WO2019116874A1 - Photosensitive composition and use of same - Google Patents

Photosensitive composition and use of same Download PDF

Info

Publication number
WO2019116874A1
WO2019116874A1 PCT/JP2018/043421 JP2018043421W WO2019116874A1 WO 2019116874 A1 WO2019116874 A1 WO 2019116874A1 JP 2018043421 W JP2018043421 W JP 2018043421W WO 2019116874 A1 WO2019116874 A1 WO 2019116874A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive powder
conductive
photosensitive composition
mass
powder
Prior art date
Application number
PCT/JP2018/043421
Other languages
French (fr)
Japanese (ja)
Inventor
佑一朗 佐合
重治 高田
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to KR1020207020081A priority Critical patent/KR102579847B1/en
Priority to CN201880080385.3A priority patent/CN111465899B/en
Publication of WO2019116874A1 publication Critical patent/WO2019116874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to photosensitive compositions and their use. This application claims priority based on Japanese Patent Application No. 2017-239464 filed on Dec. 14, 2017, the entire contents of which are incorporated herein by reference. It is done.
  • the objective is to provide the photosensitive composition which can form the conductive layer of a fine line with few line residue with high resolution.
  • Another related objective is to provide a composite provided with a conductive film consisting of a dried product of such a photosensitive composition.
  • another related object is to provide an electronic component provided with a conductive layer formed of a fired body of such a photosensitive composition, and a method of manufacturing the same.
  • the present invention provides a photosensitive composition comprising a conductive powder and a photosensitive organic component.
  • the conductive powder is a D 50 particle size based on volume based on the laser diffraction scattering method is 1 ⁇ m or 5 ⁇ m or less, and, following two types: (1) an organic component amount based on thermogravimetric analysis 0.1 The first conductive powder having a mass% or less; (2) a second electroconductive powder having a benzotriazole-based compound adhering to the surface and having an organic component amount of at least 0.5 mass% based on thermogravimetric analysis The total of the components of; occupies 90% by mass or more, based on 100% by mass of the entire conductive powder.
  • the first conductive powder and the second conductive powder having different amounts of organic components are mixed in the conductive powder, and the total of the first conductive powder and the second conductive powder is conductive. It occupies 90% by mass or more of the whole powder.
  • the conductive layer of the fine line can be stably formed, for example, as compared with the case where each of them is used alone.
  • the second conductive powder contains the benzotriazole-based compound, it is difficult for the residue between the lines to remain, and a space can be stably secured between the wirings. Therefore, it is possible to reduce the leakage current and to suppress the occurrence of short circuit failure.
  • the above effects combine to form a conductive layer with high resolution.
  • the conductive powder comprises silver-based particles.
  • the first conductive powder is a core-shell particle including a metal material as a core and a ceramic material covering at least a part of the surface of the core.
  • the lightness L * of the conductive powder is 50 or more in the L * a * b * color system based on JIS Z 8781: 2013.
  • a preferred embodiment disclosed herein further comprises an organic solvent having a boiling point of 150 ° C. or more and 250 ° C. or less. This can improve the storage stability of the photosensitive composition and the handleability at the time of forming the conductive film, and can suppress the drying temperature after printing to a low level.
  • a composite comprising a green sheet and a conductive film disposed on the green sheet and comprising a dried body of the photosensitive composition.
  • an electronic component comprising a conductive layer comprising a fired body of the photosensitive composition.
  • the photosensitive composition it is possible to stably realize a fine line conductive layer with few interline residues. For this reason, the electronic component provided with the small and / or high-density conductive layer can be realized suitably.
  • the photosensitive composition is applied onto a substrate, subjected to photocuring and etching, and then fired to form a conductive layer comprising a fired body of the photosensitive composition.
  • a method of manufacturing an electronic component is provided. According to such a manufacturing method, it is possible to preferably manufacture an electronic component provided with a small and / or high density conductive layer.
  • FIG. 1 is a cross-sectional view schematically showing a structure of a multilayer chip inductor according to an embodiment.
  • FIG. 2 is a schematic view for explaining the interline residue.
  • a film-like body (dried matter) obtained by drying the conductive composition at a temperature (generally 200 ° C. or less, eg 100 ° C. or less) equal to or lower than the boiling point of the benzotriazole compound is referred to as “conductive film”.
  • the conductive film includes all unfired (before firing) film-like materials.
  • the conductive film may be an uncured product before light curing or a cured product after light curing.
  • a sintered body (baked product) obtained by firing the conductive composition at a temperature equal to or higher than the sintering temperature of the conductive powder is referred to as a “conductive layer”.
  • the conductive layer includes a wiring (linear body), a wiring pattern, and a solid pattern. Further, the notation “A to B” indicating the range in the present specification means A or more and B or less.
  • the photosensitive composition disclosed herein contains a conductive powder and a photosensitive organic component as essential components. Hereinafter, each component will be described in order.
  • the conductive powder is a component that imparts electrical conductivity to the conductive layer obtained by firing the photosensitive composition.
  • the conductive powder is a mixed powder including at least a first conductive powder and a second conductive powder. And the sum total of the 1st electric conduction powder and the 2nd electric conduction powder occupies 90 mass% or more, when the whole electric conduction powder is made into 100 mass%. As a result, the fine line conductive layer can be formed with high resolution.
  • the conductive powder may be composed of the first conductive powder and the second conductive powder, or may contain other conductive powders. From the viewpoint of exhibiting the effects of the technology disclosed herein at a higher level, the total of the first conductive powder and the second conductive powder is preferably 95% by mass or more of the entire conductive powder, It is more preferable that it is 98 mass% or more.
  • the first conductive powder is a conductive powder in which the amount of organic components is kept low.
  • the organic component contained in the conductive powder is mainly derived from the organic surface coating agent adhering to the surface of the conductive powder and the residual organic component used in the production of the conductive powder, such as an organic solvent.
  • the organic surface coating agent will be described in detail in the section of the second conductive powder described later.
  • the first conductive powder has an organic component amount of 0.1% by mass or less.
  • the first conductive powder is not particularly limited except that the amount of the organic component is 0.1% by mass or less.
  • the etching resistance of the conductive film can be improved, and the cured conductive film portion is also suitable after the etching process.
  • the amount of the organic component of the first conductive powder may be, for example, 0.08% by mass or less.
  • the first conductive powder may or may not contain the organic component intentionally or unavoidably (it may be below the lower limit of detection).
  • the amount of the organic component of the first conductive powder may be approximately 0.01% by mass or more, for example, 0.03% by mass or more.
  • the first conductive powder may have an organic surface coating attached to the surface, or may contain a residual solvent.
  • the first conductive powder contains an organic surface coating agent, it preferably contains the same organic surface coating agent as the second conductive powder.
  • the second conductive powder is a conductive powder in which the amount of the organic component is higher than that of the first conductive powder.
  • the benzotriazole-based compound is attached to the surface of the second conductive powder.
  • the benzotriazole compound is an organic surface coating agent.
  • the second conductive powder has an organic component amount of at least 0.5% by mass.
  • the second conductive powder is not particularly limited except that the benzotriazole-based compound is attached to the surface and the amount of the organic component is at least 0.5% by mass.
  • the amount of the organic component of the second conductive powder is preferably 0.7% by mass or more, preferably 0.75% by mass or more, and for example, 0.8% by mass or more. It is also good. Further, although not particularly limited, the upper limit of the amount of the organic component of the second conductive powder is about 2% by mass or less in view of the range of the amount of the organic component of the commercially available conductive powder. The upper limit of the amount of the organic component of the second conductive powder is preferably 1.5% by mass or less, and more preferably 1% by mass or less, from the viewpoint of densification and resistance reduction of the conductive layer.
  • the benzotriazole-based compound adhering to the surface of the second conductive powder is an organic surface coating agent that improves the stability and storage stability of the conductive powder.
  • the benzotriazole-based compound may be a compound having a benzotriazole skeleton.
  • a compound having one or more structural parts of 1H-benzotriazole represented by the following (1) or a structural part of 2H-benzotriazole which is a tautomer thereof can be mentioned .
  • benzotriazole compound examples include 1H-benzotriazole, 2H-benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'- Di-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-4′-n-octoxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2 -(2'-hydroxy-3 ', 5'-di-t-amylphenyl) benzotriazole, 2-hydroxy-4- (2-hydroxy-3-methacryloxy) propoxybenzophenone, 2- (2'-hydroxy-3 '-T-Butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydro) Ci-3'-t-Butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy) Ci
  • the organic component contained in the second conductive powder typically contains a benzotriazole-based compound as a main component (component that occupies 50 mol% or more in molar ratio).
  • the organic component of the second conductive powder is preferably such that the benzotriazole-based compound accounts for 80 mol% or more, and it is further preferable that the organic component be composed of the benzotriazole-based compound.
  • the second conductive powder can be used as an organic surface coating agent, in addition to the benzotriazole-based compound, intentionally or unavoidably, as long as the effects of the technology disclosed herein are not significantly impaired. May further comprise other organic surface coatings.
  • the amount of the other organic surface coating agent is approximately less than 50 mol%, preferably 10 mol% or less, in addition to the benzotriazole compound More preferably, it may be contained in a proportion of 5 mol% or less. It is more preferable that the second conductive powder does not contain a fatty acid such as a carboxylic acid as an organic surface coating agent. By this, the effects of the technology disclosed herein can be exhibited at a higher level.
  • the fact that the organic surface coating agent contains a benzotriazole-based compound can be confirmed, for example, by gas chromatography-mass spectrometry (GC-MS).
  • the mass ratio of the first conductive powder to the second conductive powder is approximately 95: 5 to 5:95, typically 90:10 to 10:90, preferably 85.
  • the ratio is preferably from 15 to 20:80, more preferably from 60:40 to 20:80, and particularly preferably from 60:40 to 40:60.
  • the effects of the technology disclosed herein can be exhibited at a higher level. For example, even a conductive layer which has been further refined to be fine-lined can be formed with high resolution and accuracy.
  • the first conductive powder at a ratio of a predetermined value or more, the ratio of components that can be burned out at the time of firing can be reduced, and a conductive layer having high density and low resistance can be suitably realized.
  • the types of the first conductive powder and the second conductive powder are not particularly limited.
  • a 1st electroconductive powder and a 2nd electroconductive powder 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to a use etc., respectively.
  • Examples include simple metals such as tungsten (W), iridium (Ir) and osmium (Os), and mixtures and alloys thereof.
  • the alloy include silver alloys such as silver-palladium (Ag-Pd), silver-platinum (Ag-Pt), silver-copper (Ag-Cu) and the like.
  • the first conductive powder and / or the second conductive powder contains silver-based particles.
  • Silver is relatively inexpensive and has high electrical conductivity. For this reason, the conductive layer excellent in the balance of cost and low resistance is realizable by including silver system particles.
  • the silver-based particles may be those containing a silver component.
  • silver alone, the above-described silver alloy, core-shell particles having silver-based particles as a core, and the like can be mentioned.
  • the first conductive powder and / or the second conductive powder comprises metal-ceramic core-shell particles.
  • the metal-ceramic core-shell particle has a core portion containing a metal material, and a coating portion covering at least a part of the surface of the core portion and containing a ceramic material. Ceramic materials are excellent in chemical stability, heat resistance and durability. Therefore, by adopting the form of metal-ceramic core-shell particles, the stability of the conductive powder in the photosensitive composition can be further improved, and a highly durable conductive layer can be realized. For example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, the inclusion of metal-ceramic core-shell particles can enhance the integrity with the ceramic base. Peeling or disconnection of the conductive layer after firing can be suitably suppressed.
  • the first conductive powder having a small amount of organic component preferably contains metal-ceramic core-shell particles, and more preferably the first conductive powder is composed of metal-ceramic core-shell particles.
  • the first conductive powder having a small amount of the organic component tends to have relatively low stability and storage stability in the conductive composition as compared to the second conductive powder having a large amount of the organic component.
  • the first conductive powder contains metal-ceramic core-shell particles, it is possible to compensate for the low amount of organic components and to improve the stability and storage stability of the entire conductive composition.
  • examples of the metal material constituting the core portion include the above-described metals alone, and mixtures and alloys thereof. Among them, silver-based particles are preferable for the reasons described above. In other words, it is preferable that the first conductive powder and / or the second conductive powder include silver-ceramic core-shell particles.
  • examples of the ceramic material constituting the metal-ceramic coating portion include zirconium oxide (zirconia), magnesium oxide (magnesia), aluminum oxide (alumina), silicon oxide (silica), oxide Oxide materials such as titanium (titania), cerium oxide (ceria), yttrium oxide (yttria) and barium titanate; Complex oxides such as cordierite, mullite, forsterite, steatite, sialon, zircon and ferrite Materials: Nitride-based materials such as silicon nitride (silicon nitride) and aluminum nitride (aluminum nitride); Carbide-based materials such as silicon carbide (silicon carbide); Hydroxide-based materials such as hydroxyapatite; . For example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, a ceramic material that is the same as or superior in affinity to the ceramic base is preferable.
