently connected base station of the drone forwards the target flight path to the drone.
  • step 514 the drone forwards the target flight path to the drone management platform.
  • an implementation manner of transmitting a flight path of a drone is disclosed.
  • the set initial flight path may be sent to the core network by the drone.
  • the core network device determines whether the path needs to be adjusted based on the coverage and load information of the accessible base station on the initial flight path, and determines a reasonable target flight path when the adjustment needs to be performed, so that the cellular network can be a drone Providing satisfactory network services helps to improve the mobility of drones.
  • FIG. 6 is a block diagram of a determining device for a UAV flight path, which is applied to a core network device, as shown in FIG. 6, the determining device of the UAV flight path includes:
  • the first obtaining module 61 is configured to acquire an initial flight path set by the drone management platform for the drone;
  • the first determining module 62 is configured to determine, according to the initial flight path acquired by the first acquiring module 61, the first group of accessible base stations of the drone on the initial flight path, and the first group of accessible base stations is a drone Accessible base station when flying based on the initial flight path;
  • the second obtaining module 63 is configured to acquire, when the first set of accessible base stations determined by the first determining module 62 cannot provide continuous cellular network services for the drone, to obtain continuous cellular network services for the drone
  • the second group can access the base station;
  • the second determining module 64 is configured to determine a flight path corresponding to the second group of accessible base stations acquired by the second acquiring module 63 as a target flight path.
  • FIG. 7 is a block diagram of another apparatus for determining a flight path of a drone according to an exemplary embodiment. As shown in FIG. 7, on the basis of the embodiment shown in FIG. 6 above, in an embodiment, include:
  • the third obtaining module 65 is configured to acquire coverage and load information of each of the first set of accessible base stations
  • the third determining module 66 is configured to determine a serviceable base station capable of serving the drone based on load information of each base station;
  • the fourth determining module 67 is configured to not fully cover the initial flight path at the coverage of each of the serviceable base stations, and determines that the first group of accessible base stations cannot provide continuous cellular network services for the drone.
  • the second obtaining module 63 includes:
  • the first determining submodule 631 is configured to determine that the unmanned aircraft cannot obtain the non-coverage range of the cellular network service based on the coverage of the drone's serviceable base station;
  • the obtaining submodule 632 is configured to determine the target base station based on the non-coverage range
  • the second determining sub-module 633 is configured to determine the second set of accessible base stations based on the first set of accessible base stations and the target base station.
  • the third obtaining module 65 includes:
  • the sending submodule 651 is configured to send a request message to each of the first group of accessible base stations;
