WO2019116989A1 - 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル - Google Patents

液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル Download PDF

Info

Publication number
WO2019116989A1
WO2019116989A1 PCT/JP2018/044759 JP2018044759W WO2019116989A1 WO 2019116989 A1 WO2019116989 A1 WO 2019116989A1 JP 2018044759 W JP2018044759 W JP 2018044759W WO 2019116989 A1 WO2019116989 A1 WO 2019116989A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
group
alignment layer
crystal alignment
Prior art date
Application number
PCT/JP2018/044759
Other languages
English (en)
French (fr)
Inventor
菜津美 藤原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019559581A priority Critical patent/JP7276143B2/ja
Publication of WO2019116989A1 publication Critical patent/WO2019116989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a liquid crystal alignment layer and a method for producing the same, an optical film and a method for producing the same, a quarter wavelength plate, a polarizing plate and an organic electroluminescence display panel.
  • a film manufactured using a liquid crystal compound is known as one of optical films.
  • This film generally includes a liquid crystal cured layer formed of a cured product in which a liquid crystal composition containing a liquid crystal compound is aligned and cured while maintaining the alignment state.
  • a liquid crystal composition containing a liquid crystal compound is aligned and cured while maintaining the alignment state.
  • Patent No. 5363022 gazette
  • the liquid crystal cured layer included in the optical film usually contains a liquid crystal compound.
  • the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer.
  • the tilt angle of the molecules of the liquid crystal compound is appropriately adjusted in order to obtain good viewing angle characteristics. It is desirable to do.
  • an organic electroluminescence display panel (hereinafter sometimes referred to as “organic EL display panel” as appropriate) has a circularly polarized light as a reflection suppressing film for suppressing reflection of external light on its display surface.
  • a plate and a polarizing plate such as an elliptically polarizing plate may be provided.
  • This polarizing plate usually includes a combination of a linear polarizer and a retardation film. It is preferable to adjust birefringence in the thickness direction of the retardation film from the viewpoint of suppressing reflection and obtaining excellent viewing angle characteristics when the display surface is viewed from the inclined direction. Therefore, in order to realize a retardation film having an appropriate birefringence in the thickness direction, the present inventor attempts to develop an optical film provided with a liquid crystal cured layer in which the tilt angle of the molecules of the liquid crystal compound is appropriately adjusted.
  • the above-mentioned retardation film has in-plane retardation of reverse wavelength dispersion. Therefore, when using a film provided with a liquid crystal cured layer as a retardation film, a liquid crystalline compound capable of expressing birefringence with reverse wavelength dispersion (hereinafter sometimes referred to as “reverse dispersed liquid crystalline compound” as appropriate) is used. Is desired.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide an optical film having reverse wavelength dispersive in-plane retardation, capable of suppressing the occurrence of alignment defects, and having excellent viewing angle characteristics.
  • Liquid crystal alignment layer capable of producing the same, and an optical film having an in-plane retardation of reverse wavelength dispersion, capable of suppressing the occurrence of alignment defects, and excellent in viewing angle characteristics, and a method of manufacturing the liquid crystal
  • a quarter wave plate provided with a layer or an optical film; a polarizing plate provided with the liquid crystal alignment layer or the optical film; and an organic electroluminescent display panel provided with the liquid crystal alignment layer or the optical film described above; Do.
  • the present inventors diligently studied to solve the above-mentioned problems. As a result, the present inventor has obtained reverse wavelength dispersion by using a predetermined liquid crystal alignment layer formed of a cured product of an alignment layer composition containing a reverse dispersion liquid crystal compound and a surfactant containing a fluorine atom. It has been found that it is possible to obtain an optical film having an in-plane retardation of, an occurrence of an orientation defect and an excellent viewing angle characteristic, thereby completing the present invention. That is, the present invention includes the following.
  • the liquid crystalline compound formed of a cured product of an alignment layer composition comprising a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence, and a surfactant containing a fluorine atom, wherein the alignment state is fixed
  • a liquid crystal alignment layer containing molecules of the compound, At least a part of molecules of the liquid crystal compound contained in the liquid crystal alignment layer are inclined with respect to a layer plane of the liquid crystal alignment layer,
  • the liquid crystal alignment layer has a ratio M F / T of the surface fluorine atomic weight M F [mol%] measured by X-ray photoelectron spectroscopy to the thickness T of the liquid crystal alignment layer [ ⁇ m] of 3.0 to 16.0.
  • the liquid crystal alignment layer has a surface that is less than The liquid crystal aligning layer whose thickness T of the said liquid crystal aligning layer is 2.5 micrometers or less.
  • the step of forming the layer of the inclined layer composition directly on the surface of the liquid crystal alignment layer does not perform rubbing on the surface of the liquid crystal alignment layer, but directly on the surface of the liquid crystal alignment layer
  • the manufacturing method of the optical film of the [6] description including forming the layer of the said inclination layer composition.
  • a quarter-wave plate comprising the liquid crystal alignment layer according to [1] or [2] or the optical film according to [3] or [4].
  • a polarizing plate comprising the liquid crystal alignment layer according to [1] or [2], or the optical film according to [3] or [4].
  • An organic electroluminescence display panel comprising the liquid crystal alignment layer according to [1] or [2] or the optical film according to [3] or [4].
  • a liquid crystal alignment layer capable of obtaining an optical film having reverse wavelength dispersive in-plane retardation, capable of suppressing the occurrence of alignment defects, and having excellent viewing angle characteristics, and a method of manufacturing the same.
  • a plate a polarizing plate comprising the liquid crystal alignment layer or the optical film described above; and an organic electroluminescent display panel comprising the liquid crystal alignment layer or the optical film described above.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal alignment layer according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention.
  • FIG. 3 is a graph in which the retardation ratio R ( ⁇ ) / R (0 °) of the liquid crystal alignment layer according to an example is plotted against the incident angle ⁇ .
  • FIG. 4 is sectional drawing which shows typically the layer of alignment layer composition obtained in the middle of manufacture of the liquid crystal aligning layer which concerns on one Embodiment.
  • FIG. 5 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal alignment layer from the tilt direction.
  • the “in-plane direction” of a layer means a direction parallel to the layer plane unless otherwise specified.
  • the “thickness direction” of a certain layer indicates the direction perpendicular to the plane of the layer, unless otherwise specified. Therefore, unless otherwise specified, the in-plane direction and thickness direction of a given layer are perpendicular.
  • the “front direction” of a surface means the normal direction of the surface unless specifically stated otherwise, and specifically refers to the direction of the polar angle of 0 ° of the surface.
  • the “inclination direction” of a surface means a direction neither parallel nor perpendicular to the surface unless specifically stated otherwise, specifically, the polar angle of the surface is in the range of 5 ° to 85 °. Point in the direction of
  • the birefringence ⁇ n (450) at a wavelength of 450 nm and the birefringence ⁇ n (550) at a wavelength of 550 nm satisfy the following formula (N1) unless otherwise specified: Say Generally, a liquid crystal compound capable of expressing such reverse wavelength dispersive birefringence can exhibit greater birefringence as the measurement wavelength is longer. ⁇ n (450) ⁇ n (550) (N1)
  • the birefringence ⁇ n (450) at a wavelength of 450 nm and the birefringence ⁇ n (550) at a wavelength of 550 nm satisfy the following formula (N2), unless otherwise specified.
  • N2 the following formula
  • (meth) acrylic acid is a term including “acrylic acid”, “methacrylic acid” and a combination thereof.
  • nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer and in the direction giving the maximum refractive index.
  • ny represents the refractive index of the in-plane direction of the layer, which is perpendicular to the nx direction.
  • d represents the thickness of the layer.
  • the measurement wavelength of retardation is 590 nm unless otherwise stated.
  • the in-plane retardation Re can be measured using a retardation meter ("AxoScan" manufactured by Axometrics).
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto.
  • a resin having a negative intrinsic birefringence value means a resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the direction of the slow axis of a layer means the direction of the slow axis in the in-plane direction unless otherwise specified.
  • the "tilt angle" of the molecules of the liquid crystal compound contained in a certain layer means the angle that the molecules of the liquid crystal compound form with respect to the layer plane, and "tilt angle” Sometimes called.
  • This inclination angle corresponds to the largest angle among the angles that the direction of the largest refractive index makes with the layer plane in the refractive index ellipsoid of the molecules of the liquid crystal compound.
  • the “tilt angle” refers to the tilt angle of the molecules of the liquid crystal compound relative to the layer plane of the layer in which the liquid crystal compound is contained.
  • the inclination angle with respect to the layer plane may be referred to as “inclination angle with respect to the in-plane direction” parallel to the layer plane.
  • the “substantially maximum tilt angle” of the molecules of the liquid crystal compound contained in a layer means that the tilt angle of the molecule on one side of the layer is 0 ° and the tilt angle of the molecule is thick The maximum value of the tilt angle of the molecules of the liquid crystal compound, assuming that the directions change at a constant rate.
  • the inclination angle of the molecules of the liquid crystal compound is smaller in the thickness direction as it is closer to one side of the layer and larger as it is farther from the one side.
  • the actual maximum inclination angle is calculated on the assumption that the ratio of the change of the inclination angle in the thickness direction (ie, the ratio of the change decreasing closer to one side and increasing increasing farther from one side) is constant. Represents the maximum value of the tilt angle.
  • the number of carbon atoms of the group having a substituent does not include the number of carbon atoms of the substituent unless otherwise specified.
  • an alkyl group having 1 to 20 carbon atoms which may have a substituent means that the alkyl group itself does not include the carbon atom number of the substituent, and the carbon atom number is 1 to 20. Represents that.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal alignment layer 100 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an optical film 200 according to an embodiment of the present invention.
  • the liquid crystal alignment layer 100 according to an embodiment of the present invention is a liquid crystal tilt layer 210 formed of a cured product of a liquid crystal composition containing a liquid crystal compound on the liquid crystal alignment layer 100. Is a layer to be formed.
  • the optical film 200 is obtained by the manufacturing method including forming the liquid crystal inclined layer 210 on the liquid crystal alignment layer 100.
  • both the liquid crystal alignment layer 100 and the liquid crystal gradient layer 210 correspond to a liquid crystal cured layer as a layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound
  • “liquid crystal The alignment layer 100 and the liquid crystal gradient layer 210 are called separately.
  • the liquid crystal composition used for forming the liquid crystal alignment layer 100 is referred to as “alignment layer”
  • the liquid crystal composition used to form the liquid crystal gradient layer 210 is referred to as “composition”, and is referred to as “gradient layer composition”.
  • the entire liquid crystal cured layer having a multilayer structure including the liquid crystal alignment layer 100 and the liquid crystal gradient layer 210 may be referred to as a "composite liquid crystal layer" 220.
  • the liquid crystal alignment layer 100 is formed of a cured product of an alignment layer composition including a reverse dispersion liquid crystal compound (that is, a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence) and a fluorine-based surfactant.
  • a reverse dispersion liquid crystal compound that is, a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence
  • fluorine-based surfactant refers to a surfactant containing a fluorine atom.
  • the liquid crystal alignment layer 100 contains molecules of the reversely dispersed liquid crystal compound in which the alignment state is fixed.
  • the term "inverse-dispersed liquid crystal compound with fixed orientation" includes polymers of the inverse-dispersed liquid crystal compound. Usually, the liquid crystallinity of the reverse dispersed liquid crystalline compound is lost by polymerization, but in the present application, the reverse dispersed liquid crystalline compound thus polymerized is also included in the term “reverse dispersed liquid crystalline compound contained in the liquid crystal alignment layer”.
  • the liquid crystal alignment layer 100 may include the molecules of the reverse dispersion liquid crystal compound whose alignment state is not fixed in combination with the molecules of the reverse dispersion liquid crystal compound whose alignment state is fixed, but the liquid crystal alignment layer 100 includes It is preferable that all of the molecules of the inverse-dispersed liquid crystalline compound to be fixed be in an oriented state.
  • At least a part of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer 100 is inclined with respect to the layer plane of the liquid crystal alignment layer 100 (that is, in the in-plane direction).
  • the tilt angle of the molecule with respect to the layer plane ie with respect to the in-plane direction
  • the molecules of the liquid crystal compound thus inclined are usually neither parallel nor perpendicular to the layer plane (ie, to the in-plane direction).
  • the liquid crystal alignment layer 100 is a surface having a ratio M F / T of the surface fluorine atomic weight M F [mol%] measured by X-ray photoelectron spectroscopy to the thickness T [ ⁇ m] of the liquid crystal alignment layer in a predetermined range. It has 100 U.
  • this surface 100U will be referred to as "specific surface” as appropriate. Therefore, the ratio M F / T of the surface fluorine atomic weight M F [mol%] measured by X-ray photoelectron spectroscopy on the specific surface 100 U of the liquid crystal alignment layer 100 and the thickness T [ ⁇ m] of the liquid crystal alignment layer 100 is It is in a predetermined range.
  • the specific range of the ratio M F / T is usually 3.0 or more, preferably 3.2 or more, more preferably 3.5 or more, and usually less than 16.0, preferably 15.5 or less. More preferably, it is 15.0 or less.
  • the surface fluorine atomic weight M F in the specific surface 100 U of the liquid crystal alignment layer 100 is all atoms except hydrogen (H) present in the specific surface 100 U of the liquid crystal alignment layer 100 by X-ray photoelectron spectroscopy described in the examples described later. It can be measured as the molar content of fluorine (F) atoms contained therein.
  • the thickness T of the liquid crystal alignment layer 100 is usually 2.5 ⁇ m or less, preferably less than 2.0 ⁇ m, more preferably 1.8 ⁇ m or less, still more preferably 1.6 ⁇ m or less, particularly preferably 1.0 ⁇ m or less.
  • the lower limit of the thickness T of the liquid crystal alignment layer 100 is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more.
  • the specific surface 100U of the liquid crystal alignment layer 100 containing the reversely dispersed liquid crystal compound in which the molecules are inclined with respect to the layer plane (that is, in the in-plane direction) is a layer of the inclined layer composition on the specific surface 100U.
  • the molecules of the reversely dispersed liquid crystal compound contained in the layer of the gradient layer composition are inclined with respect to the layer plane (that is, in the in-plane direction). Therefore, according to the liquid crystal alignment layer 100, since the inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal inclined layer 210 formed on the specific surface 100U can be increased, the optical film 200 excellent in the viewing angle characteristics.
  • both the liquid crystal alignment layer 100 and the liquid crystal gradient layer 210 contain the reverse dispersion liquid crystal compound, the obtained optical film 200 can have an in-plane retardation of reverse wavelength dispersion. Furthermore, in the liquid crystal alignment layer 100 described above, the occurrence of alignment defects can be suppressed while aligning the molecules of the reverse dispersion liquid crystal compound so as to be inclined with respect to the layer plane (that is, with respect to the in-plane direction). Therefore, according to the liquid crystal alignment layer 100 as described above, it is possible to obtain the optical film 200 having reverse wavelength dispersive in-plane retardation, capable of suppressing the occurrence of alignment defects, and having excellent viewing angle characteristics. it can.
  • a method of adjusting the ratio M F / T for example, a method of adjusting the surface fluorine atomic weight M F and the thickness T of the specific surface 100U of the liquid crystal alignment layer 100 may be mentioned. Further, as a method of adjusting the surface fluorine atomic weight M F of the specific surface 100U of the liquid crystal alignment layer 100, for example, the type of fluorine surfactant, the combination of the reverse dispersion liquid crystal compound and the fluorine surfactant, and alignment The method of adjusting the density
  • the reverse dispersion liquid crystal compound is a compound having liquid crystallinity, and is usually a compound capable of exhibiting a liquid crystal phase when the reverse dispersion liquid crystal compound is aligned.
  • the reverse dispersion liquid crystal compound is a liquid crystal compound capable of exhibiting reverse wavelength dispersive birefringence.
  • a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence forms a layer of the liquid crystal compound, and when the liquid crystal compound is aligned in the layer, the reverse wavelength dispersive birefringence is formed. It refers to a liquid crystalline compound that develops.
  • the liquid crystal compound when the liquid crystal compound is homogeneously aligned, the liquid crystal compound exhibits reverse wavelength dispersive birefringence by examining whether the layer of the liquid crystal compound exhibits reverse wavelength dispersive birefringence.
  • the liquid crystal compound means to form a layer containing the liquid crystal compound, and the long axis direction of the mesogen skeleton of the molecules of the liquid crystal compound in the layer is parallel to the plane of the layer. It refers to orienting in one direction.
  • the direction in which the longest type of mesogen is oriented is the above-mentioned orientation direction.
  • the birefringence of the layer is determined from "(in-plane retardation of layer) / (thickness of layer)".
  • the reverse dispersed liquid crystal compound may be a compound containing, in the molecule of the reverse dispersed liquid crystal compound, a main chain mesogen and a side chain mesogen bonded to the main chain mesogen.
  • the reverse dispersed liquid crystal compound containing the main chain mesogen and the side chain mesogen can be oriented in a direction different from that of the main chain mesogen in a state in which the reverse dispersed liquid crystal compound is aligned. Therefore, in the layer of the reversely dispersed liquid crystal compound thus oriented, the main chain mesogen and the side chain mesogen may be oriented in different directions.
  • the birefringence of the layer is expressed as a difference between the refractive index corresponding to the main chain mesogen and the refractive index corresponding to the side chain mesogen, and as a result, reverse wavelength dispersive birefringence can be expressed.
  • the reverse dispersion liquid crystal compound preferably has polymerizability. Therefore, in the reversely dispersed liquid crystal compound, the molecule preferably contains a polymerizable group such as an acryloyl group, a methacryloyl group, and an epoxy group.
  • the reverse-dispersed liquid crystal compound having a polymerizing property can be polymerized in the state of exhibiting a liquid crystal phase, and can be a polymer while maintaining the alignment state of the molecules in the liquid crystal phase. Therefore, it is possible to fix the alignment state of the reversely dispersed liquid crystal compound in the liquid crystal alignment layer, or to increase the degree of polymerization of the liquid crystal compound to increase the mechanical strength of the liquid crystal alignment layer.
  • the molecular weight of the reversely dispersed liquid crystal compound is preferably 300 or more, more preferably 500 or more, particularly preferably 800 or more, preferably 2000 or less, more preferably 1700 or less, particularly preferably 1500 or less.
  • the coatability of the alignment layer composition can be made particularly good.
  • the birefringence ⁇ n of the reversely dispersed liquid crystal compound at a measurement wavelength of 590 nm is preferably 0.01 or more, more preferably 0.03 or more, preferably 0.15 or less, more preferably 0.10 or less.
  • the reverse dispersion liquid crystal compound having the birefringence ⁇ n in such a range it is possible to easily obtain a liquid crystal alignment layer in which the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound is large.
  • an inverse dispersion liquid crystal compound having a birefringence ⁇ n in such a range it is easy to obtain a liquid crystal alignment layer with few alignment defects.
  • the birefringence of the liquid crystal compound can be measured, for example, by the following method. A layer of liquid crystal compound is produced, and the liquid crystal compound contained in the layer is homogeneously aligned. Thereafter, the in-plane retardation of the layer is measured. Then, the birefringence of the liquid crystal compound can be determined from “(in-plane retardation of layer) / (thickness of layer)”. Under the present circumstances, in order to make measurement of in-plane retardation and thickness easy, you may harden the layer of the liquid crystal compound which carried out homogeneous orientation.
  • One type of reverse dispersion liquid crystal compound may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • Examples of the reverse dispersion liquid crystal compound include those represented by the following formula (I).
  • Ar represents a group represented by any of the following formulas (II-1) to (II-7).
  • * represents a bonding position to Z 1 or Z 2 .
  • E 1 and E 2 are each independently —CR 11 R 12 —, —S—, —NR 11 —, —CO— and — It represents a group selected from the group consisting of O-.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Among them, E 1 and E 2 are preferably each independently —S—.
  • D 1 to D 3 each independently represent an aromatic hydrocarbon ring group which may have a substituent, or a substituent Represents an aromatic heterocyclic group which may be possessed.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 1 to D 3 is generally independently 2 to 100.
  • the number of carbon atoms of the aromatic hydrocarbon ring group in D 1 to D 3 is preferably 6 to 30.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 include a phenyl group and a naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is more preferable.
  • the aromatic hydrocarbon ring group in D 1 to D 3 may have, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom such as a methyl group, an ethyl group and a propyl group
  • a halogen atom such as a fluorine atom and a chlorine atom
  • a cyano group such as a carbon atom such as a methyl group, an ethyl group and a propyl group
  • R a represents an alkyl group having 1 to 6 carbon atoms; and an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms as a substituent, having 6 carbon atoms And a group selected from the group consisting of -20 aromatic hydrocarbon ring groups;
  • R b is an alkyl group having 1 to 20 carbon atoms which may have a substituent; an alkenyl group having 2 to 20 carbon atoms which may have a substituent; even if it has a substituent And a group selected from the group consisting of a good cycloalkyl group having 3 to 12 carbon atoms; and an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent.
  • the number of carbon atoms of the alkyl group having 1 to 20 carbon atoms for R b is preferably 1 to 12, and more preferably 4 to 10.
  • a C1-C20 alkyl group in R b for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group , Sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group , N-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group
  • the substituent which the alkyl group having 1 to 20 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like; N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy
  • the number of carbon atoms of the alkenyl group having 2 to 20 carbon atoms for R b is preferably 2 to 12.
  • a C2-C20 alkenyl group in R b for example, a vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group And dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icosenyl group and the like.
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R b include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R b.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms as R b include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Among them, as a cycloalkyl group, a cyclopentyl group and a cyclohexyl group are preferable.
  • the substituent that the cycloalkyl group having 3 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a cyano group; a dimethylamino group or the like N, N-dialkylamino groups; alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl and propyl; and alkoxy having 1 to 6 carbon atoms, such as methoxy, ethoxy and isopropoxy. And nitro aromatic group, and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group.
  • a substituent of the cycloalkyl group a halogen atom such as fluorine atom and chlorine atom; cyano group; an alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; methoxy group, ethoxy
  • An alkoxy group having 1 to 6 carbon atoms such as a group and isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms as R b include a phenyl group, a 1-naphthyl group and a 2-naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is preferable.
  • the substituent that the aromatic hydrocarbon ring group having 6 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a carbon atom number such as a cyano group; a dimethylamino group 2 to 12 N, N-dialkylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group and butoxy group; carbon atom number such as methoxymethoxy group and methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group of 1 to 12; nitro group; an aromatic heterocyclic group having 2 to 20 carbon atoms such as triazolyl group, pyrrolyl group, furanyl group, thiophenyl group, etc .; A cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl group, cyclopenty
  • a halogen atom such as a fluorine atom or a chlorine atom
  • a cyano group such as a fluorine atom or a chlorine atom
  • a cyano group such as a fluorine atom or a chlorine atom
  • a cyano group such as a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group, etc.
  • Alkoxy group Alkoxy group; nitro group; aromatic heterocyclic group having 2 to 20 carbon atoms such as furanyl group and thiophenyl group; cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; A fluoroalkyl group having 1 to 12 carbon atoms, in which one or more hydrogen atoms are substituted with a fluorine atom, such as trifluoromethyl group, pentafluoroethyl group, -CH 2 CF 3 and the like; -OCF 3 ; is preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • the number of carbon atoms of the aromatic heterocyclic group in D 1 to D 3 is preferably 2 to 30.
  • Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 include 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, furazanyl group, oxazolyl group, quinolyl group, and thiadiazolyl group.
  • aromatic heterocyclic group monocyclic aromatic heterocyclic groups such as furanyl group, pyranyl group, thienyl group, oxazolyl group, furazanyl group, thiazolyl group, and thiadiazolyl group; and benzothiazolyl group, benzooxa group Zoryl group, quinolyl group, 1-benzofuranyl group, 2-benzofuranyl group, phthalimido group, benzo [c] thienyl group, benzo [b] thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzisoxazolate
  • aromatic heterocyclic groups such as fused rings, such as a ring group, a benzoxadiazolyl group, and a benzothiadiazolyl group.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • D 4 to D 5 each independently represent an acyclic group which may have a substituent. D 4 and D 5 may together form a ring.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 4 to D 5 is generally independently 1 to 100.
  • the number of carbon atoms of the noncyclic group in D 4 to D 5 is preferably 1 to 13.
  • the above Ph represents a phenyl group.
  • R x represents an organic group having 1 to 12 carbon atoms.
  • R x include an alkoxy group having 1 to 12 carbon atoms, and an alkyl group having 1 to 12 carbon atoms which may be substituted with a hydroxyl group.
  • Examples of the substituent that the noncyclic group in D 4 to D 5 may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • D 4 and D 5 When D 4 and D 5 are taken together to form a ring, the above-mentioned D 4 and D 5 form an organic group containing a ring.
  • this organic group the group represented by a following formula is mentioned, for example.
  • * represents the position where each organic group is bonded to the carbon to which D 4 and D 5 are bonded.
  • R * represents an alkyl group having 1 to 3 carbon atoms.
  • R ** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R *** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R **** is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, hydroxyl group, and represents a group selected from the group consisting of -COOR 13.
  • R 13 represents an alkyl group having 1 to 3 carbon atoms.
  • a substituent which a phenyl group may have, for example, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group and an amino group
  • a substituent a halogen atom, an alkyl group, a cyano group and an alkoxy group are preferable.
  • the number of substituents which a phenyl group has may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 6 is usually 3 to 100.
  • R f represents a hydrogen atom; and a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl and isopropyl.
  • R g represents a group selected from the group consisting of a hydrogen atom; and an organic group having 1 to 30 carbon atoms which may have a substituent.
  • the preferable carbon atom number range and examples of the alkyl group having 1 to 20 carbon atoms in R g are the same as the alkyl group having 1 to 20 carbon atoms in R b .
  • the substituent which the alkyl group having 1 to 20 carbon atoms in R g may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like, and the like.
  • N, N-dialkylamino group an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy
  • Alkyl group cycloalkyloxy group having 3 to 8 carbon atoms such as cyclopentyloxy group and cyclohexyloxy group; cyclic having 2 to 12 carbon atoms such as tetrahydrofuranyl group, tetrahydropyranyl group, dioxolanyl group, dioxanyl group and the like
  • An ether group an aryloxy group having 6 to 14 carbon atoms such as phenoxy group and naphthoxy group; a fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom; benzofuryl group; benzopyranyl A benzodioxolyl group; a benzodioxanyl group; -SO 2 R a ; -SR b ; an alkoxy group having 1 to 12 carbon atoms substituted with -SR b ; a hydroxyl group; and the like.
  • the preferable carbon atom number range and examples of the alkenyl group having 2 to 20 carbon atoms in R g are the same as the alkenyl group having 2 to 20 carbon atoms in R b .
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • alkynyl group having 2 to 20 carbon atoms for R g for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, 3-butynyl group, pentynyl group, 2- And pentynyl group, hexynyl group, 5-hexynyl group, heptynyl group, octynyl group, 2-octynyl group, nonanyl group, decanyl group, 7-decanyl group and the like.
  • Examples of the substituent which may have an alkynyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the cycloalkyl group having 3 to 12 carbon atoms in R b .
  • Examples of the substituent which may have a cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 .
  • Examples of the substituent that the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have.
  • Be The number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in R g include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 .
  • Examples of the substituent that the aromatic heterocyclic group having 2 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have. .
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
  • R h include (1) a hydrocarbon ring group having 6 to 40 carbon atoms, which has one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • the hydrocarbon ring group having an aromatic hydrocarbon ring may be appropriately referred to as “(1) hydrocarbon ring group”.
  • (1) Specific examples of the hydrocarbon ring group include the following groups.
  • the hydrocarbon ring group may have a substituent.
  • R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h includes (2) at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms. And heterocyclic groups having 2 to 40 carbon atoms.
  • the heterocyclic group having an aromatic ring may be appropriately referred to as "(2) heterocyclic group”.
  • the following groups may be mentioned as specific examples of the heterocyclic group.
  • Each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the heterocyclic group may have a substituent.
  • substituents that the (2) heterocyclic group may have include the same examples as the substituents that the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (3) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkyl group having 1 to 12 carbon atoms substituted by
  • this substituted alkyl group may be appropriately referred to as "(3) substituted alkyl group”.
  • Examples of the “alkyl group having 1 to 12 carbon atoms” in the substituted alkyl group include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • Examples of the "aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkyl group may further have a substituent.
  • substituent which the substituted alkyl group may have include the same examples as the substituent which the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (4) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkenyl group having 2 to 12 carbon atoms which is substituted by
  • this substituted alkenyl group may be referred to as “(4) substituted alkenyl group” as appropriate.
  • Examples of the “alkenyl group having 2 to 12 carbon atoms” in the substituted alkenyl group include a vinyl group and an allyl group.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkenyl group may further have a substituent.
  • a substituent which a substituted alkenyl group may have the same example as a substituent which (1) hydrocarbon ring group may have is mentioned, for example.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (5) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkynyl group having 2 to 12 carbon atoms which is substituted by
  • this substituted alkynyl group may be referred to as “(5) substituted alkynyl group” as appropriate.
  • Examples of the “C 2-12 alkynyl group” in the substituted alkynyl group include ethynyl group and propynyl group.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkynyl group may further have a substituent.
  • substituents that the substituted alkynyl group may have (5) include the same examples as the substituent that the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h More preferable specific examples of R h include the following groups.
  • R h include the following groups.
  • R h described above may further have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; vinyl group, allyl group and the like
  • R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R i represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms.
  • R i include hydrocarbon ring groups having 6 to 40 carbon atoms, which have one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • another preferable example of R i has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms, And heterocyclic groups having 2 to 40 carbon atoms.
  • R i include the following groups.
  • the meaning of R is as described above.
  • the group represented by any one of formulas (II-1) to (II-7) may further have a substituent in addition to D 1 to D 6 .
  • substituents include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, and an N-alkylamino having 1 to 6 carbon atoms.
  • N, N-dialkylamino group having 2 to 12 carbon atoms alkoxy group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, carboxyl group, thioalkyl group having 1 to 6 carbon atoms And an N-alkylsulfamoyl group having 1 to 6 carbon atoms, and an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Preferred examples of Ar in the formula (I) include groups represented by the following formulas (III-1) to (III-10).
  • the groups represented by the formulas (III-1) to (III-10) may have an alkyl group having 1 to 6 carbon atoms as a substituent.
  • * represents a bonding position.
  • a 1 , A 2 , B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, and an aromatic which may have a substituent A group selected from the group consisting of
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by A 1 , A 2 , B 1 and B 2 is generally independently 3 to 100.
  • each of A 1 , A 2 , B 1 and B 2 independently has a cyclic aliphatic group having 5 to 20 carbon atoms which may have a substituent, or a substituent Preferred are aromatic groups having 2 to 20 carbon atoms.
  • cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 for example, cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, 1,4-cycloheptane-1,4 Cycloalkanediyl group having 5 to 20 carbon atoms, such as -diyl group, cyclooctane-1,5-diyl group; decahydronaphthalene-1,5-diyl group, decahydronaphthalene-2,6-diyl group, etc. And a bicycloalkanediyl group having 5 to 20 carbon atoms; and the like.
  • a cycloalkanediyl group having 5 to 20 carbon atoms which may be substituted is preferable, a cyclohexanediyl group is more preferable, and a cyclohexane-1,4-diyl group is particularly preferable.
  • the cyclic aliphatic group may be trans, cis or a mixture of cis and trans. Among them, the trans form is more preferable.
  • Examples of the substituent that the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, A nitro group, a cyano group, etc. are mentioned.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as 5-naphthylene group, 2,6-naphthylene group, 4,4′-biphenylene group, etc .; furan-2,5-diyl group, thiophene-2,5 -Aromatic heterocyclic groups having 2 to 20 carbon atoms, such as -diyl, pyridine-2, 5-diyl and pyrazine-2, 5-diyl; and the like.
  • an aromatic hydrocarbon ring group having 6 to 20 carbon atoms is preferable, a phenylene group is more preferable, and a 1,4-phenylene group is particularly preferable.
  • substituent which the aromatic group in A 1 , A 2 , B 1 and B 2 may have, for example, the same as the substituents which the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have An example is given.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Each of R 22 and R 23 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the hydrogen atom contained in the organic group of G 1 and G 2 may be substituted by an alkyl group of 1 to 5 carbon atoms, an alkoxy group of 1 to 5 carbon atoms, or a halogen atom.
  • Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 1 to 20 carbon atoms.
  • Specific examples of the aliphatic hydrocarbon group having 3 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 3 to 20 carbon atoms.
  • P 1 and P 2 each independently represent a polymerizable group.
  • R 31 represents a hydrogen atom, a methyl group or a chlorine atom.
  • the reverse dispersed liquid crystalline compound represented by the formula (I) can be produced, for example, by the reaction of a hydrazine compound and a carbonyl compound described in WO 2012/147904.
  • the alignment layer composition contains a fluorine-based surfactant as a surfactant containing a fluorine atom in the molecule.
  • a fluorine-based surfactant in combination with the reverse dispersion liquid crystal compound, the coatability of the alignment layer composition can be improved.
  • surface fluorine atomic weight M F [mol%] in the specific surface of a liquid crystal aligning layer can be adjusted with this fluorine-type surfactant.
  • the fluorine-based surfactant one having a predetermined range of 1-octanol / water distribution coefficient is preferable.
  • the 1-octanol / water partition coefficient may be referred to as "logP" as appropriate.
  • the specific log P range of the fluorosurfactant is preferably 4.8 or more, preferably 6.7 or less, more preferably 6.3 or less.
  • the log P of the fluorine-based surfactant is at least the lower limit of the above range, the occurrence of alignment defects can be effectively suppressed.
  • the log P of the fluorine-based surfactant is not more than the upper limit of the above range, it is possible to effectively increase the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer.
  • the log P of the fluorosurfactant can be measured by the following measurement method. Prepare a sample solution containing 1% by weight of a fluorosurfactant, and follow the general procedure of JIS 7260-117: 2006 ⁇ Measurement of partition coefficient (1-octanol / water)-high performance liquid chromatography ⁇ , HPLC / ELSD Analysis (high performance liquid chromatography / evaporative light scattering detection analysis) is performed to determine the elution time (rt).
  • HPLC / ELSD analysis is performed on a labeled compound having a known value of log P described in JIS 7260-117: 2006 in the same manner as the fluorosurfactant, and the elution time (rt) is calculated as taking measurement. Based on the measurement results of the labeled compound, a calibration curve showing the relationship between the elution time and logP is prepared. Thereafter, the elution time measured for the fluorosurfactant is applied to the calibration curve to determine the log P of the fluorosurfactant.
  • the specific measurement of the log P of the fluorosurfactant can be carried out by the method described in the examples described later.
  • the fluorinated surfactant is preferably a nonionic surfactant.
  • the fluorine-based surfactant is a nonionic surfactant which does not contain an ionic group, the surface state and the orientation of the liquid crystal alignment layer can be made particularly favorable.
  • the polymerizable fluorine-containing surfactant can be generally polymerized when curing the alignment layer composition, and therefore, in the liquid crystal alignment layer, it is included in a part of the molecules of the polymer.
  • fluorine-based surfactant for example, Surfron series (S420 etc.) manufactured by AGC Seimi Chemical Co., Ltd., Ftergent series manufactured by Neos (251, FTX-212M, FTX-215M, FTX-209 etc.), DIC Megafuck series (F-444 etc.) etc. are made.
  • a fluorine-type surfactant may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the fluorine-based surfactant is preferably adjusted so that the ratio M F / T can be within the above-described predetermined range.
  • the specific amount of the fluorine-based surfactant in the alignment layer composition is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, with respect to 100 parts by weight of the reversely dispersed liquid crystal compound. Preferably it is 0.50 weight part or less, More preferably, it is 0.30 weight part or less.
  • the alignment layer composition contains the above-described reverse dispersion liquid crystal compound and fluorosurfactant, and may further contain optional components as required.
  • One of the optional components may be used alone, or two or more of the optional components may be used in combination at an optional ratio.