  • the content ratio of the ceramic material may be, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the metal material of the core portion.
  • the metal-ceramic core-shell particles can be produced by a conventionally known method. For example, as described in paragraphs 0025 to 0028 of Japanese Patent No. 5075222, which is the prior application of the present applicant, a metal material and an organic metal compound having a target metal element (for example, metal alkoxide or chelate compound) or It can be produced by reacting an oxide sol.
  • Conductive powder, the balance with exposure performance, D 50 particle size is 1 ⁇ 5 [mu] m.
  • D 50 particle size within the above range to improve the exposure performance of the uncured conductive film, the conductive layer of the fine line can be stably formed.
  • the first conductive powder and the second conductive powder, respectively, may D 50 particle size is in the above range.
  • D 50 particle size of the conductive powder is, for example, 1.5 [mu] m or more, may be 2.0 ⁇ m or more.
  • the D 50 particle diameter of the conductive powder may be, for example, 4.5 ⁇ m or less and 4.0 ⁇ m or less from the viewpoint of promoting fine line formation, densification, and resistance reduction of the conductive layer.
  • D 50 particle size refers to a particle size corresponding to an integrated value of 50% from the side of smaller particle size in the volume-based particle size distribution based on the laser diffraction / scattering method.
  • the D 50 particle size of the first conductive powder and the second conductive powder is at least 0.5 ⁇ m, typically 0.5 to 3.0 ⁇ m, for example 1.0 to It is preferable that they be separated by about 2.0 ⁇ m. In other words, the particle size distribution of the entire conductive powder is preferably multimodal.
  • the D 50 particle size of the first conductive powder having a small amount of organic component is in the range of about 3 to 5 ⁇ m, for example 3.5 to 4.5 ⁇ m, and the second conductive powder has a large amount of organic component
  • the D 50 particle size of H 2 should be approximately in the range of 1 to 3.5 ⁇ m, for example 1.5 to 3 ⁇ m.
  • the shape of the conductive particles constituting the conductive powder is not particularly limited, the shape of the conductive particles is typically substantially spherical, preferably 1 to 2 in average aspect ratio (major axis / minor axis ratio). It has a spherical shape of 1.5, for example, 1 to 1.2. By this, the exposure performance can be realized more stably.
  • Each of the first conductive powder and the second conductive powder may have an average aspect ratio in the above range.
  • “average aspect ratio” refers to an arithmetic average value of aspect ratios calculated from observed images obtained by observing a plurality of conductive particles with an electron microscope.
  • spherical indicates that the shape is generally regarded as a sphere (ball), and is a term that may include an elliptical shape, a polygonal shape, a disc spherical shape, and the like.
  • the whole of the conductive powder have a lightness L * of 50 or more in the L * a * b * color system based on JIS Z 8781: 2013.
  • the irradiation light can stably reach the deep part of the uncured conductive film at the time of exposure, and for example, a conductive layer having a thickness of 5 ⁇ m or more, or even 10 ⁇ m or more can be stably realized. can do.
  • the lightness L * of the conductive powder may be approximately 55 or more, for example 60 or more.
  • Lightness L * can be adjusted for example by the type and D 50 particle size of the conductive powder mentioned above.
  • the measurement of the lightness L * can be performed, for example, with a spectrocolorimeter conforming to JIS Z 8722: 2009.
  • the proportion of the conductive powder in the entire photosensitive composition may be about 50% by mass or more, typically 60 to 95% by mass, for example 70 to 90% by mass.
  • a conductive layer with high density and high electrical conductivity can be formed.
  • the handling property of the photosensitive composition and the workability at the time of forming the conductive film can be improved.
  • the photosensitive organic component is a component that imparts photocurability to the conductive film.
  • the photosensitive organic component is a component having a property of being cured by irradiation of light energy such as ultraviolet light.
  • the "photosensitive organic component” refers to all of photopolymerizable or photomodified organic compounds.
  • a mixture containing a photosensitive resin having an unsaturated bond and a photopolymerization initiator for generating an active species a so-called diazo resin (for example, a condensate of an aromatic bis azide and formaldehyde); an epoxy compound Etc., and a photoacid generator such as a diallyl iodonium salt; a naphthoquinone diazide compound; and the like.
  • a mixture containing a photosensitive resin and a photopolymerization initiator is preferable from the viewpoint of stability and the like.
  • the photosensitive resin is a component that is polymerized and cured by active species generated by decomposition of the photopolymerization initiator.
  • the polymerization reaction may be addition polymerization or ring opening polymerization.
  • Photosensitive resins include monomers, polymers and oligomers having one or more unsaturated bonds and / or cyclic structures.
  • 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to a use, the kind of base material, etc.
  • One preferable example is a radically polymerizable monomer having one or more radically polymerizable reactive groups such as (meth) acryloyl group and vinyl group.
  • (meth) acrylate monomers having a (meth) acryloyl group are preferable.
  • the flexibility of the conductive layer and the followability to the substrate can be improved.
  • the occurrence of defects such as peeling and disconnection can be suppressed at a still higher level.
  • “(meth) acryloyl” is a term including "methacryloyl” and “acryloyl”
  • “(meth) acrylate” is a term including "methacrylate” and "acrylate”.
  • (Meth) acrylate monomers include monofunctional (meth) acrylates having one functional group per molecule, multifunctional (meth) acrylates having two or more functional groups per molecule, and modified products thereof Do.
  • the (meth) acrylate monomer contains a urethane (meth) acrylate.
  • the etching resistance of the exposed portion can be further improved, and the stretchability and flexibility of the conductive film can be further improved. Therefore, the integrity with the substrate can be enhanced.
  • the (meth) acrylate monomer has a preferable monomer which has five or more (meth) acryloyl groups per molecule.
  • the proportion of urethane (meth) acrylate in the entire photosensitive resin is preferably 30% by volume or more, for example 50% by volume or more, on a volume basis.
  • the photopolymerization initiator is a component which is decomposed by irradiation with light such as ultraviolet rays to generate active species such as radicals and cations, and to start the polymerization reaction of the photosensitive resin.
  • a photoinitiator 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to the kind etc. of photosensitive resin.
  • the proportion of the photosensitive organic compound in the entire photosensitive composition is generally 0.1 to 25% by mass, typically 0.5 to 20% by mass, for example 1 to 15% by mass. It may be%.
  • the content ratio of the photosensitive resin may be, for example, 0.1 to 30 parts by mass with respect to 100 parts by mass of the conductive powder.
  • the content ratio of the photopolymerization initiator may be approximately 0.001 to 100 parts by mass, for example, 0.01 to 10 parts by mass, with respect to 100 parts by mass of the photosensitive resin.
  • the photosensitive composition may contain, in addition to the above-described essential components, an organic dispersion medium in which these are dispersed.
  • the organic dispersion medium is a component that imparts appropriate viscosity and fluidity to the photosensitive composition to improve the handleability of the photosensitive composition or to improve the workability at the time of forming the conductive film. is there.
  • As the organic dispersion medium it is possible to appropriately select and use one kind or two or more kinds out of conventionally known ones according to the kind of photosensitive organic compound and the like.
  • alcohol solvents such as terpineol, dihydroterpineol (mentanol), texanol, 3-methyl-3-methoxybutanol, benzyl alcohol and the like; glycol solvents such as ethylene glycol, propylene glycol and diethylene glycol; dipropylene glycol methyl ether Ether solvents such as methyl cellosolve (ethylene glycol monomethyl ether), cellosolve (ethylene glycol monoethyl ether) and butyl carbitol (diethylene glycol monobutyl ether); diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, butyl glycol acetate, butyl Diglycol acetate, butyl cellosolve acetate, butyl carbonate Bi Tall acetate (diethylene glycol monobutyl ether acetate), ester solvents such as isobornyl acetate; mineral spirits; toluene
  • an organic solvent having a boiling point of 150 ° C. or more, more preferably 170 ° C. or more is preferable.
  • an organic solvent having a boiling point of 250 ° C. or less, and further an organic solvent having a boiling point of 220 ° C. or less are preferable from the viewpoint of suppressing the drying temperature after printing the conductive film. This can improve productivity and reduce production costs.
  • an organic solvent having low permeability to a ceramic green sheet is preferable.
  • the organic solvent having low permeability to the ceramic green sheet include an organic solvent having a sterically bulky structure such as a cyclohexyl group and a tert-butyl group, and an organic solvent having a relatively large molecular weight.
  • an organic solvent having low permeability to the ceramic green sheet as described above, and an organic solvent capable of suitably dissolving a component (for example, a photosensitive organic component) contained in the photosensitive composition may be any ratio. It is also preferable to mix and use as an organic dispersion medium.
  • Examples of the organic solvent having the above-mentioned properties include Dowanol DPM (trademark) (boiling point: 190 ° C, manufactured by Dow Chemical Company), Dowanol DPMA (trademark) Boiling point: 209 ° C, manufactured by Dow Chemical Company, Menthanol (boiling point: 207 ° C), Menthanol P (boiling point: 216 ° C), Isopar H (boiling point: 176 ° C, Kanto Fuel Co., Ltd.), SW-1800 (boiling point) 198 ° C., manufactured by Maruzen Oil Co., Ltd.) and the like.
  • Dowanol DPM trademark
  • Dowanol DPMA trademark
  • the photosensitive composition contains an organic dispersion medium
  • the ratio of the organic dispersion medium to the entire photosensitive composition is generally 1 to 50% by mass, typically 3 to It may be 30% by mass, for example 5 to 20% by mass.
  • the photosensitive composition may contain an organic binder in addition to the above-described essential components.
  • the organic binder is a component that enhances the adhesion between the uncured conductive film and the substrate.
  • As the organic binder it is possible to appropriately select and use one or two or more from conventionally known ones in accordance with the type of photosensitive organic compound, base material, and the like.
  • cellulose polymers such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and hydroxymethyl cellulose, acrylic resin, phenol resin, alkyd resin, polyvinyl alcohol, polyvinyl butyral and the like can be mentioned.
  • hydrophilic organic binders such as cellulose polymers and acrylic resins are preferable.
  • additive component one or two or more can be appropriately selected and used from conventionally known ones.
  • the additive components include, for example, inorganic fillers, photosensitizers, polymerization inhibitors, radical scavengers, antioxidants, light absorbers, ultraviolet absorbers, plasticizers, surfactants, leveling agents, thickeners And dispersants, antifoaming agents, antigelling agents, stabilizers, antioxidants, preservatives, colorants, pigments and the like.
  • the proportion of the additive component in the entire photosensitive composition may be about 5% by mass or less, for example, 3% by mass or less.
  • the photosensitive composition disclosed herein it is possible to increase the conductive layer of fine lines with less line residue and, for example, a line width smaller than 30 ⁇ m, and further a line width smaller than 20 ⁇ m. It can be stably formed at resolution. In addition, peeling or disconnection of the conductive layer can be reduced. In addition, it is possible to reduce the leakage current and to suppress the occurrence of short circuit failure. Therefore, the photosensitive composition disclosed herein can be suitably used to form a conductive layer in various electronic components such as, for example, an inductance component, a capacitor component, and a multilayer circuit board.
  • the electronic component may be of various mounting forms such as a surface mounting type or a through hole mounting type.
  • the electronic component may be a laminate type, a winding type, or a thin film type.
  • Typical examples of the inductance component include high frequency filters, common mode filters, inductors (coils) for high frequency circuits, inductors for general circuits (coils), high frequency filters, choke coils, transformers and the like.
  • a photosensitive composition in which the conductive powder contains metal-ceramic core-shell particles can be suitably used for forming a conductive layer of a ceramic electronic component.
  • the term "ceramic electronic component” includes all electronic components having an amorphous ceramic substrate (glass ceramic substrate) or a crystalline (i.e. non-glass) ceramic substrate. Typical examples are a high frequency filter having a ceramic base, a ceramic inductor (coil), a ceramic capacitor, a low temperature co-fired ceramic substrate (LTCC base), a high temperature co-fired multilayer ceramic base (a low temperature co-fired ceramic substrate). High Temperature Co-fired Ceramics Substrate (HTCC base material) and the like.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the multilayer chip inductor 1.
  • the dimensional relationships (length, width, thickness, etc.) in FIG. 1 do not necessarily reflect the actual dimensional relationships.
  • reference signs X and Y in the drawings respectively indicate the left and right direction and the up and down direction. However, this is only for convenience of explanation.
  • the multilayer chip inductor 1 includes a main body portion 10 and external electrodes 20 provided on both side surface portions in the left-right direction X of the main body portion 10.
  • the shape of the multilayer chip inductor 1 is, for example, a size such as 1608 shape (1.6 mm ⁇ 0.8 mm), 2520 shape (2.5 mm ⁇ 2.0 mm) or the like.
  • the main body portion 10 has a structure in which the ceramic layer (dielectric layer) 12 and the internal electrode layer 14 are integrated.
  • the ceramic layer 12 is made of, for example, a ceramic material as described above, which can constitute the coating portion of the conductive powder.
  • the internal electrode layer 14 is disposed between the ceramic layers 12.