  • the first receiving submodule 652 is configured to receive coverage and load information returned by each base station based on the request message.
  • the apparatus further includes:
  • the first sending module 68 is configured to send a target flight path to the current access base station of the drone, and the current access base station for the drone forwards the target flight path to the drone;
  • the second sending module 69 is configured to send a target flight path to the current access base station of the drone management platform, and the current access base station for the drone management platform forwards the target flight path to the drone management platform.
  • the first obtaining module 61 includes:
  • the second receiving submodule 611 is configured to receive an initial flight path sent by the drone through the current access base station of the drone;
  • the third receiving sub-module 612 is configured to receive an initial flight path sent by the UAV management platform through the current access base station of the UAV management platform.
  • FIG. 8 is a block diagram of a determining apparatus suitable for a flight path of a drone, according to an exemplary embodiment.
  • Apparatus 800 can be provided as a base station or a core network device.
  • apparatus 800 includes a processing component 822, a wireless transmit/receive component 824, an antenna component 826, and a signal processing portion specific to the wireless interface.
  • Processing component 822 can further include one or more processors.
  • One of the processing components 822 can be configured to perform the determination method of the drone flight path described in the first aspect above.
  • non-transitory computer readable storage medium comprising instructions executable by processing component 822 of apparatus 800 to perform the method described above in the first or third aspect.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本公开是关于一种无人机飞行路径的确定方法及装置。无人机飞行路径的确定方法包括:获取无人机管理平台为无人机设置的初始飞行路径;基于初始飞行路径确定无人机在初始飞行路径上的第一组可接入基站,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入基站;如果第一组可接入基站不能为无人机提供连续的蜂窝网络服务,获取能够为无人机提供连续的蜂窝网络服务的第二组可接入基站;将第二组可接入基站对应的飞行路径确定为目标飞行路径。本公开技术方可以实现核心网设备在确定蜂窝网络不能为按照初始飞行路径飞行的无人机提供满意的网络服务时,对无人机的初始飞行路径做合理的调整,以实现蜂窝网络能够为无人机提供满意的网络服务。

Description

无人机飞行路径的确定方法及装置 技术领域
本公开涉及无线通信技术领域,尤其涉及一种无人机飞行路径的确定方法及装置。
背景技术
无人驾驶飞机(Unmanned Aerial Vehicle,简称为UAV)简称为“无人机”,已应用到某些特定的场景中,可以执行诸如高空摄像、无人探测侦察、测量测绘、公路勘测、城市规划、生态环保监控、科学考察、石油勘探、航空遥感、边防巡逻、森林防火、灾情评估等任务。
为了进一步拓展无人机的应用范围,第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)在对“无人机的增强支持”项目的讨论中提出了使蜂窝网络为无人机提供满足需求的服务更加标准化的研究,旨在为无人机提供好的网络服务。但是相关技术中,无人机按照控制器提前确定出的飞行路径飞行时,飞行路径上的基站可能由于负载或者覆盖的问题,并不能给无人机提供满意的网络服务,因此需要提出一种新的方案,来解决如何实现无人机在按照飞行路径飞行时能一直得到满意的网络服务的问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种无人机飞行路径的确定方法及装置,用于核心网设备在确定如果无人机按照控制器设置的初始飞行路径飞行将不能得到满意的网络服务时,对无人机的初始飞行路径做合理的调整,以实现蜂窝网络能够为无人机提供满意的网络服务。
根据本公开实施例的第一方面,提供一种无人机飞行路径的确定方法,应用在核心网设备上,包括:
获取无人机管理平台为无人机设置的初始飞行路径;
基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
在一实施例中,方法还包括:
获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息;
基于所述每一个基站的负载信息,确定能够服务所述无人机的可服务基站;
如果所述每一个可服务基站的覆盖范围不能完全覆盖所述初始飞行路径,则确定所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务。
在一实施例中,获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站,包括:
基于所述无人机的可服务基站的覆盖范围,确定所述无人机不能得到蜂窝网络服务的非覆盖范围;
基于所述非覆盖范围,确定目标基站;
基于所述第一组可接入基站和所述目标基站,确定所述第二组可接入基站。
在一实施例中,获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息,包括:
向所述第一组可接入基站中每一个基站发送请求消息;
接收所述每一个基站基于所述请求消息返回的覆盖范围和负载信息。
在一实施例中,还包括:
向所述无人机的当前接入基站发送所述目标飞行路径,用于所述无人机的当前接入基站将所述目标飞行路径转发至所述无人机;或者,