  • the alignment layer composition contains a polymerization initiator as an optional component because the alignment layer composition can be cured by polymerization.
  • the type of polymerization initiator may be selected according to the type of polymerizable compound contained in the alignment layer composition. For example, if the polymerizable compound is radically polymerizable, a radical polymerization initiator may be used. In addition, if the polymerizable compound is anionically polymerizable, an anionic polymerization initiator may be used. Furthermore, if the polymerizable compound is cationically polymerizable, a cationic polymerization initiator may be used. As the polymerization initiator, one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the amount of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 30 parts by weight or less, more preferably 100 parts by weight of the reversely dispersed liquid crystal compound. It is 10 parts by weight or less. When the amount of the polymerization initiator falls within the above range, the polymerization can be efficiently advanced.
  • the alignment layer composition may contain a solvent as an optional component.
  • a solvent those capable of dissolving the reverse dispersion liquid crystal compound are preferable.
  • An organic solvent is usually used as such a solvent.
  • the organic solvent include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetic acid ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; And ether solvents such as 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,2-dimethoxyethane; and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene.
  • a solvent may be used individually by
  • the boiling point of the solvent is preferably 60 ° C. to 250 ° C., more preferably 60 ° C. to 150 ° C. from the viewpoint of excellent handleability.
  • the amount of the solvent is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, particularly preferably 300 parts by weight or more, preferably 650 parts by weight or less, based on 100 parts by weight of the reversely dispersed liquid crystal compound. It is preferably at most 550 parts by weight, particularly preferably at most 450 parts by weight.
  • the alignment layer composition has a large substantially maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound as an optional component in order to make the tilt angle of the reverse dispersion liquid crystal compound molecules contained in the liquid crystal alignment layer larger. It may contain a gradient action component capable of exerting Many reverse-dispersed liquid crystalline compounds can only obtain a small tilt angle when they are aligned alone, but by using a gradient component, the tilt of the molecules of the reverse-dispersed liquid crystalline compound is promoted to reverse disperse.
  • a liquid crystal alignment layer having a large tilt angle of molecules of the liquid crystal compound can be easily obtained.
  • the inclination of the molecules of the reversely dispersed liquid crystal compound can be promoted by adjusting the operation or conditions in the process of producing the liquid crystal alignment layer, it is not necessary to use the inclination component.
  • a normal dispersion liquid crystal compound having a graded alignment property can be mentioned.
  • the “forward-dispersed liquid crystalline compound” refers to a liquid crystalline compound capable of exhibiting birefringence with normal wavelength dispersion.
  • a normal dispersion liquid crystal compound having a graded alignment property was tested by applying a composition containing a normal dispersion liquid crystal compound alone as a liquid crystal compound on the rubbing-treated surface of a resin film and subjecting it to an alignment process. When a layer is obtained, it refers to a normal dispersion liquid crystal compound in which the substantial maximum inclination angle that the molecules of the normal dispersion liquid crystal compound in the test layer make with the layer plane is 30 ° or more.
  • a reverse dispersion liquid crystal compound contained in a liquid crystal alignment layer by using the forward dispersion liquid crystal compound having a tilt alignment property in combination with a fluorine surfactant having a log P of 4.8 or more and 6.7 or less.
  • the following compounds may, for example, be mentioned as forward-dispersed liquid crystalline compounds having inclined orientation. Further, for the alignment layer composition containing a normal dispersion liquid crystal compound having a tilt alignment property, the descriptions in the specification of Japanese Patent Application Laid-Open No. 2018-262379 and Japanese Patent Application No. 2017-060154 may be referred to.
  • the amount of the normally dispersed liquid crystalline compound having inclined orientation is preferably 1 part by weight or more, more preferably 100 parts by weight in total with respect to the reverse dispersed liquid crystalline compound and the normally dispersed liquid crystalline compound having inclined orientation. It is 5 parts by weight or more, more preferably 10 parts by weight or more, preferably 25 parts by weight or less, and more preferably 20 parts by weight or less.
  • the (meth) acrylic acid ester compound whose ratio Mw / Np of molecular weight Mw and (pi) electron number Np is 17 or more and 70 or less is mentioned, for example.
  • the ratio Mw / Np of the molecular weight Mw of the (meth) acrylic acid ester compound to the ⁇ electron number Np is usually 17 or more, preferably 23 or more, and usually 70 or less, preferably 50 or less.
  • the number of ⁇ electrons per molecule of a compound is determined based on the type and number of unsaturated bonds contained in the compound.
  • (meth) acrylic acid ester compound As said (meth) acrylic acid ester compound, the following are mentioned, for example. Further, for the alignment layer composition containing the (meth) acrylic acid ester compound, the description of the specification of WO 2018/173778 and Japanese Patent Application No. 2017-060122 may be referred to.
  • the amount of the (meth) acrylic acid ester compound is preferably 1 part by weight or more, more preferably 5 parts by weight or more, based on 100 parts by weight in total of the reversely dispersed liquid crystal compound and the (meth) acrylic acid ester compound. Preferably it is 30 parts by weight or less, more preferably 20 parts by weight or less.
  • the quantity of fluorine type surfactant falls in a predetermined
  • the amount of the fluorine-based surfactant is preferably 0.11 parts by weight or more, more preferably 0. 1 part by weight, based on 100 parts by weight in total of the reversely dispersed liquid crystal compound and the (meth) acrylic acid ester compound. It is 12 parts by weight or more, preferably 0.29 parts by weight or less, more preferably 0.25 parts by weight or less, and particularly preferably 0.20 parts by weight or less.
  • the amount of the fluorine-based surfactant is in the above range, it is possible to easily obtain a liquid crystal alignment layer having a large maximum tilt angle of molecules of the reversely dispersed liquid crystal compound and a small number of alignment defects.
  • the liquid crystalline compound which has magnetic field responsiveness is mentioned, for example.
  • the “liquid crystal compound having magnetic field responsiveness” is a liquid crystal compound whose alignment state can be changed by the magnetic field when a magnetic field is applied at the liquid crystalization temperature.
  • An alignment layer composition containing a liquid crystal compound having magnetic field responsiveness is subjected to a magnetic field appropriately during the alignment treatment, whereby the substantially maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is obtained. Can exert an effect of increasing
  • liquid crystalline compound having magnetic field responsiveness examples include the following. Further, for the alignment layer composition containing a liquid crystal compound having magnetic field response, the description in the specification of JP-A No. 2018-163218 and Japanese Patent Application No. 2017-059327 may be referred to.
  • the amount of the liquid crystal compound having magnetic field responsiveness is preferably 0.1 parts by weight or more, more preferably 1 part by weight with respect to a total of 100 parts by weight of the liquid crystal compound having magnetic field response and the reverse dispersion liquid crystal compound. It is preferably at least 3 parts by weight, more preferably at most 40 parts by weight, more preferably at most 30 parts by weight, particularly preferably at most 20 parts by weight.
  • alignment layer composition may contain are, for example, metals; metal complexes; metal oxides such as titanium oxide; colorants such as dyes and pigments; light emitting materials such as fluorescent materials and phosphorescent materials; A thixotropic agent, a gelling agent, a polysaccharide, an ultraviolet ray absorbing agent, an infrared ray absorbing agent, an antioxidant, an ion exchange resin, and the like.
  • the amount of these components may be 0.1 parts by weight to 20 parts by weight with respect to a total of 100 parts by weight of the reversely dispersed liquid crystal compound.
  • the liquid crystal alignment layer is a layer of a cured product obtained by curing the above-mentioned alignment layer composition. Curing of the alignment layer composition is usually achieved by polymerization of a polymerizable compound contained in the alignment layer composition.
  • the liquid crystal alignment layer usually contains a polymer of part or all of the components contained in the alignment layer composition.
  • the reverse dispersed liquid crystalline compound has a polymerizability
  • the reverse dispersed liquid crystalline compound is polymerized, so the liquid crystal alignment layer is a polymer of the reverse dispersed liquid crystalline compound polymerized while maintaining the alignment state before the polymerization. It is possible to be the layer which includes. As described above, this polymerized reverse dispersed liquid crystal compound is also included in the term "reverse dispersed liquid crystalline compound contained in the liquid crystal alignment layer".
  • the alignment state of the reversely dispersed liquid crystal compound is usually fixed with the alignment state before curing. Then, at least a part of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer is inclined with respect to the layer plane of the liquid crystal alignment layer (that is, in the in-plane direction).
  • some of the molecules of the reverse dispersion liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal alignment layer (that is, with respect to the in-plane direction). It may be inclined with respect to the plane (ie, with respect to the in-plane direction).
  • the inclination angle of the molecules of the inverse dispersion liquid crystal compound is larger in the thickness direction as it approaches the specific surface, and smaller as it is farther from the specific surface. Therefore, in the vicinity of the specific surface of the liquid crystal alignment layer, the molecules of the reverse dispersion liquid crystal compound may be perpendicular to the layer plane (that is, in the in-plane direction).
  • the molecules of the reversely dispersed liquid crystal compound may be parallel to the layer plane (that is, in the in-plane direction).
  • the molecules of the reversely dispersed liquid crystal compound are parallel or perpendicular to the layer plane (that is, with respect to the in-plane direction) in the vicinity of the surface of the liquid crystal alignment layer as described above, except for the vicinity of the surface of the alignment layer, the molecules of the reverse dispersion liquid crystal compound are inclined with respect to the plane of the layer (that is, in the in-plane direction).
  • the fact that at least some of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer are inclined with respect to the layer plane of the liquid crystal alignment layer (that is, with respect to the in-plane direction) is polarized light with sufficient resolution. It can confirm by observing the cross section of a liquid crystal aligning layer with a microscope. This observation is carried out by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope, if necessary, in order to make it easier to visually recognize the inclination of the molecules of the reversely dispersed liquid crystal compound. It is also good.
  • the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer is inclined with respect to the layer plane of the liquid crystal alignment layer (that is, with respect to the in-plane direction) as follows.
  • the retardation R ( ⁇ ) of the liquid crystal alignment layer at the incident angle ⁇ is measured in the measurement direction perpendicular to the in-plane fast axis direction of the liquid crystal alignment layer.
  • the retardation ratio R ( ⁇ ) / R (0 °) is obtained by dividing the retardation R ( ⁇ ) of the liquid crystal alignment layer at the incident angle ⁇ by the retardation R (0 °) of the liquid crystal alignment layer at the incident angle 0 °. Ask for).
  • the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer is inclined with respect to the layer plane of the liquid crystal alignment layer (that is, in the in-plane direction).
  • FIG. 3 is a graph in which the retardation ratio R ( ⁇ ) / R (0 °) of the liquid crystal alignment layer according to an example is plotted against the incident angle ⁇ .
  • the retardation ratio R ( ⁇ ) / R (0 °) is an example shown by a broken line in FIG. 3 when the inclination angle of all the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer is 0 ° or 90 °.
  • at least a part of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is the liquid crystal It can be determined that it is inclined with respect to the layer plane of the alignment layer (ie, with respect to the in-plane direction).
  • the substantial maximum tilt angle is usually 5 ° or more and 85 ° or less Have.
  • the substantially maximum inclination angle is such that the inclination angle of the molecule on the surface opposite to the specific surface of the liquid crystal alignment layer is 0 °, and the inclination angle of the molecule changes at a constant ratio in the thickness direction Represents the maximum value of the tilt angles of the molecules of the reversely dispersed liquid crystal compound when it is assumed.
  • the substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer.
  • the tilt angle as a whole of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer tends to be larger.
  • the range of the substantially maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is the substantially maximum of the molecules of the reversely dispersed liquid crystal compound contained in the whole of the composite liquid crystal layer including the liquid crystal alignment layer and the liquid crystal tilted layer. It is preferable to adjust the tilt angle appropriately so as to be within the range in which excellent viewing angle characteristics can be realized. In general, as the substantial maximum inclination angle of the liquid crystal alignment layer is larger, the substantial maximum inclination angle as a whole of the liquid crystal alignment layer and the composite liquid crystal layer including the liquid crystal inclination layer can be increased.
  • the specific range of the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is preferably 26 ° or more, more preferably 28 ° or more, particularly preferably 30 ° or more, and preferably 60 Or less.
  • the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is in the above range, an optical film having particularly excellent viewing angle characteristics can be easily produced.
  • the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer can be measured by the measurement method described in the examples described later. According to the measurement method described in Examples described later, even when the liquid crystal alignment layer contains a liquid crystal compound other than the reverse dispersion liquid crystal compound, the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound is measured. It is possible.
  • the alignment direction of the molecules of the reversely dispersed liquid crystal compound is usually uniform. Therefore, the liquid crystal alignment layer usually has an in-plane slow axis parallel to the alignment direction of the molecules of the reversely dispersed liquid crystal compound when the liquid crystal alignment layer is viewed from the thickness direction. And, as described above, since the reverse dispersion liquid crystal compound is oriented in a fixed alignment direction in the in-plane direction, the liquid crystal alignment layer usually has an in-plane retardation of a predetermined size.
  • the liquid crystal alignment layer is formed of a cured product of an alignment layer composition containing a reverse dispersion liquid crystal compound, it usually has reverse wavelength dispersion in-plane retardation.
  • the in-plane retardation with reverse wavelength dispersion means an in-plane letter whose in-plane retardation Re (450) at a wavelength of 450 nm and in-plane retardation Re (550) at a wavelength of 550 nm satisfy the following formula (N3) I say the foundation.
  • the in-plane retardation of the liquid crystal alignment layer preferably satisfies the following formula (N4).
  • the specific range of the in-plane retardation of the liquid crystal alignment layer can be arbitrarily set according to the application of the optical film produced using this liquid crystal alignment layer.
  • the in-plane retardation of the liquid crystal alignment layer can function as a quarter wavelength plate It is desirable to set so as to obtain an optical film.
  • the occurrence of alignment defects is suppressed.
  • the liquid crystal alignment layer has high affinity to the gradient layer composition. Therefore, the gradient layer composition conforms to the liquid crystal alignment layer, and the alignment of molecules is less likely to be disturbed. Therefore, in the gradient layer composition, the orientation can be made uniform in the in-plane direction. Therefore, according to this liquid crystal alignment layer, the generation of alignment defects can be suppressed also in the liquid crystal tilt layer formed on the liquid crystal alignment layer. Therefore, the occurrence of alignment defects can be suppressed as a whole of the composite liquid crystal layer including the liquid crystal alignment layer and the liquid crystal tilt layer.
  • the liquid crystal alignment layer is excellent in that both the suppression of the occurrence of alignment defects and the increase of the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound are achieved.
  • the inventor infers the mechanism in which such an advantage is obtained as follows.
  • FIG. 4 is sectional drawing which shows typically the layer 300 of the alignment layer composition obtained in the middle of manufacture of the liquid crystal aligning layer which concerns on one Embodiment.
  • an alignment treatment is usually performed to adjust the layer 300 of the alignment layer composition to an appropriate temperature.
  • the molecules 310 of the reversely dispersed liquid crystal compound at the air interface 300U of the layer 300 tend to be aligned such that the tilt angle of the molecules 310 becomes large.
  • the molecules 320 of the inverse-dispersed liquid crystalline compound at the back also try to be oriented such that the tilt angle of the molecules 320 becomes large.
  • “back” indicates a direction away from the air interface 300U in the thickness direction of the layer 300.
  • the molecules 330 of the inverse dispersion liquid crystal compound further behind are also oriented so as to increase the inclination angle of the molecules 330.
  • the degree to which the tilt angles of the molecules 310, 320 and 330 increase due to the orientation becomes weaker the further from the air interface 300U.
  • the inclination angle of the molecules 310 can be increased in the vicinity of the air interface 300U, but the inclination angle can not be increased in other parts. As a result, a large substantial tilt angle can not be obtained because a large tilt angle can not be obtained for the layer 300 as a whole.
  • the upper limit of the thickness T is appropriately set. As a result, a large tilt angle can be obtained as the whole of the reverse dispersion liquid crystal compound molecules 310, 320 and 330, so that it is possible to increase the substantial maximum tilt angle of the reverse dispersion liquid crystal compound molecules. .
  • the fluorinated surfactant 340 When the fluorinated surfactant 340 is at the air interface 300 U, the fluorinated surfactant 340 suppresses the evaporation of the volatile component. Thus, the convection in the layer 300 is suppressed, and the generation of alignment defects can be suppressed.
  • the amount of the fluorine-based surfactant 340 at the air interface 300U is smaller than the thickness of the layer 300, it is difficult to suppress the occurrence of alignment defects.
  • the amount of the fluorine-based surfactant 340 at the air interface 300U is sufficiently increased compared to the thickness T to suppress alignment defects.
  • the air interface 300U of the layer 300 of the alignment layer composition corresponds to the specific surface of the liquid crystal alignment layer.
  • the amount of the fluorine-based surfactant 340 at the air interface 300U of the layer 300 of the alignment layer composition corresponds to the fluorine atomic weight at a specific surface of the liquid crystal alignment layer. Therefore, the fact that the amount of the fluorine-based surfactant 340 at the air interface 300 U is sufficiently large compared to the thickness of the layer 300 of the alignment layer composition means that the surface fluorine atomic weight M F [moles at the specific surface of the liquid crystal alignment layer %, And the lower limit of the ratio M F / T of the layer thickness T [ ⁇ m] is appropriately set.
  • the molecules 310 of the reverse dispersion liquid crystal compound are oriented so as to increase the tilt angle at the air interface 300 U of the layer 300. Therefore, when the air interface 300U is covered with an excessive amount of the fluorine-based surfactant 340, the inclination angle of the molecules 310 of the reversely dispersed liquid crystal compound is unlikely to be large.
  • the amount of the fluorine-based surfactant 340 at the air interface 300U is adjusted so as not to be excessive relative to the thickness T, and the large substantial maximum I am trying to get an inclination angle.
  • the fact that the amount of the fluorine-based surfactant 340 at the air interface 300 U is not excessive as compared to the thickness of the layer 300 of the alignment layer composition is that the surface fluorine atomic weight M at the specific surface of the liquid crystal alignment layer This is represented by appropriately setting the upper limit of the ratio M F / T of F [mol%] to the layer thickness T [ ⁇ m].
  • the liquid crystal alignment layer usually has a good surface state. Therefore, in the liquid crystal alignment layer, the unevenness in thickness is usually small, and hence the unevenness in in-plane retardation can be reduced.
  • liquid crystal alignment layer (1.6. Method of manufacturing liquid crystal alignment layer)
  • the manufacturing method of a liquid crystal aligning layer is arbitrary as long as a desired liquid crystal aligning layer is obtained.
  • the liquid crystal alignment layer is (I) forming a layer of the alignment layer composition; (Ii) aligning the reversely dispersed liquid crystal compound contained in the layer of the alignment layer composition; (Iii) curing the layer of the alignment layer composition to obtain a liquid crystal alignment layer; Can be manufactured by a manufacturing method including
  • a layer of alignment layer composition is usually formed on a suitable support surface.
  • the support surface any surface capable of supporting the layer of the alignment layer composition can be used. From the viewpoint of improving the surface state of the liquid crystal alignment layer, it is preferable to use a flat surface free of concave and convex portions as the support surface. Further, from the viewpoint of enhancing the productivity of the liquid crystal alignment layer, it is preferable to use the surface of a long base material as the support surface.
  • “long” refers to a shape having a length of 5 or more times the width, preferably 10 or more times the length, and specifically wound in a roll. It refers to the shape of a film having a length that can be stored or transported.
  • a base material usually, a resin film or a glass plate is used. In particular, when the orientation treatment is performed at a high temperature, it is preferable to select a substrate that can withstand the temperature.
  • a thermoplastic resin is used. Among them, a resin having a positive intrinsic birefringence value is preferable as the resin from the viewpoint of the height of alignment control force, the height of mechanical strength, and the cost reduction. Furthermore, it is preferable to use a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and lightness.
  • a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and lightness.
  • the surface of the base material as the support surface is subjected to a treatment for applying an alignment control force.
  • the alignment control force refers to the surface property capable of aligning a liquid crystal compound such as a reverse dispersion liquid crystal compound contained in the alignment layer composition.
  • the treatment for applying the alignment control force to the support surface include a photoalignment treatment, a rubbing treatment, an ion beam alignment treatment, and an extension treatment.
  • the alignment layer composition is usually prepared in a fluid state. Therefore, in general, the alignment layer composition is applied to the support surface to form a layer of the alignment layer composition.
  • a method of applying the alignment layer composition for example, curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, print coating method, A gravure coating method, a die coating method, a gap coating method, and a dipping method can be mentioned.
  • the step (ii) of aligning the reverse dispersion liquid crystal compound contained in the layer of the alignment layer composition is performed.
  • orientation usually, the layer of the orientation layer composition is kept at a predetermined temperature condition for a predetermined time. Thereby, in the layer of the alignment layer composition, the liquid crystal compound such as the reverse dispersion liquid crystal compound is aligned.
  • the reverse dispersion liquid crystal compound is aligned in a direction according to the alignment regulating force of the support surface.
  • the alignment layer composition contains a gradient action component
  • the reversely dispersed liquid crystal compound is at least partially inclined in the thickness direction (that is, in the in-plane direction) in the thickness direction. Because of the orientation, the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the layer of the alignment layer composition can be increased.
  • step (ii) is preferably performed by adjusting the operation or conditions so as to obtain a liquid crystal alignment layer in which the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound is large.
  • step (ii) is preferably performed such that the temperature conditions of the layer of the alignment layer composition satisfy the predetermined requirements.
  • the temperature condition of the layer of the alignment layer composition in the step (ii) is preferably the same as the temperature condition at which the residual viscosity of the test composition is usually 800 cP or less.
  • the test composition described above is a composition having a composition obtained by removing the polymerization initiator from the alignment layer composition.
  • the residual viscosity of the test composition is the viscosity of the residual component of the test composition under the same temperature conditions as the layer of the alignment layer composition of step (ii).
  • the residual component of the test composition is a component among the components contained in the test composition which remains without being vaporized under the same temperature conditions as the layer of the alignment layer composition of the step (ii).
  • the step (ii) of orienting the reversely dispersed liquid crystal compound is performed so as to satisfy the above requirements, the step (ii) is performed under the same temperature condition as the temperature condition in which the residual viscosity of the test composition falls within the predetermined range. , Adjust the layer of alignment layer composition.
  • the specific range of the residual viscosity is usually 800 cP (centipoise) or less, preferably 600 cP or less, more preferably 400 cP or less, still more preferably 200 cP or less.
  • the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer The real maximum inclination angle of can be increased.
  • the lower limit of the residual viscosity is preferably 5 cP or more, more preferably 10 cP or more, from the viewpoint of obtaining a liquid crystal alignment layer having a desired thickness.
  • the residual viscosity of the test composition under the same temperature conditions as the layer of the alignment layer composition of step (ii) can be measured by the following method.
  • a test composition is prepared by removing the polymerization initiator from the alignment layer composition.
  • the test composition is concentrated under reduced pressure on a rotary evaporator to remove the solvent and obtain the remaining components.
  • the viscosity of this residual component is measured in advance while changing the measurement temperature, and information on the measurement temperature and the viscosity at the measurement temperature is obtained.
  • this information is appropriately referred to as "temperature-viscosity information”. From this “temperature-viscosity information”, the viscosity at the temperature of the layer of the alignment layer composition in step (ii) is read as the residual viscosity.
  • Examples of the method for keeping the residual viscosity of the test composition in the above-mentioned range under the same temperature conditions as the layer of the alignment layer composition in the step (ii) include the following methods (A) and (B).
  • (A) The temperature of the layer of the alignment layer composition in the step (ii) of aligning the reverse dispersion liquid crystal compound is appropriately adjusted.
  • the temperature of the layer of the alignment layer composition is sufficiently raised to lower the residual viscosity of the test composition under the same temperature condition as this temperature, so as to fall within the above-mentioned range. adjust.
  • the composition of the alignment layer composition is appropriately adjusted.
  • the residual viscosity of the test composition containing the additive is reduced by combining an inverse dispersion liquid crystal compound with an additive of an appropriate type and amount as a component generally contained in the alignment layer composition. And adjust to the above-mentioned range.
  • step (ii) in a state where a magnetic field is applied to the layer of the alignment layer composition.
  • step (ii) it is preferable to carry out step (ii) in a state where a magnetic field is applied to the layer of the alignment layer composition.
  • the direction of the magnetic field applied to the layer of the alignment layer composition is usually a direction not perpendicular to the thickness direction of the layer of the alignment layer composition, preferably parallel to the thickness direction of the layer of the alignment layer composition It is a direction.
  • the magnetic flux density of the magnetic field applied to the layer of the alignment layer composition is preferably 0.2 Tesla or more, more preferably 0.5 Tesla or more, particularly preferably 0.8 Tesla or more.
  • the upper limit of the magnetic flux density of the magnetic field is not limited, and may be, for example, 20.0 Tesla or less.
  • the application of the magnetic field may be referred to the description of the specification of Japanese Patent Application Laid-Open No. 2018-163218 and Japanese Patent Application No. 2017-059327.
  • the specific temperature at the time of the alignment treatment is appropriately set in the range above the liquid crystalization temperature of the reverse dispersion liquid crystal compound, and it is preferable that the temperature be lower than the glass transition temperature of the resin contained in the substrate. Thereby, generation
  • the step (ii) of orienting the reversely dispersed liquid crystal compound is usually performed in an oven.
  • the set temperature of the oven and the temperature of the layer of the alignment layer composition placed in the oven may be different.
  • set temperature-layer temperature information information on the recorded set temperature of the oven and the temperature of the layer of the alignment layer composition placed in the oven at the set temperature is appropriately referred to as “set temperature-layer temperature information”.
  • set temperature-layer temperature information the temperature of the layer of the alignment layer composition placed in the oven can be easily known from the oven set temperature.
  • the time for which the temperature of the layer of the orientation layer composition is kept at the above temperature can be optionally set within a range where a desired liquid crystal orientation layer can be obtained. It may be ⁇ 5 minutes.
  • a step (iii) of curing the layer of the alignment layer composition to obtain a liquid crystal alignment layer is performed.
  • a liquid crystal compound such as an inverse dispersion liquid crystal compound is polymerized to cure the layer of the alignment layer composition.
  • the liquid crystal compound is usually polymerized while maintaining the alignment of its molecules. Therefore, the alignment state of the liquid crystal compound contained in the alignment layer composition before polymerization is fixed by the above-mentioned polymerization.
  • the polymerization method a method may be selected that is adapted to the nature of the components contained in the alignment layer composition.
  • the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because heating is unnecessary and the polymerization reaction can be allowed to proceed at room temperature.
  • the active energy ray to be irradiated may include light such as visible light, ultraviolet light and infrared light, and any energy ray such as electron beam.
  • the temperature at the time of ultraviolet irradiation is preferably below the glass transition temperature of the substrate, preferably 150 ° C. or less, more preferably 100 ° C. or less, and particularly preferably 80 ° C. or less.
  • the lower limit of the temperature during ultraviolet irradiation may be 15 ° C. or higher.
  • the irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 10000 mW / cm 2 or less, more preferably 5000 mW / cm 2 or less, more preferably 1000mW / Cm 2 or less, particularly preferably 600 mW / cm 2 or less.
  • the dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 10000 mJ / cm 2 or less, more preferably 5000 mJ / cm 2 or less.
  • a liquid crystal aligning layer can be manufactured by the manufacturing method mentioned above. In this production method, usually, a liquid crystal alignment layer formed on the support surface of the substrate is obtained.
  • the method for producing a liquid crystal alignment layer described above may further include an optional step in combination with the step (i) to the step (iii) described above.
  • the method for producing a liquid crystal alignment layer may include the step of peeling the liquid crystal alignment layer from the support surface.
  • a long liquid crystal alignment layer can be obtained using a long base material.
  • Such a long liquid crystal alignment layer can be manufactured continuously and is excellent in productivity.
  • a film containing a long liquid crystal alignment layer is wound up and stored and transported in the form of a roll.
  • an optical film 200 (2.1. Outline of optical film) As shown in FIG. 2, an optical film 200 according to an embodiment of the present invention includes a liquid crystal alignment layer 100 and a liquid crystal tilt layer 210 in direct contact with a specific surface 100 U of the liquid crystal alignment layer 100. Accordingly, the optical film 200 includes the composite liquid crystal layer 220 including the liquid crystal alignment layer 100 and the liquid crystal tilt layer 210. The “direct” contact of another layer with the surface of one layer means that there is no other layer between the two layers.
  • the liquid crystal gradient layer 210 is formed of a cured product of a gradient layer composition including a reverse dispersion liquid crystal compound.
  • the liquid crystal tilt layer 210 contains molecules of the reverse dispersion liquid crystal compound because it is formed of a cured product of the tilt layer composition.
  • the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal gradient layer 210 are usually fixed in alignment. Similar to the liquid crystal alignment layer 100, the polymerized reverse dispersed liquid crystal compound is included in the term "reverse dispersed liquid crystal compound included in the liquid crystal gradient layer".
  • At least a part of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal tilt layer 210 is inclined with respect to the layer plane of the liquid crystal tilt layer 210 (that is, with respect to the in-plane direction).
  • the specific surface 100U of the liquid crystal alignment layer 100 has an alignment regulating force for aligning the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal gradient layer 210 formed on the specific surface 100U. In the in-plane direction, this alignment control force aligns the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal tilt layer 210 in the same direction as the alignment direction of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer 100.
  • the liquid crystal alignment layer 100 can function as an alignment film that increases the tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer 210. Therefore, the tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer 210 can be increased by the action of the liquid crystal alignment layer 100. Therefore, the inclination angle of the molecules of the reverse dispersion liquid crystal compound as the whole of the composite liquid crystal layer 220 including the liquid crystal alignment layer 100 and the liquid crystal tilt layer 210 can be increased.
  • the thickness direction It is possible to properly adjust the birefringence in. Therefore, according to this optical film 200, since reflection can be effectively suppressed in the inclination direction of the display surface, the viewing angle characteristics can be improved.
  • the liquid crystal tilt layer 210 contains the reverse dispersion liquid crystal compound, the liquid crystal tilt layer 210 has an in-plane retardation of reverse wavelength dispersion. Therefore, since both the liquid crystal alignment layer 100 and the liquid crystal gradient layer 210 have the reverse wavelength dispersive in-plane retardation, the optical film 200 including those layers 100 and 210 has the reverse wavelength dispersive in-plane retardation. It can have.
  • the alignment state of the reverse dispersion liquid crystal compound in the liquid crystal tilt layer 210 is affected by the alignment state of the liquid crystal alignment layer 100 that can function as an alignment film. Therefore, by suppressing the generation of alignment defects in the liquid crystal alignment layer 100, the generation of alignment defects can be suppressed even in the liquid crystal gradient layer 210.
  • the optical film 200 including the liquid crystal alignment layer 100 and the liquid crystal tilt layer 210 in combination has in-plane retardation of reverse wavelength dispersion, can suppress the occurrence of alignment defects, and is excellent in viewing angle characteristics.
  • the surface state of the liquid crystal gradient layer 210 and the composite liquid crystal layer 220 can be improved.
  • the liquid crystal gradient layer is a layer formed of a cured product of a gradient layer composition containing a reverse dispersion liquid crystal compound.
  • a reverse dispersion liquid crystal compound contained in the gradient layer composition any reverse dispersion liquid crystal compound can be selected and used from the range described as the reverse dispersion liquid crystal compound contained in the alignment layer composition.
  • the reverse dispersion liquid crystal compound contained in the gradient layer composition may be the same as or different from the reverse dispersion liquid crystal compound contained in the alignment layer composition.
  • one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the gradient layer composition may contain optional components as needed in combination with the reverse dispersion liquid crystal compound.
  • One of the optional components may be used alone, or two or more of the optional components may be used in combination at an optional ratio.
  • a component other than the reversely dispersed liquid crystal compound which can be contained in the alignment layer composition can be used in the range of the amount of the component in the alignment layer composition.
  • the graded layer composition may be different or identical to the alignment layer composition.
  • Curing of the graded layer composition, as well as curing of the alignment layer composition is usually achieved by polymerization of the polymerizable compound that the graded layer composition comprises.
  • the liquid crystal gradient layer usually contains a polymer of part or all of the components contained in the gradient layer composition.
  • the reverse dispersed liquid crystalline compound has a polymerizability
  • the reverse dispersed liquid crystalline compound is polymerized, so the liquid crystal gradient layer is a polymer of the reverse dispersed liquid crystalline compound polymerized while maintaining the alignment state before the polymerization. It is possible to be the layer which includes.
  • the orientation state of the reversely dispersed liquid crystal compound is usually fixed with the orientation state before curing.
  • the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer are largely inclined with respect to the layer plane of the liquid crystal tilt layer (that is, in the in-plane direction) by the action of the liquid crystal alignment layer. Therefore, the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal tilt layer can be increased. In the liquid crystal tilt layer, it is assumed that this substantially maximum tilt angle is 0 ° of the tilt angle of the molecule in the surface on the liquid crystal alignment layer side, and that the tilt angle of the molecule changes at a constant ratio in the thickness direction.
  • the maximum value of the tilt angle of the molecules of the reversely dispersed liquid crystal compound in the case is shown.
  • the substantial maximum tilt angle is an index indicating the size of the tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer.
  • the substantially maximum inclination angle of the molecules of the inverse dispersed liquid crystal compound contained in the liquid crystal tilt layer is usually greater than the substantial maximum inclination angle of the molecules of the inverse dispersed liquid crystal compound contained in the liquid crystal alignment layer. , Can be enlarged.
  • the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal gradient layer is preferably 45 ° or more, more preferably 50 ° or more, particularly preferably 57 ° or more, and preferably 85 ° or less.
  • the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer is in the above range, particularly excellent viewing angle characteristics can be obtained.
  • the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer can be measured by the following method.
  • the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is measured.
  • the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the whole of the composite liquid crystal layer including the liquid crystal alignment layer and the liquid crystal gradient layer is measured. Then, using these measured maximum tilt angles and the thicknesses of the liquid crystal alignment layer and the liquid crystal tilt layer, it is possible to calculate the maximum tilt angles of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal tilt layer.
  • the difference between the substantial maximum inclination angle of the molecules of the inverse dispersed liquid crystal compound contained in the liquid crystal alignment layer and the substantial maximum inclination angle of the molecules of the inverse dispersed liquid crystal compound contained in the liquid crystal gradient layer is preferably 5 ° or more More preferably, it is 8 ° or more, particularly preferably 10 ° or more, preferably 59 ° or less, more preferably 57 ° or less, particularly preferably 55 ° or less.
  • the difference between the substantially maximum tilt angles is in the above range, particularly excellent viewing angle characteristics can be obtained.
  • the alignment direction of the molecules of the reverse dispersion liquid crystal compound in the in-plane direction of the liquid crystal tilt layer is the same as the alignment direction of the molecules of the reverse dispersion liquid crystal compound in the in-plane direction of the liquid crystal alignment layer.
  • the alignment defect is suppressed in the liquid crystal alignment layer, the generation of the alignment defect can be suppressed also in the liquid crystal inclined layer formed on the liquid crystal alignment layer.