  • the internal electrode layer 14 is formed using the above-described photosensitive composition.
  • the internal electrode layers 14 adjacent to each other in the vertical direction Y with the ceramic layer 12 interposed therebetween are conducted through the vias 16 provided in the ceramic layer 12.
  • the internal electrode layer 14 is configured in a three-dimensional spiral shape (helical shape). Both ends of the internal electrode layer 14 are connected to the external electrode 20, respectively.
  • Such a laminated chip inductor 1 can be manufactured, for example, according to the following procedure. That is, first, a paste containing a ceramic material as a raw material, a binder resin and an organic solvent is prepared, and this is supplied onto a carrier sheet to form a ceramic green sheet. Then, the ceramic green sheet is rolled and cut into a desired size to obtain a plurality of green sheets for forming a ceramic layer. Next, via holes are appropriately formed at predetermined positions of the plurality of ceramic layer forming green sheets using a drilling machine or the like.
  • Step S1 a step of forming a film-like body consisting of a dried product of the photosensitive composition by applying the photosensitive composition on a green sheet for forming a ceramic layer and drying;
  • Step S2) A step of covering a film-like body with a photomask of a predetermined opening pattern, exposing through a photomask, and partially curing the film-like body:
  • Step S3 Etching the film-like body after photo curing
  • a non-fired conductive film can be formed by a manufacturing method including the step of: removing the uncured portion.
  • the conventionally well-known method can be used suitably.
  • application of the photosensitive composition can be performed using various printing methods such as screen printing, a bar coater, or the like. Drying of the photosensitive composition may typically be performed at 50 to 100.degree.
  • an exposure unit which emits a light beam in a wavelength range of 10 to 400 nm for example, an ultraviolet irradiation lamp such as a high pressure mercury lamp, a metal halide lamp, or a xenon lamp can be used.
  • an aqueous solution containing an alkali component such as sodium hydroxide or sodium carbonate can be used for the etching.
  • a plurality of green sheets for forming a ceramic layer in which the unfired conductive film is formed are stacked and pressure-bonded. This produces a laminate of unfired ceramic green sheets. Then, the laminate of the ceramic green sheets is fired, for example, at 600 to 1000.degree. As a result, the ceramic green sheet is integrally sintered to form the main body portion 10 including the ceramic layer 12 and the internal electrode layer 14 made of a fired body of the photosensitive composition. Then, an appropriate external electrode forming paste is applied to both end portions of the main body portion 10 and baked to form the external electrode 20. As described above, the multilayer chip inductor 1 can be manufactured.
  • silver powders a to g seven commercially available silver powders (silver powders a to g) were prepared. Incidentally, all of these silver powders have a lightness L * of 50 to 80 in an L * a * b * color system based on JIS Z 8781: 2013.
  • silver powder h was prepared using silver powder a. Specifically, first, zirconium butoxide was added to methanol to prepare a coating solution. Next, silver powder a was added to the coating solution and stirred for 1 hour. Next, the solid content was recovered from the coating solution and dried at 100 ° C.
  • silver powder h was prepared.
  • the vehicle comprises a urethane acrylate monomer as a photosensitive resin, Irgacure 369 (registered trademark) (made by Ciba Specialty Chemicals Inc.) as a photopolymerization initiator, an organic binder, a polymerization inhibitor, and a sensitizer.
  • An antigelling agent and an ultraviolet light absorber were prepared by dissolving in dipropylene glycol methyl ether acetate and dihydroterpineol as organic solvents.
  • photosensitive powders (Examples 1 to 8 and Comparative Examples 1 to 7) were prepared by mixing silver powder and a vehicle at a mass ratio of 77:23.
  • Comparative Example 1 is a test example using only silver powder a having a small amount of organic components.
  • variation in line width was large in the wiring pattern, and thickening of the line width was confirmed in some places.
  • the average line width became larger than the target value, making it difficult to form a stable fine line.
  • the reason for this is that the light-scattering property of the conductive film is too high, so that light scattered from the opening of the photomask hardens part of the conductive film in the light-shielding portion, and etching resistance of the conductive film It is considered that the removal of the uncured portion was incomplete during etching because the conductivity was too high.
  • Comparative Example 2 is a test example using only silver powder b having a relatively large amount of organic component. In the comparative example 2, many peeling and disconnection were confirmed by the wiring pattern, and formation of the wiring pattern was difficult. As the reason for this, it is considered that the cured portion has flowed together with the uncured portion during the etching. Further, Comparative Example 3 is a test example using only silver powder e having fatty acid and a benzotriazole compound adhering to the surface. In the comparative example 3, many peeling and disconnection were confirmed by the wiring pattern, and formation of the fine line was difficult. Furthermore, a lot of interline residue remains in the space between the wires.
  • Examples 1 to 4 are test examples in which silver powder a and silver powder b are used in combination.
  • fine line wiring patterns with no line residue and with a line width of 28 ⁇ m or less, and further suppressed to 25 ⁇ m or less are formed with high resolution compared to Comparative Examples 1 to 3. I was able to. That is, it was possible to form a fine line wiring pattern in which there was no peeling, disconnection or short circuit of the wiring, and a stable space was secured between the wirings.
  • Table 2 further investigates a mixed system of two or more types of silver powder.
  • Examples 5 and 6 are test examples in which silver powder c or silver powder d is used instead of silver powder b.
  • Example 7 is a test example using silver powder g in addition to silver powder a and silver powder b.
  • Example 8 is a test example using silver powder h in place of silver powder a. As shown in Table 2, in Examples 5 and 6, 7 and 8 as well as Examples 1 to 4, the fine line wiring pattern could be formed with high resolution.
  • Comparative Examples 4 to 6 are test examples in which silver powders e to g are used instead of silver powder b.
  • the comparative example 7 is a test example which reduced the sum total of silver powder a and silver powder b to 80% of the whole silver powder.
  • a large amount of interline residue remains in the space between the wires.
  • the variation in line width was large in the wiring pattern, and the line width was slightly larger than the target value.
  • the first conductive powder having an organic component content of 0.1% by mass or less based on thermogravimetric analysis, and the benzotriazole compound adhering to the surface, the organic component content based on thermogravimetric analysis is By using the second conductive powder which is at least 0.5% in combination and setting the total of these to a proportion of 90% by mass or more of the entire conductive powder, the fine line wiring pattern with little interline residue can be made high. It turned out that it could be formed in resolution.

Abstract

The present invention provides a photosensitive composition which contains a conductive powder and a photosensitive organic component. The conductive powder has a D50 particle diameter of 1-5 μm on the volume basis as determined by a laser diffraction/scattering method; and the total of (1) a first conductive powder that has an organic component amount of 0.1% by mass or less as determined by thermogravimetric analysis and (2) a second conductive powder that has an organic component amount of at least 0.5% by mass as determined by thermogravimetric analysis, while having a surface to which a benzotriazole compound adheres, accounts for 90% by mass or more if the whole conductive powder is taken as 100% by mass.

Description

感光性組成物とその利用Photosensitive composition and use thereof
 本発明は、感光性組成物とその利用に関する。
 なお、本出願は、2017年12月14日に出願された日本国特許出願特願2017-239464号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to photosensitive compositions and their use.
This application claims priority based on Japanese Patent Application No. 2017-239464 filed on Dec. 14, 2017, the entire contents of which are incorporated herein by reference. It is done.
 インダクタ等の電子部品の製造では、導電性粉末と感光性有機成分とを含む感光性組成物を使用し、所謂、フォトリソグラフィ法で導電層を形成する手法が知られている(例えば特許文献1~5参照)。かかる方法では、まず、印刷法等で感光性組成物を基材上に付与し、乾燥させて、膜状体を成形する。次に、上記成形した膜状体に、所定の開口パターンを有するフォトマスクを被せ、フォトマスクを介して膜状体を露光する。これによって、露光された膜状体部分が光硬化される。次に、フォトマスクで遮光されていた未硬化の膜状体部分を、エッチング液で腐食洗浄して除去する。そして、これを焼成することによって、所望の形状にパターニングされた導電層を形成(焼付け)する。このような方法によれば、従来の各種印刷法を用いる場合に比べて、微細なパターンの導電層を形成することができる。 In the manufacture of electronic parts such as inductors, there is known a method of forming a conductive layer by a so-called photolithography method using a photosensitive composition containing a conductive powder and a photosensitive organic component (for example, Patent Document 1) See 5). In such a method, first, the photosensitive composition is applied onto a substrate by a printing method or the like and dried to form a film-like body. Next, a photomask having a predetermined opening pattern is placed on the molded film-like body, and the film-like body is exposed to light through the photomask. By this, the exposed film-like body portion is photocured. Next, the uncured film-like material portion shielded by the photomask is removed by corrosion cleaning with an etching solution. Then, by baking this, a conductive layer patterned in a desired shape is formed (baked). According to such a method, a conductive layer having a finer pattern can be formed as compared to the case of using various conventional printing methods.
日本国特許第5163687号Japanese Patent No. 5163687 国際公開2015/122345号パンフレットInternational publication 2015/122345 brochure 日本国特許出願公開2016-138310号公報Japanese Patent Application Publication 2016-138310 日本国特許第5352768号Japanese Patent No. 5352768 日本国特許出願公開2006-193795号公報Japanese Patent Application Publication No. 2006-193795
 ところで近年、各種電子機器の小型化や高性能化が急速に進み、電子機器に実装される電子部品に対しても一層の小型化や高密度化が求められている。これに伴い、電子部品の製造にあたっては、導電層の低抵抗化と共に細線化(狭小化)が求められている。例えば、導電層を構成する配線の幅(ライン幅)が30μm以下、さらには20μm以下のファインラインの導電層を形成することが求められている。 By the way, in recent years, with the rapid miniaturization and high performance of various electronic devices, further miniaturization and densification of electronic components mounted on the electronic devices are required. Along with this, in the manufacture of electronic components, thinning (narrowing) as well as lowering the resistance of the conductive layer is required. For example, it is required to form a fine line conductive layer having a width (line width) of a wiring forming the conductive layer of 30 μm or less, and further, 20 μm or less.
 しかしながら、本発明者らの検討によれば、上記特許文献に記載されるような感光性組成物を使用すると、導電層を高解像度で形成することが難しかった。一例として、ライン幅に太りが生じる等して、安定的に細線状の配線を形成することが難しかった。また、他の一例として、配線パターンを形成する際、図2の模式図に示すように、隣り合う配線同士の間隙部分(スペース)にエッチングで除去しきれなかった残渣物(以下、「線間残渣」という。)が点々と残存することがあった。このことにより、トンネル効果によって漏れ電流が生じたり、配線間がつながってショート不良を生じたりすることがあった。 However, according to studies by the present inventors, it has been difficult to form the conductive layer with high resolution when using a photosensitive composition as described in the above-mentioned patent documents. As an example, it has been difficult to stably form a thin line-like wiring because the line width is thickened. In addition, as another example, when forming a wiring pattern, as shown in the schematic view of FIG. 2, a residue (hereinafter referred to as “inter-line”) which could not be completely removed by etching in a gap portion (space) between adjacent wires. "Residue") sometimes remained in spots. As a result, leakage current may occur due to the tunnel effect, or wiring may be connected to cause a short failure.
 本発明はかかる点に鑑みてなされたものであり、その目的は、線間残渣の少ないファインラインの導電層を高解像度で形成することのできる感光性組成物を提供することである。また、関連する他の目的は、かかる感光性組成物の乾燥体からなる導電膜を備える複合体を提供することである。また、関連する他の目的は、かかる感光性組成物の焼成体からなる導電層を備える電子部品と、その製造方法を提供することである。 This invention is made in view of this point, The objective is to provide the photosensitive composition which can form the conductive layer of a fine line with few line residue with high resolution. Another related objective is to provide a composite provided with a conductive film consisting of a dried product of such a photosensitive composition. In addition, another related object is to provide an electronic component provided with a conductive layer formed of a fired body of such a photosensitive composition, and a method of manufacturing the same.
 本発明により、導電性粉末と感光性有機成分とを含む感光性組成物が提供される。上記導電性粉末は、レーザ回折・散乱法に基づく体積基準のD50粒径が1μm以上5μm以下であり、かつ、以下の2種類:(1)熱重量分析に基づく有機成分量が0.1質量%以下である、第1導電性粉末;(2)表面にベンゾトリアゾール系化合物が付着しており、熱重量分析に基づく有機成分量が少なくとも0.5質量%である、第2導電性粉末;の成分の合計が、上記導電性粉末の全体を100質量%としたときに、90質量%以上を占める。 The present invention provides a photosensitive composition comprising a conductive powder and a photosensitive organic component. The conductive powder is a D 50 particle size based on volume based on the laser diffraction scattering method is 1μm or 5μm or less, and, following two types: (1) an organic component amount based on thermogravimetric analysis 0.1 The first conductive powder having a mass% or less; (2) a second electroconductive powder having a benzotriazole-based compound adhering to the surface and having an organic component amount of at least 0.5 mass% based on thermogravimetric analysis The total of the components of; occupies 90% by mass or more, based on 100% by mass of the entire conductive powder.