向所述无人机管理平台的当前接入基站发送所述目标飞行路径,用于所述无人机管理平台的当前接入基站将所述目标飞行路径转发至所述无人机管理平台。
在一实施例中,获取无人机管理平台为无人机设置的初始飞行路径,包括:
接收所述无人机通过无人机的当前接入基站发送的所述初始飞行路径;或者,
接收所述无人机管理平台通过无人机管理平台的当前接入基站发送的所述初始飞行路径。
根据本公开实施例的第二方面,提供一种无人机飞行路径的确定装置,应用在核心网设备上,包括:
第一获取模块,被配置为获取无人机管理平台为无人机设置的初始飞行路径;
第一确定模块,被配置为基于所述第一获取模块获取的所述初始飞行路径,确 定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
第二获取模块,被配置为在所述第一确定模块确定的所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务时,获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
第二确定模块,被配置为将所述第二获取模块获取的所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
在一实施例中,还包括:
第三获取模块,被配置为获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息;
第三确定模块,被配置为基于所述每一个基站的负载信息,确定能够服务所述无人机的可服务基站;
第四确定模块,被配置为在所述每一个可服务基站的覆盖范围不能完全覆盖所述初始飞行路径,确定所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务。
在一实施例中,第二获取模块包括:
第一确定子模块,被配置为基于所述无人机的可服务基站的覆盖范围,确定所述无人机不能得到蜂窝网络服务的非覆盖范围;
获取子模块,被配置为基于所述非覆盖范围,确定目标基站;
第二确定子模块,被配置为基于所述第一组可接入基站和所述目标基站,确定所述第二组可接入基站。
在一实施例中,第三获取模块包括:
发送子模块,被配置为向所述第一组可接入基站中每一个基站发送请求消息;
第一接收子模块,被配置为接收所述每一个基站基于所述请求消息返回的覆盖范围和负载信息。
在一实施例中,装置还包括:
第一发送模块,被配置为向所述无人机的当前接入基站发送所述目标飞行路径,用于所述无人机的当前接入基站将所述目标飞行路径转发至所述无人机;或者,
第二发送模块,被配置为向所述无人机管理平台的当前接入基站发送所述目标飞行路径,用于所述无人机管理平台的当前接入基站将所述目标飞行路径转发至所述无人机管理平台。
在一实施例中,第一获取模块包括:
第二接收子模块,被配置为接收所述无人机通过无人机的当前接入基站发送的所述初始飞行路径;或者,
第三接收子模块,被配置为接收所述无人机管理平台通过无人机管理平台的当前接入基站发送的所述初始飞行路径。
根据本公开实施例的第三方面,提供一种核心网设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取无人机管理平台为无人机设置的初始飞行路径;
基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
根据本公开实施例的第四方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
获取无人机管理平台为无人机设置的初始飞行路径;
基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
本公开实施例提供的技术方案可以包括以下有益效果:
核心网设备可获取无人机管理平台为无人机设置的初始飞行路径,并在确定如果无人机按照控制器设置的初始飞行路径飞行将不能得到满意的网络服务时,对无人机的初始飞行路径做合理的调整得到目标飞行路径,以实现蜂窝网络能够为无人机提供满意的网络服务,有助于提升无人机的移动性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种无人机飞行路径的确定方法的流程图。
图1B是根据一示例性实施例示出的一种无人机飞行路径的确定方法的场景图。
图2是根据一示例性实施例示出的又一种无人机飞行路径的确定方法的流程图。
图3A是根据一示例性实施例示出的另一种无人机飞行路径的确定方法的流程图。
图3B是根据一示例性实施例示出的非覆盖范围示意图。
图4是根据一示例性实施例示出的一种无人机飞行路径的确定方法中各个通信实体之间的交互流程图一。
图5是根据一示例性实施例示出的又一种无人机飞行路径的确定方法中各个通信实体之间的交互流程图二。
图6是根据一示例性实施例示出的一种无人机飞行路径的确定装置的框图。
图7是根据一示例性实施例示出的另一种无人机飞行路径的确定装置的框图。
图8是根据一示例性实施例示出的一种适用于无人机飞行路径的确定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本公开中,无人机为接入蜂窝网络的蜂窝网络无人机。
图1A是根据一示例性实施例示出的一种无人机飞行路径的确定方法的流程图,图1B是根据一示例性实施例示出的一种无人机飞行路径的确定方法的场景图;该无人机飞行路径的确定方法可以应用在核心网设备上,如图1A所示,该无人机飞行路径的确定方法包括以下步骤101-104:
在步骤101中,获取无人机管理平台为无人机设置的初始飞行路径。
在一实施例中,无人机管理平台在设定无人机的初始飞行路径之后,可直接将 初始飞行路径通过自己当前接入的当前接入基站发送给核心网设备,由此核心网设备可接收到无人机管理平台设置的初始飞行路径;在又一实施例中,无人机管理平台在设定无人机的初始飞行路径之后,可将初始飞行路径发送给无人机,由无人机将初始飞行路径通过自己当前接入的当前接入基站发送给核心网设备,由此核心网设备可接收到无人机管理平台设置的初始飞行路径。
在一实施例中,通常无人机的飞行模式是固定模式时,无人机管理平台可为无人机预先设置好飞行路径,而无人机的飞行模式是动态模式时,也即由用户通过控制器对无人机进行实时遥控时,无人机管理平台不能预先设置好飞行路径。
在步骤102中,基于初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站。
在一实施例中,核心网设备可基于每一个基站的覆盖范围以及无人机的飞行路径确定出无人机按照飞行路径飞行时的第一组可接入基站。在一实施例中,第一组可接入基站可以理解为无人机基于飞行路径飞行时可经过的基站,例如,无人机的飞行路径上经过基站1、基站2、基站3、基站4、基站5的覆盖区域,则第一组可接入基站可以包括基站1、基站2、基站3、基站4、基站5,但是基站2和基站4可能负载过高,没有剩余资源以供其它无人机接入,则无人机在飞行过程中可能只能接入基站1、基站3、基站5,也即,可接入基站是无人机可能会接入但是不是必需接入的基站。
在步骤103中,如果第一组可接入基站不能为无人机提供连续的蜂窝网络服务,则获取能够为无人机提供连续的蜂窝网络服务的第二组可接入基站。
在一实施例中,第一组可接入基站中每一个基站的覆盖范围可能并不连续,也即存在覆盖漏洞,导致无人机在覆盖漏洞的位置不能得到蜂窝网络服务,确定第一组可接入基站是否能够为无人机提供连续的蜂窝网络服务的方法可参见图2所示实施例,这里先不详述。
在一实施例中,第二组可接入基站能够为无人机提供连续的蜂窝网络服务,使得无人机在飞行过程中能够一直得到网络支持。
在一实施例中,获取第二组可接入基站的方法可参见图3A所示实施例,这里先不详述。
在步骤104中,将第二组可接入基站对应的飞行路径确定为目标飞行路径。
在一实施例中,目标飞行路径可以由多个坐标点组成,用于指示无人机的飞行路线。
在一实施例中,核心网设备可基于第二组可接入基站的基站位置信息,确定出 无人机大概的飞行路线,进而确定出目标飞行路径。