  • the liquid crystal tilt layer usually has a good surface state.
  • the thickness of the liquid crystal gradient layer is not particularly limited, and is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and preferably 10.0 ⁇ m or less, more preferably 7.5 ⁇ m or less, still more preferably It is 5.0 ⁇ m or less, particularly preferably 3.0 ⁇ m or less.
  • the optical film comprises a liquid crystal alignment layer formed of a cured product of an alignment layer composition as a liquid crystal composition containing a reverse dispersion liquid crystal compound, and a cured of a gradient layer composition as a liquid crystal composition containing a reverse dispersion liquid crystal compound And a liquid crystal gradient layer formed of an object.
  • the optical film includes a composite liquid crystal layer including a liquid crystal alignment layer and a liquid crystal gradient layer as a liquid crystal cured layer having a multilayer structure formed of a cured product of a liquid crystal composition containing an inverse dispersion liquid crystal compound.
  • the liquid crystal alignment layer and the liquid crystal gradient layer at least a part of the molecules of the reversely dispersed liquid crystal compound contained in the composite liquid crystal layer is relative to the layer plane of the composite liquid crystal layer (that is, in the in-plane direction). It is inclined).
  • the fact that at least some of the molecules of the reversely dispersed liquid crystal compound contained in the composite liquid crystal layer are inclined with respect to the layer plane (that is, with respect to the in-plane direction) is the same as the method described in the section of the liquid crystal alignment layer It can be confirmed by the method.
  • the substantially maximum tilt angle is 0 ° at the surface of the liquid crystal alignment layer and that the tilt angles of the molecules change at a constant rate in the thickness direction.
  • the substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the reverse dispersion liquid crystal compound contained in the composite liquid crystal layer.
  • the complex liquid crystal layer has a substantially larger maximum inclination angle, the inclination angle as a whole of the molecules of the reversely dispersed liquid crystal compound contained in the complex liquid crystal layer tends to be larger.
  • the birefringence of the composite liquid crystal layer in the thickness direction can be increased by increasing the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the composite liquid crystal layer. And, by making it possible to increase the birefringence of the composite liquid crystal layer in the thickness direction, it is possible to appropriately adjust the birefringence in the thickness direction of the optical film. Therefore, when the optical film is provided in the polarizing plate as the reflection suppression film, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the tilt direction of the display surface.
  • the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the composite liquid crystal layer is usually larger than the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer.
  • the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the composite liquid crystal layer is preferably 40 ° or more, more preferably 46 ° or more, particularly preferably 56 ° or more Preferably it is 85 degrees or less, More preferably, it is 83 degrees or less, More preferably, it is 80 degrees or less.
  • the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the composite liquid crystal layer is in the above range, the birefringence in the thickness direction of the optical film can be appropriately adjusted. Therefore, by combining this optical film with a linear polarizer, it is possible to realize a polarizing plate capable of achieving high viewing angle characteristics when provided in an organic EL display panel.
  • the substantial maximum tilt angle of the molecules of the reversely dispersed liquid crystal compound contained in the composite liquid crystal layer can be measured by the measurement method described in the examples described later. According to the measurement method described in the examples described later, even when the composite liquid crystal layer contains a liquid crystal compound other than the reverse dispersion liquid crystal compound, the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound is measured. It is possible.
  • the composite liquid crystal layer includes a liquid crystal alignment layer containing a reverse dispersion liquid crystal compound and a liquid crystal gradient layer, it can have an in-plane retardation of reverse wavelength dispersion. Therefore, the in-plane retardation of the composite liquid crystal layer usually satisfies the above-mentioned formula (N3), preferably the above-mentioned formula (N4).
  • the liquid crystal alignment layer As described above, the occurrence of alignment defects is suppressed. Also, as described later, the liquid crystal alignment layer has high affinity to the gradient layer composition. Therefore, the gradient layer composition conforms to the liquid crystal alignment layer, and the alignment of molecules is less likely to be disturbed. Therefore, in the gradient layer composition, the orientation can be made uniform in the in-plane direction. Thereby, the occurrence of alignment defects is suppressed even in the liquid crystal tilt layer provided on the liquid crystal alignment layer. Therefore, the occurrence of alignment defects can be suppressed even in the entire composite liquid crystallinity including the liquid crystal alignment layer and the liquid crystal tilt layer.
  • the molecules of the reverse dispersion liquid crystal compound contained in the composite liquid crystal layer are aligned in the same in-plane direction as the alignment direction of the molecules of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer as a whole. Therefore, the in-plane slow axis of the composite liquid crystal layer is usually parallel to the in-plane slow axis of the liquid crystal alignment layer.
  • the composite liquid crystal layer usually has a good surface state. Therefore, in the composite liquid crystal layer, the unevenness in thickness is usually small, and hence the unevenness in in-plane retardation is small.
  • the thickness of the composite liquid crystal layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 12.5 ⁇ m or less, more preferably less than 9.5 ⁇ m, still more preferably 6.8.0 ⁇ m or less, among them Preferably it is 6.6 micrometers or less, Especially preferably, it is 4.0 micrometers or less.
  • the thickness of the composite liquid crystal layer is in the above range, characteristics such as in-plane retardation can be easily adjusted to a desired range.
  • the composite liquid crystal layer of such a thickness is thinner than the conventional retardation film used for the reflection suppression film of the organic EL display panel, it can contribute to thinning of the organic EL display panel.
  • the composite liquid crystal layer may be a liquid crystal cured layer having a two-layer structure including only one liquid crystal alignment layer and one liquid crystal gradient layer, but is a liquid crystal cured layer including three or more layers. It is also good.
  • a liquid crystal composition containing a fluorine-based surfactant as the alignment layer composition is used as the tilt layer composition
  • the thickness T and the ratio M F / of the range required for the liquid crystal alignment layer are used as the liquid crystal tilt layer. Layers with T may be obtained.
  • the liquid crystal tilt layer can function as a liquid crystal alignment layer. Therefore, by forming another liquid crystal gradient layer on this liquid crystal gradient layer, a composite liquid crystal layer including three or more layers can be obtained.
  • the liquid crystal alignment layer and the liquid crystal gradient layer can usually be distinguished by the following method.
  • the composite liquid crystal layer is embedded in epoxy resin to obtain a sample piece.
  • the sample piece is sliced in parallel to the thickness direction of the composite liquid crystal layer using a microtome to obtain an observation sample.
  • slicing is performed such that the in-plane slow axis direction of the composite liquid crystal layer is parallel to the cross section.
  • the cross section which appeared by slicing is observed using a polarization microscope.
  • This observation is performed by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope so that an image exhibiting a color according to the retardation of the observation sample can be seen.
  • portions different in color can be distinguished as a boundary between the liquid crystal alignment layer and the liquid crystal tilt layer.
  • the optical film may be a film including only the liquid crystal alignment layer and the liquid crystal gradient layer, or may be a film including any layer in combination with the liquid crystal alignment layer and the liquid crystal gradient layer.
  • the optical film includes the composite liquid crystal layer including the liquid crystal alignment layer and the liquid crystal gradient layer, so that birefringence in the thickness direction of the optical film can be appropriately adjusted. Therefore, when the optical film is provided in the polarizing plate as the reflection suppression film, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the tilt direction of the display surface.
  • the average retardation ratio R ( ⁇ 50 °) / R (0 °) of the optical film is preferably 0.90 or more, more preferably 0.92 or more, particularly preferably It is 0.93 or more, preferably 1.15 or less, more preferably 1.12 or less, and particularly preferably 1.10 or less.
  • R ( ⁇ 50 °) refers to the retardation of the optical film at an incident angle ⁇ of ⁇ 50 ° and + 50 ° measured in the measurement direction perpendicular to the in-plane fast axis direction of the optical film. It represents the average value of R ( ⁇ 50 °) and R (+ 50 °).
  • R (0 °) represents the retardation of the optical film at an incident angle of 0 °.
  • the retardation ratio R ( ⁇ 50 °) / R (0 °) of the optical film is preferably close to 1.00 from the viewpoint of effectively suppressing the reflection of light passing through this path.
  • the optical film includes the composite liquid crystal layer including the liquid crystal alignment layer and the liquid crystal gradient layer, and thus can have reverse wavelength dispersion in-plane retardation. Therefore, the in-plane retardation of the optical film usually satisfies the above formula (N3), preferably the above formula (N4). Thus, an optical film having reverse wavelength dispersive in-plane retardation can exhibit its optical function in a wide wavelength range. Therefore, when this optical film is used for the polarizing plate as a reflection suppression film, it is possible to suppress reflection in a wide wavelength range.
  • the specific in-plane retardation range of the optical film can be arbitrarily set according to the application of the optical film.
  • the optical film in order to obtain a polarizing plate as a reflection suppression film for an organic EL display panel in combination with a linear polarizer, it is desirable that the optical film have in-plane retardation which can function as a 1 ⁇ 4 wavelength plate.
  • the in-plane retardation which can function as a 1 ⁇ 4 wavelength plate is preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm at a measurement wavelength of 590 nm.
  • the thickness is more preferably 170 nm or less, particularly preferably 160 nm or less.
  • the generation of alignment defects is suppressed as described above. Therefore, if this optical film is used, generation
  • the composite liquid crystal layer included in the optical film usually has a good surface state. Therefore, since the unevenness of the thickness of the composite liquid crystal layer is small, the optical film can reduce the unevenness of the in-plane retardation.
  • the optical film is preferably excellent in transparency.
  • the total light transmittance of the optical film is preferably 75% or more, more preferably 80% or more, and particularly preferably 84% or more.
  • the haze of the optical film is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet and visible spectrometer.
  • the haze can be measured using a haze meter.
  • the thickness of the optical film is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the optical film is (Iv) forming a layer of the gradient layer composition directly on a specific surface of the liquid crystal alignment layer; (V) orienting the reversely dispersed liquid crystal compound contained in the layer of the gradient layer composition; (Vi) curing the layer of the gradient layer composition to obtain a liquid crystal gradient layer; Can be manufactured by a manufacturing method including
  • a layer of the gradient layer composition is formed directly on a specific surface of the liquid crystal alignment layer.
  • the aspect of forming another layer on the surface of a certain layer means "directly" that there is no other layer between these two layers.
  • the specific surface Before forming the layer of the gradient layer composition on a specific surface of the liquid crystal alignment layer, the specific surface may be subjected to a treatment for imparting alignment control force such as rubbing treatment.
  • the specific surface of the liquid crystal alignment layer does not have to be specially treated, and the alignment regulation force to properly align the reversely dispersed liquid crystal compound contained in the layer of the gradient layer composition formed on the specific surface is used. Have. Therefore, in order to reduce the number of steps and efficiently advance the production of the optical film, in the step (iv), the specific surface of the liquid crystal alignment layer is not subjected to rubbing treatment, and the gradient layer is directly applied to the specific surface of the liquid crystal alignment layer. It is preferred to include forming a layer of the composition.
  • the gradient layer composition is generally prepared in a fluid state. Therefore, the gradient layer composition is usually coated on a specific surface of the liquid crystal alignment layer to form a layer of the gradient layer composition.
  • the method for applying the inclined layer composition include, for example, the same methods as those described as the method for applying the alignment layer composition. Since the liquid crystal alignment layer is formed of a cured product containing the reverse dispersion liquid crystal compound, the liquid crystal alignment layer usually has a high affinity to the gradient layer composition containing the reverse dispersion liquid crystal compound. Therefore, in general, the gradient layer composition conforms well to the specific surface of the liquid crystal alignment layer, and the coatability of the gradient layer composition to the specific surface is good.
  • the layer of the favorable gradient layer composition of a surface state is formed. And since the surface condition of the layer of the gradient layer composition can be improved in this way, the surface condition of the liquid crystal gradient layer obtained by curing the layer of the gradient layer composition can be improved, and hence the surface of the composite liquid crystal layer You can be in good condition.
  • the step (v) of orienting the reversely dispersed liquid crystal compound contained in the layer of the gradient layer composition is performed. Thereby, in the layer of the gradient layer composition, a liquid crystal compound such as an inverse dispersion liquid crystal compound is aligned.
  • the reverse dispersion liquid crystal compound contained in the layer of the gradient layer composition is the alignment direction of the reverse dispersion liquid crystal compound contained in the liquid crystal alignment layer by the alignment regulating force of the specific surface of the liquid crystal alignment layer. Orient in the same direction as.
  • the reversely dispersed liquid crystal compound contained in the layer of the gradient layer composition is oriented such that at least a part is inclined with respect to the layer plane (that is, with respect to the in-plane direction).
  • numerator of the reverse dispersion liquid crystal compound contained in the layer of a gradient layer composition inclines highly with respect to a layer plane (namely, with respect to in-plane direction) by the effect
  • the liquid crystal alignment layer has high affinity to the gradient layer composition. Therefore, the gradient layer composition conforms to the liquid crystal alignment layer, and the alignment of molecules is less likely to be disturbed. Further, in the liquid crystal alignment layer, the generation of alignment defects is suppressed, so the generation of alignment defects in the inclined layer composition caused by the alignment defects of the liquid crystal alignment layer is also suppressed. Therefore, in the gradient layer composition, the orientation can be made uniform in the in-plane direction. Therefore, in the step (v), the occurrence of alignment defects is suppressed.
  • the specific operation in the step (v) of orienting the reverse dispersed liquid crystalline compound contained in the layer of the gradient layer composition is the step of orienting the reverse dispersed liquid crystalline compound contained in the layer of the alignment layer composition and (ii) You can do the same.
  • the same advantages as obtained in the alignment layer composition and the liquid crystal alignment layer can be obtained also in the tilt layer composition and the liquid crystal tilt layer.
  • the temperature condition of the layer of the gradient layer composition in the step (v) is that the residual viscosity of the test composition corresponding to the gradient layer composition is usually 800 cP or less It is preferable to carry out so that it may become the same as the temperature conditions used as
  • a step (vi) of curing the layer of the gradient layer composition to obtain a liquid crystal gradient layer is performed.
  • an optical film provided with a composite liquid crystal layer including a liquid crystal alignment layer and a liquid crystal gradient layer can be obtained.
  • the specific operation in the step (vi) of curing the layer of the gradient layer composition can be the same as the step (iii) of curing the layer of the alignment layer composition.
  • the method for producing an optical film may further include an optional step in combination with the above-described step.
  • the method for producing an optical film may include, for example, the step of forming another liquid crystal gradient layer on the liquid crystal gradient layer.
  • the manufacturing method of an optical film may include the process of forming arbitrary layers on a liquid-crystal inclination layer, for example.
  • a composite liquid crystal layer is formed on a base material.
  • a film including the substrate and the composite liquid crystal layer may be used as an optical film.
  • the manufacturing method of an optical film may include the process of peeling a base material.
  • the composite liquid crystal layer itself can be used as an optical film.
  • the method for producing an optical film may include, for example, a step of transferring the composite liquid crystal layer formed on the substrate to an optional film layer. Therefore, for example, in the method for producing an optical film, after the composite liquid crystal layer formed on the substrate and the optional film layer are laminated, the substrate is peeled if necessary, and the composite liquid crystal layer and the optional The method may include the step of obtaining an optical film comprising a film layer of At this time, a suitable pressure-sensitive adhesive or adhesive may be used for bonding.
  • a long optical film can be obtained using a long liquid crystal alignment layer.
  • Such a long optical film can be manufactured continuously and is excellent in productivity.
  • bonding with another film can be performed by roll to roll, productivity is excellent in this point as well.
  • a long optical film is wound and stored and transported in the form of a roll.
  • a 1 ⁇ 4 wavelength plate according to an embodiment of the present invention includes the liquid crystal alignment layer or the optical film described above.
  • the quarter wavelength plate may further include an optional layer in combination with the liquid crystal alignment layer or the optical film.
  • This quarter-wave plate has an in-plane retardation in the range described above as an in-plane retardation that can function as a quarter-wave plate.
  • the quarter wavelength plate By combining the quarter wavelength plate with the linear polarizer, it is possible to obtain a circularly polarizing plate that can be used as a reflection suppression film.
  • the circularly polarizing plate thus obtained can be used as a reflection suppressing film having an in-plane retardation of reverse wavelength dispersion and an excellent in viewing angle characteristic, with the occurrence of optical defects suppressed. .
  • the polarizing plate which concerns on one Embodiment of this invention is equipped with the liquid crystal aligning layer or optical film mentioned above.
  • the polarizing plate comprises a linear polarizer in combination with a liquid crystal alignment layer or an optical film. It is preferable that this polarizing plate can function as a circularly polarizing plate or an elliptically polarizing plate.
  • Such a polarizing plate can suppress the reflection of external light in the front direction of the display surface of the organic EL display panel by being provided in the organic EL display panel.
  • the liquid crystal alignment layer and the optical film have reverse wavelength dispersive in-plane retardation, reflection of external light can be suppressed in a wide wavelength range.
  • the liquid crystal alignment layer and the optical film described above have a large inclination angle of the molecules of the inverse dispersion liquid crystal compound as a whole, as can be seen from the fact that the substantial maximum inclination angle of the molecules of the inverse dispersion liquid crystal compound is large.
  • the birefringence can be appropriately adjusted not only in the inward direction but also in the thickness direction. Therefore, the polarizing plate can suppress the reflection of external light not only in the front direction of the display surface of the organic EL display panel but also in the inclined direction. Therefore, by using this polarizing plate, an organic EL display panel having a wide viewing angle can be realized. Furthermore, in the liquid crystal alignment layer and the optical film, since the generation of alignment defects is suppressed, it is possible to suppress the generation of portions where reflection can not be suppressed as intended.
  • a linear polarizer for example, a film obtained by adsorbing iodine or a dichroic dye to a polyvinyl alcohol film and uniaxially stretching in a boric acid bath; iodine or a dichroic dye is adsorbed to a polyvinyl alcohol film And a film obtained by further stretching and further modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units.
  • polarized-light into reflected light and transmitted light such as a grid polarizer and a multilayer polarizer, is mentioned.
  • the linear polarizer a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of this linear polarizer is not particularly limited, it is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the angle formed by the slow axis of the liquid crystal alignment layer or the optical film with the polarization absorption axis of the linear polarizer is preferably 45 ° or near. Specifically, the above angle is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 4 °, and particularly preferably 45 ° ⁇ 3 °.
  • the polarizing plate may further contain any layer in addition to the linear polarizer, the liquid crystal alignment layer and the optical film.
  • the optional layer include an adhesive layer for bonding a linear polarizer and a liquid crystal alignment layer or an optical film; a polarizer protective film layer for protecting the linear polarizer;
  • An organic EL display panel includes the liquid crystal alignment layer or the optical film described above.
  • the organic EL display panel is provided with the above-mentioned polarizing plate containing a liquid crystal alignment layer or an optical film.
  • Such an organic EL display panel usually includes an organic EL element as a display element, and a polarizing plate is provided on the viewing side of the organic EL element.
  • a polarizing plate is arrange
  • the above-mentioned polarizing plate can function as a reflection control film.
  • the polarizing plate functions as a circularly polarizing plate as an example.
  • the light incident from the outside of the device becomes circularly polarized light when only a part of linearly polarized light passes through the linear polarizer and then passes through the liquid crystal alignment layer or the optical film.
  • Circularly polarized light is reflected by a component (such as a reflective electrode of an organic EL element) that reflects light in the organic EL display panel, passes through the liquid crystal alignment layer or the optical film again, and the vibration direction of the incident linearly polarized light It becomes linearly polarized light having orthogonal vibration directions and does not pass through the linear polarizer.
  • the vibration direction of linearly polarized light means the vibration direction of an electric field of linearly polarized light.
  • the organic EL device generally includes a transparent electrode layer, a light emitting layer and an electrode layer in this order, and the light emitting layer can generate light when voltage is applied from the transparent electrode layer and the electrode layer.
  • the material which comprises an organic light emitting layer the material of a polypara phenylene vinylene type
  • the light emitting layer may have a stack of a plurality of layers having different emission colors, or a mixed layer in which layers of certain dyes are doped with different dyes.
  • the organic EL element may be provided with functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the liquid crystal alignment layer or the optical film may be provided for uses other than the reflection suppression film.
  • middle film and optical film which were manufactured by the Example and comparative example which are demonstrated below has optical isotropy, it does not affect the measurement result of retardation. Then, the measurement of the retardation in the Example and comparative example which are demonstrated below was implemented by making the intermediate film or optical film containing a support base material into a sample.
  • the labeled compounds shown in Table 1 below were prepared.
  • the labeled compound shown in Table 1 is a compound described in JIS 7260-117: 2006, of which log P is known.
  • Each labeled compound is contained in the same manner as the method described in (1-1. Method for preparing a sample solution containing a fluorinated surfactant) except that this labeled compound is used instead of the fluorinated surfactant.
  • a sample solution was prepared. Thereafter, HPLC / ELSD analysis of the obtained sample solution was performed under the analysis conditions described above (1-2. HPLC / ELSD analysis) to measure the elution time. However, the temperature of the ELSD detector was set to 25 ° C.
  • the analysis results of the labeled compound were plotted in a coordinate system in which the elution time is on the horizontal axis and logP is on the vertical axis, and an approximate straight line is created by the least squares method. This approximate straight line was adopted as a calibration curve.
  • the log P of the fluorosurfactant was determined by applying the elution time measured for each fluorosurfactant to the above calibration curve. When multiple peaks showing elution time are detected per one fluorosurfactant in HPLC / ELSD analysis, the peak top of the largest area peak peak is adopted as the elution time of the fluorosurfactant. I asked for logP.
  • the thickness of the layer was measured using a film thickness meter ("F20-EXR” manufactured by Filmetrics, Inc.).
  • FIG. 5 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal alignment layer 400 from the tilt direction.
  • the arrow A1 represents the in-plane slow axis direction of the liquid crystal alignment layer 400
  • the arrow A2 represents the in-plane fast axis direction of the liquid crystal alignment layer 400
  • the arrow A3 represents the thickness direction of the liquid crystal alignment layer 400.
  • the retardation of the liquid crystal alignment layer 400 was measured in the range of an incident angle ⁇ of ⁇ 50 ° to 50 ° as shown in FIG. 5 using a retardation meter (“AxoScan” manufactured by Axometrics).
  • the measurement direction A4 was set to be perpendicular to the in-plane fast axis direction A2 of the liquid crystal alignment layer 400.
  • the measurement wavelength was 590 nm.
  • the liquid crystal alignment layer was analyzed by the analysis software (analysis software "Multi-Layer Analysis” manufactured by AxoMetrics; analysis conditions: analysis wavelength 590 nm, 20 layer division number) attached to the above-mentioned retardation meter
  • analysis software “Multi-Layer Analysis” manufactured by AxoMetrics; analysis conditions: analysis wavelength 590 nm, 20 layer division number
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the composite liquid crystal layer of the optical film is the liquid crystal alignment described above except that the retardation of the composite liquid crystal layer is measured instead of the retardation of the liquid crystal alignment layer. It was measured by the same method as the method of measuring the substantial maximum tilt angle of the liquid crystal compound molecules contained in the layer.
  • the obtained substantially maximum tilt angle was evaluated based on the following criteria. "A”: The substantial maximum tilt angle in the composite liquid crystal layer is 40 ° or more and 85 ° or less. "B”: The substantial maximum tilt angle in the composite liquid crystal layer is 30 ° or more and less than 40 °. "C”: The substantial maximum tilt angle in the composite liquid crystal layer is less than 30 °.
  • paranicole represents an aspect in which the polarization transmission axes of the linear polarizers are parallel.
  • the optical film produced in the example or the comparative example was cut into a size of 16 cm square to obtain a piece of film for measurement.
  • the filmstrip was placed between the linear polarizers mounted on the light table as described above. Under the present circumstances, the slow axis of the film piece was set so that the angle of about 45 degrees might be made with respect to the absorption axis of a linear polarizer, seeing from the thickness direction. Then, it observed visually.
  • the surface state of the composite liquid crystal layer was evaluated according to the following criteria according to the uniformity (uniformity of retardation) of the observed image. A: There is no unevenness in the observed image.
  • C Unevenness is seen in the observed image.
  • the support base material used for manufacture of an optical film was placed between a pair of linear polarizers installed on the above-mentioned light table, and it observed visually.
  • the entire surface was almost uniform and no unevenness was observed. From this result, it was confirmed that the unevenness observed in the above evaluation was caused by the surface state of the composite liquid crystal layer.
  • a sample film including a cured liquid crystal layer (a liquid crystal alignment layer; or a composite liquid crystal layer composed of a liquid crystal alignment layer and a liquid crystal gradient layer) formed of a cured product of a liquid crystal composition was prepared. .
  • the liquid crystal cured layer was transmitted and observed under crossed nicols using a polarization microscope. During this observation, the objective lens was set to 20 times. From the observation results, the orientation defects were evaluated according to the following criteria. "A”: The entire surface is almost uniform, and no orientation defect is observed. "C”: orientation defect is observed.
  • the in-plane retardation of the optical film (that is, the retardation of the composite liquid crystal layer at an incident angle of 0 °) was measured at a measurement wavelength of 450 nm and 550 nm using a retardation meter (“AxoScan” manufactured by Axometrics). From the measured values of in-plane retardation Re (450) and Re (550) at measurement wavelengths of 450 nm and 550 nm, the reverse wavelength dispersion of the optical film was evaluated based on the following criteria. "A”: Re (450) / Re (550) ⁇ 0.9 “B”: 0.9 ⁇ Re (450) / Re (550) ⁇ 1.0 "C”: Re (450) / Re (550)> 1.0
  • the retardation of the optical film was measured in the range of an incident angle ⁇ of ⁇ 50 ° to 50 ° using a retardation meter (“AxoScan” manufactured by Axometrics). At this time, the measurement direction was set perpendicular to the fast axis direction in the plane of the optical film. In addition, the measurement wavelength was 590 nm.
  • the average value R ( ⁇ 50 °) of the retardation R ( ⁇ 50 °) at an incident angle ⁇ of ⁇ 50 ° and the retardation R (+ 50 °) at an incident angle ⁇ of + 50 ° was calculated. Then, the average value R ( ⁇ 50 °) is divided by the in-plane retardation R (0 °) at an incident angle ⁇ of 0 ° to obtain an average retardation ratio R ( ⁇ 50 °) / R (0 °). I asked. The closer the average retardation ratio R ( ⁇ 50 °) / R (0 °) to 1.00, the better the viewing angle characteristics can be realized in the organic EL display panel.
  • the viewing angle characteristics were evaluated based on the following criteria based on the value of the average retardation ratio R ( ⁇ 50 °) / R (0 °).
  • R ( ⁇ 50 °) / R (0 °) 0.93 ⁇ R ( ⁇ 50 °) / R (0 °) ⁇ 1.10
  • B 0.90 ⁇ R ( ⁇ 50 °) / R (0 °) ⁇ 0.93
  • C R ( ⁇ 50 °) / R (0 °) ⁇ 0.90
  • a sample film including a cured liquid crystal layer (a liquid crystal alignment layer; or a composite liquid crystal layer composed of a liquid crystal alignment layer and a liquid crystal gradient layer) formed of a cured product of a liquid crystal composition was prepared.
  • the retardation of the cured liquid crystal layer was measured in the range of an incident angle ⁇ of ⁇ 50 ° to 50 ° using a retardation meter (“AxoScan” manufactured by Axometrics). At this time, the measurement direction was set to be perpendicular to the in-plane fast axis direction of the liquid crystal cured layer. In addition, the measurement wavelength was 590 nm.
  • the retardation ratio R ( ⁇ ) of the liquid crystal cured layer at the measured incident angle ⁇ is divided by the retardation R (0 °) of the liquid crystal cured layer at the incident angle 0 ° to obtain a retardation ratio R ( ⁇ ) / R (0 °) was determined.
  • a liquid crystal composition was produced by mixing 4.3 parts by weight of an initiator ("IrgacureOXE04" manufactured by BASF Corp.), and 148.5 parts by weight of cyclopentanone and 222.8 parts by weight of 1,3-dioxolane as a solvent. .
  • a resin film (“Zeonor film ZF16” manufactured by Zeon Corporation; thickness 100 ⁇ m) made of a thermoplastic norbornene resin in which a masking film is bonded on one side was prepared.
  • the supporting substrate was an optically isotropic film without retardation.
  • the masking film was peeled off from the supporting substrate, and the masking peeled surface was subjected to corona treatment. Next, the corona-treated surface of the support substrate was subjected to rubbing treatment.
  • the liquid crystal composition was coated as an alignment layer composition on the rubbing-treated surface of the supporting substrate using a wire bar to form a layer of the liquid crystal composition. Then, the layer of the liquid crystal composition was heated for 4 minutes in an oven set at 145 ° C. to align the liquid crystal compounds in the layer. The heating condition was a temperature condition at which the residual viscosity of the test composition corresponding to the liquid crystal composition used was 170 cP. Thereafter, the layer of the liquid crystal composition was irradiated with ultraviolet light of 500 mJ / cm 2 in a nitrogen atmosphere to cure the layer of the liquid crystal composition, thereby obtaining a liquid crystal alignment layer having a thickness of 0.3 ⁇ m.
  • the surface fluorine atomic weight M F [mol%] on the surface opposite to the supporting substrate of the liquid crystal alignment layer, the substantially maximum inclination angle in the liquid crystal alignment layer, and the liquid crystal alignment layer The alignment defect of the alignment defect and the liquid crystal alignment layer was evaluated.
  • an optical film provided with a support base and a liquid crystal alignment layer including a liquid crystal alignment layer and a liquid crystal gradient layer formed on the support base was obtained.
  • the thickness of the composite liquid crystal layer was 3.2 ⁇ m.
  • the surface state, alignment defect, reverse wavelength dispersion, substantial maximum tilt angle, tilt alignment and viewing angle characteristics of the composite liquid crystal layer were evaluated by the method described above.
  • the in-plane retardation of the optical film at a wavelength of 590 nm was 145 nm.
  • Example 2 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.150 parts by weight. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer. The in-plane retardation of the optical film at a wavelength of 590 nm was 145 nm.
  • S420 manufactured by AGC Seimi Chemical Co., Ltd.
  • Example 3 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.150 parts by weight. In addition, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 1.4 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer. The in-plane retardation of the optical film at a wavelength of 590 nm was 139 nm.
  • Example 4 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.150 parts by weight. In addition, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 2.5 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer. The in-plane retardation of the optical film at a wavelength of 590 nm was 158 nm.
  • Example 5 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.400 parts by weight. In addition, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 1.0 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer. The in-plane retardation of the optical film at a wavelength of 590 nm was 157 nm.
  • Example 7 Instead of using 100 parts by weight of the reverse dispersion liquid crystal compound 1, 100 parts by weight of the reverse dispersion liquid crystal compound 2 represented by the following formula was used. Further, the amount of the fluorine-based surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.150 parts by weight. Furthermore, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 1.4 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer.
  • S420 manufactured by AGC Seimi Chemical Co., Ltd.
  • Example 7 the heating conditions for heating the layer of the liquid crystal composition in an oven were such that the residual viscosity of the test composition corresponding to the liquid crystal composition used was 255 cP.
  • the in-plane retardation of the optical film at a wavelength of 590 nm was 149 nm.
  • Comparative Example 1 The thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 2.0 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer.
  • Comparative Example 2 The amount of the fluorinated surfactant ("S420" manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.500 parts by weight. In addition, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 2.0 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer.
  • S420 manufactured by AGC Seimi Chemical Co., Ltd.
  • Comparative Example 3 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.150 parts by weight. In addition, the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 3.4 ⁇ m. Furthermore, the thickness of the composite liquid crystal layer was changed from 3.2 ⁇ m to 3.7 ⁇ m. The same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer.
  • S420 manufactured by AGC Seimi Chemical Co., Ltd.
  • Comparative Example 4 The amount of the fluorinated surfactant (“S420” manufactured by AGC Seimi Chemical Co., Ltd.) was changed from 0.075 parts by weight to 0.400 parts by weight.
  • the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 3.3 ⁇ m.
  • the thickness of the composite liquid crystal layer was changed from 3.2 ⁇ m to 3.6 ⁇ m.
  • the set temperature of the oven in the step of aligning the liquid crystal compound contained in the layer of the liquid crystal composition was lowered.
  • the set temperature was a temperature at which the residual viscosity of the test composition corresponding to the liquid crystal composition was greater than 800 cP.
  • Example 4 the alignment direction of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer became parallel to the layer plane (that is, parallel to the in-plane direction).
  • Example 4 the same operation as in Example 1 was carried out except for the above matters, to produce and evaluate an intermediate film containing a liquid crystal alignment layer and an optical film containing a composite liquid crystal layer.
  • the molecules of the reversely dispersed liquid crystal compound are relative to the layer plane (that is, in the in-plane direction). ) could not be confirmed.
  • Comparative Example 5 100 parts by weight of a normal dispersion liquid crystalline compound 3 having a polymerizability represented by the following formula, 0.150 parts by weight of a fluorine-based surfactant ("S420" manufactured by AGC Seimi Chemical Co., Ltd.), a photopolymerization initiator (manufactured by BASF Corp.)
  • a liquid crystal composition was prepared by mixing 4.3 parts by weight of “Irgacure OXE 04”, and 148.5 parts by weight of cyclopentanone and 222.8 parts by weight of 1,3-dioxolane as solvents.
  • the alignment layer composition a liquid crystal composition containing the above-described normal dispersion liquid crystal compound 3 was used.
  • the thickness of the liquid crystal alignment layer was changed from 0.3 ⁇ m to 0.5 ⁇ m. The same operation as the formation process of the liquid crystal aligning layer in Example 1 was performed except the above matter, and manufacture and evaluation of the intermediate film containing a liquid crystal aligning layer were performed.
  • the reverse liquid crystal dispersion layer is subjected to the same operation as the step of forming the liquid crystal gradient layer in Example 1 except that the thickness of the composite liquid crystal layer is changed from 3.2 ⁇ m to 2.8 ⁇ m.
  • a liquid crystal gradient layer was formed using a liquid crystal composition containing the liquid crystal compound 1 to obtain an optical film. Using the obtained optical film, the surface state, alignment defect, reverse wavelength dispersion, substantial maximum tilt angle, tilt alignment and viewing angle characteristics of the composite liquid crystal layer were evaluated by the method described above.
  • Comparative Example 3 in which the thickness T of the liquid crystal alignment layer is too large, the substantial maximum inclination angle of the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer is small. As it is small, it is inferior to the viewing angle characteristics. Further, in Comparative Example 4 in which the molecules of the reversely dispersed liquid crystal compound contained in the liquid crystal alignment layer are not inclined with respect to the layer plane (that is, with respect to the in-plane direction), the substantial maximum in the composite liquid crystal layer included in the optical film Since the inclination angle is small, the viewing angle characteristics are inferior.
  • Comparative Example 5 in which a normal dispersion liquid crystal compound was used to form a liquid crystal alignment layer, an optical film having an in-plane retardation of reverse wavelength dispersion could not be obtained. Further, in Comparative Example 5, the substantial maximum tilt angle in the composite liquid crystal layer is smaller than the substantial maximum tilt angle in the liquid crystal alignment layer. Therefore, it is understood that, in the liquid crystal alignment layer using the normal dispersion liquid crystal compound, the inclination of the molecules of the reverse dispersion liquid crystal compound can not be promoted in the liquid crystal tilt layer using the reverse dispersion liquid crystal compound. On the other hand, as can be seen from Table 1, in the examples, good results were obtained in all of the alignment defects, the reverse wavelength dispersion, and the viewing angle characteristics.
  • the present invention can provide an optical film having reverse wavelength dispersive in-plane retardation, capable of suppressing the occurrence of alignment defects, and having excellent viewing angle characteristics. Furthermore, in each of the embodiments described above, the surface condition results are good. Therefore, it was confirmed that the present invention can provide an optical film provided with a composite liquid crystal layer having a good surface state.
  • liquid crystal alignment layer 100 U specific surface 200 optical film 210 liquid crystal tilt layer 220 composite liquid crystal layer 300 layer of alignment layer composition 300 U air interface 310 molecule of reverse dispersed liquid crystalline compound 320 molecule of reverse dispersed liquid crystalline compound 330 reverse dispersed liquid crystalline compound Molecule 340 Fluorosurfactant 400 Liquid Crystal Alignment Layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