 上記感光性組成物では、有機成分量の異なる第1導電性粉末と第2導電性粉末とが導電性粉末中に混在し、第1導電性粉末と第2導電性粉末との合計が導電性粉末全体の90質量%以上を占めている。このように第1導電性粉末と第2導電性粉末とを併用することにより、例えばこれらをそれぞれ単独で使用する場合に比べて、ファインラインの導電層を安定して形成することができる。また、第2導電性粉末がベンゾトリアゾール系化合物を含むことで、線間残渣が残存し難くなり、配線間に安定してスペースを確保することができる。そのため、漏れ電流を低減すると共にショート不良の発生を抑制することができる。以上の効果が相俟って、解像度の高い導電層を形成することができる。 In the photosensitive composition, the first conductive powder and the second conductive powder having different amounts of organic components are mixed in the conductive powder, and the total of the first conductive powder and the second conductive powder is conductive. It occupies 90% by mass or more of the whole powder. As described above, by using the first conductive powder and the second conductive powder in combination, the conductive layer of the fine line can be stably formed, for example, as compared with the case where each of them is used alone. In addition, since the second conductive powder contains the benzotriazole-based compound, it is difficult for the residue between the lines to remain, and a space can be stably secured between the wirings. Therefore, it is possible to reduce the leakage current and to suppress the occurrence of short circuit failure. The above effects combine to form a conductive layer with high resolution.
 ここで開示される好ましい一態様では、上記導電性粉末が、銀系粒子を含む。このことにより、コストと低抵抗とのバランスに優れた導電層を実現することができる。 In a preferred embodiment disclosed herein, the conductive powder comprises silver-based particles. By this, the conductive layer excellent in the balance of cost and low resistance can be realized.
 ここで開示される好ましい一態様では、上記第1導電性粉末と上記第2導電性粉末との質量比率が、第1導電性粉末:第2導電性粉末=85:15~20:80である。このことにより、ここに開示される技術の効果を一層高いレベルで発揮することができる。例えば、ファインライン化が一層進んだ導電層であっても、精度よく形成することができる。 In a preferred embodiment disclosed herein, the mass ratio of the first conductive powder to the second conductive powder is: first conductive powder: second conductive powder = 85: 15 to 20:80 . By this, the effects of the technology disclosed herein can be exhibited at a higher level. For example, even a conductive layer which has been further refined to be fine-lined can be formed with high accuracy.
 ここで開示される好ましい一態様では、上記第1導電性粉末が、コアとなる金属材料と上記コアの表面の少なくとも一部を被覆するセラミック材料とを含んだコアシェル粒子である。このことにより、感光性組成物中での導電性粉末の安定性をより良く向上すると共に、高耐久性な導電層を実現することができる。また、例えばセラミック製の基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミック基材との一体性を高めることができる。 In a preferred embodiment disclosed herein, the first conductive powder is a core-shell particle including a metal material as a core and a ceramic material covering at least a part of the surface of the core. By this, the stability of the conductive powder in the photosensitive composition can be further improved, and a highly durable conductive layer can be realized. Further, for example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, the integrity with the ceramic base can be enhanced.
 ここで開示される好ましい一態様では、JIS Z 8781:2013年に基づくL表色系において、上記導電性粉末の明度Lが、50以上である。このことにより、露光時に未硬化の導電膜の深部まで安定して光が届くようになり、厚膜状の導電層をも安定的に実現することができる。 In a preferred embodiment disclosed herein, the lightness L * of the conductive powder is 50 or more in the L * a * b * color system based on JIS Z 8781: 2013. By this, light can be stably delivered to the deep part of the uncured conductive film at the time of exposure, and a thick film conductive layer can be stably realized.
 ここで開示される好ましい一態様では、沸点が150℃以上250℃以下の有機溶剤をさらに含む。このことにより、感光性組成物の保存安定性や導電膜形成時の取扱性を向上すると共に、印刷後の乾燥温度を低く抑えることができる。 A preferred embodiment disclosed herein further comprises an organic solvent having a boiling point of 150 ° C. or more and 250 ° C. or less. This can improve the storage stability of the photosensitive composition and the handleability at the time of forming the conductive film, and can suppress the drying temperature after printing to a low level.
 また、本発明により、グリーンシートと、上記グリーンシート上に配置され、上記感光性組成物の乾燥体からなる導電膜と、を備える、複合体が提供される。 Further, according to the present invention, there is provided a composite comprising a green sheet and a conductive film disposed on the green sheet and comprising a dried body of the photosensitive composition.
 また、本発明により、上記感光性組成物の焼成体からなる導電層を備える電子部品が提供される。上記感光性組成物によれば、線間残渣の少ないファインラインの導電層を安定して実現することができる。このため、小型および/または高密度な導電層を備えた電子部品を好適に実現することができる。 Further, according to the present invention, there is provided an electronic component comprising a conductive layer comprising a fired body of the photosensitive composition. According to the photosensitive composition, it is possible to stably realize a fine line conductive layer with few interline residues. For this reason, the electronic component provided with the small and / or high-density conductive layer can be realized suitably.
 また、本発明により、上記感光性組成物を基材上に付与して、光硬化およびエッチング処理を行った後、焼成して、上記感光性組成物の焼成体からなる導電層を形成する工程を含む、電子部品の製造方法が提供される。このような製造方法によれば、小型および/または高密度な導電層を備えた電子部品を好適に製造することができる。 Further, according to the present invention, the photosensitive composition is applied onto a substrate, subjected to photocuring and etching, and then fired to form a conductive layer comprising a fired body of the photosensitive composition. A method of manufacturing an electronic component is provided. According to such a manufacturing method, it is possible to preferably manufacture an electronic component provided with a small and / or high density conductive layer.
図1は、一実施形態に係る積層チップインダクタの構造を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a structure of a multilayer chip inductor according to an embodiment. 図2は、線間残渣を説明するための模式図である。FIG. 2 is a schematic view for explaining the interline residue.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば感光性組成物に含まれる導電性粉末)以外の事柄であって本発明の実施に必要な事柄(例えば感光性組成物の調製方法、導電膜や導電層の形成方法、電子部品の製造方法等)は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて理解することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than the matters particularly mentioned in the specification (for example, the conductive powder contained in the photosensitive composition) and matters necessary for the practice of the present invention (for example, the method for preparing the photosensitive composition, the conduction A method of forming a film or a conductive layer, a method of manufacturing an electronic component, etc.) can be understood based on the technical contents taught by the present specification and general technical common knowledge of those skilled in the art. The present invention can be implemented based on the contents disclosed in the present specification and common technical knowledge in the field.
 なお、以下の説明では、導電性組成物を、ベンゾトリアゾール系化合物の沸点以下の温度(概ね200℃以下、例えば100℃以下)で乾燥した膜状体(乾燥物)を「導電膜」という。導電膜は、未焼成(焼成前)の膜状体全般を包含する。導電膜は、光硬化前の未硬化物であってもよく、光硬化後の硬化物であってもよい。また、以下の説明では、導電性組成物を、導電性粉末の焼結温度以上で焼成した焼結体(焼成物)を「導電層」という。導電層は、配線(線状体)と、配線パターンと、ベタパターンと、を包含する。また、本明細書において範囲を示す「A~B」の表記は、A以上B以下を意味する。 In the following description, a film-like body (dried matter) obtained by drying the conductive composition at a temperature (generally 200 ° C. or less, eg 100 ° C. or less) equal to or lower than the boiling point of the benzotriazole compound is referred to as “conductive film”. The conductive film includes all unfired (before firing) film-like materials. The conductive film may be an uncured product before light curing or a cured product after light curing. In the following description, a sintered body (baked product) obtained by firing the conductive composition at a temperature equal to or higher than the sintering temperature of the conductive powder is referred to as a “conductive layer”. The conductive layer includes a wiring (linear body), a wiring pattern, and a solid pattern. Further, the notation “A to B” indicating the range in the present specification means A or more and B or less.
≪感光性組成物≫
 ここに開示される感光性組成物は、必須の成分として、導電性粉末と感光性有機成分とを含んでいる。以下、各構成成分について順に説明する。
«Photosensitive composition»
The photosensitive composition disclosed herein contains a conductive powder and a photosensitive organic component as essential components. Hereinafter, each component will be described in order.
<導電性粉末>
 導電性粉末は、感光性組成物を焼成して得られる導電層に電気伝導性を付与する成分である。ここに開示される技術において、導電性粉末は、少なくとも第1導電性粉末と第2導電性粉末とを含む混合粉末である。そして、第1導電性粉末と第2導電性粉末との合計が、導電性粉末の全体を100質量%としたときに、90質量%以上を占めている。このことにより、ファインラインの導電層を高解像度で形成することができる。
<Conductive powder>
The conductive powder is a component that imparts electrical conductivity to the conductive layer obtained by firing the photosensitive composition. In the technology disclosed herein, the conductive powder is a mixed powder including at least a first conductive powder and a second conductive powder. And the sum total of the 1st electric conduction powder and the 2nd electric conduction powder occupies 90 mass% or more, when the whole electric conduction powder is made into 100 mass%. As a result, the fine line conductive layer can be formed with high resolution.
 導電性粉末は、第1導電性粉末と第2導電性粉末とで構成されていてもよいし、それら以外の導電性粉末を含んでいてもよい。ここに開示される技術の効果をさらに高いレベルで発揮する観点からは、第1導電性粉末と第2導電性粉末との合計が、導電性粉末全体の95質量%以上であることが好ましく、98質量%以上であることがより好ましい。 The conductive powder may be composed of the first conductive powder and the second conductive powder, or may contain other conductive powders. From the viewpoint of exhibiting the effects of the technology disclosed herein at a higher level, the total of the first conductive powder and the second conductive powder is preferably 95% by mass or more of the entire conductive powder, It is more preferable that it is 98 mass% or more.
 第1導電性粉末は、有機成分量が低く抑えられている導電性粉末である。導電性粉末に含まれる有機成分は、主に、導電性粉末の表面に付着している有機表面被覆剤や、導電性粉末の製造に使用された残留有機成分、例えば有機溶剤に由来する。なお、有機表面被覆剤については、後述する第2導電性粉末の欄で詳しく説明する。 The first conductive powder is a conductive powder in which the amount of organic components is kept low. The organic component contained in the conductive powder is mainly derived from the organic surface coating agent adhering to the surface of the conductive powder and the residual organic component used in the production of the conductive powder, such as an organic solvent. The organic surface coating agent will be described in detail in the section of the second conductive powder described later.
 ここに開示される技術において、第1導電性粉末は、有機成分量が0.1質量%以下である。第1導電性粉末は、有機成分量が0.1質量%以下であること以外、特に限定されない。このように有機成分量の抑えられた第1導電性粉末を導電性粉末に含むことで、導電膜の耐エッチング性を向上することができ、硬化させた導電膜部分をエッチング処理後においても適切に基材上に留めることできる。そのため、導電膜が剥離したり、配線が細くなり過ぎたりすることを抑制することができる。上記観点からは、第1導電性粉末の有機成分量が、例えば0.08質量%以下であってもよい。 In the technology disclosed herein, the first conductive powder has an organic component amount of 0.1% by mass or less. The first conductive powder is not particularly limited except that the amount of the organic component is 0.1% by mass or less. By including the first conductive powder in which the amount of the organic component is thus suppressed in the conductive powder, the etching resistance of the conductive film can be improved, and the cured conductive film portion is also suitable after the etching process. On the substrate. Therefore, peeling of the conductive film or thinning of the wiring can be suppressed. From the above viewpoint, the amount of the organic component of the first conductive powder may be, for example, 0.08% by mass or less.
 第1導電性粉末は、意図的にあるいは不可避的に有機成分を含んでいてもよく、含んでいなくても(検出下限値以下であっても)よい。第1導電性粉末の有機成分量は、概ね0.01質量%以上、例えば0.03質量%以上であってもよい。言い換えれば、第1導電性粉末は、表面に有機表面被覆剤が付着していてもよいし、残留溶剤を含んでいてもよい。第1導電性粉末が有機表面被覆剤を含む場合は、第2導電性粉末の有機表面被覆剤と同種のものを含むことが好ましい。例えば、ベンゾトリアゾール系化合物を含むことが好ましい。 The first conductive powder may or may not contain the organic component intentionally or unavoidably (it may be below the lower limit of detection). The amount of the organic component of the first conductive powder may be approximately 0.01% by mass or more, for example, 0.03% by mass or more. In other words, the first conductive powder may have an organic surface coating attached to the surface, or may contain a residual solvent. When the first conductive powder contains an organic surface coating agent, it preferably contains the same organic surface coating agent as the second conductive powder. For example, it is preferable to include a benzotriazole-based compound.