在一示例性场景中,如图1B所示,在图1B所示的场景中,包括无人机管理平台10、无人机20、核心网设备30、至少一个基站40等,其中,无人机管理平台10在设定无人机20的初始飞行路径之后,可将初始飞行路径发送给核心网设备30,如果核心网设备30基于该初始飞行路径确定出无人机20按照初始飞行路径飞行时可能不能得到连续的蜂窝网络服务,则可为无人机20确定一个目标飞行路径,并将该目标飞行路径指示给无人机管理平台10,使得无人机管理平台10指示无人机20按照目标飞行路径飞行,以便蜂窝网络能够为无人机提供满意的网络服务。
本实施例通过上述步骤101-步骤104,核心网设备可获取无人机管理平台为无人机设置的初始飞行路径,并在确定如果无人机按照控制器设置的初始飞行路径飞行将不能得到满意的网络服务时,对无人机的初始飞行路径做合理的调整得到目标飞行路径,以实现蜂窝网络能够为无人机提供满意的网络服务,有助于提升无人机的移动性。
具体如何无人机飞行路径的确定,请参考后续实施例。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例示出的又一种无人机飞行路径的确定方法的流程图;本实施例利用本公开实施例提供的上述方法,以核心网设备如何确定是否需要调整初始飞行路径为例进行示例性说明,如图2所示,包括如下步骤:
在步骤201中,获取无人机管理平台为无人机设置的初始飞行路径。
在步骤202中,基于初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站。
在一实施例中,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入基站。
在一实施例中,步骤201和步骤202的描述可参见图1A所示实施例的步骤101和步骤102的描述,这里不再详述。
在步骤203中,获取第一组可接入基站中每一个基站的覆盖范围和负载信息。
在一实施例中,核心网设备可向第一组可接入基站中的每一个基站发送请求消息,请求基站上报自己的覆盖范围和负载信息,然后接收每一个基站基于请求消息返回的覆盖范围和负载信息。
在一实施例中,每一个基站的覆盖范围可在移动运营商部署基站时已经确定并指示给基站,覆盖范围可以为一个立体的空间范围,例如,覆盖范围为以基站的地理 位置为中心,半径为15km的立体范围。每一个基站的覆盖范围相当来说是一个固定值,核心网设备可以从基站侧获取,也可以从移动运营商管理系统获取,并且在一次获取之后在本地存储每一个基站的覆盖范围。
在一实施例中,每一个基站的负载信息则可指示基站当前是否还有剩余资源能够接入新的设备,基站的负载信息可以实时更新,基站可在接收到核心网设备的请求消息后上报负载信息,基站也可周期性上报负载信息。
在步骤204中,基于每一个基站的负载信息,确定能够服务无人机的可服务基站。
在一实施例中,可服务基站可以为无人机按照初始路径飞行时可接入的基站,也即可服务基站不仅覆盖范围适合无人机接入,而且其负载信息允许无人机接入。
在步骤205中,如果每一个可服务基站的覆盖范围不能完全覆盖初始飞行路径,则确定第一组可接入基站不能为无人机提供连续的蜂窝网络服务。
在一实施例中,若每一个可服务基站的覆盖范围之间不连续,无人机在按照初始飞行路径飞行时,可飞过没有任一基站覆盖的范围,则可确定第一组可接入基站不能为无人机提供连续的蜂窝网络服务。
在步骤206中,获取能够为无人机提供连续的蜂窝网络服务的第二组可接入基站。
在一实施例中,获取第二组可接入基站的方法可参见图3A所示实施例,这里先不详述。
在步骤207中,将第二组可接入基站对应的飞行路径确定为目标飞行路径。
本实施例中,核心网设备可基于第一组可接入基站中的每一个基站的覆盖范围和负载信息,确定出无人机管理平台设置的初始飞行路径是否能够使得无人机能够一直得到网络服务,进而确定是否需要调整初始飞行路径。
图3A是根据一示例性实施例示出的另一种无人机飞行路径的确定方法的流程图,图3B是根据一示例性实施例示出的非覆盖范围示意图;本实施例利用本公开实施例提供的上述方法,以核心网设备如何确定第二组可接入基站为例进行示例性说明,如图3A所示,包括如下步骤:
在步骤301中,获取无人机管理平台为无人机设置的初始飞行路径。
在步骤302中,基于初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站。
在一实施例中,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入 基站。
在一实施例中,步骤301和步骤302的描述可参见图1A所示实施例的步骤101和步骤102的描述,这里不再详述。
在步骤303中,获取第一组可接入基站中每一个基站的覆盖范围和负载信息。
在步骤304中,基于每一个基站的负载信息,确定能够服务无人机的可服务基站。
在步骤305中,如果每一个可服务基站的覆盖范围不能完全覆盖初始飞行路径,则确定第一组可接入基站不能为无人机提供连续的蜂窝网络服务。
在一实施例中,步骤301-步骤305的描述可参见图2所示实施例的步骤201-步骤205的描述,这里不再详述。
在步骤306中,基于无人机的可服务基站的覆盖范围,确定无人机不能得到蜂窝网络服务的非覆盖范围。
在步骤307中,基于所述非覆盖范围,确定目标基站。
在一实施例中,在步骤306和步骤307中,核心网设备可基于每一个可服务基站的覆盖范围,确定出是否存在非覆盖范围,并进一步确定目标基站,基于目标基站的覆盖范围,无人机可以避免飞行经过非覆盖范围,参见图3B,飞行路径为标号31所标示的线条,其经过基站32、基站33的覆盖范围,但是基站31和基站32之间存在非覆盖范围,标号34所指示的区域即为非覆盖范围,核心网设备可从基站31和/或基站32的相邻基站中确定出是否有基站的覆盖范围能够连接所述基站31和所述基站32之间的覆盖范围,如图3B中的基站35即为目标基站。
在步骤308中,基于第一组可接入基站和目标基站,确定第二组可接入基站。
在一实施例中,可将目标基站添加至第一组可接入基站中,得到第二组可接入基站;在一实施例中,还可使用目标基站替换第一组可接入基站中的部分基站,进而得到能够为无人机提供连续的网络服务的第二组可接入基站。
在步骤309中,将第二组可接入基站对应的飞行路径确定为目标飞行路径。
本实施例中,核心网设备可基于第一组可接入基站中的每一个基站的覆盖范围和负载信息,确定出初始飞行路径上蜂窝网络无法覆盖的非覆盖范围,进而确定出能够覆盖该覆盖范围的目标基站,得到调整后的目标飞行路径。
图4是根据一示例性实施例示出的一种无人机飞行路径的确定方法中各个通信实体之间的交互流程图一;本实施例利用本公开实施例提供的上述方法,以各个通信实体进行交互,确定无人机的目标飞行路径为例进行示例性说明,如图4所示,包括如下步 骤:
在步骤401中,无人机管理平台向当前接入基站发送初始飞行路径。
在一实施例中,如果无人机管理平台也接入了基站,则可直接发送初始飞行路径给当前接入基站。
在步骤402中,无人机管理平台的当前接入基站向核心网设备发送初始飞行路径。
在步骤403中,核心网设备基于初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入基站。
在步骤404中,核心网设备向第一组可接入基站中每一个基站发送请求消息。
在步骤405中,核心网设备接收每一个基站基于请求消息返回的覆盖范围和负载信息。
在一实施例中,每一个基站的覆盖范围可在移动运营商部署基站时已经确定并指示给基站,覆盖范围可以为一个立体的空间范围,例如,覆盖范围为以基站的地理位置为中心,半径为15km的立体范围。每一个基站的覆盖范围相当来说是一个固定值,核心网设备可以从基站侧获取,也可以从移动运营商管理系统获取,并且在一次获取之后在本地存储每一个基站的覆盖范围。
在一实施例中,每一个基站的负载信息则可指示基站当前是否还有剩余资源能够接入新的设备,基站的负载信息可以实时更新,基站可在接收到核心网设备的请求消息后上报负载信息,基站也可周期性上报负载信息。
在步骤406中,核心网设备基于每一个基站基于请求消息返回的覆盖范围和负载信息,确定第一组可接入基站是否能为无人机提供连续的蜂窝网络服务,如果第一组可接入基站能为无人机提供连续的蜂窝网络服务,执行步骤407,如果第一组可接入基站不能为无人机提供连续的蜂窝网络服务,执行步骤409。
在步骤407中,核心网设备向无人机管理平台的当前接入基站返回路径确定消息。
在一实施例中,路经确定消息用于指示核心网设备已确定无人机管理平台设定的初始飞行路径为可执行的目标飞行路径。