逆波長分散性の複屈折を発現できる液晶性化合物、及び、フッ素原子を含有する界面活性剤、を含む配向層組成物の硬化物で形成され、配向状態を固定された前記液晶性化合物の分子を含む液晶配向層であって、前記液晶配向層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶配向層の層平面に対して傾斜しており、前記液晶配向層が、X線光電子分光法によって測定される表面フッ素原子量MF[モル%]と前記液晶配向層の厚みT[μm]との比MF/Tが3.0以上16.0未満である表面を有し、前記液晶配向層の厚みTが、2.5μm以下である、液晶配向層。

Description

液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
 本発明は、液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネルに関する。
 光学フィルムの一つとして、液晶性化合物を用いて製造されるフィルムが知られている。このフィルムは、一般に、液晶性化合物を含む液晶組成物を配向させ、その配向状態を維持したままで硬化させた硬化物で形成された液晶硬化層を備える。このような光学フィルムとして、特許文献1に記載のものが提案されている。
特許第5363022号公報
 光学フィルムが備える液晶硬化層には、通常、液晶性化合物が含まれる。この液晶性化合物の分子は、液晶硬化層の層平面に対して傾斜することがある。このように分子が傾斜した液晶性化合物を含む液晶硬化層を備えた光学フィルムを画像表示装置に設ける場合、良好な視野角特性を得るために、液晶性化合物の分子の傾斜角を適切に調整することが望ましい。
 具体的には、有機エレクトロルミネッセンス表示パネル(以下、適宜「有機EL表示パネル」ということがある。)には、その表示面に、外光の反射を抑制するための反射抑制フィルムとして、円偏光板及び楕円偏光板等の偏光板が設けられることがある。この偏光板は、通常、直線偏光子と位相差フィルムとを組み合わせて含む。表示面を傾斜方向から見た場合に反射を抑制して優れた視野角特性を得る観点から、位相差フィルムは、その厚み方向において複屈折を調整することが好ましい。そこで、厚み方向に適切な複屈折を有する位相差フィルムを実現するために、本発明者は、液晶性化合物の分子の傾斜角が適切に調整された液晶硬化層を備える光学フィルムの開発を試みた。
 また、広い波長範囲において所望の光学的機能を発揮させるためには、前記の位相差フィルムは、逆波長分散性の面内レターデーションを有することが望まれる。そのため、液晶硬化層を備えるフィルムを位相差フィルムとして用いる場合には、逆波長分散性の複屈折を発現できる液晶性化合物(以下、適宜「逆分散液晶性化合物」ということがある。)を用いることが望まれる。
 ところが、従来の技術では、液晶硬化層に含まれる逆分散液晶性化合物の分子の傾斜角を大きくするためには、液晶硬化層とは別に配向膜を設ける必要があった。しかし、配向膜を用いて形成される従来の液晶硬化層は、配向欠陥が生じ易かった。そのため、液晶硬化層における配向欠陥の発生を抑制しながら、逆分散液晶性化合物を用いて優れた視野角特性を有する光学フィルムを製造することは、困難であった。
 本発明は、前記の課題に鑑みて創案されたもので、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルムを得ることができる液晶配向層及びその製造方法;逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルム及びその製造方法;前記の液晶配向層又は光学フィルムを備える1/4波長板;前記の液晶配向層又は光学フィルムを備える偏光板;並びに、前記の液晶配向層又は光学フィルムを備える有機エレクトロルミネッセンス表示パネル;を提供することを目的とする。
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、逆分散液晶性化合物とフッ素原子を含有する界面活性剤とを含む配向層組成物の硬化物で形成された所定の液晶配向層を用いることにより、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルムを得ることができることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
 〔1〕 逆波長分散性の複屈折を発現できる液晶性化合物、及び、フッ素原子を含有する界面活性剤、を含む配向層組成物の硬化物で形成され、配向状態を固定された前記液晶性化合物の分子を含む液晶配向層であって、
 前記液晶配向層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶配向層の層平面に対して傾斜しており、
 前記液晶配向層が、X線光電子分光法によって測定される表面フッ素原子量M[モル%]と前記液晶配向層の厚みT[μm]との比M/Tが3.0以上16.0未満である表面を有し、
 前記液晶配向層の厚みTが、2.5μm以下である、液晶配向層。
 〔2〕 前記液晶配向層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、26°以上60°以下である、〔1〕に記載の液晶配向層。
 〔3〕 〔1〕又は〔2〕に記載の液晶配向層と、前記配向層組成物に含まれる前記液晶性化合物と同一又は異なる逆波長分散性の複屈折を発現できる液晶性化合物を含む傾斜層組成物の硬化物で形成された液晶傾斜層とを備え、
 前記液晶傾斜層が、前記液晶配向層の前記表面に直接に接している、光学フィルム。
 〔4〕 測定波長590nmでの前記光学フィルムの面内レターデーションが、100nm以上180nm以下である、〔3〕記載の光学フィルム。
 〔5〕 逆波長分散性の複屈折を発現できる液晶性化合物、及び、フッ素原子を含有する界面活性剤、を含む配向層組成物の層を形成する工程と、
 前記配向層組成物の層に含まれる前記液晶性化合物を配向させる工程と、
 前記配向層組成物の層を硬化させて液晶配向層を得る工程と、を含み、
 前記液晶配向層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶配向層の層平面に対して傾斜しており、
 前記液晶配向層が、X線光電子分光法によって測定される表面フッ素原子量M[モル%]と前記液晶配向層の厚みT[μm]との比M/Tが3.0以上16.0未満である表面を有し、
 前記液晶配向層の厚みTが、2.5μm以下である、液晶配向層の製造方法。
 〔6〕 〔1〕又は〔2〕に記載の液晶配向層の前記表面に、直接に、前記配向層組成物に含まれる前記液晶性化合物と同一又は異なる逆波長分散性の複屈折を発現できる液晶性化合物を含む傾斜層組成物の層を形成する工程と、
 前記傾斜層組成物の層に含まれる前記液晶性化合物を配向させる工程と、
 前記傾斜層組成物の層を硬化させて、液晶傾斜層を得る工程と、を含む、光学フィルムの製造方法。
 〔7〕 前記液晶配向層の前記表面に直接に前記傾斜層組成物の層を形成する工程が、前記液晶配向層の前記表面にラビング処理を施さないで、前記液晶配向層の前記表面に直接に前記傾斜層組成物の層を形成することを含む、〔6〕記載の光学フィルムの製造方法。
 〔8〕 〔1〕若しくは〔2〕記載の液晶配向層、又は、〔3〕若しくは〔4〕に記載の光学フィルムを備える、1/4波長板。
 〔9〕 〔1〕若しくは〔2〕記載の液晶配向層、又は、〔3〕若しくは〔4〕に記載の光学フィルムを備える、偏光板。
 〔10〕 〔1〕若しくは〔2〕記載の液晶配向層、又は、〔3〕若しくは〔4〕に記載の光学フィルムを備える、有機エレクトロルミネッセンス表示パネル。
 本発明によれば、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルムを得ることができる液晶配向層及びその製造方法;逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルム及びその製造方法;前記の液晶配向層又は光学フィルムを備える1/4波長板;前記の液晶配向層又は光学フィルムを備える偏光板;並びに、前記の液晶配向層又は光学フィルムを備える有機エレクトロルミネッセンス表示パネル;を提供できる。
図1は、本発明の一実施形態に係る液晶配向層を模式的に示す断面図である。 図2は、本発明の一実施形態に係る光学フィルムを模式的に示す断面図である。 図3は、ある例に係る液晶配向層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。 図4は、一実施形態に係る液晶配向層の製造途中において得られる配向層組成物の層を模式的に示す断面図である。 図5は、傾斜方向から液晶配向層のレターデーションを測定する際の測定方向を説明するための斜視図である。
 以下、例示物及び実施形態を示して本発明について詳細に説明する。ただし、本発明は以下に示す例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、ある層の「面内方向」とは、別に断らない限り、層平面に平行な方向を表す。
 以下の説明において、ある層の「厚み方向」とは、別に断らない限り、層平面に垂直な方向を表す。よって、別に断らない限り、ある層の面内方向と厚み方向とは、垂直である。
 以下の説明において、ある面の「正面方向」とは、別に断らない限り、その面の法線方向を表し、具体的には前記面の極角0°の方向を指す。
 以下の説明において、ある面の「傾斜方向」とは、別に断らない限り、その面に平行でも垂直でもない方向を表し、具体的には前記面の極角が5°以上85°以下の範囲の方向を指す。
 以下の説明において、逆波長分散性の複屈折とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N1)を満たす複屈折をいう。このような逆波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、大きい複屈折を発現できる。
 Δn(450)<Δn(550) (N1)
 以下の説明において、順波長分散性の複屈折とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N2)を満たす複屈折をいう。このような順波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、小さい複屈折を発現できる。
 Δn(450)>Δn(550) (N2)
 以下の説明において、別に断らない限り、「(メタ)アクリル酸」とは、「アクリル酸」、「メタクリル酸」及びこれらの組み合わせを包含する用語である。
 以下の説明において、ある層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。レターデーションの測定波長は、別に断らない限り、590nmである。面内レターデーションReは、位相差計(Axometrics社製「AxoScan」)を用いて測定できる。
 以下の説明において、固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、固有複屈折値が負の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。
 以下の説明において、ある層の遅相軸の方向とは、別に断らない限り、面内方向の遅相軸の方向をいう。
 以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±4°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。
 以下の説明において、別に断らない限り、ある層に含まれる液晶性化合物の分子の「傾斜角」とは、その液晶性化合物の分子が層平面に対してなす角度を表し、「チルト角」とも呼ばれることがある。この傾斜角は、液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度に相当する。また、以下の説明においては、別に断らない限り、「傾斜角」とは、液晶性化合物の分子の、当該液晶性化合物が含まれる層の層平面に対する傾斜角を表す。層平面に対する傾斜角は、その層平面に平行な「面内方向に対する傾斜角」ということがある。
 以下の説明において、ある層に含まれる液晶性化合物の分子の「実質最大傾斜角」とは、その層の一方の面での分子の傾斜角が0°であり、且つ分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値をいう。通常、液晶性化合物を含む層において、液晶性化合物の分子の傾斜角は、厚み方向において、層の一側に近いほど小さく前記一側から遠いほど大きい。実質最大傾斜角は、このような厚み方向における傾斜角の変化の比率(即ち、一側に近いほど減少し、一側から遠いほど増加するという変化の比率)が一定であると仮定して計算される、傾斜角の最大値を表す。
 以下の説明において、置換基を有する基の炭素原子数には、別に断らない限り、前記置換基の炭素原子数を含めない。よって、例えば「置換基を有していてもよい炭素原子数1~20のアルキル基」との記載は、置換基の炭素原子数を含まないアルキル基自体の炭素原子数が1~20であることを表す。
[1.液晶配向層]
 (1.1.液晶配向層の概要)
 図1は、本発明の一実施形態に係る液晶配向層100を模式的に示す断面図である。また、図2は、本発明の一実施形態に係る光学フィルム200を模式的に示す断面図である。
 図1及び図2に示すように、本発明の一実施形態に係る液晶配向層100は、当該液晶配向層100上に液晶性化合物を含む液晶組成物の硬化物で形成された液晶傾斜層210を形成されるための層である。液晶配向層100上に液晶傾斜層210を形成することを含む製造方法により、光学フィルム200が得られる。
 液晶配向層100及び液晶傾斜層210は、いずれも、液晶性化合物を含む液晶組成物の硬化物で形成された層としての液晶硬化層に相当するが、本願では、区別のために、「液晶配向層」100と「液晶傾斜層」210とを呼び分けている。また、液晶配向層100の形成に用いられる液晶組成物及び液晶傾斜層210の形成に用いられる液晶組成物を区別するため、適宜、液晶配向層100の形成に用いられる液晶組成物を「配向層組成物」と呼び、液晶傾斜層210の形成に用いられる液晶組成物を「傾斜層組成物」と呼ぶ。さらに、以下の説明において、液晶配向層100及び液晶傾斜層210を含む複層構造の液晶硬化層の全体を、「複合液晶層」220と呼ぶことがある。
 液晶配向層100は、逆分散液晶性化合物(即ち、逆波長分散性の複屈折を発現できる液晶性化合物)、及び、フッ素系界面活性剤を含む配向層組成物の硬化物で形成されている。前記の「フッ素系界面活性剤」とは、フッ素原子を含有する界面活性剤をいう。
 配向層組成物の硬化物で形成されているので、液晶配向層100は、配向状態を固定された逆分散液晶性化合物の分子を含む。用語「配向状態を固定された逆分散液晶性化合物」には、逆分散液晶性化合物の重合体が包含される。通常、重合によって逆分散液晶性化合物の液晶性は失われるが、本願においては、そのように重合した逆分散液晶性化合物も、用語「液晶配向層に含まれる逆分散液晶性化合物」に含める。液晶配向層100は、配向状態を固定された逆分散液晶性化合物の分子に組み合わせて配向状態を固定されていない逆分散液晶性化合物の分子を含んでいてもよいが、液晶配向層100に含まれる逆分散液晶性化合物の分子の全てが配向状態を固定されていることが好ましい。
 液晶配向層100に含まれる逆分散液晶性化合物の少なくとも一部の分子は、当該液晶配向層100の層平面に対して(即ち面内方向に対して)傾斜している。ある液晶性化合物の分子が層平面に対して(即ち面内方向に対して)「傾斜している」とは、その分子の層平面に対する(即ち面内方向に対する)傾斜角が5°以上85°以下の範囲にあることを表す。このように傾斜した液晶性化合物の分子は、通常、層平面に対して(即ち面内方向に対して)平行でも垂直でもない状態となっている。
 また、液晶配向層100は、X線光電子分光法によって測定される表面フッ素原子量M[モル%]と液晶配向層の厚みT[μm]との比M/Tが所定の範囲にある表面100Uを有する。この表面100Uを、以下、適宜「特定面」という。よって、液晶配向層100の特定面100UにおいてX線光電子分光法によって測定される表面フッ素原子量M[モル%]と、液晶配向層100の厚みT[μm]との比M/Tは、所定の範囲にある。
 前記の比M/Tの具体的な範囲は、通常3.0以上、好ましくは3.2以上、より好ましくは3.5以上であり、通常16.0未満、好ましくは15.5以下、より好ましくは15.0以下である。液晶配向層100の特定面100Uにおける表面フッ素原子量Mは、後述する実施例に記載のX線光電子分光法によって、液晶配向層100の特定面100Uに存在する、水素(H)を除く全原子中に含まれるフッ素(F)原子のモル含有率として測定できる。
 さらに、液晶配向層100の厚みTは、通常2.5μm以下、好ましくは2.0μm未満、より好ましくは1.8μm以下、更に好ましくは1.6μm以下、特に好ましくは1.0μm以下である。液晶配向層100の厚みTの下限に特段の制限は無いが、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上である。
 前記のように層平面に対して(即ち面内方向に対して)分子が傾斜した逆分散液晶性化合物を含む液晶配向層100の特定面100Uは、当該特定面100Uに傾斜層組成物の層が形成された場合に、その傾斜層組成物の層に含まれる逆分散液晶性化合物の分子を層平面に対して(即ち面内方向に対して)傾斜させる作用を有する。よって、液晶配向層100によれば、その特定面100U上に形成される液晶傾斜層210に含まれる逆分散液晶性化合物の分子の傾斜角を大きくできるので、視野角特性に優れた光学フィルム200を得ることができる。また、液晶配向層100及び液晶傾斜層210の両方が逆分散液晶性化合物を含むので、得られる光学フィルム200は、逆波長分散性の面内レターデーションを有することができる。さらには、前記の液晶配向層100は、逆分散液晶性化合物の分子を層平面に対して(即ち面内方向に対して)傾斜するように配向させながら、配向欠陥の発生を抑制できる。したがって、前記のような液晶配向層100によれば、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルム200を得ることができる。
 前記の比M/Tの調整方法としては、例えば、液晶配向層100の特定面100Uの表面フッ素原子量M及び厚みTを調整する方法が挙げられる。また、液晶配向層100の特定面100Uの表面フッ素原子量Mの調整方法としては、例えば、フッ素系界面活性剤の種類、逆分散液晶性化合物とフッ素系界面活性剤との組み合わせ、並びに、配向層組成物におけるフッ素系界面活性剤の濃度を適切に調整する方法が挙げられる。
 (1.2.逆分散液晶性化合物)
 逆分散液晶性化合物は、液晶性を有する化合物であり、通常、当該逆分散液晶性化合物を配向させた場合に、液晶相を呈することができる化合物である。
 また、逆分散液晶性化合物は、前記の通り、逆波長分散性の複屈折を発現できる液晶性化合物である。ここで、逆波長分散性の複屈折を発現できる液晶性化合物とは、当該液晶性化合物の層を形成し、その層において液晶性化合物を配向させた際に、逆波長分散性の複屈折を発現する液晶性化合物をいう。通常は、液晶性化合物をホモジニアス配向させた場合に、液晶性化合物の層が逆波長分散性の複屈折を示すかどうかを調べることで、その液晶性化合物が逆波長分散性の複屈折を発現するかどうかを確認できる。ここで、液晶性化合物をホモジニアス配向させる、とは、当該液晶性化合物を含む層を形成し、その層における液晶性化合物の分子のメソゲン骨格の長軸方向を、前記層の面に平行なある一の方向に配向させることをいう。液晶性化合物が配向方向の異なる複数種類のメソゲン骨格を含む場合は、それらのうち最も長い種類のメソゲンが配向する方向が、前記の配向方向となる。また、前記の層の複屈折は、「(層の面内レターデーション)÷(層の厚み)」から求められる。
 逆分散液晶性化合物は、当該逆分散液晶性化合物の分子中に、主鎖メソゲンと、前記主鎖メソゲンに結合した側鎖メソゲンとを含む化合物でありうる。主鎖メソゲン及び側鎖メソゲンを含む前記の逆分散液晶性化合物は、当該逆分散液晶性化合物が配向した状態において、側鎖メソゲンが主鎖メソゲンと異なる方向に配向できる。そのため、このように配向した逆分散液晶性化合物の層においては、主鎖メソゲン及び側鎖メソゲンは、異なる方向に配向しうる。このような場合、その層の複屈折は主鎖メソゲンに対応する屈折率と側鎖メソゲンに対応する屈折率との差として発現するので、結果として、逆波長分散性の複屈折を発現できる。
 逆分散液晶性化合物は、重合性を有することが好ましい。よって、逆分散液晶性化合物は、その分子が、アクリロイル基、メタクリロイル基、及びエポキシ基等の重合性基を含むことが好ましい。重合性を有する逆分散液晶性化合物は、液晶相を呈した状態で重合し、液晶相における分子の配向状態を維持したまま重合体となることができる。よって、液晶配向層において逆分散液晶性化合物の配向状態を固定したり、液晶性化合物の重合度を高めて液晶配向層の機械的強度を高めたりすることが可能である。
 逆分散液晶性化合物の分子量は、好ましくは300以上、より好ましくは500以上、特に好ましくは800以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。このような範囲の分子量を有する逆分散液晶性化合物を用いることにより、配向層組成物の塗工性を特に良好にできる。
 測定波長590nmにおける逆分散液晶性化合物の複屈折Δnは、好ましくは0.01以上、より好ましくは0.03以上であり、好ましくは0.15以下、より好ましくは0.10以下である。このような範囲の複屈折Δnを有する逆分散液晶性化合物を用いることにより、逆分散液晶性化合物の分子の実質最大傾斜角が大きい液晶配向層を容易に得ることができる。さらに、通常は、このような範囲の複屈折Δnを有する逆分散液晶性化合物を用いることにより、配向欠陥の少ない液晶配向層を得やすい。
 液晶性化合物の複屈折は、例えば、下記の方法により測定できる。
 液晶性化合物の層を作製し、その層に含まれる液晶性化合物をホモジニアス配向させる。その後、その層の面内レターデーションを測定する。そして、「(層の面内レターデーション)÷(層の厚み)」から、液晶性化合物の複屈折を求めることができる。この際、面内レターデーション及び厚みの測定を容易にするために、ホモジニアス配向させた液晶性化合物の層は、硬化させてもよい。
 逆分散液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 逆分散液晶性化合物の例としては、下記式(I)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Arは、下記式(II-1)~式(II-7)のいずれかで表される基を示す。式(II-1)~式(II-7)において、*は、Z又はZとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
 前記の式(II-1)~式(II-7)において、E及びEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-及び-O-からなる群より選ばれる基を表す。また、R11及びR12は、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基を表す。中でも、E及びEは、それぞれ独立して、-S-であることが好ましい。
 前記の式(II-1)~式(II-7)において、D~Dは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または、置換基を有していてもよい芳香族複素環基を表す。D~Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、2~100である。
 D~Dにおける芳香族炭化水素環基の炭素原子数は、6~30が好ましい。D~Dにおける炭素原子数6~30の芳香族炭化水素環基としては、例えば、フェニル基、ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基がより好ましい。
 D~Dにおける芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数1~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rは、炭素原子数1~6のアルキル基;並びに、炭素原子数1~6のアルキル基若しくは炭素原子数1~6のアルコキシ基を置換基として有していてもよい、炭素原子数6~20の芳香族炭化水素環基;からなる群より選ばれる基を表す。
 Rは、置換基を有していてもよい炭素原子数1~20のアルキル基;置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;及び、置換基を有していてもよい炭素原子数6~12の芳香族炭化水素環基;からなる群より選ばれる基を表す。
 Rにおける炭素原子数1~20のアルキル基の炭素原子数は、好ましくは1~12、より好ましくは4~10である。Rにおける炭素原子数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基等が挙げられる。
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チエニル基、チアゾリル基、ベンゾチアゾール-2-イルチオ基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;及び、ベンゾジオキサニル基;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数2~20のアルケニル基の炭素原子数は、好ましくは2~12である。Rにおける炭素原子数2~20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基等が挙げられる。
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基等が挙げられる。中でも、シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基が好ましい。
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;等が挙げられる。中でも、シクロアルキル基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数6~12の芳香族炭化水素環基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基が好ましい。
 Rにおける炭素原子数6~12の芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;等が挙げられる。中でも、芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;ニトロ基;フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 D~Dにおける芳香族複素環基の炭素原子数は、2~30が好ましい。D~Dにおける炭素原子数2~30の芳香族複素環基としては、例えば、1-ベンゾフラニル基、2-ベンゾフラニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、キノリル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、およびベンゾピラゾリル基等が挙げられる。中でも、芳香族複素環基としては、フラニル基、ピラニル基、チエニル基、オキサゾリル基、フラザニル基、チアゾリル基、及びチアジアゾリル基等の、単環の芳香族複素環基;並びに、ベンゾチアゾリル基、ベンゾオキサゾリル基、キノリル基、1-ベンゾフラニル基、2-ベンゾフラニル基、フタルイミド基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、チアゾロピリジル基、チアゾロピラジニル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基、及びベンゾチアジアゾリル基等の、縮合環の芳香族複素環基;がより好ましい。
 D~Dにおける芳香族複素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 前記の式(II-1)~式(II-7)において、D~Dは、それぞれ独立して、置換基を有していてもよい非環状基を表す。D及びDは、一緒になって環を形成していてもよい。D~Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、1~100である。
 D~Dにおける非環状基の炭素原子数は、1~13が好ましい。D~Dにおける非環状基としては、例えば、炭素原子数1~6のアルキル基;シアノ基;カルボキシル基;炭素原子数1~6のフルオロアルキル基;炭素原子数1~6のアルコキシ基;-C(=O)-CH;-C(=O)NHPh;-C(=O)-OR;が挙げられる。中でも、非環状基としては、シアノ基、カルボキシル基、-C(=O)-CH、-C(=O)NHPh、-C(=O)-OC、-C(=O)-OC、-C(=O)-OCH(CH、-C(=O)-OCHCHCH(CH)-OCH、-C(=O)-OCHCHC(CH-OH、及び-C(=O)-OCHCH(CHCH)-C、が好ましい。前記のPhは、フェニル基を表す。また、前記のRは、炭素原子数1~12の有機基を表す。Rの具体例としては、炭素原子数1~12のアルコキシ基、または、水酸基で置換されていてもよい炭素原子数1~12のアルキル基が挙げられる。
 D~Dにおける非環状基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 D及びDが一緒になって環を形成している場合、前記のD及びDによって環を含む有機基が形成される。この有機基としては、例えば、下記式で表される基が挙げられる。下記式において、*は、各有機基が、D及びDが結合する炭素と結合する位置を表す。
Figure JPOXMLDOC01-appb-C000003
 Rは、炭素原子数1~3のアルキル基を表す。
 R**は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R***は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R****は、水素原子、炭素原子数1~3のアルキル基、水酸基、及び、-COOR13からなる群より選ばれる基を表す。R13は、炭素原子数1~3のアルキル基を表す。
 フェニル基が有しうる置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基及びアミノ基が挙げられる。中でも、置換基としては、ハロゲン原子、アルキル基、シアノ基及びアルコキシ基が好ましい。フェニル基が有する置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 前記の式(II-1)~式(II-7)において、Dは、-C(R)=N-N(R)R、-C(R)=N-N=C(R)R、及び、-C(R)=N-N=Rからなる群より選ばれる基を表す。Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、通常、3~100である。
 Rは、水素原子;並びに、メチル基、エチル基、プロピル基、及びイソプロピル基等の、炭素原子数1~6のアルキル基;からなる群より選ばれる基を表す。
 Rは、水素原子;並びに、置換基を有していてもよい炭素原子数1~30の有機基;からなる群より選ばれる基を表す。
 Rにおける置換基を有していてもよい炭素原子数1~30の有機基としては、例えば、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、又は、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数2~20のアルキニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2~30の芳香族複素環基;-SO;-C(=O)-R;-CS-NH-R;が挙げられる。R及びRの意味は、上述した通りである。
 Rにおける炭素原子数1~20のアルキル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数1~20のアルキル基と同じである。
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-SO;-SR;-SRで置換された炭素原子数1~12のアルコキシ基;水酸基;等が挙げられる。R及びRの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数2~20のアルケニル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数2~20のアルケニル基と同じである。
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基等が挙げられる。
 Rにおける炭素原子数2~20のアルキニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、Rにおける炭素原子数3~12のシクロアルキル基と同じ例が挙げられる。
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数6~30の芳香族炭化水素環基としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 Rにおける炭素原子数6~30の芳香族炭化水素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rにおける炭素原子数2~30の芳香族複素環基としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
 Rにおける炭素原子数2~30の芳香族複素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 上述したものの中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;並びに、置換基を有していてもよい炭素原子数2~30の芳香族複素環基;が好ましい。その中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;並びに、炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);が特に好ましい。
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。