 なお、本明細書において「有機成分量」とは、下記の測定方法によって測定した質量減衰率をいう。すなわち、まず、測定用試料として、所定量の導電性粉末を秤量し、熱重量測定装置(TG)を用いて、この測定用試料を、大気雰囲気において、昇温速度10℃/分で、室温(25℃)から600℃まで加熱する。そして、次の式:有機成分量(%)=〔(加熱前の質量)-(600℃まで加熱後の質量)〕/(加熱前の質量)×100;で加熱前後の質量変化(質量減衰率)を算出する。このように求められる質量減衰率を、有機成分量という。単位は質量%である。 In addition, in this specification, "the amount of organic components" means the mass attenuation factor measured by the following measuring method. That is, first, a predetermined amount of conductive powder is weighed as a measurement sample, and the measurement sample is measured at a temperature rising rate of 10 ° C./minute in an air atmosphere using a thermogravimetric measurement device (TG) at room temperature. Heat from (25 ° C.) to 600 ° C. And the mass change (mass decay before and after heating) according to the following formula: amount of organic component (%) = [(mass before heating) − (mass after heating to 600 ° C.)] / (Mass before heating) × 100; Calculate the rate) The mass attenuation factor determined in this manner is called the amount of organic component. A unit is mass%.
 第2導電性粉末は、第1導電性粉末に比べて有機成分量が高い導電性粉末である。ここに開示される技術において、第2導電性粉末の表面には、ベンゾトリアゾール系化合物が付着している。ベンゾトリアゾール系化合物は、有機表面被覆剤である。第2導電性粉末は、有機成分量が少なくとも0.5質量%である。第2導電性粉末は、表面にベンゾトリアゾール系化合物が付着しており、かつ、有機成分量が少なくとも0.5質量%であること以外、特に限定されない。このような第2導電性粉末を導電性粉末中に含むことで、エッチング処理の際に未硬化部分の剥離性を向上して、配線が太くなり過ぎることを抑制することができる。また、配線間のスペース部分に線間残渣が残存し難くなり、配線間に安定してスペースを確保することができる。そのため、漏れ電流を低減すると共にショート不良の発生を抑制することができる。 The second conductive powder is a conductive powder in which the amount of the organic component is higher than that of the first conductive powder. In the technology disclosed herein, the benzotriazole-based compound is attached to the surface of the second conductive powder. The benzotriazole compound is an organic surface coating agent. The second conductive powder has an organic component amount of at least 0.5% by mass. The second conductive powder is not particularly limited except that the benzotriazole-based compound is attached to the surface and the amount of the organic component is at least 0.5% by mass. By including such a second conductive powder in the conductive powder, the releasability of the uncured portion can be improved during the etching process, and the wiring can be prevented from becoming too thick. In addition, inter-line residue is less likely to remain in the space between the wires, and a stable space can be secured between the wires. Therefore, it is possible to reduce the leakage current and to suppress the occurrence of short circuit failure.
 上記観点からは、第2導電性粉末の有機成分量が、0.7質量%以上であることが好ましく、0.75質量%以上であることが好ましく、例えば0.8質量%以上であってもよい。また、特に限定されるものではないが、第2導電性粉末の有機成分量の上限は、市販の導電性粉末の有機成分量の範囲に鑑みると、概ね2質量%以下である。第2導電性粉末の有機成分量の上限は、導電層の緻密化や低抵抗化の観点から、1.5質量%以下であることが好ましく、1質量%以下であることがより好ましい。 From the above viewpoint, the amount of the organic component of the second conductive powder is preferably 0.7% by mass or more, preferably 0.75% by mass or more, and for example, 0.8% by mass or more. It is also good. Further, although not particularly limited, the upper limit of the amount of the organic component of the second conductive powder is about 2% by mass or less in view of the range of the amount of the organic component of the commercially available conductive powder. The upper limit of the amount of the organic component of the second conductive powder is preferably 1.5% by mass or less, and more preferably 1% by mass or less, from the viewpoint of densification and resistance reduction of the conductive layer.
 第2導電性粉末の表面に付着しているベンゾトリアゾール系化合物は、導電性粉末の安定性や保存性を向上する有機表面被覆剤である。ベンゾトリアゾール系化合物は、ベンゾトリアゾール骨格を有する化合物であればよい。一好適例として、下記(1)で表される1H-ベンゾトリアゾールの構造部分、または、その互変異性体である2H-ベンゾトリアゾールの構造部分を、1つまたは2つ以上有する化合物が挙げられる。 The benzotriazole-based compound adhering to the surface of the second conductive powder is an organic surface coating agent that improves the stability and storage stability of the conductive powder. The benzotriazole-based compound may be a compound having a benzotriazole skeleton. As one preferable example, a compound having one or more structural parts of 1H-benzotriazole represented by the following (1) or a structural part of 2H-benzotriazole which is a tautomer thereof can be mentioned .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ベンゾトリアゾール系化合物の具体例として、1H-ベンゾトリアゾール、2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-n-オクトキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-ヒドロキシ-4-(2-ヒドロキシ-3-メタクリロキシ)プロポキシベンゾフェノン、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール等が挙げられる。なかでも、ハロゲン元素(例えばフッ素や塩素)を含まないものが好ましい。 Specific examples of the benzotriazole compound include 1H-benzotriazole, 2H-benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'- Di-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-4′-n-octoxyphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2 -(2'-hydroxy-3 ', 5'-di-t-amylphenyl) benzotriazole, 2-hydroxy-4- (2-hydroxy-3-methacryloxy) propoxybenzophenone, 2- (2'-hydroxy-3 '-T-Butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydro) Ci-3'-t-Butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5-chlorobenzotriazole, etc. Can be mentioned. Among them, those which do not contain a halogen element (for example, fluorine or chlorine) are preferable.
 第2導電性粉末に含まれる有機成分は、典型的には、ベンゾトリアゾール系化合物を主体(モル比で50モル%以上を占める成分)とする。第2導電性粉末の有機成分は、ベンゾトリアゾール系化合物が80モル%以上を占めるとよく、さらにはベンゾトリアゾール系化合物で構成されているとよい。第2導電性粉末は、ここに開示される技術の効果を著しく損なわない限りにおいて、意図的にあるいは不可避的に、ベンゾトリアゾール系化合物に加えて、有機表面被覆剤として使用し得ることが知られている他の有機表面被覆剤をさらに含んでもよい。例えば、第2導電性粉末の有機成分量の全体を100モル%としたときに、ベンゾトリアゾール系化合物に加えて、他の有機表面被覆剤を、概ね50モル%未満、好ましくは10モル%以下、より好ましくは5モル%以下の割合で含んでもよい。第2導電性粉末は、有機表面被覆剤として、カルボン酸等の脂肪酸を含まないことがより好ましい。このことにより、ここに開示される技術の効果を一層高いレベルで発揮することができる。なお、有機表面被覆剤がベンゾトリアゾール系化合物を含むことは、例えば、ガスクロマトグラフィー-質量分析(GC-MS)法によって確認することができる。 The organic component contained in the second conductive powder typically contains a benzotriazole-based compound as a main component (component that occupies 50 mol% or more in molar ratio). The organic component of the second conductive powder is preferably such that the benzotriazole-based compound accounts for 80 mol% or more, and it is further preferable that the organic component be composed of the benzotriazole-based compound. It is known that the second conductive powder can be used as an organic surface coating agent, in addition to the benzotriazole-based compound, intentionally or unavoidably, as long as the effects of the technology disclosed herein are not significantly impaired. May further comprise other organic surface coatings. For example, when the total amount of organic components of the second conductive powder is 100 mol%, the amount of the other organic surface coating agent is approximately less than 50 mol%, preferably 10 mol% or less, in addition to the benzotriazole compound More preferably, it may be contained in a proportion of 5 mol% or less. It is more preferable that the second conductive powder does not contain a fatty acid such as a carboxylic acid as an organic surface coating agent. By this, the effects of the technology disclosed herein can be exhibited at a higher level. The fact that the organic surface coating agent contains a benzotriazole-based compound can be confirmed, for example, by gas chromatography-mass spectrometry (GC-MS).
 特に限定されるものではないが、第1導電性粉末と第2導電性粉末との質量比率は、概ね95:5~5:95、典型的には90:10~10:90、好ましくは85:15~20:80、より好ましくは60:40~20:80、なかでも60:40~40:60であるとよい。このことにより、ここに開示される技術の効果を一層高いレベルで発揮することができる。例えば、ファインライン化が一層進んだ導電層であっても、高解像度で精度よく形成することができる。また、第1導電性粉末を所定値以上の割合で含むことにより、焼成時に燃え抜ける成分の割合を低減して、緻密性が高く低抵抗な導電層を好適に実現することができる。 Although not particularly limited, the mass ratio of the first conductive powder to the second conductive powder is approximately 95: 5 to 5:95, typically 90:10 to 10:90, preferably 85. The ratio is preferably from 15 to 20:80, more preferably from 60:40 to 20:80, and particularly preferably from 60:40 to 40:60. By this, the effects of the technology disclosed herein can be exhibited at a higher level. For example, even a conductive layer which has been further refined to be fine-lined can be formed with high resolution and accuracy. In addition, by containing the first conductive powder at a ratio of a predetermined value or more, the ratio of components that can be burned out at the time of firing can be reduced, and a conductive layer having high density and low resistance can be suitably realized.
 第1導電性粉末および第2導電性粉末の種類は特に限定されない。第1導電性粉末および第2導電性粉末としては、それぞれ、従来公知のものの中から、用途等に応じて1種または2種以上を適宜選択して用いることができる。一好適例として、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、タングステン(W)、イリジウム(Ir)、オスミウム(Os)等の金属の単体、およびこれらの混合物や合金等が挙げられる。合金としては、例えば、銀-パラジウム(Ag-Pd)、銀-白金(Ag-Pt)、銀-銅(Ag-Cu)等の銀合金が挙げられる。 The types of the first conductive powder and the second conductive powder are not particularly limited. As a 1st electroconductive powder and a 2nd electroconductive powder, 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to a use etc., respectively. As one preferred example, gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), ruthenium (Ru), rhodium (Rh), Examples include simple metals such as tungsten (W), iridium (Ir) and osmium (Os), and mixtures and alloys thereof. Examples of the alloy include silver alloys such as silver-palladium (Ag-Pd), silver-platinum (Ag-Pt), silver-copper (Ag-Cu) and the like.
 好適な一態様では、第1導電性粉末および/または第2導電性粉末が、銀系粒子を含んでいる。銀は、比較的コストが安く、電気伝導度が高い。このため、銀系粒子を含むことで、コストと低抵抗とのバランスに優れた導電層を実現することができる。銀系粒子は、銀成分を含むものであればよい。一例として、銀の単体、上記した銀合金、銀系粒子をコアとするコアシェル粒子等が挙げられる。 In a preferred embodiment, the first conductive powder and / or the second conductive powder contains silver-based particles. Silver is relatively inexpensive and has high electrical conductivity. For this reason, the conductive layer excellent in the balance of cost and low resistance is realizable by including silver system particles. The silver-based particles may be those containing a silver component. As an example, silver alone, the above-described silver alloy, core-shell particles having silver-based particles as a core, and the like can be mentioned.
 他の好適な一態様では、第1導電性粉末および/または第2導電性粉末が、金属-セラミックのコアシェル粒子を含んでいる。金属-セラミックのコアシェル粒子は、金属材料を含むコア部と、コア部の表面の少なくとも一部を被覆し、セラミック材料を含む被覆部と、を有する。セラミック材料は、化学的安定性や耐熱性、耐久性に優れる。このため、金属-セラミックのコアシェル粒子の形態を採用することにより、感光性組成物中での導電性粉末の安定性をより良く向上すると共に、高耐久性な導電層を実現することができる。また、例えばセラミック製の基材上に導電層を形成して、セラミック電子部品を製造する用途では、金属-セラミックのコアシェル粒子を含むことにより、セラミック基材との一体性を高めることができ、焼成後の導電層の剥離や断線を好適に抑えることができる。 In another preferred aspect, the first conductive powder and / or the second conductive powder comprises metal-ceramic core-shell particles. The metal-ceramic core-shell particle has a core portion containing a metal material, and a coating portion covering at least a part of the surface of the core portion and containing a ceramic material. Ceramic materials are excellent in chemical stability, heat resistance and durability. Therefore, by adopting the form of metal-ceramic core-shell particles, the stability of the conductive powder in the photosensitive composition can be further improved, and a highly durable conductive layer can be realized. For example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, the inclusion of metal-ceramic core-shell particles can enhance the integrity with the ceramic base. Peeling or disconnection of the conductive layer after firing can be suitably suppressed.
 なかでも、有機成分量の少ない第1導電性粉末が金属-セラミックのコアシェル粒子を含むことが好ましく、第1導電性粉末が金属-セラミックのコアシェル粒子で構成されていることがより好ましい。有機成分量が少ない第1導電性粉末は、有機成分量が多い第2導電性粉末に比べて、相対的に導電性組成物中での安定性や保存性が低くなりがちである。第1導電性粉末が金属-セラミックのコアシェル粒子を含むことで、有機成分量の低さを補って、導電性組成物全体の安定性や保存性をより良く向上することができる。 Among them, the first conductive powder having a small amount of organic component preferably contains metal-ceramic core-shell particles, and more preferably the first conductive powder is composed of metal-ceramic core-shell particles. The first conductive powder having a small amount of the organic component tends to have relatively low stability and storage stability in the conductive composition as compared to the second conductive powder having a large amount of the organic component. When the first conductive powder contains metal-ceramic core-shell particles, it is possible to compensate for the low amount of organic components and to improve the stability and storage stability of the entire conductive composition.