在步骤408中,无人机管理平台的当前接入基站向无人机管理平台转发路径确定消息,流程结束。
在一实施例中,核心网设备也可不执行步骤407和步骤408,无人机管理平台可在发送初始飞行路径之后的设定时间段内监听是否有返回的目标飞行路径,如果没有监听到, 则可确定自己设置的初始飞行路径为合理的无须调整的飞行路径。
在步骤409中,核心网设备获取第二组可接入基站,并基于第二组可接入基站确定目标飞行路径。
在步骤410中,核心网设备向无人机管理平台的当前接入基站发送目标飞行路径。
在步骤411中,无人机管理平台的当前接入基站向无人机管理平台转发目标飞行路径。
本实施例中,公开了一种确定无人机的飞行路径的实现方式,无人机管理平台可在设定无人机的初始飞行路径后即将初始飞行路径发送给核心网设备,核心网设备基于初始飞行路径上的可接入基站的覆盖范围和负载信息确定是否需要调整路经,并在需要调整时确定出合理的目标飞行路径,以实现蜂窝网络能够为无人机提供满意的网络服务,有助于提升无人机的移动性。
图5是根据一示例性实施例示出的又一种无人机飞行路径的确定方法中各个通信实体之间的交互流程图二;本实施例利用本公开实施例提供的上述方法,以各个通信实体进行交互,确定无人机的目标飞行路径为例进行示例性说明,如图5所示,包括如下步骤:
在步骤501中,无人机管理平台向无人机发送初始飞行路径。
在步骤502中,无人机向当前接入基站发送初始飞行路径。
在步骤503中,无人机的当前接入基站向核心网设备发送初始飞行路径。
在一实施例中,在步骤501-步骤503中,如果无人机管理平台本身没有接入任何基站,则可将初始飞行路径发送给无人机,由无人机通过所接入的当前接入基站将初始飞行路径发送至核心网设备。
在步骤504中,核心网设备基于初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站。
在一实施例中,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入基站。
在步骤505中,核心网设备向第一组可接入基站中每一个基站发送请求消息。
在步骤506中,核心网设备接收每一个基站基于请求消息返回的覆盖范围和负载信息。
在步骤507中,核心网设备基于每一个基站基于请求消息返回的覆盖范围和负载信息,确定第一组可接入基站是否能为无人机提供连续的蜂窝网络服务,如果第一组可接入基站能为无人机提供连续的蜂窝网络服务,执行步骤508,如果第一组可接 入基站不能为无人机提供连续的蜂窝网络服务,执行步骤511。
在步骤508中,核心网设备向无人机的当前接入基站返回路径确定消息。
在步骤509中,无人机的当前接入基站向无人机转发路径确定消息。
在步骤510中,无人机向无人机管理平台转发路径确定消息,流程结束。
在步骤511中,核心网设备获取第二组可接入基站,并基于第二组可接入基站确定目标飞行路径。
在步骤512中,核心网设备向无人机的当前接入基站发送目标飞行路径。
在步骤513中,无人机的当前接入基站向无人机转发目标飞行路径。
在步骤514中,无人机向无人机管理平台转发目标飞行路径。
本实施例中,公开了一种传输无人机的飞行路径的实现方式,在无人机管理平台没有接入任一基站时,可通过无人机将设定的初始飞行路径发送给核心网设备,核心网设备基于初始飞行路径上的可接入基站的覆盖范围和负载信息确定是否需要调整路经,并在需要调整时确定出合理的目标飞行路径,以实现蜂窝网络能够为无人机提供满意的网络服务,有助于提升无人机的移动性。
图6是根据一示例性实施例示出的一种无人机飞行路径的确定装置的框图,该装置应用在核心网设备上,如图6所示,无人机飞行路径的确定装置包括:
第一获取模块61,被配置为获取无人机管理平台为无人机设置的初始飞行路径;
第一确定模块62,被配置为基于第一获取模块61获取的初始飞行路径,确定无人机在初始飞行路径上的第一组可接入基站,第一组可接入基站为无人机基于初始飞行路径飞行时的可接入基站;
第二获取模块63,被配置为在第一确定模块62确定的第一组可接入基站不能为无人机提供连续的蜂窝网络服务时,获取能够为无人机提供连续的蜂窝网络服务的第二组可接入基站;
第二确定模块64,被配置为将第二获取模块63获取的第二组可接入基站对应的飞行路径确定为目标飞行路径。
图7是根据一示例性实施例示出的另一种无人机飞行路径的确定装置的框图,如图7所示,在上述图6所示实施例的基础上,在一实施例中,还包括:
第三获取模块65,被配置为获取第一组可接入基站中每一个基站的覆盖范围和负载信息;
第三确定模块66,被配置为基于每一个基站的负载信息,确定能够服务无人机的可服务基站;
第四确定模块67,被配置为在每一个可服务基站的覆盖范围不能完全覆盖初始飞行路径,确定第一组可接入基站不能为无人机提供连续的蜂窝网络服务。
在一实施例中,第二获取模块63包括:
第一确定子模块631,被配置为基于无人机的可服务基站的覆盖范围,确定无人机不能得到蜂窝网络服务的非覆盖范围;
获取子模块632,被配置为基于所述非覆盖范围,确定目标基站;
第二确定子模块633,被配置为基于第一组可接入基站和目标基站,确定第二组可接入基站。
在一实施例中,第三获取模块65包括:
发送子模块651,被配置为向第一组可接入基站中每一个基站发送请求消息;
第一接收子模块652,被配置为接收每一个基站基于请求消息返回的覆盖范围和负载信息。
在一实施例中,装置还包括:
第一发送模块68,被配置为向无人机的当前接入基站发送目标飞行路径,用于无人机的当前接入基站将目标飞行路径转发至无人机;或者,
第二发送模块69,被配置为向无人机管理平台的当前接入基站发送目标飞行路径,用于无人机管理平台的当前接入基站将目标飞行路径转发至无人机管理平台。
在一实施例中,第一获取模块61包括:
第二接收子模块611,被配置为接收无人机通过无人机的当前接入基站发送的初始飞行路径;或者,
第三接收子模块612,被配置为接收无人机管理平台通过无人机管理平台的当前接入基站发送的初始飞行路径。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种适用于无人机飞行路径的确定装置的框图。装置800可以被提供为一个基站或者一个核心网设备。参照图8,装置800包括处理组件822、无线发射/接收组件824、天线组件826、以及无线接口特有的信号处理部分,处理组件822可进一步包括一个或多个处理器。
处理组件822中的其中一个处理器可以被配置为执行上述第一方面所描述的无人机飞行路径的确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质, 上述指令可由装置800的处理组件822执行以完成上述第一方面或者第三方面所描述的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种无人机飞行路径的确定方法,其特征在于,应用在核心网设备上,所述方法包括:
    获取无人机管理平台为无人机设置的初始飞行路径;
    基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
    如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
    将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息;
    基于所述每一个基站的负载信息,确定能够服务所述无人机的可服务基站;
    如果所述每一个可服务基站的覆盖范围不能完全覆盖所述初始飞行路径,则确定所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务。
  3. 根据权利要求2所述的方法,其特征在于,所述获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站,包括:
    基于所述无人机的可服务基站的覆盖范围,确定所述无人机不能得到蜂窝网络服务的非覆盖范围;
    基于所述非覆盖范围,确定目标基站;
    基于所述第一组可接入基站和所述目标基站,确定所述第二组可接入基站。
  4. 根据权利要求2所述的方法,其特征在于,所述获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息,包括:
    向所述第一组可接入基站中每一个基站发送请求消息;
    接收所述每一个基站基于所述请求消息返回的覆盖范围和负载信息。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述无人机的当前接入基站发送所述目标飞行路径,用于所述无人机的当前接入基站将所述目标飞行路径转发至所述无人机;或者,
    向所述无人机管理平台的当前接入基站发送所述目标飞行路径,用于所述无人机管理平台的当前接入基站将所述目标飞行路径转发至所述无人机管理平台。
  6. 根据权利要求1所述的方法,其特征在于,所述获取无人机管理平台为无人机设置的初始飞行路径,包括:
    接收所述无人机通过无人机的当前接入基站发送的所述初始飞行路径;或者,
    接收所述无人机管理平台通过无人机管理平台的当前接入基站发送的所述初始飞行路径。
  7. 一种无人机飞行路径的确定装置,其特征在于,应用在核心网设备上,所述装置包括:
    第一获取模块,被配置为获取无人机管理平台为无人机设置的初始飞行路径;
    第一确定模块,被配置为基于所述第一获取模块获取的所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
    第二获取模块,被配置为在所述第一确定模块确定的所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务时,获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
    第二确定模块,被配置为将所述第二获取模块获取的所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第三获取模块,被配置为获取所述第一组可接入基站中每一个基站的覆盖范围和负载信息;
    第三确定模块,被配置为基于所述每一个基站的负载信息,确定能够服务所述无人机的可服务基站;
    第四确定模块,被配置为在所述每一个可服务基站的覆盖范围不能完全覆盖所述初始飞行路径,确定所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务。
  9. 根据权利要求8所述的装置,其特征在于,所述第二获取模块包括:
    第一确定子模块,被配置为基于所述无人机的可服务基站的覆盖范围,确定所述无人机不能得到蜂窝网络服务的非覆盖范围;
    获取子模块,被配置为基于所述非覆盖范围,确定目标基站;
    第二确定子模块,被配置为基于所述第一组可接入基站和所述目标基站,确定所述第二组可接入基站。
  10. 根据权利要求8所述的装置,其特征在于,所述第三获取模块包括:
    发送子模块,被配置为向所述第一组可接入基站中每一个基站发送请求消息;
    第一接收子模块,被配置为接收所述每一个基站基于所述请求消息返回的覆盖范 围和负载信息。
  11. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第一发送模块,被配置为向所述无人机的当前接入基站发送所述目标飞行路径,用于所述无人机的当前接入基站将所述目标飞行路径转发至所述无人机;或者,
    第二发送模块,被配置为向所述无人机管理平台的当前接入基站发送所述目标飞行路径,用于所述无人机管理平台的当前接入基站将所述目标飞行路径转发至所述无人机管理平台。
  12. 根据权利要求7所述的装置,其特征在于,所述第一获取模块包括:
    第二接收子模块,被配置为接收所述无人机通过无人机的当前接入基站发送的所述初始飞行路径;或者,
    第三接收子模块,被配置为接收所述无人机管理平台通过无人机管理平台的当前接入基站发送的所述初始飞行路径。
  13. 一种核心网设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取无人机管理平台为无人机设置的初始飞行路径;
    基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
    如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
    将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
  14. 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:
    获取无人机管理平台为无人机设置的初始飞行路径;
    基于所述初始飞行路径,确定无人机在所述初始飞行路径上的第一组可接入基站,所述第一组可接入基站为所述无人机基于所述初始飞行路径飞行时的可接入基站;
    如果所述第一组可接入基站不能为所述无人机提供连续的蜂窝网络服务,则获取能够为所述无人机提供连续的蜂窝网络服务的第二组可接入基站;
    将所述第二组可接入基站对应的飞行路径确定为目标飞行路径。
PCT/CN2017/117773 2017-12-21 2017-12-21 无人机飞行路径的确定方法及装置 WO2019119355A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2017/117773 WO2019119355A1 (zh) 2017-12-21 2017-12-21 无人机飞行路径的确定方法及装置
US16/770,597 US11557212B2 (en) 2017-12-21 2017-12-21 Method and device for determining flight path of unmanned aerial vehicle
CN201780002322.1A CN108401438B (zh) 2017-12-21 2017-12-21 无人机飞行路径的确定方法及装置
EP17935454.3A EP3731056B1 (en) 2017-12-21 2017-12-21 Method and device for determining flight path of unmanned aerial vehicle
ES17935454T ES2928658T3 (es) 2017-12-21 2017-12-21 Procedimiento y dispositivo para determinar la trayectoria de vuelo de un vehículo aéreo no tripulado

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117773 WO2019119355A1 (zh) 2017-12-21 2017-12-21 无人机飞行路径的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2019119355A1 true WO2019119355A1 (zh) 2019-06-27

Family

ID=63095103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117773 WO2019119355A1 (zh) 2017-12-21 2017-12-21 无人机飞行路径的确定方法及装置

Country Status (5)

Country Link
US (1) US11557212B2 (zh)
EP (1) EP3731056B1 (zh)
CN (1) CN108401438B (zh)
ES (1) ES2928658T3 (zh)
WO (1) WO2019119355A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858154B2 (ja) * 2018-03-30 2021-04-14 Kddi株式会社 ノード装置及びその制御方法、並びにプログラム
CN109196794B (zh) * 2018-08-30 2021-09-07 北京小米移动软件有限公司 飞行路径的配置方法及装置、飞行方法及装置和基站