 Rの好ましい例としては、(1)1以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基、が挙げられる。この芳香族炭化水素環を有する炭化水素環基を、以下、適宜「(1)炭化水素環基」ということがある。(1)炭化水素環基の具体例としては、下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 (1)炭化水素環基は、置換基を有していてもよい。(1)炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基、が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rの別の好ましい例としては、(2)炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。この芳香環を有する複素環基を、以下、適宜「(2)複素環基」ということがある。(2)複素環基の具体例としては、下記の基が挙げられる。Rは、それぞれ独立に、水素原子又は炭素原子数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 (2)複素環基は、置換基を有していてもよい。(2)複素環基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rの更に別の好ましい例としては、(3)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数1~12のアルキル基が挙げられる。この置換されたアルキル基を、以下、適宜「(3)置換アルキル基」ということがある。
 (3)置換アルキル基における「炭素原子数1~12のアルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 (3)置換アルキル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (3)置換アルキル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
 (3)置換アルキル基は、更に置換基を有していてもよい。(3)置換アルキル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rの更に別の好ましい例としては、(4)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルケニル基が挙げられる。この置換されたアルケニル基を、以下、適宜「(4)置換アルケニル基」ということがある。
 (4)置換アルケニル基における「炭素原子数2~12のアルケニル基」としては、例えば、ビニル基、アリル基などが挙げられる。
 (4)置換アルケニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (4)置換アルケニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
 (4)置換アルケニル基は、更に置換基を有していてもよい。(4)置換アルケニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rの更に別の好ましい例としては、(5)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルキニル基が挙げられる。この置換されたアルキニル基を、以下、適宜「(5)置換アルキニル基」ということがある。
 (5)置換アルキニル基における「炭素原子数2~12のアルキニル基」としては、例えば、エチニル基、プロピニル基などが挙げられる。
 (5)置換アルキニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (5)置換アルキニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
 (5)置換アルキニル基は、更に置換基を有していてもよい。(5)置換アルキニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rの好ましい具体例としては、下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 Rの更に好ましい具体例としては、下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 Rの特に好ましい具体例としては、下記の基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上述したRの具体例は、更に置換基を有していてもよい。この置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。
 Rの好ましい例としては、1以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基が挙げられる。
 また、Rの別の好ましい例としては、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。
 Rの特に好ましい具体例としては、下記の基が挙げられる。Rの意味は、上述した通りである。
Figure JPOXMLDOC01-appb-C000016
 式(II-1)~式(II-7)のいずれかで表される基は、D~D以外に更に置換基を有していてもよい。この置換基としては、例えば、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基、炭素原子数1~6のN-アルキルアミノ基、炭素原子数2~12のN,N-ジアルキルアミノ基、炭素原子数1~6のアルコキシ基、炭素原子数1~6のアルキルスルフィニル基、カルボキシル基、炭素原子数1~6のチオアルキル基、炭素原子数1~6のN-アルキルスルファモイル基、炭素原子数2~12のN,N-ジアルキルスルファモイル基が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 式(I)におけるArの好ましい例としては、下記の式(III-1)~式(III-10)で表される基が挙げられる。また、式(III-1)~式(III-10)で表される基は、置換基として炭素原子数1~6のアルキル基を有していてもよい。下記式中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000017
 式(III-1)及び式(III-4)の特に好ましい具体例としては、下記の基が挙げられる。下記式中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(I)において、Z及びZは、それぞれ独立して、単結合、-O-、-O-CH-、-CH-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR21-C(=O)-、-C(=O)-NR21-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-C(=O)-O-、-O-C(=O)-CH-、-CH-O-C(=O)-、-C(=O)-O-CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、及び、-C≡C-、からなる群より選ばれるいずれかを表す。R21は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。
 式(I)において、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、及び、置換基を有していてもよい芳香族基、からなる群より選ばれる基を表す。A、A、B及びBが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、3~100である。中でも、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい炭素原子数5~20の環状脂肪族基、または、置換基を有していてもよい炭素原子数2~20の芳香族基が好ましい。
 A、A、B及びBにおける環状脂肪族基としては、例えば、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、1,4-シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等の、炭素原子数5~20のシクロアルカンジイル基;デカヒドロナフタレン-1,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基等の、炭素原子数5~20のビシクロアルカンジイル基;等が挙げられる。中でも、置換されていてもよい炭素原子数5~20のシクロアルカンジイル基が好ましく、シクロヘキサンジイル基がより好ましく、シクロヘキサン-1,4-ジイル基が特に好ましい。環状脂肪族基は、トランス体であってもよく、シス体であってもよく、シス体とトランス体との混合物であってもよい。中でも、トランス体がより好ましい。
 A、A、B及びBにおける環状脂肪族基が有しうる置換基としては、例えば、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数1~5のアルコキシ基、ニトロ基、シアノ基等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 A、A、B及びBにおける芳香族基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、4,4’-ビフェニレン基等の、炭素原子数6~20の芳香族炭化水素環基;フラン-2,5-ジイル基、チオフェン-2,5-ジイル基、ピリジン-2,5-ジイル基、ピラジン-2,5-ジイル基等の、炭素原子数2~20の芳香族複素環基;等が挙げられる。中でも、炭素原子数6~20の芳香族炭化水素環基が好ましく、フェニレン基がさらに好ましく、1,4-フェニレン基が特に好ましい。
 A、A、B及びBにおける芳香族基が有しうる置換基としては、例えば、A、A、B及びBにおける環状脂肪族基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
 式(I)において、Y~Yは、それぞれ独立して、単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR22-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR22-C(=O)-O-、-O-C(=O)-NR22-、及び、-NR22-C(=O)-NR23-、からなる群より選ばれるいずれかを表す。R22及びR23は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。
 式(I)において、G及びGは、それぞれ独立して、炭素原子数1~20の脂肪族炭化水素基;並びに、炭素原子数3~20の脂肪族炭化水素基に含まれるメチレン基(-CH-)の1以上が-O-又は-C(=O)-に置換された基;からなる群より選ばれる有機基を表す。G及びGの前記有機基に含まれる水素原子は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、または、ハロゲン原子に置換されていてもよい。ただし、G及びGの両末端のメチレン基(-CH-)が-O-又は-C(=O)-に置換されることはない。
 G及びGにおける炭素原子数1~20の脂肪族炭化水素基の具体例としては、炭素原子数1~20のアルキレン基が挙げられる。
 G及びGにおける炭素原子数3~20の脂肪族炭化水素基の具体例としては、炭素原子数3~20のアルキレン基が挙げられる。
 式(I)において、P及びPは、それぞれ独立して、重合性基を表す。P及びPにおける重合性基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基等の、CH=CR31-C(=O)-O-で表される基;ビニル基;ビニルエーテル基;p-スチルベン基;アクリロイル基;メタクリロイル基;カルボキシル基;メチルカルボニル基;水酸基;アミド基;炭素原子数1~4のアルキルアミノ基;アミノ基;エポキシ基;オキセタニル基;アルデヒド基;イソシアネート基;チオイソシアネート基;等が挙げられる。R31は、水素原子、メチル基、又は塩素原子を表す。中でも、CH=CR31-C(=O)-O-で表される基が好ましく、CH=CH-C(=O)-O-(アクリロイルオキシ基)、CH=C(CH)-C(=O)-O-(メタクリロイルオキシ基)がより好ましく、アクリロイルオキシ基が特に好ましい。
 式(I)において、p及びqは、それぞれ独立して、0又は1を表す。
 式(I)で表される逆分散液晶性化合物は、例えば、国際公開第2012/147904号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。
 (1.3.フッ素系界面活性剤)
 配向層組成物は、分子中にフッ素原子を含む界面活性剤としてのフッ素系界面活性剤を含む。配向層組成物が逆分散液晶性化合物に組み合わせてフッ素系界面活性剤を含むことにより、配向層組成物の塗工性を向上させることができる。また、このフッ素系界面活性剤により、液晶配向層の特定面における表面フッ素原子量M[モル%]を調整することができる。
 フッ素系界面活性剤としては、所定の範囲の1-オクタノール/水分配係数を有するものが好ましい。以下の説明において、1-オクタノール/水分配係数を、適宜「logP」と呼ぶことがある。フッ素系界面活性剤の具体的なlogPの範囲は、好ましくは4.8以上であり、好ましくは6.7以下、より好ましくは6.3以下である。フッ素系界面活性剤のlogPが前記範囲の下限以上であることにより、配向欠陥の発生を効果的に抑制できる。また、フッ素系界面活性剤のlogPが前記範囲の上限以下であることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を効果的に大きくすることができる。
 フッ素系界面活性剤のlogPは、下記の測定方法によって測定できる。
 フッ素系界面活性剤を1重量%含む試料溶液を調製し、JIS 7260-117:2006{分配係数(1-オクタノール/水)の測定-高速液体クロマトグラフィー}に概ね準拠した方法で、HPLC/ELSD分析(高速液体クロマトグラフィー/蒸発光散乱検出分析)を行って、溶出時間(r.t.)を測定する。他方、JIS 7260-117:2006に記載のある、logPの値が既知の標識化合物に、前記フッ素系界面活性剤と同様にして、HPLC/ELSD分析を行い、溶出時間(r.t.)を測定する。標識化合物の測定結果に基づいて、溶出時間とlogPとの関係を示す検量線を作成する。その後、フッ素系界面活性剤について測定された溶出時間を、前記の検量線に当てはめることにより、フッ素系界面活性剤のlogPを求める。
 フッ素系界面活性剤のlogPの具体的な測定は、後述する実施例に記載の方法により行うことができる。
 フッ素系界面活性剤はノニオン系界面活性剤であることが好ましい。フッ素系界面活性剤がイオン性基を含まないノニオン系界面活性剤である場合に、液晶配向層の面状態及び配向性を、特に良好にすることができる。
 また、フッ素系界面活性剤としては、重合性を有さないものを用いてもよく、重合性を有するものを用いてもよい。重合性を有するフッ素系界面活性剤は、通常、配向層組成物を硬化させる際に重合できるので、液晶配向層においては重合体の分子の一部に含まれる。
 フッ素系界面活性剤としては、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S420など)、ネオス社製のフタージェントシリーズ(251、FTX-212M、FTX-215M、FTX-209など)、DIC社製のメガファックシリーズ(F-444など)等が挙げられる。また、フッ素系界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 フッ素系界面活性剤の量は、比M/Tを上述した所定の範囲に収めることができるように調整することが好ましい。配向層組成物におけるフッ素系界面活性剤の具体的な量は、逆分散液晶性化合物100重量部に対して、好ましくは0.03重量部以上、より好ましくは0.05重量部以上であり、好ましくは0.50重量部以下、より好ましくは0.30重量部以下である。フッ素系界面活性剤の量が、前記範囲の下限値以上であることにより、配向層組成物の塗り付き性が良好になり、前記範囲の上限値以下であることにより、液晶配向層の面状態の改良ができる。
 (1.4.配向層組成物)
 配向層組成物は、上述した逆分散液晶性化合物及びフッ素系界面活性剤を含み、更に、必要に応じて任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 通常、配向層組成物は重合によって硬化できるので、配向層組成物は、任意の成分として重合開始剤を含む。重合開始剤の種類は、配向層組成物に含まれる重合性の化合物の種類に応じて選択しうる。例えば、重合性の化合物がラジカル重合性であれば、ラジカル重合開始剤を使用しうる。また、重合性の化合物がアニオン重合性であれば、アニオン重合開始剤を使用しうる。さらに、重合性の化合物がカチオン重合性であれば、カチオン重合開始剤を使用しうる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合開始剤の量は、逆分散液晶性化合物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。重合開始剤の量が前記範囲に収まることにより、重合を効率的に進行させることができる。
 配向層組成物は、任意の成分として、溶媒を含んでいてもよい。溶媒としては、逆分散液晶性化合物を溶解できるものが好ましい。このような溶媒としては、通常、有機溶媒を用いる。有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル溶媒;及びトルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;が挙げられる。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 溶媒の沸点は、取り扱い性に優れる観点から、好ましくは60℃~250℃、より好ましくは60℃~150℃である。
 溶媒の量は、逆分散液晶性化合物100重量部に対して、好ましくは200重量部以上、より好ましくは250重量部以上、特に好ましくは300重量部以上であり、好ましくは650重量部以下、より好ましくは550重量部以下、特に好ましくは450重量部以下である。溶媒の量を、前記範囲の下限値以上にすることにより異物発生の抑制ができ、前記範囲の上限値以下にすることにより乾燥負荷の低減ができる。
 また、配向層組成物は、液晶配向層に含まれる逆分散液晶性化合物の分子の傾斜角をより大きくするために、任意の成分として、逆分散液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる傾斜作用成分を含んでいてもよい。多くの逆分散液晶性化合物は、それ単独で配向させても小さい傾斜角しか得られないが、傾斜作用成分を用ることにより、逆分散液晶性化合物の分子の傾斜を促進して、逆分散液晶性化合物の分子の傾斜角が大きい液晶配向層を容易に得ることができる。ただし、逆分散液晶性化合物の分子の傾斜の促進は、液晶配向層を製造する過程において操作又は条件を調整することによっても可能であるので、傾斜作用成分は必ずしも用いなくても構わない。
 傾斜作用成分としては、例えば、傾斜配向性を有する順分散液晶性化合物が挙げられる。ここで、「順分散液晶性化合物」とは、順波長分散性の複屈折を発現できる液晶性化合物をいう。また、「傾斜配向性を有する順分散液晶性化合物」とは、樹脂フィルムのラビング処理面に、液晶性化合物として順分散液晶性化合物を単独で含む組成物を塗工し配向処理を施して試験層を得た場合に、その試験層における順分散液晶性化合物の分子が層平面に対してなす実質最大傾斜角が、30°以上となることができる順分散液晶性化合物をいう。このように傾斜配向性を有する順分散液晶性化合物は、4.8以上6.7以下のlogPを有するフッ素系界面活性剤と組み合わせて用いることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる。
 傾斜配向性を有する順分散液晶性化合物としては、例えば、下記の化合物が挙げられる。また、傾斜配向性を有する順分散液晶性化合物を含む配向層組成物については、特開2018-162379号公報及び特願2017-060154号の明細書の記載を参照してよい。
Figure JPOXMLDOC01-appb-C000023
 傾斜配向性を有する順分散液晶性化合物の量は、逆分散液晶性化合物と傾斜配向性を有する順分散液晶性化合物との合計100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上、さらに好ましくは10重量部以上であり、好ましくは25重量部以下、より好ましくは20重量部以下である。このような量の傾斜配向性を有する順分散液晶性化合物を用いることにより、逆分散液晶性化合物の分子の実質最大傾斜角が大きく、且つ、配向欠陥の少ない液晶配向層を、容易に得ることができる。
 傾斜作用成分としては、例えば、分子量Mwとπ電子数Npとの比Mw/Npが17以上70以下である(メタ)アクリル酸エステル化合物が挙げられる。この(メタ)アクリル酸エステル化合物の分子量Mwとπ電子数Npとの比Mw/Npは、詳細には、通常17以上、好ましくは23以上であり、通常70以下、好ましくは50以下である。この(メタ)アクリル酸エステル化合物は、フッ素系界面活性剤と組み合わせて用いることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる。
 化合物の1分子当たりのπ電子数は、その化合物に含まれる不飽和結合の種類及び数に基づいて求められる。不飽和結合それぞれに含まれるπ電子数の例を挙げると、脂肪族性又は芳香族性の炭素-炭素二重結合(C=C)に含まれるπ電子数は2個、炭素-炭素三重結合(C≡C)に含まれるπ電子数は4個、炭素-窒素二重結合(C=N)に含まれるπ電子数は2個、炭素-窒素三重結合(C≡N)に含まれるπ電子数は4個、窒素-窒素二重結合(N=N)に含まれるπ電子数は2個である。
 前記の(メタ)アクリル酸エステル化合物としては、例えば、下記のものが挙げられる。また、前記の(メタ)アクリル酸エステル化合物を含む配向層組成物については、国際公開第2018/173778号及び特願2017-060122号の明細書の記載を参照してよい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 前記の(メタ)アクリル酸エステル化合物の量は、逆分散液晶性化合物及び(メタ)アクリル酸エステル化合物の合計100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上であり、好ましくは30重量部以下、より好ましくは20重量部以下である。(メタ)アクリル酸エステル化合物の量を前記の範囲に収めることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる。
 また、前記の(メタ)アクリル酸エステル化合物を用いる場合、フッ素系界面活性剤の量が、所定の範囲に収まることが好ましい。具体的には、フッ素系界面活性剤の量は、逆分散液晶性化合物及び(メタ)アクリル酸エステル化合物の合計100重量部に対して、好ましくは0.11重量部以上、より好ましくは0.12重量部以上であり、好ましくは0.29重量部以下、より好ましくは0.25重量部以下、特に好ましくは0.20重量部以下である。フッ素系界面活性剤の量が前記の範囲にあることにより、逆分散液晶性化合物の分子の実質最大傾斜角が大きく、且つ、配向欠陥の少ない液晶配向層を、容易に得ることができる。
 傾斜作用成分としては、例えば、磁場応答性を有する液晶性化合物が挙げられる。ここで、「磁場応答性を有する液晶性化合物」とは、液晶化温度において磁界を印加された場合に、その磁界によって配向状態が変化できる液晶性化合物である。磁場応答性を有する液晶性化合物を含む配向層組成物は、その配向処理の際に適切に磁界を印加されることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる。
 磁場応答性を有する液晶性化合物としては、例えば、下記のものが挙げられる。また、磁場応答性を有する液晶性化合物を含む配向層組成物については、特開2018-163218号公報及び特願2017-059327号の明細書の記載を参照してよい。
Figure JPOXMLDOC01-appb-C000026
 磁場応答性を有する液晶性化合物の量は、磁場応答性を有する液晶性化合物と逆分散液晶性化合物との合計100重量部に対して、好ましくは0.1重量部以上、より好ましくは1重量部以上、特に好ましくは3重量部以上であり、好ましくは40重量部以下、より好ましくは30重量部以下、特に好ましくは20重量部以下である。磁場応答性を有する液晶性化合物の量を前記の範囲に収めることにより、逆分散液晶性化合物の分子の実質最大傾斜角が大きく、且つ、配向欠陥の少ない液晶配向層を、容易に得ることができる。
 配向層組成物が含みうるその他の任意の成分としては、例えば、金属;金属錯体;酸化チタン等の金属酸化物;染料、顔料等の着色剤;蛍光材料、燐光材料等の発光材料;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;等が挙げられる。これらの成分の量は、逆分散液晶性化合物の合計100重量部に対して、各々0.1重量部~20重量部としうる。
 (1.5.液晶配向層の特性)
 液晶配向層は、上述した配向層組成物を硬化した硬化物の層である。前記の配向層組成物の硬化は、通常、当該配向層組成物が含む重合性の化合物の重合によって達成される。よって、液晶配向層は、通常、配向層組成物が含んでいた成分の一部又は全部の重合体を含む。例えば、逆分散液晶性化合物が重合性を有する場合、その逆分散液晶性化合物が重合するので、液晶配向層は、重合前の配向状態を維持したまま重合した逆分散液晶性化合物の重合体を含む層でありうる。前述のように、この重合した逆分散液晶性化合物も、用語「液晶配向層に含まれる逆分散液晶性化合物」に含める。
 配向層組成物の硬化物においては、硬化前の流動性が失われるので、通常、逆分散液晶性化合物の配向状態は、硬化前の配向状態のまま、固定されている。そして、この液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が、当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜している。
 液晶配向層において、逆分散液晶性化合物の分子のうち、一部が液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していてもよく、全部が液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していてもよい。通常、液晶配向層において、逆分散液晶性化合物の分子の傾斜角は、厚み方向において、特定面に近いほど大きく、特定面から遠いほど小さい。よって、液晶配向層の特定面の近傍部分では、逆分散液晶性化合物の分子が層平面に対して(即ち面内方向に対して)垂直でありえる。また、液晶配向層の特定面とは反対側の面の近傍部分では、逆分散液晶性化合物の分子が層平面に対して(即ち面内方向に対して)平行でありえる。しかし、このように液晶配向層の表面近傍部分で逆分散液晶性化合物の分子が層平面に対して(即ち面内方向に対して)平行又は垂直である場合であっても、通常は、液晶配向層の表面近傍部分を除いた部分では、逆分散液晶性化合物の分子は層平面に対して(即ち面内方向に対して)傾斜している。
 液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していることは、十分な分解能を有する偏光顕微鏡で液晶配向層の断面を観察することによって、確認できる。この観察は、逆分散液晶性化合物の分子の傾斜を視認し易くするために、必要に応じて、観察サンプルと偏光顕微鏡の対物レンズとの間に検板として波長板を挿入して実施してもよい。
 または、液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していることは、下記のようにして確認できる。液晶配向層の面内の進相軸方向に対して垂直な測定方向で、入射角θにおける液晶配向層のレターデーションR(θ)を測定する。そして、入射角θでの液晶配向層のレターデーションR(θ)を入射角0°での液晶配向層のレターデーションR(0°)で割ったレターデーション比R(θ)/R(0°)を求める。こうして求めたレターデーション比R(θ)/R(0°)を縦軸、入射角θを横軸としたグラフを描いた場合に、得られたグラフがθ=0°に対して非対称であれば、液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していることが確認できる。
 以下、例を挙げてより具体的に説明する。図3は、ある例に係る液晶配向層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。液晶配向層に含まれる逆分散液晶性化合物の全ての分子の傾斜角が0°又は90°であると、レターデーション比R(θ)/R(0°)は、図3で破線で示す例のように、θ=0°の直線(図3では、θ=0°を通る縦軸)に対して線対称となる。これに対して、液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が液晶配向層の層平面に対して(即ち面内方向に対して)傾斜していると、レターデーション比R(θ)/R(0°)は、図3に実線で示す例のように、通常はθ=0°の直線に対して非対称となる。よって、レターデーション比R(θ)/R(0°)がθ=0°に対して非対称である場合には、液晶配向層に含まれる逆分散液晶性化合物の少なくとも一部の分子が当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜している、と判定できる。
 液晶配向層は、当該液晶配向層の層平面に対して(即ち面内方向に対して)傾斜した逆分散液晶性化合物の分子を含むので、通常、5°以上85°以下の実質最大傾斜角を有する。液晶配向層において、この実質最大傾斜角は、液晶配向層の特定面とは反対側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、逆分散液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、液晶配向層に含まれる逆分散液晶性化合物の分子の傾斜角の大きさを示す指標である。通常、実質最大傾斜角が大きい液晶配向層ほど、その液晶配向層に含まれる逆分散液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。
 液晶配向層を用いて製造される光学フィルムでは、通常、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が大きいほど、液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくでき、その結果、複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくできる。そして、このように実質最大傾斜角が大きい複合液晶層は、当該複合液晶層に含まれる逆分散液晶性化合物の分子の傾斜角が全体として大きいので、その複合液晶層を備える光学フィルムを反射抑制フィルムとしての偏光板に設けた場合に、厚み方向における複屈折の調整を適切に行うことができる。よって、この光学フィルムによれば、表示面の傾斜方向において反射を効果的に抑制することができるので、視野角特性の改善が可能である。
 液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角の範囲は、液晶配向層及び液晶傾斜層を含めた複合液晶層の全体に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を、優れた視野角特性を実現できる範囲に収められるように、適切に調整することが好ましい。通常、液晶配向層の実質最大傾斜角が大きいほど、液晶配向層及び液晶傾斜層を含めた複合液晶層の全体としての実質最大傾斜角を大きくできる。液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角の具体的な範囲は、好ましくは26°以上、より好ましくは28°以上、特に好ましくは30°以上であり、好ましくは60°以下である。液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が前記の範囲にあることにより、特に優れた視野角特性を有する光学フィルムを製造し易い。
 液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。後述する実施例に記載の測定方法によれば、その液晶配向層が逆分散液晶性化合物以外の液晶性化合物を含んでいる場合でも、逆分散液晶性化合物の分子の実質最大傾斜角を測定することが可能である。
 液晶配向層の面内方向においては、逆分散液晶性化合物の分子の配向方向は、通常、均一である。よって、液晶配向層は、通常、液晶配向層を厚み方向から見た逆分散液晶性化合物の分子の配向方向に平行な面内遅相軸を有する。そして、このように面内方向において逆分散液晶性化合物が一定の配向方向に配向するので、液晶配向層は、通常、所定の大きさの面内レターデーションを有する。
 液晶配向層は、逆分散液晶性化合物を含む配向層組成物の硬化物によって形成されているので、通常、逆波長分散性の面内レターデーションを有する。ここで、逆波長分散性の面内レターデーションとは、波長450nmにおける面内レターデーションRe(450)及び波長550nmにおける面内レターデーションRe(550)が、下記式(N3)を満たす面内レターデーションをいう。中でも、液晶配向層の面内レターデーションは、下記式(N4)を満たすことが好ましい。このように逆波長分散性の面内レターデーションを有する液晶配向層を、液晶傾斜層と組み合わせることにより、逆波長分散性の面内レターデーションを有する光学フィルムを得ることができる。
 Re(450)/Re(550)<1.00  (N3)
 Re(450)/Re(550)<0.90  (N4)
 液晶配向層の具体的な面内レターデーションの範囲は、この液晶配向層を用いて製造される光学フィルムの用途に応じて任意に設定しうる。特に、光学フィルムと直線偏光子とを組み合わせて、有機EL表示パネル用の反射抑制フィルムとしての偏光板を得るためには、液晶配向層の面内レターデーションは、1/4波長板として機能できる光学フィルムを得られるように設定することが望ましい。
 液晶配向層では、配向欠陥の発生が抑制されている。また、後述するように、液晶配向層は、傾斜層組成物に対して高い親和性を有する。よって、傾斜層組成物は液晶配向層になじみ、分子の配向が乱され難い。よって、傾斜層組成物では配向状態を面内方向において均一にできる。そのため、この液晶配向層によれば、当該液晶配向層上に形成される液晶傾斜層においても配向欠陥の発生を抑制できる。したがって、液晶配向層及び液晶傾斜層を含む複合液晶層の全体として配向欠陥の発生を抑制できる。特に、液晶配向層は、配向欠陥の発生の抑制と、逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることとの両方を達成した点で、優れる。このような利点が得られた仕組みを、本発明者は、下記のように推察する。