 金属-セラミックのコアシェル粒子において、コア部を構成する金属材料としては、例えば上記した金属の単体、およびこれらの混合物や合金が挙げられる。なかでも、上述の理由から銀系粒子が好ましい。言い換えれば、第1導電性粉末および/または第2導電性粉末が、銀-セラミックのコアシェル粒子を含むことが好ましい。 In the metal-ceramic core-shell particles, examples of the metal material constituting the core portion include the above-described metals alone, and mixtures and alloys thereof. Among them, silver-based particles are preferable for the reasons described above. In other words, it is preferable that the first conductive powder and / or the second conductive powder include silver-ceramic core-shell particles.
 特に限定されるものではないが、金属-セラミックの被覆部を構成するセラミック材料としては、例えば、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化セリウム(セリア)、酸化イットリウム(イットリア)、チタン酸バリウム等の酸化物系材料;コーディエライト、ムライト、フォルステライト、ステアタイト、サイアロン、ジルコン、フェライト等の複合酸化物系材料;窒化ケイ素(シリコンナイトライド)、窒化アルミニウム(アルミナイトライド)等の窒化物系材料;炭化ケイ素(シリコンカーバイド)等の炭化物系材料;ハイドロキシアパタイト等の水酸化物系材料;等が挙げられる。例えばセラミック製の基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミック基材と同じあるいは親和性に優れたセラミック材料が好ましい。 Although not particularly limited, examples of the ceramic material constituting the metal-ceramic coating portion include zirconium oxide (zirconia), magnesium oxide (magnesia), aluminum oxide (alumina), silicon oxide (silica), oxide Oxide materials such as titanium (titania), cerium oxide (ceria), yttrium oxide (yttria) and barium titanate; Complex oxides such as cordierite, mullite, forsterite, steatite, sialon, zircon and ferrite Materials: Nitride-based materials such as silicon nitride (silicon nitride) and aluminum nitride (aluminum nitride); Carbide-based materials such as silicon carbide (silicon carbide); Hydroxide-based materials such as hydroxyapatite; . For example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, a ceramic material that is the same as or superior in affinity to the ceramic base is preferable.
 特に限定されるものではないが、セラミック材料の含有比率は、例えばコア部の金属材料100質量部に対して、例えば0.01~5.0質量部であってもよい。なお、金属-セラミックのコアシェル粒子は、従来公知の手法によって作製することができる。例えば、本願出願人の先願である日本国特許第5075222号の段落0025~0028に記載されるように、金属材料と、目的の金属元素有する有機系金属化合物(例えば金属アルコキシド又はキレート化合物)あるいは酸化物ゾルと、を反応させることによって、作製することができる。 Although not particularly limited, the content ratio of the ceramic material may be, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the metal material of the core portion. The metal-ceramic core-shell particles can be produced by a conventionally known method. For example, as described in paragraphs 0025 to 0028 of Japanese Patent No. 5075222, which is the prior application of the present applicant, a metal material and an organic metal compound having a target metal element (for example, metal alkoxide or chelate compound) or It can be produced by reacting an oxide sol.
 導電性粉末は、露光性能との兼ね合いから、D50粒径が1~5μmである。D50粒径を上記範囲とすることで、未硬化の導電膜の露光性能を向上して、ファインラインの導電層を安定的に形成することができる。第1導電性粉末および第2導電性粉末は、それぞれ、D50粒径が上記範囲にあるとよい。導電性粉末の凝集を抑制して導電性組成物の安定性を向上する観点からは、導電性粉末のD50粒径が、例えば、1.5μm以上、2.0μm以上であってもよい。導電層のファインライン化や緻密化、低抵抗化を進める観点からは、導電性粉末のD50粒径が、例えば、4.5μm以下、4.0μm以下であってもよい。なお、本明細書において「D50粒径」とは、レーザ回折・散乱法に基づく体積基準の粒度分布において、粒径の小さい側から積算値50%に相当する粒径をいう。 Conductive powder, the balance with exposure performance, D 50 particle size is 1 ~ 5 [mu] m. D 50 particle size within the above range, to improve the exposure performance of the uncured conductive film, the conductive layer of the fine line can be stably formed. The first conductive powder and the second conductive powder, respectively, may D 50 particle size is in the above range. Of from the viewpoint of improving the stability aggregating by suppressing conductive composition of the conductive powder, D 50 particle size of the conductive powder is, for example, 1.5 [mu] m or more, may be 2.0μm or more. The D 50 particle diameter of the conductive powder may be, for example, 4.5 μm or less and 4.0 μm or less from the viewpoint of promoting fine line formation, densification, and resistance reduction of the conductive layer. In the present specification, “D 50 particle size” refers to a particle size corresponding to an integrated value of 50% from the side of smaller particle size in the volume-based particle size distribution based on the laser diffraction / scattering method.
 特に限定されるものではないが、第1導電性粉末と第2導電性粉末とのD50粒径は、少なくとも0.5μm、典型的には0.5~3.0μm、例えば1.0~2.0μm程度離れているとよい。言い換えれば、導電性粉末全体の粒度分布が多峰性を有しているとよい。一具体例では、有機成分量が少ない第1導電性粉末のD50粒径が、概ね3~5μm、例えば3.5~4.5μmの範囲にあり、有機成分量が多い第2導電性粉末のD50粒径が、概ね1~3.5μm、例えば1.5~3μmの範囲にあるとよい。このことにより、第1導電性粉末と第2導電性粉末とのD50粒径の差が小さい場合に比べて、導電層の緻密性や充填性を向上することができる。その結果、導電層の低抵抗化を好適に高めることができる。 Although not particularly limited, the D 50 particle size of the first conductive powder and the second conductive powder is at least 0.5 μm, typically 0.5 to 3.0 μm, for example 1.0 to It is preferable that they be separated by about 2.0 μm. In other words, the particle size distribution of the entire conductive powder is preferably multimodal. In one embodiment, the D 50 particle size of the first conductive powder having a small amount of organic component is in the range of about 3 to 5 μm, for example 3.5 to 4.5 μm, and the second conductive powder has a large amount of organic component The D 50 particle size of H 2 should be approximately in the range of 1 to 3.5 μm, for example 1.5 to 3 μm. Thus, as compared with the case the difference between the D 50 particle size of the first conductive powder and the second conductive powder is small, to improve the denseness and filling properties of the conductive layer. As a result, resistance reduction of the conductive layer can be suitably enhanced.
 特に限定されるものではないが、導電性粉末を構成する導電性粒子の形状は、典型的には、平均アスペクト比(長径/短径比)が概ね1~2の略球状、好ましくは1~1.5、例えば1~1.2の球状である。このことにより、露光性能をより安定的に実現することができる。第1導電性粉末および第2導電性粉末は、それぞれ、平均アスペクト比が上記範囲にあるとよい。なお、本明細書において「平均アスペクト比」とは、電子顕微鏡で複数の導電性粒子を観察し、得られた観察画像から算出されるアスペクト比の算術平均値をいう。また、本明細書において「球状」とは、全体として概ね球体(ボール)と見なせる形態であることを示し、楕円状、多角体状、円盤球状等を含み得る用語である。 Although the shape of the conductive particles constituting the conductive powder is not particularly limited, the shape of the conductive particles is typically substantially spherical, preferably 1 to 2 in average aspect ratio (major axis / minor axis ratio). It has a spherical shape of 1.5, for example, 1 to 1.2. By this, the exposure performance can be realized more stably. Each of the first conductive powder and the second conductive powder may have an average aspect ratio in the above range. In the present specification, “average aspect ratio” refers to an arithmetic average value of aspect ratios calculated from observed images obtained by observing a plurality of conductive particles with an electron microscope. Further, in the present specification, "spherical" indicates that the shape is generally regarded as a sphere (ball), and is a term that may include an elliptical shape, a polygonal shape, a disc spherical shape, and the like.
 特に限定されるものではないが、導電性粉末の全体は、JIS Z 8781:2013年に基づくL表色系において、明度Lが、50以上であるとよい。このことにより、露光時に未硬化の導電膜の深部まで安定して照射光が届くようになり、例えば、膜厚が5μm以上、さらには10μm以上のような厚めの導電層をも安定的に実現することができる。上記観点からは、導電性粉末の明度Lが、概ね55以上、例えば60以上であってもよい。明度Lは、例えば上記した導電性粉末の種類やD50粒径によって調整することができる。なお、明度Lの測定は、例えばJIS Z 8722:2009年に準拠する分光測色計で行うことができる。 Although not particularly limited, it is preferable that the whole of the conductive powder have a lightness L * of 50 or more in the L * a * b * color system based on JIS Z 8781: 2013. By this, the irradiation light can stably reach the deep part of the uncured conductive film at the time of exposure, and for example, a conductive layer having a thickness of 5 μm or more, or even 10 μm or more can be stably realized. can do. From the above viewpoint, the lightness L * of the conductive powder may be approximately 55 or more, for example 60 or more. Lightness L * can be adjusted for example by the type and D 50 particle size of the conductive powder mentioned above. The measurement of the lightness L * can be performed, for example, with a spectrocolorimeter conforming to JIS Z 8722: 2009.
 特に限定されるものではないが、感光性組成物全体に占める導電性粉末の割合は、概ね50質量%以上、典型的には60~95質量%、例えば70~90質量%であるとよい。上記範囲を満たすことで、緻密性や電気伝導性の高い導電層を形成することができる。また、感光性組成物の取扱性や導電膜を成形する際の作業性を向上することができる。 Although not particularly limited, the proportion of the conductive powder in the entire photosensitive composition may be about 50% by mass or more, typically 60 to 95% by mass, for example 70 to 90% by mass. By satisfying the above range, a conductive layer with high density and high electrical conductivity can be formed. Moreover, the handling property of the photosensitive composition and the workability at the time of forming the conductive film can be improved.
<感光性有機成分>
 感光性有機成分は、導電膜に光硬化性を付与する成分である。感光性有機成分は、紫外線等の光エネルギーの照射によって硬化する性質を有する成分である。本明細書において、「感光性有機成分」とは、光重合性または光変性の有機化合物全般をいう。一好適例として、不飽和結合を有する感光性樹脂と、活性種を発生させる光重合開始剤と、を含む混合物;所謂、ジアゾ樹脂(例えば、芳香族ビスアジドとホルムアルデヒドとの縮合体);エポキシ化合物等の付加重合性化合物と、ジアリルヨウドニウム塩等の光酸発生剤と、を含む混合物;ナフトキノンジアジド系化合物;等が挙げられる。なかでも、安定性等の観点から、感光性樹脂と光重合開始剤とを含む混合物が好ましい。
<Photosensitive organic component>
The photosensitive organic component is a component that imparts photocurability to the conductive film. The photosensitive organic component is a component having a property of being cured by irradiation of light energy such as ultraviolet light. In the present specification, the "photosensitive organic component" refers to all of photopolymerizable or photomodified organic compounds. As one preferred example, a mixture containing a photosensitive resin having an unsaturated bond and a photopolymerization initiator for generating an active species; a so-called diazo resin (for example, a condensate of an aromatic bis azide and formaldehyde); an epoxy compound Etc., and a photoacid generator such as a diallyl iodonium salt; a naphthoquinone diazide compound; and the like. Among them, a mixture containing a photosensitive resin and a photopolymerization initiator is preferable from the viewpoint of stability and the like.
 感光性樹脂は、光重合開始剤の分解によって生じた活性種によって重合し、硬化する成分である。重合反応は、付加重合であってもよいし開環重合であってもよい。感光性樹脂は、不飽和結合および/または環状構造を1つ以上有するモノマー、ポリマー、オリゴマーを包含する。感光性樹脂としては、従来公知のものの中から、用途や基材の種類等に応じて1種または2種以上を適宜選択して用いることができる。一好適例として、(メタ)アクリロイル基やビニル基のようなラジカル重合性反応基を1つ以上有するラジカル重合性のモノマーが挙げられる。なかでも、(メタ)アクリロイル基を有する(メタ)アクリレートモノマーが好ましい。(メタ)アクリレートモノマーを含むことにより、導電層の柔軟性や基材への追従性を向上することができる。その結果、剥離や断線等の不具合の発生を一層高いレベルで抑制することができる。なお、本明細書において、「(メタ)アクリロイル」とは、「メタクリロイル」および「アクリロイル」を包含し、「(メタ)アクリレート」とは、「メタクリレート」および「アクリレート」を包含する用語である。 The photosensitive resin is a component that is polymerized and cured by active species generated by decomposition of the photopolymerization initiator. The polymerization reaction may be addition polymerization or ring opening polymerization. Photosensitive resins include monomers, polymers and oligomers having one or more unsaturated bonds and / or cyclic structures. As photosensitive resin, 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to a use, the kind of base material, etc. One preferable example is a radically polymerizable monomer having one or more radically polymerizable reactive groups such as (meth) acryloyl group and vinyl group. Among them, (meth) acrylate monomers having a (meth) acryloyl group are preferable. By including the (meth) acrylate monomer, the flexibility of the conductive layer and the followability to the substrate can be improved. As a result, the occurrence of defects such as peeling and disconnection can be suppressed at a still higher level. In the present specification, "(meth) acryloyl" is a term including "methacryloyl" and "acryloyl", and "(meth) acrylate" is a term including "methacrylate" and "acrylate".