CN113708825B (zh) * 2018-08-30 2023-02-17 北京小米移动软件有限公司 无人机飞行路径提供方法、获取方法、装置及系统
CN109346845B (zh) * 2018-09-14 2021-06-29 中国联合网络通信集团有限公司 天线调整方法、装置、设备、无人机系统及可读存储介质
US20210331799A1 (en) * 2018-09-27 2021-10-28 Beijing Xiaomi Mobile Software Co., Ltd. Method, device and system for providing flight path of unmanned aerial vehicle
WO2020061909A1 (zh) * 2018-09-27 2020-04-02 北京小米移动软件有限公司 无人机飞行路径提供方法、获取方法、装置及系统
CN109275094B (zh) * 2018-11-02 2019-10-22 北京邮电大学 一种高能效无人机覆盖点连续覆盖方法和装置
CN111246365B (zh) * 2018-11-29 2022-04-22 华为技术有限公司 一种移动路线的管控方法、装置及系统
CN111435257B (zh) * 2019-01-14 2022-04-05 华为技术有限公司 一种移动路线确定方法及相关设备
CN111565440B (zh) * 2019-01-29 2022-04-22 华为技术有限公司 无线通信的方法和通信设备
CN111490816B (zh) * 2019-01-29 2022-02-25 华为技术有限公司 无线通信的方法和通信设备
CN110324849B (zh) * 2019-04-17 2022-10-25 中国联合网络通信集团有限公司 一种服务端、客户端和网络测试方法
EP4038357A4 (en) * 2019-10-04 2023-11-08 SeekOps Inc. GENERATION OF FLIGHT PATTERNS WITH A CLOSED SURFACE FOR FLUX LEVEL ASSESSMENT OF UNMANNED AERIAL VEHICLES (UAV)
CN111147294B (zh) * 2019-12-19 2022-08-16 达闼机器人股份有限公司 配置通信资源的方法、装置、存储介质及电子设备
CN111277320B (zh) * 2020-01-21 2021-06-11 北京大学 一种蜂窝网联无人机轨迹设计和干扰管理的方法及装置
CN111446990B (zh) * 2020-03-12 2021-07-06 北京大学 一种蜂窝无人机u2x通信模式选择和轨迹设计方法及装置
CN111818596B (zh) * 2020-05-21 2022-04-08 蓓安科仪(北京)技术有限公司 一种基于5g的医用机器人通信质量优化方法
JP7392622B2 (ja) * 2020-09-30 2023-12-06 トヨタ自動車株式会社 無人航空機の制御方法、サーバ、及び、無人航空機
CN116107342B (zh) * 2023-03-08 2024-01-16 广州爱浦路网络技术有限公司 一种基于5gs的无人机飞行方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828345A (zh) * 2016-05-06 2016-08-03 华南农业大学 一种兼容uav的地空无线传感网络通信装置与方法
WO2016125161A1 (en) * 2015-02-04 2016-08-11 Moshe Zach Flight management system for uavs
CN106662873A (zh) * 2015-12-14 2017-05-10 瑞典爱立信有限公司 基于无线电网络条件对计划的移动的调整

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8645005B2 (en) * 2009-10-01 2014-02-04 Alfred B. Elkins Multipurpose modular airship systems and methods
US8849274B2 (en) * 2012-01-19 2014-09-30 Gregory Thane Wyler System and method for multiple mode communication
GB201218963D0 (en) * 2012-10-22 2012-12-05 Bcb Int Ltd Micro unmanned aerial vehicle and method of control therefor
GB201316013D0 (en) 2013-09-09 2013-10-23 Tomtom Dev Germany Gmbh Methods and systems for generating alternative routes
US10255817B2 (en) 2014-01-31 2019-04-09 Tata Consultancy Services Limited Computer implemented system and method for providing robust communication links to unmanned aerial vehicles
US9853712B2 (en) * 2014-02-17 2017-12-26 Ubiqomm Llc Broadband access system via drone/UAV platforms
US9859972B2 (en) * 2014-02-17 2018-01-02 Ubiqomm Llc Broadband access to mobile platforms using drone/UAV background
WO2016033797A1 (en) * 2014-09-05 2016-03-10 SZ DJI Technology Co., Ltd. Multi-sensor environmental mapping
CN107615822B (zh) * 2015-04-10 2021-05-28 深圳市大疆创新科技有限公司 向无人飞行器提供通信覆盖范围的方法、设备和系统
US9818303B2 (en) 2015-06-16 2017-11-14 Verizon Patent And Licensing Inc. Dynamic navigation of UAVs using three dimensional network coverage information
US10586464B2 (en) * 2015-07-29 2020-03-10 Warren F. LeBlanc Unmanned aerial vehicles
US10257842B2 (en) * 2015-08-18 2019-04-09 Samsung Electronics Co., Ltd Method and apparatus for providing zone based coooperation to user equipment (UE) in a wireless communication network
CN105119650B (zh) * 2015-08-24 2018-03-02 杨珊珊 基于无人飞行器的信号中继系统及其信号中继方法
US20180077617A1 (en) * 2016-09-09 2018-03-15 Qualcomm Incorporated Wireless Communication Enhancements for Unmanned Aerial Vehicle Communications
US10206161B2 (en) * 2016-10-13 2019-02-12 The Boeing Company Wireless communications system and method for managing and optimizing a wireless communications network