 図4は、一実施形態に係る液晶配向層の製造途中において得られる配向層組成物の層300を模式的に示す断面図である。
 図4に示すように、液晶配向層の製造方法においては、通常、配向層組成物の層300を適切な温度に調整する配向処理を行う。配向処理を施されると、層300の空気界面300Uにある逆分散液晶性化合物の分子310は、当該分子310の傾斜角が大きくなるように配向しようとする。さらに、空気界面300Uにある逆分散液晶性化合物の分子310の配向に従って、その奥にある逆分散液晶性化合物の分子320も、分子320の傾斜角が大きくなるように配向しようとする。ここで「奥」とは、層300の厚み方向において、空気界面300Uから遠い方向を指す。そして、逆分散液晶性化合物の分子320の配向に従って、更に奥にある逆分散液晶性化合物の分子330も、分子330の傾斜角が大きくなるように配向しようとする。
 ただし、配向によって分子310、320及び330の傾斜角が大きくなる程度は、空気界面300Uから遠くなるほど、弱くなる。そうすると、仮に層300が厚すぎると、空気界面300Uの近傍部分では分子310の傾斜角を大きくできるが、その他の部分では傾斜角を大きくできない。その結果、層300の全体として大きな傾斜角が得られないので、大きな実質最大傾斜角が得られない。
 これに対し、本発明の一実施形態に係る液晶配向層では、厚みTの上限を適切に設定している。これにより、逆分散液晶性化合物の分子310、320及び330の全体として大きな傾斜角を得ることができるので、逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることが可能となっている。
 また、前記の配向処理を行うとき、通常は、矢印A300で示すように、層300に含まれる溶媒等の揮発性成分が、空気界面300Uから蒸発する。よって、層300内には、揮発性成分の移動に伴う対流が生じる。この対流が大きいと、逆分散液晶性化合物の分子310、320及び330の配向が乱されて、配向欠陥が生じる。
 これに対し、本発明の一実施形態に係る液晶配向層では、フッ素系界面活性剤340によって、配向欠陥を抑制している。一般に、界面活性剤は界面に集まる傾向があるので、層300の空気界面300Uには、フッ素系界面活性剤340がある。フッ素系界面活性剤340が空気界面300Uにあると、そのフッ素系界面活性剤340によって、揮発性成分の蒸発が抑制される。よって、層300内での対流が抑制されるので、配向欠陥の発生を抑制できる。
 ただし、層300が厚いほど、面積当たりの揮発性成分の蒸発量が多いので、層300内での対流は大きい傾向がある。したがって、空気界面300Uでのフッ素系界面活性剤340の量が、層300の厚みに比して少ないと、配向欠陥の発生の抑制が困難になる。
 これに対し、本発明の一実施形態に係る液晶配向層では、空気界面300Uでのフッ素系界面活性剤340の量を、厚みTに比して十分に多くして、配向欠陥を抑制している。配向層組成物の層300の空気界面300Uは、液晶配向層の特定面に対応する。また、配向層組成物の層300の空気界面300Uでのフッ素系界面活性剤340の量は、液晶配向層の特定面でのフッ素原子量に対応する。よって、配向層組成物の層300の厚みに比して空気界面300Uでのフッ素系界面活性剤340の量が十分に多いことは、液晶配向層の特定面での表面フッ素原子量M[モル%]と層の厚みT[μm]との比M/Tの下限を適切に設定していることによって、表される。
 また、上述したように、逆分散液晶性化合物の分子310は、層300の空気界面300Uにおいて傾斜角が大きくなるように配向しようとする。よって、過剰量のフッ素系界面活性剤340によって空気界面300Uが覆われると、逆分散液晶性化合物の分子310の傾斜角が大きくなり難い。
 これに対し、本発明の一実施形態に係る液晶配向層では、空気界面300Uでのフッ素系界面活性剤340の量を、厚みTに比して過剰とならないように調整して、大きな実質最大傾斜角を得るようにしている。このように配向層組成物の層300の厚みに比して空気界面300Uでのフッ素系界面活性剤340の量が過剰となっていないことは、液晶配向層の特定面での表面フッ素原子量M[モル%]と層の厚みT[μm]との比M/Tの上限を適切に設定していることによって、表される。
 本発明者が推察する仕組みは、以上のようなものである。ただし、本発明の技術的範囲は、前記にて説明した仕組みによっては制限されない。
 液晶配向層は、通常、面状態が良好である。よって、液晶配向層は、通常、その厚みのムラが小さく、したがって面内レターデーションのムラを小さくできる。
 (1.6.液晶配向層の製造方法)
 液晶配向層の製造方法は、所望の液晶配向層が得られる限り、任意である。一実施形態において、液晶配向層は、
 (i)配向層組成物の層を形成する工程と;
 (ii)配向層組成物の層に含まれる逆分散液晶性化合物を配向させる工程と;
 (iii)配向層組成物の層を硬化させて、液晶配向層を得る工程と;
 を含む製造方法により、製造できる。
 工程(i)では、通常、適切な支持面に、配向層組成物の層を形成する。支持面としては、配向層組成物の層を支持できる任意の面を用いうる。この支持面としては、液晶配向層の面状態を良好にする観点から、凹部及び凸部の無い平坦面を用いることが好ましい。また、液晶配向層の生産性を高める観点から、前記の支持面としては、長尺の基材の表面を用いることが好ましい。ここで「長尺」とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。
 基材としては、通常、樹脂フィルム又はガラス板を用いる。特に、高い温度で配向処理を行う場合、その温度に耐えられる基材を選択するのが好ましい。樹脂としては、通常、熱可塑性樹脂を用いる。中でも、配向規制力の高さ、機械的強度の高さ、及びコストの低さといった観点から、樹脂としては、正の固有複屈折値を有する樹脂が好ましい。更には、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、ノルボルネン系樹脂等の、脂環式構造含有重合体を含む樹脂を用いることが好ましい。基材に含まれる樹脂の好適な例を商品名で挙げると、ノルボルネン系樹脂として、日本ゼオン社製「ゼオノア」を挙げられる。
 支持面としての基材の表面には、配向層組成物の層における逆分散液晶性化合物の配向を促進するため、配向規制力を付与するための処理が施されていることが好ましい。配向規制力とは、配向層組成物に含まれる逆分散液晶性化合物等の液晶性化合物を配向させることができる、面の性質をいう。支持面に配向規制力を付与するため処理としては、例えば、光配向処理、ラビング処理、イオンビーム配向処理、延伸処理などが挙げられる。
 配向層組成物の層を形成する工程(i)において、配向層組成物は、通常、流体状で用意される。そのため、通常は、支持面に配向層組成物を塗工して、配向層組成物の層を形成する。配向層組成物を塗工する方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。
 配向層組成物の層を形成する工程(i)の後で、配向層組成物の層に含まれる逆分散液晶性化合物を配向させる工程(ii)を行う。配向を行う際には、通常、配向層組成物の層を、所定の温度条件に所定の時間だけ保持する。これにより、配向層組成物の層において、逆分散液晶性化合物等の液晶性化合物が配向する。
 通常、面内方向においては、逆分散液晶性化合物は、支持面の配向規制力に応じた方向に配向する。また、配向層組成物が傾斜作用成分を含んでいれば、厚み方向において、逆分散液晶性化合物は、少なくとも一部が層平面に対して(即ち面内方向に対して)大きく傾斜するように配向するので、配向層組成物の層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることができる。
 さらに、工程(ii)は、逆分散液晶性化合物の分子の実質最大傾斜角が大きい液晶配向層が得られるように、操作又は条件を調整して行うことが好ましい。
 例えば、工程(ii)は、配向層組成物の層の温度条件が所定の要件を満たすように行うことが好ましい。具体的には、工程(ii)における配向層組成物の層の温度条件が、試験組成物の残留分粘度が通常800cP以下となる温度条件と同一になるように、行うことが好ましい。前記の試験組成物とは、配向層組成物から重合開始剤を除いた組成を有する組成物である。また、試験組成物の残留分粘度とは、工程(ii)の配向層組成物の層と同一温度条件における、試験組成物の残留成分の粘度である。また、試験組成物の残留成分とは、試験組成物に含まれる成分のうち、工程(ii)の配向層組成物の層と同一温度条件において気化せずに残留した成分である。このような要件を満たすように工程(ii)を行うことで、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることが可能である。
 更に詳しく説明する。逆分散液晶性化合物を配向させる工程(ii)を、前記の要件を満たすように行う場合、当該工程(ii)は、試験組成物の残留分粘度が所定範囲に収まる温度条件と同一温度条件に、配向層組成物の層を調整して、行う。前記残留分粘度の具体的範囲は、通常800cP(センチポアズ)以下、好ましくは600cP以下、より好ましくは400cP以下、さらに好ましくは200cP以下である。このように試験組成物の残留分粘度が低くなる温度条件と同一温度条件で配向層組成物の層中の液晶性化合物を配向させることにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることができる。前記残留分粘度の下限は、所望の厚みの液晶配向層を得る観点から、好ましくは5cP以上、より好ましくは10cP以上である。
 工程(ii)の配向層組成物の層と同一温度条件における試験組成物の残留分粘度は、下記の方法によって測定できる。
 配向層組成物から重合開始剤を除いた試験組成物を用意する。この試験組成物をロータリーエバポレーターで減圧濃縮して溶媒を除去し、残留成分を得る。この残留成分について、予め、測定温度を変化させながら粘度を測定し、測定温度とその測定温度での粘度との情報を得る。この情報を、以下、適宜「温度-粘度情報」という。この「温度-粘度情報」から、工程(ii)での配向層組成物の層の温度における粘度を、残留分粘度として読み取る。
 工程(ii)の配向層組成物の層と同一温度条件において試験組成物の残留分粘度を上述した範囲に収める方法としては、例えば、下記(A)及び(B)の方法が挙げられる。
 (A)逆分散液晶性化合物を配向させる工程(ii)における配向層組成物の層の温度を、適切に調整する。この方法では、通常、配向層組成物の層の温度を十分に高温にすることで、この温度と同一温度条件での試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
 (B)配向層組成物の組成を、適切に調整する。この方法では、通常、配向層組成物に含まれる成分として、逆分散液晶性化合物に適切な種類及び量の添加剤を組み合わせることで、当該添加剤を含む試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
 工程(ii)における配向層組成物の層の温度条件の調整については、国際公開第2018/173773号及び特願2017-060159号の明細書の記載を参照してよい。
 また、例えば、磁場応答性を有する液晶性化合物を含む配向層組成物を用いる場合には、工程(ii)を、配向層組成物の層に磁界を印加した状態で行うことが好ましい。これにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくすることが可能である。
 配向層組成物の層に印加される磁界の向きは、通常は、配向層組成物の層の厚み方向に垂直ではない方向であり、好ましくは、配向層組成物の層の厚み方向に平行な方向である。このような向きの磁界を印加することにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を効果的に大きくできる。
 配向層組成物の層に印加される磁界の磁束密度は、好ましくは0.2テスラ以上、より好ましくは0.5テスラ以上、特に好ましくは0.8テスラ以上である。このような大きさの磁界を印加することにより、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を効果的に大きくできる。磁界の磁束密度の上限に制限は無く、例えば20.0テスラ以下としうる。磁界の印加については、特開2018-163218号公報及び特願2017-059327号の明細書の記載を参照してよい。
 配向処理時の具体的な温度は、逆分散液晶性化合物の液晶化温度以上の範囲で適切に設定され、中でも、基材に含まれる樹脂のガラス転移温度未満の温度であることが好ましい。これにより、配向処理による基材の歪みの発生を抑制できる。
 逆分散液晶性化合物を配向させる工程(ii)は、通常、オーブン内において行われる。この際、オーブンの設定温度と、そのオーブン内に置かれた配向層組成物の層の温度とは、異なる場合がありえる。この場合、予め、多数のオーブン設定温度において、その設定温度のオーブン内に置かれた配向層組成物の層の温度を測定し、記録しておくことが好ましい。この記録されたオーブンの設定温度とその設定温度のオーブン内に置かれた配向層組成物の層の温度との情報を、以下、適宜「設定温度-層温度情報」という。この「設定温度-層温度情報」を用いれば、オーブン設定温度から、オーブン内に置かれた配向層組成物の層の温度を容易に知ることができる。
 逆分散液晶性化合物を配向させる工程(ii)において、配向層組成物の層の温度を前記の温度に保持する時間は、所望の液晶配向層が得られる範囲で任意に設定でき、例えば30秒間~5分間でありうる。
 逆分散液晶性化合物を配向させる工程(ii)の後で、配向層組成物の層を硬化させて、液晶配向層を得る工程(iii)を行う。この工程(iii)では、通常、逆分散液晶性化合物等の液晶性化合物の一部又は全部を重合させて、配向層組成物の層を硬化させる。重合の際、液晶性化合物は、通常、その分子の配向を維持したままで重合する。よって、前記の重合により、重合前の配向層組成物に含まれていた液晶性化合物の配向状態は固定される。
 重合方法としては、配向層組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。
 なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、基材のガラス転移温度以下とすることが好ましく、好ましくは150℃以下、より好ましくは100℃以下、特に好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線の照射強度は、好ましくは0.1mW/cm以上、より好ましくは0.5mW/cm以上であり、好ましくは10000mW/cm以下、より好ましくは5000mW/cm以下、更に好ましくは1000mW/cm以下、特に好ましくは600mW/cm以下である。紫外線の照射量は、好ましくは0.1mJ/cm以上、より好ましくは0.5mJ/cm以上であり、好ましくは10000mJ/cm以下、より好ましくは5000mJ/cm以下である。
 上述した製造方法により、液晶配向層を製造できる。この製造方法では、通常、基材の支持面上に形成された液晶配向層が得られる。
 上述した液晶配向層の製造方法は、上述した工程(i)~工程(iii)に組み合わせて、更に任意の工程を含んでいてもよい。
 例えば、液晶配向層の製造方法は、支持面から液晶配向層を剥離する工程を含んでいてもよい。
 前記のような製造方法によれば、長尺の基材を用いて、長尺の液晶配向層を得ることができる。このような長尺の液晶配向層は、連続的な製造が可能であり、生産性に優れる。通常、長尺の液晶配向層を含むフィルムは、巻き取られてロールの状態で保存及び運搬がなされる。
[2.光学フィルム]
 (2.1.光学フィルムの概要)
 図2に示すように、本発明の一実施形態に係る光学フィルム200は、液晶配向層100と、この液晶配向層100の特定面100Uに直接に接した液晶傾斜層210とを備える。したがって、光学フィルム200は、液晶配向層100及び液晶傾斜層210を含む複合液晶層220を備える。ある層の面に別の層が「直接に」接するとは、これら2層の間に他の層が無いことをいう。
 液晶傾斜層210は、逆分散液晶性化合物を含む傾斜層組成物の硬化物で形成されている。傾斜層組成物の硬化物で形成されているので、液晶傾斜層210は、逆分散液晶性化合物の分子を含む。液晶傾斜層210に含まれる逆分散液晶性化合物の分子は、通常、配向状態を固定されている。液晶配向層100と同じく、重合した逆分散液晶性化合物は、用語「液晶傾斜層に含まれる逆分散液晶性化合物」に含まれる。
 液晶傾斜層210に含まれる逆分散液晶性化合物の少なくとも一部の分子は、当該液晶傾斜層210の層平面に対して(即ち面内方向に対して)傾斜している。ここで、液晶配向層100の特定面100Uは、当該特定面100Uに形成される液晶傾斜層210に含まれる逆分散液晶性化合物の分子を配向させる配向規制力を有する。この配向規制力は、面内方向においては、液晶傾斜層210に含まれる逆分散液晶性化合物の分子を、液晶配向層100に含まれる逆分散液晶性化合物の分子の配向方向と同じ方向に配向させようとする。また、前記の配向規制力は、厚み方向においては、液晶傾斜層210に含まれる逆分散液晶性化合物の分子を、当該分子の傾斜角が大きくなるように配向させようとする。よって、液晶配向層100は、液晶傾斜層210に含まれる逆分散液晶性化合物の分子の傾斜角を大きくする配向膜として機能できる。そのため、液晶配向層100の作用により、液晶傾斜層210に含まれる逆分散液晶性化合物の分子の傾斜角を大きくできる。よって、液晶配向層100及び液晶傾斜層210を含む複合液晶層220の全体としての逆分散液晶性化合物の分子の傾斜角を大きくすることができる。そして、このように複合液晶層220の全体としての逆分散液晶性化合物の分子の傾斜角が大きくできることにより、その複合液晶層220を備える光学フィルム200を反射抑制フィルムに設けた場合に、厚み方向における複屈折の調整を適切に行うことができる。したがって、この光学フィルム200によれば、表示面の傾斜方向において反射を効果的に抑制することができるので、視野角特性の改善が可能である。
 また、液晶傾斜層210が逆分散液晶性化合物を含むので、当該液晶傾斜層210は、逆波長分散性の面内レターデーションを有する。したがって、液晶配向層100及び液晶傾斜層210の両方が逆波長分散性の面内レターデーションを有するので、それらの層100及び210を含む光学フィルム200は、逆波長分散性の面内レターデーションを有することができる。
 さらに、液晶傾斜層210における逆分散液晶性化合物の配向状態は、上述したように、配向膜として機能できる液晶配向層100の配向状態の影響を受ける。よって、液晶配向層100での配向欠陥の発生が抑制されていることにより、液晶傾斜層210でも、配向欠陥の発生を抑制できる。
 したがって、液晶配向層100及び液晶傾斜層210を組み合わせて含む光学フィルム200は、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れる。
 さらに、光学フィルム200では、通常、液晶傾斜層210及び複合液晶層220の面状態を良好にすることができる。
 (2.2.液晶傾斜層)
 液晶傾斜層は、逆分散液晶性化合物を含む傾斜層組成物の硬化物で形成された層である。傾斜層組成物に含まれる逆分散液晶性化合物としては、配向層組成物に含まれる逆分散液晶性化合物として説明した範囲から任意の逆分散液晶性化合物を選択して用いることができる。これにより、配向層組成物及び液晶配向層において得られたのと同じ利点を、傾斜層組成物及び液晶傾斜層においても得ることができる。傾斜層組成物に含まれる逆分散液晶性化合物は、配向層組成物に含まれる逆分散液晶性化合物と同一でもよく、異なっていてもよい。さらに、傾斜層組成物に含まれる逆分散液晶性化合物としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 さらに、傾斜層組成物は、逆分散液晶性化合物に組み合わせて、必要に応じて任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。任意の成分としては、例えば、配向層組成物が含みうる逆分散液晶性化合物以外の成分を、配向層組成物における前記成分の量の範囲で、用いることができる。これにより、配向層組成物及び液晶配向層において得られたのと同じ利点を、傾斜層組成物及び液晶傾斜層においても得ることができる。
 傾斜層組成物は、配向層組成物と異なっていてもよいし、同一であってもよい。
 傾斜層組成物の硬化は、配向層組成物の硬化と同じく、通常、当該傾斜層組成物が含む重合性の化合物の重合によって達成される。よって、液晶傾斜層は、通常、傾斜層組成物が含んでいた成分の一部又は全部の重合体を含む。例えば、逆分散液晶性化合物が重合性を有する場合、その逆分散液晶性化合物が重合するので、液晶傾斜層は、重合前の配向状態を維持したまま重合した逆分散液晶性化合物の重合体を含む層でありうる。
 傾斜層組成物の硬化物においては、硬化前の流動性が失われるので、通常、逆分散液晶性化合物の配向状態は、硬化前の配向状態のまま、固定されている。そして、この液晶傾斜層に含まれる逆分散液晶性化合物の分子は、液晶配向層の作用により、当該液晶傾斜層の層平面に対して(即ち面内方向に対して)大きく傾斜している。よって、液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくできる。液晶傾斜層において、この実質最大傾斜角は、液晶配向層側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、逆分散液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、液晶傾斜層に含まれる逆分散液晶性化合物の分子の傾斜角の大きさを示す指標である。通常は、実質最大傾斜角が大きい液晶傾斜層ほど、その液晶傾斜層に含まれる逆分散液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。液晶配向層の作用により、通常は、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角よりも、液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を、大きくすることができる。
 液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、好ましくは45°以上、より好ましくは50°以上、特に好ましくは57°以上であり、好ましくは85°以下である。液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が前記の範囲にあることにより、特に優れた視野角特性を得ることができる。
 液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、下記の方法によって測定できる。
 液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を測定する。また、液晶配向層及び液晶傾斜層を含む複合液晶層の全体に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を測定する。そして、測定したこれらの実質最大傾斜角と、液晶配向層及び液晶傾斜層の厚みとを用いて、液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を計算できる。
 また、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角と、液晶傾斜層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角との差は、好ましくは5°以上、より好ましくは8°以上、特に好ましくは10°以上であり、好ましくは59°以下、より好ましくは57°以下、特に好ましくは55°以下である。実質最大傾斜角の差が前記の範囲にあることにより、特に優れた視野角特性を得ることができる。
 通常、液晶傾斜層の面内方向における逆分散液晶性化合物の分子の配向方向は、液晶配向層の面内方向における逆分散液晶性化合物の分子の配向方向と同じである。
 また、液晶配向層において配向欠陥が抑制されているので、その液晶配向層上に形成される液晶傾斜層においても、配向欠陥の発生を抑制できる。
 さらに、液晶傾斜層は、通常、面状態が良好である。
 液晶傾斜層の厚みは、特段の制限は無く、好ましくは0.3μm以上、より好ましくは0.5μm以上であり、また、好ましくは10.0μm以下、より好ましくは7.5μm以下、更に好ましくは5.0μm以下、特に好ましくは3.0μm以下である。
 (2.3.複合液晶層)
 光学フィルムは、逆分散液晶性化合物を含む液晶組成物としての配向層組成物の硬化物で形成された液晶配向層と、逆分散液晶性化合物を含む液晶組成物としての傾斜層組成物の硬化物で形成された液晶傾斜層とを備える。よって、光学フィルムは、逆分散液晶性化合物を含む液晶組成物の硬化物で形成された複層構造の液晶硬化層として、液晶配向層及び液晶傾斜層を含む複合液晶層を備える。
 液晶配向層及び液晶傾斜層を含むことから分かるように、複合液晶層に含まれる逆分散液晶性化合物の少なくとも一部の分子は、当該複合液晶層の層平面に対して(即ち面内方向に対して)傾斜している。複合液晶層に含まれる逆分散液晶性化合物の少なくとも一部の分子が層平面に対して(即ち面内方向に対して)傾斜していることは、液晶配向層の項において説明した方法と同じ方法によって、確認できる。そして、液晶配向層及び液晶傾斜層を含む複合液晶層では、当該複合液晶層に含まれる逆分散液晶性化合物の分子の傾斜角を、全体として大きくすることが可能である。したがって、複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくできる。
 複合液晶層において、実質最大傾斜角は、液晶配向層側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、逆分散液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、複合液晶層に含まれる逆分散液晶性化合物の分子の傾斜角の大きさを示す指標である。通常は、実質最大傾斜角が大きい複合液晶層ほど、その複合液晶層に含まれる逆分散液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。よって、複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくできることにより、厚み方向における複合液晶層の複屈折を大きくできる。そして、厚み方向において複合液晶層の複屈折を大きくできることにより、光学フィルムの厚み方向の複屈折を適切に調整できる。したがって、光学フィルムを反射抑制フィルムとしての偏光板に設けた場合に、表示面の傾斜方向において反射を効果的に抑制できるという優れた視野角特性を得ることができる。
 複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、通常、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角よりも、大きい。優れた視野角特性を達成する観点では、複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、好ましくは40°以上、より好ましくは46°以上、特に好ましくは56°以上であり、好ましくは85°以下、より好ましくは83°以下、更に好ましくは80°以下である。複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が前記の範囲にあると、光学フィルムの厚み方向の複屈折を適切に調整できる。よって、この光学フィルムを直線偏光子と組み合わせることにより、有機EL表示パネルに設けた場合に高い視野角特性を達成できる偏光板を実現することができる。
 複合液晶層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。後述する実施例に記載の測定方法によれば、その複合液晶層が逆分散液晶性化合物以外の液晶性化合物を含んでいる場合でも、逆分散液晶性化合物の分子の実質最大傾斜角を測定することが可能である。
 複合液晶層は、逆分散液晶性化合物を含む液晶配向層及び液晶傾斜層を含むので、逆波長分散性の面内レターデーションを有することができる。よって、複合液晶層の面内レターデーションは、通常は前記の式(N3)を満たし、好ましくは前記の式(N4)を満たす。
 液晶配向層では、上述したように、配向欠陥の発生が抑制されている。また、後述するように、液晶配向層は、傾斜層組成物に対して高い親和性を有する。よって、傾斜層組成物は液晶配向層になじみ、分子の配向が乱され難い。よって、傾斜層組成物では配向状態を面内方向において均一にできる。これにより、液晶配向層上に設けられた液晶傾斜層でも、配向欠陥の発生が抑制される。したがって、液晶配向層及び液晶傾斜層を含む複合液晶性の全体としても、配向欠陥の発生が抑制することができる。
 面内方向においては、複合液晶層に含まれる逆分散液晶性化合物の分子は、全体として、液晶配向層に含まれる逆分散液晶性化合物の分子の配向方向と同じ面内方向に配向する。よって、複合液晶層の面内遅相軸は、通常、液晶配向層の面内遅相軸と平行である。
 複合液晶層は、通常、面状態が良好である。よって、複合液晶層は、通常、その厚みのムラが小さく、したがって面内レターデーションのムラが小さい。
 複合液晶層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは12.5μm以下、より好ましくは9.5μm未満、更に好ましくは6.8.0μm以下、中でも好ましくは6.6μm以下、特に好ましくは4.0μm以下である。複合液晶層の厚みが前記の範囲にあることにより、面内レターデーション等の特性を所望の範囲に容易に調整することができる。また、このような厚みの複合液晶層は、有機EL表示パネルの反射抑制フィルムに用いられてきた従来の位相差フィルムよりも薄いので、有機EL表示パネルの薄型化に貢献できる。
 ところで、複合液晶層は、1層の液晶配向層及び1層の液晶傾斜層のみを含む2層構造の液晶硬化層であってもよいが、3層以上の層を含む液晶硬化層であってもよい。例えば、傾斜層組成物として配向層組成物と同じくフッ素系界面活性剤を含む液晶組成物を用いた場合には、液晶傾斜層として、液晶配向層に求められる範囲の厚みT及び比M/Tを有する層が得られることがある。この液晶傾斜層は、液晶配向層として機能することができる。よって、この液晶傾斜層上に、更に別の液晶傾斜層を形成することにより、3層以上の層を含む複合液晶層を得ることができる。
 複合液晶層において、液晶配向層と液晶傾斜層とは、通常、下記の方法によって区別できる。
 複合液晶層を、エポキシ樹脂で包埋して、試料片を得る。この試料片を、ミクロトームを用いて、複合液晶層の厚み方向に平行にスライスして、観察サンプルを得る。この際、スライスは、複合液晶層の面内遅相軸方向と断面とが平行となるように行う。その後、スライスにより現れた断面を、偏光顕微鏡を用いて観察する。この観察は、観察サンプルと偏光顕微鏡の対物レンズとの間に検板として波長板を挿入して、観察サンプルのレターデーションに応じた色を呈した像が見られるように行う。このとき、色が異なる部分を、液晶配向層と液晶傾斜層との境目として、区別できる。
 (2.4.任意の層)
 光学フィルムは、液晶配向層及び液晶傾斜層のみを含むフィルムであってもよく、液晶配向層及び液晶傾斜層に組み合わせて任意の層を含むフィルムであってもよい。任意の層としては、液晶配向層の製造に用いる基材;位相差フィルム;他の部材と接着するための接着剤層;フィルムの滑り性を良くするマット層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;反射防止層;防汚層;等が挙げられる。
 (2.5.光学フィルムの特性)
 光学フィルムは、液晶配向層及び液晶傾斜層を含む複合液晶層を備えるので、当該光学フィルムの厚み方向の複屈折を適切に調整できる。したがって、光学フィルムを反射抑制フィルムとしての偏光板に設けた場合に、表示面の傾斜方向において反射を効果的に抑制できるという優れた視野角特性を得ることができる。
 優れた視野角特性を実現する観点から、光学フィルムの平均レターデーション比R(±50°)/R(0°)は、好ましくは0.90以上、より好ましくは0.92以上、特に好ましくは0.93以上であり、また、好ましくは1.15以下、より好ましくは1.12以下、特に好ましくは1.10以下である。ここで、R(±50°)とは、光学フィルムの面内の進相軸方向に対して垂直な測定方向で測定した、入射角θが-50°及び+50°での光学フィルムのレターデーションR(-50°)及びR(+50°)の平均値を表す。また、R(0°)は、入射角0°での光学フィルムのレターデーションを表す。
 一般に、画像表示装置の表示面に入射角「+φ」で入射する外光は、出射角「-φ」で反射する。よって、表示面に設けられる反射抑制フィルムが光学フィルムを含む場合、表示面の傾斜方向において外光は入射角「+φ」での往路と出射角「-φ」での復路とを含む経路で光学フィルムを通過する。この経路を通る光の反射を効果的に抑制する観点から、光学フィルムのレターデーション比R(±50°)/R(0°)は、1.00に近いことが好ましい。光学フィルムのレターデーション比R(±50°)/R(0°)が1.00に近い前記の範囲にあることにより、その光学フィルムを含む偏光板によって、傾斜方向における外光の反射を効果的に抑制できる。具体的には、外光が光学フィルムを入射時及び反射時の2回通る間に、その偏光状態を適切に変換して、偏光板の直線偏光子による効果的な遮断を実現することが可能となる。よって、このような光学フィルムは、直線偏光子と組み合わせて偏光板を得た場合に、その偏光板による反射抑制能力を広い入射角範囲において発揮できるので、特に優れた視野角特性を得ることができる。
 光学フィルムは、液晶配向層及び液晶傾斜層を含む複合液晶層を備えるので、逆波長分散性の面内レターデーションを有することができる。よって、光学フィルムの面内レターデーションは、通常は前記の式(N3)を満たし、好ましくは前記の式(N4)を満たす。このように逆波長分散性の面内レターデーションを有する光学フィルムは、広い波長範囲においてその光学的機能を発揮できる。よって、この光学フィルムを反射抑制フィルムとしての偏光板に用いた場合に、広い波長範囲において反射を抑制することが可能である。
 光学フィルムの具体的な面内レターデーションの範囲は、光学フィルムの用途に応じて任意に設定できる。特に、直線偏光子と組み合わせて、有機EL表示パネル用の反射抑制フィルムとしての偏光板を得るためには、光学フィルムは、1/4波長板として機能できる面内レターデーションを有することが望ましい。ここで、1/4波長板として機能できる面内レターデーションとは、具体的には、測定波長590nmにおいて、好ましくは100nm以上、より好ましくは110nm以上、特に好ましくは120nm以上であり、好ましくは180nm以下、より好ましく170nm以下、特に好ましくは160nm以下である。