 (メタ)アクリレートモノマーは、1分子あたり1つの官能基を有する単官能(メタ)アクリレートと、1分子あたり2つ以上の官能基を有する多官能(メタ)アクリレートと、それらの変性物とを包含する。(メタ)アクリレートモノマーの具体例として、トリエチレングリコールモノアクリレート、トリエチレングリコールモノメタクリレート、テトラエチレングリコールモノアクリレート、テトラエチレングリコールモノメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能(メタ)アクリレートや、ウレタン結合(-NH-C(=O)-O-)を有するウレタン(メタ)アクリレート等が挙げられる。なかでも、(メタ)アクリレートモノマーがウレタン(メタ)アクリレートを含むことが好ましい。このことにより、露光部分の耐エッチング性をより良く向上すると共に、導電膜の伸縮性や柔軟性を一層向上することができる。したがって、基材との一体性を高めることができる。また、光硬化性を高める観点からは、(メタ)アクリレートモノマーが1分子あたり5つ以上の(メタ)アクリロイル基を有するモノマーが好ましい。感光性樹脂全体に占めるウレタン(メタ)アクリレートの割合は、体積基準で、好ましくは30体積%以上、例えば50体積%以上であるとよい。 (Meth) acrylate monomers include monofunctional (meth) acrylates having one functional group per molecule, multifunctional (meth) acrylates having two or more functional groups per molecule, and modified products thereof Do. Specific examples of (meth) acrylate monomers include triethylene glycol monoacrylate, triethylene glycol monomethacrylate, tetraethylene glycol monoacrylate, tetraethylene glycol monomethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol pentaacrylate, Examples thereof include polyfunctional (meth) acrylates such as dipentaerythritol hexaacrylate, and urethane (meth) acrylates having a urethane bond (—NH—C (= O) —O—). Among them, it is preferable that the (meth) acrylate monomer contains a urethane (meth) acrylate. As a result, the etching resistance of the exposed portion can be further improved, and the stretchability and flexibility of the conductive film can be further improved. Therefore, the integrity with the substrate can be enhanced. Moreover, from a viewpoint of improving photocurability, the (meth) acrylate monomer has a preferable monomer which has five or more (meth) acryloyl groups per molecule. The proportion of urethane (meth) acrylate in the entire photosensitive resin is preferably 30% by volume or more, for example 50% by volume or more, on a volume basis.
 光重合開始剤は、紫外線等の光照射によって分解し、ラジカルや陽イオン等の活性種を発生させ、感光性樹脂の重合反応を開始させる成分である。光重合開始剤としては、従来公知のものの中から、感光性樹脂の種類等に応じて1種または2種以上を適宜選択して用いることができる。一好適例として、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,4-ジエチルチオキサントン、ベンゾフェノン等が挙げられる。 The photopolymerization initiator is a component which is decomposed by irradiation with light such as ultraviolet rays to generate active species such as radicals and cations, and to start the polymerization reaction of the photosensitive resin. As a photoinitiator, 1 type, or 2 or more types can be suitably selected and used among conventionally well-known things according to the kind etc. of photosensitive resin. As one preferred example, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane -1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, 2,4-diethyl thioxanthone, benzophenone and the like.
 特に限定されるものではないが、感光性組成物全体に占める感光性有機化合物の割合は、概ね0.1~25質量%、典型的には0.5~20質量%、例えば1~15質量%であってもよい。また、感光性樹脂の含有比率は、導電性粉末100質量部に対して、例えば0.1~30質量部であってもよい。また、光重合開始剤の含有比率は、感光性樹脂100質量部に対して、概ね0.001~100質量部、例えば0.01~10質量部であってもよい。 Although not particularly limited, the proportion of the photosensitive organic compound in the entire photosensitive composition is generally 0.1 to 25% by mass, typically 0.5 to 20% by mass, for example 1 to 15% by mass. It may be%. Further, the content ratio of the photosensitive resin may be, for example, 0.1 to 30 parts by mass with respect to 100 parts by mass of the conductive powder. Further, the content ratio of the photopolymerization initiator may be approximately 0.001 to 100 parts by mass, for example, 0.01 to 10 parts by mass, with respect to 100 parts by mass of the photosensitive resin.
<有機系分散媒>
 感光性組成物は、上記した必須の成分に加えて、これらを分散させる有機系分散媒を含有してもよい。有機系分散媒は、感光性組成物に適度な粘性や流動性を付与して、感光性組成物の取扱性を向上したり、導電膜を成形する際の作業性を向上したりする成分である。有機系分散媒としては、従来公知のものの中から、感光性有機化合物の種類等に応じて1種または2種以上を適宜選択して用いることができる。一好適例として、ターピネオール、ジヒドロターピネオール(メンタノール)、テキサノール、3-メチル-3-メトキシブタノール、ベンジルアルコール等のアルコール系溶剤;エチレングリコール、プロピレングリコール、ジエチレングリコール等のグリコール系溶剤;ジプロピレングリコールメチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、セロソルブ(エチレングリコールモノエチルエーテル)、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)等のエーテル系溶剤;ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ブチルセロソルブアセテート、ブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセタート)、イソボルニルアセテート等のエステル系溶剤;トルエン、キシレン、ナフサ、石油系炭化水素等の炭化水素系溶剤;ミネラルスピリット;等の有機溶剤が挙げられる。
<Organic dispersion medium>
The photosensitive composition may contain, in addition to the above-described essential components, an organic dispersion medium in which these are dispersed. The organic dispersion medium is a component that imparts appropriate viscosity and fluidity to the photosensitive composition to improve the handleability of the photosensitive composition or to improve the workability at the time of forming the conductive film. is there. As the organic dispersion medium, it is possible to appropriately select and use one kind or two or more kinds out of conventionally known ones according to the kind of photosensitive organic compound and the like. As one preferred example, alcohol solvents such as terpineol, dihydroterpineol (mentanol), texanol, 3-methyl-3-methoxybutanol, benzyl alcohol and the like; glycol solvents such as ethylene glycol, propylene glycol and diethylene glycol; dipropylene glycol methyl ether Ether solvents such as methyl cellosolve (ethylene glycol monomethyl ether), cellosolve (ethylene glycol monoethyl ether) and butyl carbitol (diethylene glycol monobutyl ether); diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, butyl glycol acetate, butyl Diglycol acetate, butyl cellosolve acetate, butyl carbonate Bi Tall acetate (diethylene glycol monobutyl ether acetate), ester solvents such as isobornyl acetate; mineral spirits; toluene, xylene, naphtha, hydrocarbon solvents such as petroleum hydrocarbon organic solvent and the like.
 なかでも、感光性組成物の保存安定性や導電膜形成時の取扱性を向上する観点からは、沸点が150℃以上の有機溶剤、さらには170℃以上の有機溶剤が好ましい。また、他の一好適例として、導電膜を印刷した後の乾燥温度を低く抑える観点からは、沸点が250℃以下の有機溶剤、さらには沸点が220℃以下の有機溶剤が好ましい。このことにより、生産性を向上すると共に、生産コストを低減することができる。 Among them, from the viewpoint of improving the storage stability of the photosensitive composition and the handleability at the time of forming a conductive film, an organic solvent having a boiling point of 150 ° C. or more, more preferably 170 ° C. or more is preferable. In addition, as another preferred example, an organic solvent having a boiling point of 250 ° C. or less, and further an organic solvent having a boiling point of 220 ° C. or less are preferable from the viewpoint of suppressing the drying temperature after printing the conductive film. This can improve productivity and reduce production costs.
 また、例えばセラミック製の基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミックグリーンシートへの浸透性が低い有機溶剤が好ましい。セラミックグリーンシートへの浸透性が低い有機溶剤としては、例えば、シクロヘキシル基やtert-ブチル基等のように立体的に嵩高い構造を有する有機溶剤や、分子量の比較的大きな有機溶剤が挙げられる。さらに、例えば上記したようなセラミックグリーンシートへの浸透性が低い有機溶剤と、感光性組成物に含有される成分(例えば感光性有機成分)を好適に溶解し得る有機溶剤とを、任意の割合で混合して、有機系分散媒として用いることも好ましい。 In addition, for example, in applications where a conductive layer is formed on a ceramic base to produce a ceramic electronic component, an organic solvent having low permeability to a ceramic green sheet is preferable. Examples of the organic solvent having low permeability to the ceramic green sheet include an organic solvent having a sterically bulky structure such as a cyclohexyl group and a tert-butyl group, and an organic solvent having a relatively large molecular weight. Furthermore, for example, an organic solvent having low permeability to the ceramic green sheet as described above, and an organic solvent capable of suitably dissolving a component (for example, a photosensitive organic component) contained in the photosensitive composition may be any ratio. It is also preferable to mix and use as an organic dispersion medium.
 上記したような性状(沸点およびセラミックグリーンシートへの浸透性)を有する有機溶剤としては、例えば、ダワノールDPM(商標)(沸点:190℃、ダウ・ケミカル・カンパニー製)、ダワノールDPMA(商標)(沸点:209℃、ダウ・ケミカル・カンパニー製)、メンタノール(沸点:207℃)、メンタノールP(沸点:216℃)、アイソパーH(沸点:176℃、関東燃料株式会社製)、SW-1800(沸点:198℃、丸善石油株式会社製)等が挙げられる。 Examples of the organic solvent having the above-mentioned properties (boiling point and permeability to ceramic green sheet) include Dowanol DPM (trademark) (boiling point: 190 ° C, manufactured by Dow Chemical Company), Dowanol DPMA (trademark) Boiling point: 209 ° C, manufactured by Dow Chemical Company, Menthanol (boiling point: 207 ° C), Menthanol P (boiling point: 216 ° C), Isopar H (boiling point: 176 ° C, Kanto Fuel Co., Ltd.), SW-1800 (boiling point) 198 ° C., manufactured by Maruzen Oil Co., Ltd.) and the like.
 感光性組成物に有機系分散媒を含む場合、特に限定されるものではないが、感光性組成物全体に占める有機系分散媒の割合は、概ね1~50質量%、典型的には3~30質量%、例えば5~20質量%であってもよい。 When the photosensitive composition contains an organic dispersion medium, it is not particularly limited, but the ratio of the organic dispersion medium to the entire photosensitive composition is generally 1 to 50% by mass, typically 3 to It may be 30% by mass, for example 5 to 20% by mass.
<有機バインダ>
 感光性組成物は、上記した必須の成分に加えて、有機バインダを含有してもよい。有機バインダは、未硬化の導電膜と基材との接着性を高める成分である。有機バインダとしては、従来公知のものの中から、感光性有機化合物や基材の種類等に応じて1種または2種以上を適宜選択して用いることができる。一好適例として、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース系高分子、アクリル樹脂、フェノール樹脂、アルキド樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。なかでも、エッチングにアルカリ性の水溶液を使用する場合には、ヒドロキシル基(-OH)、カルボキシル基(-C(=O)OH)、エステル結合(-C(=O)O-)、スルホ基(-SOH)等の、酸性を示す構造部分を有する化合物が好ましい。また、エッチングで除去し易い観点から、セルロース系高分子やアクリル樹脂等の親水性の有機バインダが好ましい。
<Organic binder>
The photosensitive composition may contain an organic binder in addition to the above-described essential components. The organic binder is a component that enhances the adhesion between the uncured conductive film and the substrate. As the organic binder, it is possible to appropriately select and use one or two or more from conventionally known ones in accordance with the type of photosensitive organic compound, base material, and the like. As one preferable example, cellulose polymers such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and hydroxymethyl cellulose, acrylic resin, phenol resin, alkyd resin, polyvinyl alcohol, polyvinyl butyral and the like can be mentioned. Among them, when an alkaline aqueous solution is used for etching, a hydroxyl group (-OH), a carboxyl group (-C (= O) OH), an ester bond (-C (= O) O-), a sulfo group ( Compounds having a structural moiety exhibiting acidity, such as —SO 3 H), are preferred. Further, from the viewpoint of easy removal by etching, hydrophilic organic binders such as cellulose polymers and acrylic resins are preferable.