US10269133B2 (en) * 2017-01-03 2019-04-23 Qualcomm Incorporated Capturing images of a game by an unmanned autonomous vehicle
US10776744B1 (en) * 2017-03-29 2020-09-15 Amazon Technologies, Inc. Simulated flight data to determine delivery timeframes for aerial item delivery
US20180292374A1 (en) * 2017-04-05 2018-10-11 International Business Machines Corporation Detecting gas leaks using unmanned aerial vehicles
US11046430B1 (en) * 2017-04-17 2021-06-29 United States Of America As Represented By The Administrator Of Nasa Intelligent trajectory adviser system for unmanned aerial vehicles in complex environments
US20190041225A1 (en) 2017-08-04 2019-02-07 Walmart Apollo, Llc Systems, devices, and methods for generating vehicle routes within signal coverage zones
JP6689916B2 (ja) * 2018-06-19 2020-04-28 Hapsモバイル株式会社 通信中継装置、システム、管理装置、並びに、通信中継装置の飛行を制御する方法及びプログラム
US11094204B2 (en) * 2018-11-29 2021-08-17 International Business Machines Corporation Unmanned aerial vehicle flight path efficiency through aerodynamic drafting
US11166175B2 (en) * 2018-11-30 2021-11-02 T-Mobile Usa, Inc. UAV modular redundant communications
JP7296236B2 (ja) * 2019-03-29 2023-06-22 Hapsモバイル株式会社 Haps通信システムにおけるマルチフィーダリンク構成及びその制御

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125161A1 (en) * 2015-02-04 2016-08-11 Moshe Zach Flight management system for uavs
CN106662873A (zh) * 2015-12-14 2017-05-10 瑞典爱立信有限公司 基于无线电网络条件对计划的移动的调整
CN105828345A (zh) * 2016-05-06 2016-08-03 华南农业大学 一种兼容uav的地空无线传感网络通信装置与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731056A4 *

Also Published As

Publication number Publication date
US20210366295A1 (en) 2021-11-25
EP3731056A4 (en) 2021-06-02
US11557212B2 (en) 2023-01-17
CN108401438A (zh) 2018-08-14
EP3731056A1 (en) 2020-10-28
ES2928658T3 (es) 2022-11-21
CN108401438B (zh) 2022-11-18
EP3731056B1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
WO2019119355A1 (zh) 无人机飞行路径的确定方法及装置
WO2019084871A1 (zh) 无人机飞行信息的传输方法、装置、基站及核心网设备
US11961405B2 (en) Protocol design for unmanned aerial system (UAS) traffic management (UTM)
US20220277657A1 (en) Methods and Apparatus for Enhancing Unmanned Aerial Vehicle Management Using a Wireless Network
US11825319B2 (en) Systems and methods for monitoring performance in distributed edge computing networks
CN111868802A (zh) 用于无人驾驶航空系统业务管理(utm)系统应用的移动边缘计算(mec)部署的方法
US11579606B2 (en) User equipment, system, and control method for controlling drone
WO2019090724A1 (zh) 用于无人机切换的方法、装置及基站
WO2019237314A1 (zh) 信息传输方法及装置
US20230397155A1 (en) Height-Based Management of Wireless Device
CN108781379B (zh) 用于识别无人机的方法、装置、移动管理实体及基站
US20230413225A1 (en) Change of Height of Wireless Device
KR20200035692A (ko) 드론 관제 방법과 시스템 및 이를 위한 장치
CN109417421A (zh) 无人机飞行路径提供方法、装置及系统
WO2020243929A1 (en) Method and apparatus for application services over a cellular network
US11670177B2 (en) Unmanned aerial vehicle remote identification, command and control
CN115004853A (zh) 信息传输方法及装置、存储介质
CN111512666A (zh) 在蜂窝网络中的连接建立
KR20210039737A (ko) 이동통신 네트워크에서 네트워크 간섭을 피하여 무인 항공기 경로를 설정하는 방법 및 장치
WO2024060041A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2018171200A1 (zh) 位置关系确定方法及装置
WO2023160655A1 (zh) 一种通信方法及装置
US11882489B2 (en) System and method for generating and using a differentiated neighbor list
WO2024140741A1 (zh) 注册方法及相关设备
US20240205810A1 (en) Systems and methods for network slice and subscriber profile management for flight paths across multiple networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017935454

Country of ref document: EP

Effective date: 20200721