 光学フィルムが備える複合液晶層においては、前記のように配向欠陥の発生が抑制されている。よって、この光学フィルムを用いれば、面内レターデーションが周囲と異なる光学的な欠陥点の発生を抑制することができる。したがって、この光学フィルムを用いて製造された反射抑制フィルムでは、意図したとおりの反射の抑制ができない箇所の発生を抑制することができる。
 光学フィルムが備える複合液晶層は、通常、面状態が良好である。よって、複合液晶層の厚みのムラが小さいので、光学フィルムは、面内レターデーションのムラを小さくできる。
 光学フィルムは、透明性に優れることが好ましい。具体的には、光学フィルムの全光線透過率は、好ましくは75%以上、より好ましくは80%以上、特に好ましくは84%以上である。また、光学フィルムのヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。また、ヘイズは、ヘイズメーターを用いて測定できる。
 光学フィルムの厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは300μm以下、より好ましくは200μm以下である。
 (2.6.光学フィルムの製造方法)
 光学フィルムの製造方法は、所望の光学フィルムが得られる限り、任意である。一実施形態において、光学フィルムは、
 (iv)液晶配向層の特定面に、直接に、傾斜層組成物の層を形成する工程と;
 (v)傾斜層組成物の層に含まれる逆分散液晶性化合物を配向させる工程と;
 (vi)傾斜層組成物の層を硬化させて、液晶傾斜層を得る工程と、
 を含む製造方法により、製造できる。
 工程(iv)では、液晶配向層の特定面に、直接に、傾斜層組成物の層を形成する。ここで、ある層の面上に別の層を形成する態様が「直接に」とは、これら2層の間に他の層が無いことをいう。
 液晶配向層の特定面に傾斜層組成物の層を形成する前に、前記特定面には、ラビング処理等の配向規制力を付与するための処理を施してもよい。しかし、液晶配向層の特定面は、特段の処理を施さなくても、当該特定面上に形成される傾斜層組成物の層に含まれる逆分散液晶性化合物を適切に配向させる配向規制力を有する。よって、工程数を減らして光学フィルムの製造を効率的に進める観点では、工程(iv)は、液晶配向層の特定面にラビング処理を施さないで、液晶配向層の特定面に直接に傾斜層組成物の層を形成することを含むことが好ましい。
 傾斜層組成物の層を形成する工程(iv)において、傾斜層組成物は、通常、流体状で用意される。そのため、通常は、液晶配向層の特定面に傾斜層組成物を塗工して、傾斜層組成物の層を形成する。傾斜層組成物を塗工する方法としては、例えば、配向層組成物を塗工する方法として説明した方法と同様の例が挙げられる。液晶配向層が逆分散液晶性化合物を含む硬化物で形成されているので、液晶配向層は、通常、逆分散液晶性化合物を含む傾斜層組成物に対して高い親和性を有する。よって、通常は、液晶配向層の特定面に対して傾斜層組成物のなじみが良く、特定面への傾斜層組成物の塗工性が良好である。したがって、ハジキ及びムラの発生を抑制できるので、面状態の良好な傾斜層組成物の層が形成される。そして、このように傾斜層組成物の層の面状態を良好にできるので、この傾斜層組成物の層を硬化させて得られる液晶傾斜層の面状態を良好にでき、ひいては複合液晶層の面状態を良好にできる。
 傾斜層組成物の層を形成する工程(iv)の後で、傾斜層組成物の層に含まれる逆分散液晶性化合物を配向させる工程(v)を行う。これにより、傾斜層組成物の層において、逆分散液晶性化合物等の液晶性化合物が配向する。
 通常、面内方向においては、傾斜層組成物の層に含まれる逆分散液晶性化合物は、液晶配向層の特定面の配向規制力により、液晶配向層に含まれる逆分散液晶性化合物の配向方向と同じ方向に配向する。他方、厚み方向においては、傾斜層組成物の層に含まれる逆分散液晶性化合物は、少なくとも一部が層平面に対して(即ち面内方向に対して)傾斜するように配向する。この際、傾斜層組成物の層に含まれる逆分散液晶性化合物の分子は、液晶配向層の作用によって、層平面に対して(即ち面内方向に対して)大きく傾斜する。よって、傾斜層組成物の層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を、大きくできる。
 また、前記のように、液晶配向層は、傾斜層組成物に対して高い親和性を有する。よって、傾斜層組成物は液晶配向層になじみ、分子の配向が乱され難い。また、液晶配向層では、配向欠陥の発生が抑制されているので、液晶配向層の配向欠陥に起因した傾斜層組成物での配向欠陥の発生も抑制される。よって、傾斜層組成物では配向状態を面内方向において均一にできる。したがって、工程(v)では、配向欠陥の発生が抑制される。
 傾斜層組成物の層に含まれる逆分散液晶性化合物を配向させる工程(v)における具体的な操作は、配向層組成物の層に含まれる逆分散液晶性化合物を配向させる工程(ii)と同じにできる。これにより、配向層組成物及び液晶配向層において得られたのと同じ利点を、傾斜層組成物及び液晶傾斜層においても得ることができる。特に、工程(v)では、工程(ii)と同じく、工程(v)における傾斜層組成物の層の温度条件が、当該傾斜層組成物に対応する試験組成物の残留分粘度が通常800cP以下となる温度条件と同一になるように、行うことが好ましい。
 逆分散液晶性化合物を配向させる工程(v)の後で、傾斜層組成物の層を硬化させて、液晶傾斜層を得る工程(vi)を行う。これにより、液晶配向層及び液晶傾斜層を含む複合液晶層を備えた光学フィルムを得ることができる。傾斜層組成物の層を硬化させる工程(vi)における具体的な操作は、配向層組成物の層を硬化させる工程(iii)と同じにできる。これにより、配向層組成物及び液晶配向層において得られたのと同じ利点を、傾斜層組成物及び液晶傾斜層においても得ることができる。
 光学フィルムの製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
 光学フィルムの製造方法は、例えば、液晶傾斜層上に、更に別の液晶傾斜層を形成する工程を含んでいてもよい。
 また、光学フィルムの製造方法は、例えば、液晶傾斜層上に任意の層を形成する工程を含んでいてもよい。
 さらには、液晶配向層の液晶傾斜層とは反対側に、任意の層を形成する工程を含んでいてもよい。
 また、液晶配向層として基材の支持面上に形成された層を用いた場合、前記の製造方法によれば、基材上に複合液晶層が形成される。この基材及び複合液晶層を含むフィルムを、光学フィルムとして用いてもよい。また、光学フィルムの製造方法は、基材を剥離する工程を含んでいてもよい。この場合、複合液晶層自体を、光学フィルムとして用いることができる。
 さらに、光学フィルムの製造方法は、例えば、基材上に形成された複合液晶層を、任意のフィルム層に転写する工程を含んでいてもよい。よって、例えば、光学フィルムの製造方法は、基材上に形成された複合液晶層と任意のフィルム層とを貼り合わせた後で、必要に応じて基材を剥離して、複合液晶層及び任意のフィルム層を含む光学フィルムを得る工程を含んでいてもよい。この際、貼り合わせには、適切な粘着剤又は接着剤を用いてもよい。
 前記のような製造方法によれば、長尺の液晶配向層を用いて、長尺の光学フィルムを得ることができる。このような長尺の光学フィルムは、連続的な製造が可能であり、生産性に優れる。また、他のフィルムとの貼り合わせを、ロールトゥロールによって行うことができるので、この点でも、生産性に優れる。通常、長尺の光学フィルムは、巻き取られてロールの状態で保存及び運搬がなされる。
[3.1/4波長板]
 本発明の一実施形態に係る1/4波長板は、上述した液晶配向層又は光学フィルムを備える。また、1/4波長板は、液晶配向層又は光学フィルムに組み合わせて、更に任意の層を備えていてもよい。
 この1/4波長板は、1/4波長板として機能できる面内レターデーションとして上述した範囲の面内レターデーションを有する。1/4波長板を直線偏光子と組み合わせることで、反射抑制フィルムとして用いることが可能な円偏光板を得ることができる。そうして得られる円偏光板は、光学的な欠陥点の発生が抑制され、逆波長分散性の面内レターデーションを有し、且つ、視野角特性に優れた反射抑制フィルムとして用いることができる。
[4.偏光板]
 本発明の一実施形態に係る偏光板は、上述した液晶配向層又は光学フィルムを備える。通常、偏光板は、液晶配向層又は光学フィルムに組み合わせて、直線偏光子を備える。この偏光板は、円偏光板又は楕円偏光板として機能できることが好ましい。このような偏光板は、有機EL表示パネルに設けることにより、有機EL表示パネルの表示面の正面方向において外光の反射を抑制できる。このとき、液晶配向層及び光学フィルムが逆波長分散性の面内レターデーションを有するので、広い波長範囲において外光の反射抑制が可能である。また、上述した液晶配向層及び光学フィルムは、逆分散液晶性化合物の分子の実質最大傾斜角が大きいことから分かるように、全体として逆分散液晶性化合物の分子の傾斜角が大きいので、その面内方向だけでなく厚み方向においても複屈折を適切に調整することができる。よって、偏光板は、有機EL表示パネルの表示面の正面方向だけでなく傾斜方向においても外光の反射を抑制できる。したがって、この偏光板を用いることにより、視野角の広い有機EL表示パネルを実現することができる。さらに、液晶配向層及び光学フィルムは、配向欠陥の発生が抑制されているので、意図したとおりの反射の抑制ができない箇所の発生を抑制することができる。
 直線偏光子としては、例えば、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
 偏光板を円偏光板として機能させたい場合、直線偏光子の偏光吸収軸に対して液晶配向層又は光学フィルムの遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°、より好ましくは45°±4°、特に好ましくは45°±3°である。
 偏光板は、直線偏光子、液晶配向層及び光学フィルム以外に、更に任意の層を含んでいてもよい。任意の層としては、例えば、直線偏光子と液晶配向層又は光学フィルムとを貼り合わせるための接着層;直線偏光子を保護するための偏光子保護フィルム層;などが挙げられる。
[5.有機EL表示パネル]
 本発明の一実施形態に係る有機EL表示パネルは、上述した液晶配向層又は光学フィルムを備える。通常、有機EL表示パネルは、液晶配向層又は光学フィルムを含む前記の偏光板を備える。このような有機EL表示パネルは、通常、表示素子として有機EL素子を含み、この有機EL素子の視認側に、偏光板が設けられる。また、偏光板は、有機EL素子と直線偏光子との間に液晶配向層又は光学フィルムが設けられるように、配置される。そして、このような構成において、前記の偏光板が反射抑制フィルムとして機能できる。
 以下、偏光板が円偏光板として機能する場合を例に挙げて、反射抑制の仕組みを説明する。装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが液晶配向層又は光学フィルムを通過することにより、円偏光となる。円偏光は、有機EL表示パネル内の光を反射する構成要素(有機EL素子の反射電極等)により反射され、再び液晶配向層又は光学フィルムを通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子を通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。このような反射抑制の原理は、特開平9-127885号公報を参照してよい。
 有機EL素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。
 また、有機EL表示パネルにおいて、液晶配向層又は光学フィルムは、反射抑制フィルム以外の用途で設けられていてもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 また、以下に説明する実施例及び比較例で製造された中間フィルム及び光学フィルムに含まれる支持基材は、光学等方性を有するので、レターデーションの測定結果には影響を与えない。そこで、以下に説明する実施例及び比較例におけるレターデーションの測定は、支持基材を含む中間フィルム又は光学フィルムを試料として実施した。
[評価方法]
(1.フッ素系界面活性剤のlogPの測定方法)
 (1-1.フッ素系界面活性剤を含む試料溶液の調製方法)
 フッ素系界面活性剤を1重量%含む試料溶液を調製した。この試料溶液の溶媒としては、テトラヒドロフラン又はアセトニトリルを用いた。テトラヒドロフラン又はアセトニトリルと混合する前のフッ素系界面活性剤が、当該フッ素系界面活性剤及び希釈溶媒を含む溶液であった場合には、得られる試料溶液中のフッ素系界面活性剤の含有量が1重量%となるように、テトラヒドロフラン又はアセトニトリルの量を調整した。
 (1-2.HPLC/ELSD分析)
 JIS 7260-117:2006{分配係数(1-オクタノール/水)の測定-高速液体クロマトグラフィー}に概ね準拠した方法で、フッ素系界面活性剤を含む前記の試料溶液のHPLC/ELSD分析を、下記のHPLC/ELSD分析条件で行って、溶出時間(r.t.)を測定した。
 ・HPLC/ELSD分析条件
 LCシステム:LC-20A(島津製作所製)
 カラム:Inertsil ODS-3 3.0×150mm,5μm(GLサイエンス製)
 移動相:A 水
     B アセトニトリル/テトラヒドロフラン=8/2(vol/vol)
 アセトニトリル:高速液体クロマトグラフィー用(国産化学製)
 テトラヒドロフラン:inhibitor-free、for HPLC(SIGMA-ALDRICH製)
 タイムプログラム:0minから15min B 30%から100%
          15minから25min B 100%
 カラム温度:45℃
 流量:0.8mL/min
 注入量:10μL(試料の検出感度が低い場合は、50μL又は100μLに調整)
 検出:ELSD-LTII(島津製作所) Gain6、350kPa、65℃
 (1-3.検量線の導出)
 下記表1に示す標識化合物を用意した。表1に示す標識化合物は、JIS7260-117:2006に記載のある、logPが既知の化合物である。この標識化合物をフッ素系界面活性剤の代わりに用いたこと以外は前記(1-1.フッ素系界面活性剤を含む試料溶液の調製方法)に記載の方法と同様にして、各標識化合物を含む試料溶液を調製した。その後、得られた試料溶液のHPLC/ELSD分析を、前記(1-2.HPLC/ELSD分析)で説明した分析条件で行って、溶出時間を測定した。ただし、ELSD検出器の温度は、25℃に設定した。
Figure JPOXMLDOC01-appb-T000027
 溶出時間を横軸、logPを縦軸とする座標系に、前記の標識化合物の分析結果をプロットし、最小二乗法によって近似直線を作成した。この近似直線を、検量線として採用した。
 (1-4.フッ素系界面活性剤のlogPの算出)
 各フッ素系界面活性剤について測定された溶出時間を、前記の検量線に当てはめることにより、そのフッ素系界面活性剤のlogPを求めた。HPLC/ELSD分析において溶出時間を示すピークが、1つのフッ素系界面活性剤当たり複数検出された場合には、最も面積の大きいピークのピークトップを、当該フッ素系界面活性剤の溶出時間として採用して、logPを求めた。
(2.厚みの測定方法)
 層の厚みは、膜厚計(フィルメトリクス社製「F20-EXR」)を用いて測定した。
(3.液晶配向層の表面フッ素原子量の測定方法)
 支持基材及び液晶配向層を備える中間フィルムから、1cm角のサンプルフィルムを切り取った。液晶配向層側の面を表にして、前記のサンプルフィルムをサンプルホルダーに固定した。この際、サンプルフィルムの固定には、導電性テープを用いた。前記のサンプルホルダーを、下記のX線光電子分光分析システムに取り付け、下記の条件に従って液晶配向層の表面(支持基材とは反対側の面)の表面フッ素原子量を測定した。この方法によれば、液晶配向層の表面に存在する、水素(H)を除く全原子中に含まれるフッ素(F)原子のモル含有率を測定できる。
 システム:Kratos Analytical社製「AXIS ULTRA」
 励起X線:Al Kα線
 フィラメントEmission:10mA
 AnodeHT:15kV
 中和銃:Electron Neutralizer
 中和条件Filament Current:1.55A
 Charge Balance:3.3V
 Filament Bias:1.5V
 分析エリア:約700μm×300μm
 光電子検出角度:0°(試料面と検出器のなす角度:90°)
(4.実質最大傾斜角の測定方法)
 図5は、傾斜方向から液晶配向層400のレターデーションを測定する際の測定方向を説明するための斜視図である。図5において、矢印A1は液晶配向層400の面内の遅相軸方向を表し、矢印A2は液晶配向層400の面内の進相軸方向を表し、矢印A3は液晶配向層400の厚み方向を表す。
 位相差計(Axometrics社製「AxoScan」)を用いて、図5に示すように、液晶配向層400のレターデーションを、入射角θが-50°~50°の範囲で測定した。この際、測定方向A4は、液晶配向層400の面内の進相軸方向A2に対して垂直に設定した。また、測定波長は590nmであった。
 測定されたレターデーションから、前記の位相差計に付属の解析ソフトウェア(AxoMetrics社製の解析ソフトウェア「Multi-Layer Analysis」;解析条件は、解析波長590nm、層分割数20層)により、液晶配向層400に含まれる液晶性化合物の分子の実質最大傾斜角を解析した。
 また、光学フィルムが有する複合液晶層に含まれる液晶性化合物の分子の実質最大傾斜角は、液晶配向層のレターデーションの代わりに複合液晶層のレターデーションを測定すること以外は、前記の液晶配向層に含まれる液晶性化合物の分子の実質最大傾斜角の測定方法と同じ方法により、測定した。
 複合液晶層については、得られた実質最大傾斜角を、下記の基準で評価した。
 「A」:複合液晶層での実質最大傾斜角が、40°以上85°以下。
 「B」:複合液晶層での実質最大傾斜角が、30°以上40°未満。
 「C」:複合液晶層での実質最大傾斜角が、30°未満。
(5.複合液晶層の面状態の評価方法)
 ライトテーブル上に一対の直線偏光子(偏光子及び検光子)を、パラニコルとなるように重ねた。ここでパラニコルとは、直線偏光子の偏光透過軸が平行となる態様を表す。
 実施例又は比較例で製造した光学フィルムを、16cm角サイズに裁断し、測定用のフィルム片を得た。このフィルム片を、前記のようにライトテーブル上に設置した直線偏光子の間に置いた。この際、フィルム片の遅相軸は、厚み方向から見て直線偏光子の吸収軸に対して略45°の角度をなすように設定した。その後、目視にて観察した。観察された像での均一性(位相差の均一性)に応じて、下記の基準によって複合液晶層の面状態を評価した。
 A:観察された像に、ムラがない。
 C:観察された像に、ムラが見られる。
 ところで、別途、前記のライトテーブル上に設置された一対の直線偏光子の間に、光学フィルムの製造に用いた支持基材を置き、目視で観察した。その結果、複合液晶層を備えない支持基材のみを前記フィルム片の代わりに用いて観察した場合には、全面がほぼ均一でムラが認められなかった。この結果から、前記の評価で観察されるムラは、複合液晶層の面状態に起因して生じていることを確認した。
(6.配向欠陥の評価方法)
 試料として、液晶組成物の硬化物で形成された液晶硬化層(液晶配向層;又は、液晶配向層及び液晶傾斜層からなる複合液晶層)を含む試料フィルム(中間フィルム又は光学フィルム)を用意した。前記の液晶硬化層を、偏光顕微鏡を用いて、クロスニコル下において、透過観察した。この観察の際、対物レンズは20倍に設定した。観察の結果から、下記の基準によって配向欠陥を評価した。
 「A」:全面がほぼ均一で、配向欠陥が認められない。
 「C」:配向欠陥が認められる。
(7.逆波長分散性の評価方法)
 位相差計(Axometrics社製「AxoScan」)を用いて、光学フィルムの面内レターデーション(即ち、複合液晶層の入射角0°でのレターデーション)を、測定波長450nm及び550nmで測定した。測定された測定波長450nm及び550nmでの面内レターデーションRe(450)及びRe(550)の値から、光学フィルムの逆波長分散性を、以下の基準で評価した。
 「A」:Re(450)/Re(550)<0.9
 「B」:0.9≦Re(450)/Re(550)≦1.0
 「C」:Re(450)/Re(550)>1.0
(8.視野角特性の評価方法)
 位相差計(Axometrics社製「AxoScan」)を用いて、光学フィルムのレターデーションを、入射角θが-50°~50°の範囲で測定した。この際、測定方向は、光学フィルムの面内の進相軸方向に対して垂直に設定した。また、測定波長は590nmであった。
 入射角θが-50°でのレターデーションR(-50°)及び入射角θが+50°でのレターデーションR(+50°)の平均値R(±50°)を計算した。そして、この平均値R(±50°)を、入射角θが0°の面内レターデーションR(0°)で割って、平均レターデーション比R(±50°)/R(0°)を求めた。この平均レターデーション比R(±50°)/R(0°)が1.00に近いほど、より優れた視野角特性を有機EL表示パネルにおいて実現できることを表す。そこで、前記の平均レターデーション比R(±50°)/R(0°)の値に基づいて、下記の基準で視野角特性を評価した。
 「A」:0.93≦R(±50°)/R(0°)≦1.10
 「B」:0.90≦R(±50°)/R(0°)<0.93
 「C」:R(±50°)/R(0°)<0.90
(9.少なくとも一部の液晶性化合物の分子が傾斜していることの確認方法)
 試料として、液晶組成物の硬化物で形成された液晶硬化層(液晶配向層;又は、液晶配向層及び液晶傾斜層からなる複合液晶層)を含む試料フィルム(中間フィルム又は光学フィルム)を用意した。位相差計(Axometrics社製「AxoScan」)を用いて、液晶硬化層のレターデーションを、入射角θが-50°~50°の範囲で測定した。この際、測定方向は、液晶硬化層の面内の進相軸方向に対して垂直に設定した。また、測定波長は590nmであった。
 測定された入射角θでの液晶硬化層のレターデーションR(θ)を、入射角0°での液晶硬化層のレターデーションR(0°)で割って、レターデーション比R(θ)/R(0°)を求めた。求めたレターデーション比R(θ)/R(0°)を縦軸、入射角θを横軸としたグラフを描いた。そして、得られたグラフがθ=0°に対して非対称であるか否かに基づいて、下記の基準で、分子の傾斜配向性を確認した。
 「A」:レターデーション比R(θ)/R(0°)がθ=0°に対して非対称であるので、その液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が液晶硬化層の層平面に対して(即ち面内方向に対して)傾斜配向している。
 「C」:レターデーション比R(θ)/R(0°)がθ=0°に対して対称であるので、その液晶硬化層に含まれる液晶性化合物の全ての分子が液晶硬化層の層平面に対して(即ち面内方向に対して)平行又は垂直である。
[実施例1]
(液晶組成物の調製)
 下記式で表される重合性を有する逆分散液晶性化合物1を100重量部、フッ素系界面活性剤(AGCセイミケミカル社製「S420」;logP=5.3)0.075重量部、光重合開始剤(BASF社製「IrgacureOXE04」)4.3重量部、並びに、溶媒としてシクロペンタノン148.5重量部及び1,3-ジオキソラン222.8重量部を混合して、液晶組成物を製造した。
Figure JPOXMLDOC01-appb-C000028
(支持基材の用意)
 支持基材として、片面にマスキングフィルムが貼り合わせられた熱可塑性のノルボルネン樹脂からなる樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF16」;厚み100μm)を用意した。この支持基材は、レターデーションの無い光学等方性のフィルムであった。この支持基材からマスキングフィルムを剥離し、マスキング剥離面にコロナ処理を施した。次いで、支持基材のコロナ処理面にラビング処理を施した。
(液晶配向層の形成)
 支持基材のラビング処理面に、ワイヤーバーを用いて、配向層組成物として前記の液晶組成物を塗工して、液晶組成物の層を形成した。
 次いで、この液晶組成物の層を、145℃に設定したオーブン内で4分間加熱して、層内の液晶性化合物を配向させた。前記の加熱条件は、使用した液晶組成物に対応する試験組成物の残留分粘度が170cPとなる温度条件であった。
 その後、液晶組成物の層に窒素雰囲気下で500mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、厚み0.3μmの液晶配向層を得た。これにより、支持基材及び液晶配向層を含む中間フィルムを得た。
 この中間フィルムを用いて、前記の方法により、液晶配向層の支持基材とは反対側の表面における表面フッ素原子量M[モル%]、液晶配向層での実質最大傾斜角、液晶配向層の配向欠陥、及び、液晶配向層の傾斜配向性を評価した。
(液晶傾斜層の形成)
 液晶配向層の表面に、ラビング処理を施すことなく、ワイヤーバーを使用して、液晶配向層の形成に用いた残りの液晶組成物を傾斜層組成物として塗工して、液晶組成物の層を形成した。
 次いで、この液晶組成物の層を、前記の液晶配向層の形成工程と同じく145℃に設定したオーブン内で4分間加熱して、層内の液晶性化合物を配向させた。
 その後、液晶組成物の層に窒素雰囲気下で500mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、液晶傾斜層を得た。
 これにより、支持基材と、この支持基材上に形成された液晶配向層及び液晶傾斜層を含む複合液晶層とを備える光学フィルムを得た。複合液晶層の厚みは、3.2μmであった。
 得られた光学フィルムを用いて、上述した方法で、複合液晶層の面状態、配向欠陥、逆波長分散性、実質最大傾斜角、傾斜配向性及び視野角特性を評価した。また、光学フィルムの波長590nmでの面内レターデーションは、145nmであった。
[実施例2]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.150重量部に変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。また、光学フィルムの波長590nmでの面内レターデーションは、145nmであった。
[実施例3]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.150重量部に変更した。
 また、液晶配向層の厚みを0.3μmから1.4μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。また、光学フィルムの波長590nmでの面内レターデーションは、139nmであった。
[実施例4]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.150重量部に変更した。
 また、液晶配向層の厚みを0.3μmから2.5μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。また、光学フィルムの波長590nmでの面内レターデーションは、158nmであった。
[実施例5]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.400重量部に変更した。
 また、液晶配向層の厚みを0.3μmから1.0μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。また、光学フィルムの波長590nmでの面内レターデーションは、157nmであった。
[実施例6]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)0.075重量部の代わりに、フッ素系界面活性剤(ネオス社製「フタージェントFTX-209」;logP=6.3)0.150重量部を用いた。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。また、光学フィルムの波長590nmでの面内レターデーションは、147nmであった。
[実施例7]
 逆分散液晶性化合物1を100重量部用いる代わりに、下記式で表される逆分散液晶性化合物2を100重量部用いた。
 また、フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.150重量部に変更した。
 さらに、液晶配向層の厚みを0.3μmから1.4μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。
 なお、本実施例7では、液晶組成物の層をオーブン内で加熱する際の加熱条件は、使用した液晶組成物に対応する試験組成物の残留分粘度が255cPとなる温度条件であった。
 また、光学フィルムの波長590nmでの面内レターデーションは、149nmであった。
Figure JPOXMLDOC01-appb-C000029
[比較例1]
 液晶配向層の厚みを、0.3μmから2.0μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。
[比較例2]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.500重量部に変更した。
 また、液晶配向層の厚みを、0.3μmから2.0μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。
[比較例3]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.150重量部に変更した。
 また、液晶配向層の厚みを、0.3μmから3.4μmに変更した。
 さらに、複合液晶層の厚みを、3.2μmから3.7μmに変更した。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。
[比較例4]
 フッ素系界面活性剤(AGCセイミケミカル社製「S420」)の量を、0.075重量部から0.400重量部に変更した。
 また、液晶配向層の厚みを、0.3μmから3.3μmに変更した。
 さらに、複合液晶層の厚みを、3.2μmから3.6μmに変更した。
 さらに、液晶組成物の層に含まれる液晶性化合物を配向させる工程でのオーブンの設定温度を低くした。この設定温度は、液晶組成物に対応する試験組成物の残留分粘度が800cPより大きくなる温度であった。これにより、液晶配向層に含まれる逆分散液晶性化合物の分子の配向方向は、層平面に平行(即ち面内方向に平行)になった。
 以上の事項以外は実施例1と同じ操作を行って、液晶配向層を含む中間フィルム、並びに、複合液晶層を含む光学フィルムの製造及び評価を行った。
 この比較例4では、中間フィルムに含まれる液晶配向層、及び、光学フィルムに含まれる複合液晶層のいずれにおいても、逆分散液晶性化合物の分子が層平面に対して(即ち面内方向に対して)傾斜していることが確認できなかった。
[比較例5]
 下記式で表される重合性を有する順分散液晶性化合物3を100重量部、フッ素系界面活性剤(AGCセイミケミカル社製「S420」)0.150重量部、光重合開始剤(BASF社製「IrgacureOXE04」)4.3重量部、並びに、溶媒としてシクロペンタノン148.5重量部及び1,3-ジオキソラン222.8重量部を混合して、液晶組成物を製造した。
Figure JPOXMLDOC01-appb-C000030
 配向層組成物として、前記の順分散液晶性化合物3を含む液晶組成物を用いた。また、液晶配向層の厚みを、0.3μmから0.5μmに変更した。以上の事項以外は実施例1における液晶配向層の形成工程と同じ操作を行って、液晶配向層を含む中間フィルムの製造及び評価を行った。
 こうして得られた中間フィルム配向層の表面に、複合液晶層の厚みを3.2μmから2.8μmに変更したこと以外は実施例1の液晶傾斜層の形成工程と同じ操作を行って、逆分散液晶性化合物1を含む液晶組成物を用いて液晶傾斜層を形成して、光学フィルムを得た。得られた光学フィルムを用いて、上述した方法で、複合液晶層の面状態、配向欠陥、逆波長分散性、実質最大傾斜角、傾斜配向性及び視野角特性を評価した。
[結果]
 上述した実施例及び比較例の結果を、下記の表2~表3に示す。下記の表において、略称の意味は、下記の通りである。
 逆分散1:逆分散液晶性化合物1。
 逆分散2:逆分散液晶性化合物2。
 順分散3:順分散液晶性化合物3。
 S420:AGCセイミケミカル社製のフッ素系界面活性剤「S420」。
 FTX209:ネオス社製のフッ素系界面活性剤「フタージェントFTX-209」。
 M:液晶配向層の、支持基材とは反対側の面における表面フッ素原子量。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
[検討]
 表3から分かるように、液晶配向層のM/Tが過小な比較例1では、液晶配向層の配向欠陥の発生を抑制できず、そのため、光学フィルムが備える複合液晶層には配向欠陥が生じている。さらに、比較例1では、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が小さく、光学フィルムが備える複合液晶層でも実質最大傾斜角が小さいので、視野角特性に劣る。
 また、液晶配向層のM/Tが過大な比較例2では、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が小さく、光学フィルムが備える複合液晶層でも実質最大傾斜角が小さいので、視野角特性に劣る。
 さらに、液晶配向層の厚みTが厚すぎる比較例3では、液晶配向層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が小さく、光学フィルムが備える複合液晶層でも実質最大傾斜角が小さいので、視野角特性に劣る。
 また、液晶配向層に含まれる逆分散液晶性化合物の分子が層平面に対して(即ち面内方向に対して)傾斜していない比較例4では、光学フィルムが備える複合液晶層での実質最大傾斜角が小さいので、視野角特性に劣る。
 さらに、液晶配向層の形成のために順分散液晶性化合物を用いた比較例5では、逆波長分散性の面内レターデーションを有する光学フィルムを得ることができなかった。また、比較例5では、液晶配向層での実質最大傾斜角よりも複合液晶層での実質最大傾斜角の方が小さい。よって、順分散液晶性化合物を用いた液晶配向層では、逆分散液晶性化合物を用いた液晶傾斜層において逆分散液晶性化合物の分子の傾斜を促進できないことが分かる。
 これに対し、表1から分かるように、実施例においては、配向欠陥、逆波長分散性及び視野角特性の全てにおいて良好な結果が得られている。
 以上の結果から、本発明により、逆波長分散性の面内レターデーションを有し、配向欠陥の発生を抑制でき、且つ、視野角特性に優れた光学フィルムを得ることができることが確認された。
 さらに、上述した実施例では、いずれも面状態の結果が良好である。よって、本発明により、良好な面状態を有する複合液晶層を備えた光学フィルムを得ることができることが確認された。
 100 液晶配向層
 100U 特定面
 200 光学フィルム
 210 液晶傾斜層
 220 複合液晶層
 300 配向層組成物の層
 300U 空気界面
 310 逆分散液晶性化合物の分子
 320 逆分散液晶性化合物の分子
 330 逆分散液晶性化合物の分子
 340 フッ素系界面活性剤
 400 液晶配向層

Claims (10)

  1.  逆波長分散性の複屈折を発現できる液晶性化合物、及び、フッ素原子を含有する界面活性剤、を含む配向層組成物の硬化物で形成され、配向状態を固定された前記液晶性化合物の分子を含む液晶配向層であって、
     前記液晶配向層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶配向層の層平面に対して傾斜しており、
     前記液晶配向層が、X線光電子分光法によって測定される表面フッ素原子量M[モル%]と前記液晶配向層の厚みT[μm]との比M/Tが3.0以上16.0未満である表面を有し、
     前記液晶配向層の厚みTが、2.5μm以下である、液晶配向層。
  2.  前記液晶配向層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、26°以上60°以下である、請求項1に記載の液晶配向層。
  3.  請求項1又は2に記載の液晶配向層と、前記配向層組成物に含まれる前記液晶性化合物と同一又は異なる逆波長分散性の複屈折を発現できる液晶性化合物を含む傾斜層組成物の硬化物で形成された液晶傾斜層とを備え、
     前記液晶傾斜層が、前記液晶配向層の前記表面に直接に接している、光学フィルム。
  4.  測定波長590nmでの前記光学フィルムの面内レターデーションが、100nm以上180nm以下である、請求項3記載の光学フィルム。
  5.  逆波長分散性の複屈折を発現できる液晶性化合物、及び、フッ素原子を含有する界面活性剤、を含む配向層組成物の層を形成する工程と、
     前記配向層組成物の層に含まれる前記液晶性化合物を配向させる工程と、
     前記配向層組成物の層を硬化させて液晶配向層を得る工程と、を含み、
     前記液晶配向層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶配向層の層平面に対して傾斜しており、
     前記液晶配向層が、X線光電子分光法によって測定される表面フッ素原子量M[モル%]と前記液晶配向層の厚みT[μm]との比M/Tが3.0以上16.0未満である表面を有し、
     前記液晶配向層の厚みTが、2.5μm以下である、液晶配向層の製造方法。
  6.  請求項1又は2に記載の液晶配向層の前記表面に、直接に、前記配向層組成物に含まれる前記液晶性化合物と同一又は異なる逆波長分散性の複屈折を発現できる液晶性化合物を含む傾斜層組成物の層を形成する工程と、
     前記傾斜層組成物の層に含まれる前記液晶性化合物を配向させる工程と、
     前記傾斜層組成物の層を硬化させて、液晶傾斜層を得る工程と、を含む、光学フィルムの製造方法。
  7.  前記液晶配向層の前記表面に直接に前記傾斜層組成物の層を形成する工程が、前記液晶配向層の前記表面にラビング処理を施さないで、前記液晶配向層の前記表面に直接に前記傾斜層組成物の層を形成することを含む、請求項6記載の光学フィルムの製造方法。
  8.  請求項1若しくは2記載の液晶配向層、又は、請求項3若しくは4に記載の光学フィルムを備える、1/4波長板。
  9.  請求項1若しくは2記載の液晶配向層、又は、請求項3若しくは4に記載の光学フィルムを備える、偏光板。
  10.  請求項1若しくは2記載の液晶配向層、又は、請求項3若しくは4に記載の光学フィルムを備える、有機エレクトロルミネッセンス表示パネル。
PCT/JP2018/044759 2017-12-12 2018-12-05 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル WO2019116989A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559581A JP7276143B2 (ja) 2017-12-12 2018-12-05 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-237623 2017-12-12
JP2017237623 2017-12-12

Publications (1)

Publication Number Publication Date
WO2019116989A1 true WO2019116989A1 (ja) 2019-06-20

Family

ID=66820371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044759 WO2019116989A1 (ja) 2017-12-12 2018-12-05 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル

Country Status (3)

Country Link
JP (1) JP7276143B2 (ja)
TW (1) TW201934725A (ja)
WO (1) WO2019116989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255076A1 (ja) * 2021-05-31 2022-12-08 日本ゼオン株式会社 基材フィルム、光学積層体及びその製造方法、並びに、偏光板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279688A (ja) * 2006-03-13 2007-10-25 Fujifilm Corp 光学素子、半透過型液晶表示装置、及び転写材料
JP2014142618A (ja) * 2012-12-28 2014-08-07 Fujifilm Corp 光学フィルム、偏光板、液晶表示装置および光学フィルムの製造方法
WO2016031853A1 (ja) * 2014-08-29 2016-03-03 富士フイルム株式会社 光学積層体、偏光板および有機el表示装置
JP2016051083A (ja) * 2014-08-29 2016-04-11 富士フイルム株式会社 偏光板、偏光板の製造方法および液晶表示装置
WO2016148047A1 (ja) * 2015-03-19 2016-09-22 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
WO2017154598A1 (ja) * 2016-03-08 2017-09-14 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279688A (ja) * 2006-03-13 2007-10-25 Fujifilm Corp 光学素子、半透過型液晶表示装置、及び転写材料
JP2014142618A (ja) * 2012-12-28 2014-08-07 Fujifilm Corp 光学フィルム、偏光板、液晶表示装置および光学フィルムの製造方法
WO2016031853A1 (ja) * 2014-08-29 2016-03-03 富士フイルム株式会社 光学積層体、偏光板および有機el表示装置
JP2016051083A (ja) * 2014-08-29 2016-04-11 富士フイルム株式会社 偏光板、偏光板の製造方法および液晶表示装置
WO2016148047A1 (ja) * 2015-03-19 2016-09-22 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
WO2017154598A1 (ja) * 2016-03-08 2017-09-14 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255076A1 (ja) * 2021-05-31 2022-12-08 日本ゼオン株式会社 基材フィルム、光学積層体及びその製造方法、並びに、偏光板の製造方法

Also Published As

Publication number Publication date
JPWO2019116989A1 (ja) 2021-01-07
JP7276143B2 (ja) 2023-05-18
TW201934725A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6897562B2 (ja) 光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法
WO2019116995A1 (ja) 液晶硬化フィルムおよびその製造方法、偏光板、並びに有機エレクトロルミネッセンス表示装置
WO2019116989A1 (ja) 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
JP7047405B2 (ja) 有機発光表示装置
CN111684325B (zh) 液晶固化层及其制造方法、光学膜、偏振片、以及显示装置
WO2019116991A1 (ja) 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
JP7222235B2 (ja) 長尺の円偏光板及びその製造方法
WO2019116990A1 (ja) 液晶配向層及びその製造方法、光学フィルム及びその製造方法、1/4波長板、偏光板並びに有機エレクトロルミネッセンス表示パネル
WO2019131662A1 (ja) 液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法
WO2019146468A1 (ja) 有機発光表示装置
WO2019142839A1 (ja) 光学異方体及びその製造方法
WO2019142831A1 (ja) 光学異方体及びその製造方法
JP2021004994A (ja) 液晶組成物、液晶硬化フィルム及びその製造方法、偏光板並びに有機エレクトロルミネッセンス表示装置
WO2019131350A1 (ja) 液晶組成物及び液晶硬化フィルム
WO2020116466A1 (ja) 液晶硬化フィルム及びその製造方法
JP2020160278A (ja) 液晶組成物、液晶硬化フィルム及びその製造方法、並びに偏光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887489

Country of ref document: EP

Kind code of ref document: A1