<その他の成分>
 感光性組成物は、ここに開示される技術の効果を著しく損なわない限りにおいて、上記した必須の成分に加えて、さらに必要に応じて種々の添加成分を加えることができる。添加成分としては、従来公知のものの中から、1種または2種以上を適宜選択して用いることができる。添加成分の一例としては、例えば、無機フィラー、光増感剤、重合禁止剤、ラジカル捕捉剤、酸化防止剤、光吸収剤、紫外線吸収剤、可塑剤、界面活性剤、レベリング剤、増粘剤、分散剤、消泡剤、ゲル化防止剤、安定化剤、酸化防止剤、防腐剤、着色剤、顔料等が挙げられる。特に限定されるものではないが、感光性組成物全体に占める添加成分の割合は、概ね5質量%以下、例えば3質量%以下とするとよい。
<Other ingredients>
In addition to the above-described essential components, various additional components can be added to the photosensitive composition as needed, as long as the effects of the technology disclosed herein are not significantly impaired. As the additive component, one or two or more can be appropriately selected and used from conventionally known ones. Examples of the additive components include, for example, inorganic fillers, photosensitizers, polymerization inhibitors, radical scavengers, antioxidants, light absorbers, ultraviolet absorbers, plasticizers, surfactants, leveling agents, thickeners And dispersants, antifoaming agents, antigelling agents, stabilizers, antioxidants, preservatives, colorants, pigments and the like. Although not particularly limited, the proportion of the additive component in the entire photosensitive composition may be about 5% by mass or less, for example, 3% by mass or less.
<感光性組成物の用途>
 ここに開示される感光性組成物によれば、線間残渣の少なく、かつ、例えばライン幅が30μmよりも微細な、さらにはライン幅が20μmよりも微細な、ファインラインの導電層を、高解像度で安定して形成することができる。また、導電層の剥離や断線等を低減することができる。また、漏れ電流を低減すると共にショート不良の発生を抑制することができる。そのため、ここに開示される感光性組成物は、例えば、インダクタンス部品やコンデンサ部品、多層回路基板等の様々な電子部品における導電層の形成に好適に利用することができる。
<Application of Photosensitive Composition>
According to the photosensitive composition disclosed herein, it is possible to increase the conductive layer of fine lines with less line residue and, for example, a line width smaller than 30 μm, and further a line width smaller than 20 μm. It can be stably formed at resolution. In addition, peeling or disconnection of the conductive layer can be reduced. In addition, it is possible to reduce the leakage current and to suppress the occurrence of short circuit failure. Therefore, the photosensitive composition disclosed herein can be suitably used to form a conductive layer in various electronic components such as, for example, an inductance component, a capacitor component, and a multilayer circuit board.
 電子部品は、表面実装タイプやスルーホール実装タイプ等、各種の実装形態のものであってよい。電子部品は、積層型であってもよいし、巻線型であってもよいし、薄膜型であってもよい。インダクタンス部品の典型例としては、高周波フィルタ、コモンモードフィルタ、高周波回路用インダクタ(コイル)、一般回路用インダクタ(コイル)、高周波フィルタ、チョークコイル、トランス等が挙げられる。 The electronic component may be of various mounting forms such as a surface mounting type or a through hole mounting type. The electronic component may be a laminate type, a winding type, or a thin film type. Typical examples of the inductance component include high frequency filters, common mode filters, inductors (coils) for high frequency circuits, inductors for general circuits (coils), high frequency filters, choke coils, transformers and the like.
 また、導電性粉末が金属-セラミックのコアシェル粒子を含む感光性組成物は、セラミック電子部品の導電層の形成に好適に利用することができる。なお、本明細書において、「セラミック電子部品」とは、非晶質のセラミック基材(ガラスセラミック基材)あるいは結晶質(すなわち非ガラス)のセラミック基材を有する電子部品全般を包含する。典型例として、セラミック製の基材を有する高周波フィルタ、セラミックインダクタ(コイル)、セラミックコンデンサ、低温焼成積層セラミック基材(Low Temperature Co-fired Ceramics Substrate:LTCC基材)、高温焼成積層セラミック基材(High Temperature Co-fired Ceramics Substrate:HTCC基材)等が挙げられる。 In addition, a photosensitive composition in which the conductive powder contains metal-ceramic core-shell particles can be suitably used for forming a conductive layer of a ceramic electronic component. In the present specification, the term "ceramic electronic component" includes all electronic components having an amorphous ceramic substrate (glass ceramic substrate) or a crystalline (i.e. non-glass) ceramic substrate. Typical examples are a high frequency filter having a ceramic base, a ceramic inductor (coil), a ceramic capacitor, a low temperature co-fired ceramic substrate (LTCC base), a high temperature co-fired multilayer ceramic base (a low temperature co-fired ceramic substrate). High Temperature Co-fired Ceramics Substrate (HTCC base material) and the like.
 図1は、積層チップインダクタ1の構造を模式的に示した断面図である。なお、図1における寸法関係(長さ、幅、厚み等)は必ずしも実際の寸法関係を反映するものではない。また、図面中の符号X、Yは、それぞれ左右方向、上下方向を表す。ただし、これは説明の便宜上の方向に過ぎない。 FIG. 1 is a cross-sectional view schematically showing the structure of the multilayer chip inductor 1. The dimensional relationships (length, width, thickness, etc.) in FIG. 1 do not necessarily reflect the actual dimensional relationships. Further, reference signs X and Y in the drawings respectively indicate the left and right direction and the up and down direction. However, this is only for convenience of explanation.
 積層チップインダクタ1は、本体部10と、本体部10の左右方向Xの両側面部分に設けられた外部電極20とを備えている。積層チップインダクタ1の形状は、例えば、1608形状(1.6mm×0.8mm)、2520形状(2.5mm×2.0mm)等のサイズである。 The multilayer chip inductor 1 includes a main body portion 10 and external electrodes 20 provided on both side surface portions in the left-right direction X of the main body portion 10. The shape of the multilayer chip inductor 1 is, for example, a size such as 1608 shape (1.6 mm × 0.8 mm), 2520 shape (2.5 mm × 2.0 mm) or the like.
 本体部10は、セラミック層(誘電体層)12と内部電極層14とが一体化された構造を有する。セラミック層12は、例えば、導電性粉末の被覆部を構成し得るものとして上記したようなセラミック材料で構成されている。上下方向Yにおいて、セラミック層12の間には、内部電極層14が配置されている。内部電極層14は、上述の感光性組成物を用いて形成されている。セラミック層12を挟んで上下方向Yに隣り合う内部電極層14は、セラミック層12に設けられたビア16を通じて導通されている。このことにより、内部電極層14は、3次元的な渦巻き形状(螺旋状)に構成されている。内部電極層14の両端はそれぞれ外部電極20と接続されている。 The main body portion 10 has a structure in which the ceramic layer (dielectric layer) 12 and the internal electrode layer 14 are integrated. The ceramic layer 12 is made of, for example, a ceramic material as described above, which can constitute the coating portion of the conductive powder. In the vertical direction Y, the internal electrode layer 14 is disposed between the ceramic layers 12. The internal electrode layer 14 is formed using the above-described photosensitive composition. The internal electrode layers 14 adjacent to each other in the vertical direction Y with the ceramic layer 12 interposed therebetween are conducted through the vias 16 provided in the ceramic layer 12. As a result, the internal electrode layer 14 is configured in a three-dimensional spiral shape (helical shape). Both ends of the internal electrode layer 14 are connected to the external electrode 20, respectively.
 このような積層チップインダクタ1は、例えば、以下の手順で製造することができる。すなわち、まず、原料となるセラミック材料とバインダ樹脂と有機溶剤とを含むペーストを調製し、これをキャリアシート上に供給して、セラミックグリーンシートを形成する。次いで、このセラミックグリーンシートを圧延後、所望のサイズにカットして、複数のセラミック層形成用グリーンシートを得る。次いで、複数のセラミック層形成用グリーンシートの所定の位置に、穿孔機等を用いて適宜ビアホールを形成する。 Such a laminated chip inductor 1 can be manufactured, for example, according to the following procedure. That is, first, a paste containing a ceramic material as a raw material, a binder resin and an organic solvent is prepared, and this is supplied onto a carrier sheet to form a ceramic green sheet. Then, the ceramic green sheet is rolled and cut into a desired size to obtain a plurality of green sheets for forming a ceramic layer. Next, via holes are appropriately formed at predetermined positions of the plurality of ceramic layer forming green sheets using a drilling machine or the like.
 次いで、上述の感光性組成物を用いて、複数のセラミック層形成用グリーンシートの所定の位置に、所定のコイルパターンの導電膜を形成する。一例として、以下の工程:(ステップS1)感光性組成物をセラミック層形成用グリーンシート上に付与して乾燥することにより、感光性組成物の乾燥体からなる膜状体を成形する工程;(ステップS2)膜状体に所定の開口パターンのフォトマスクを被せ、フォトマスクを介して露光し、膜状体を部分的に光硬化させる工程:(ステップS3)光硬化後の膜状体をエッチングしての未硬化の部分を除去する工程;を包含する製造方法によって、未焼成の状態の導電膜を形成することができる。 Then, using the photosensitive composition described above, conductive films of a predetermined coil pattern are formed at predetermined positions of the plurality of green sheets for forming a ceramic layer. As an example, the following steps: (Step S1) a step of forming a film-like body consisting of a dried product of the photosensitive composition by applying the photosensitive composition on a green sheet for forming a ceramic layer and drying; Step S2) A step of covering a film-like body with a photomask of a predetermined opening pattern, exposing through a photomask, and partially curing the film-like body: (Step S3) Etching the film-like body after photo curing A non-fired conductive film can be formed by a manufacturing method including the step of: removing the uncured portion.
 なお、上記感光性組成物を用いて導電膜を形成するにあたっては、従来公知の手法を適宜用いることができる。例えば、(ステップS1)において、感光性組成物の付与は、スクリーン印刷等の各種印刷法や、バーコータ等を用いて行うことができる。感光性組成物の乾燥は、典型的には50~100℃で行うとよい。(ステップS2)において、露光には、例えば10~400nmの波長範囲の光線を発する露光機、例えば高圧水銀灯、メタルハライドランプ、キセノンランプ等の紫外線照射灯を用いることができる。(ステップS3)において、エッチングには、例えば水酸化ナトリウムや炭酸ナトリウム等のアルカリ成分を含む水溶液を用いることができる。 In addition, in forming a conductive film using the said photosensitive composition, the conventionally well-known method can be used suitably. For example, in (Step S1), application of the photosensitive composition can be performed using various printing methods such as screen printing, a bar coater, or the like. Drying of the photosensitive composition may typically be performed at 50 to 100.degree. In (Step S2), for example, an exposure unit which emits a light beam in a wavelength range of 10 to 400 nm, for example, an ultraviolet irradiation lamp such as a high pressure mercury lamp, a metal halide lamp, or a xenon lamp can be used. In (Step S3), for example, an aqueous solution containing an alkali component such as sodium hydroxide or sodium carbonate can be used for the etching.
 次いで、未焼成の状態の導電膜が形成されているセラミック層形成用グリーンシートを複数枚積層し、圧着する。このことによって、未焼成のセラミックグリーンシートの積層体を作製する。次いで、セラミックグリーンシートの積層体を、例えば600~1000℃で焼成する。これによって、セラミックグリーンシートが一体的に焼結され、セラミック層12と、感光性組成物の焼成体からなる内部電極層14とを備えた本体部10が形成される。そして、本体部10の両端部に適当な外部電極形成用ペーストを付与し、焼成することによって、外部電極20を形成する。以上のようにして、積層チップインダクタ1を製造することができる。 Next, a plurality of green sheets for forming a ceramic layer in which the unfired conductive film is formed are stacked and pressure-bonded. This produces a laminate of unfired ceramic green sheets. Then, the laminate of the ceramic green sheets is fired, for example, at 600 to 1000.degree. As a result, the ceramic green sheet is integrally sintered to form the main body portion 10 including the ceramic layer 12 and the internal electrode layer 14 made of a fired body of the photosensitive composition. Then, an appropriate external electrode forming paste is applied to both end portions of the main body portion 10 and baked to form the external electrode 20. As described above, the multilayer chip inductor 1 can be manufactured.
 以下、本発明に関するいくつかの実施例を説明するが、本発明を係る実施例に示すものに限定することを意図したものではない。 The following examples illustrate some of the embodiments of the present invention, but are not intended to limit the present invention to those shown.
(銀粉末の用意)
 まず、市販の7種類の銀粉末(銀粉末a~g)を用意した。なお、これらの銀粉末は、全てJIS Z 8781:2013年に基づくL表色系において、明度Lが50~80である。
 また、銀粉末aを用いて、銀粉末hを用意した。具体的には、まず、メタノールにジルコニウムブトキシドを添加して、コーティング液を調製した。次に、このコーティング液に銀粉末aを添加して1時間撹拌した。次に、コーティング液から固形分を回収し、100℃で乾燥した。これにより、銀粉末100質量部に対して、酸化ジルコニウム(ZrO)換算で0.5質量部となる量のジルコニウムブトキシドで表面コートされた銀粉末(銀-ジルコニアのコアシェル粒子)を得た。このようにして、銀粉末hを用意した。
(Preparation of silver powder)
First, seven commercially available silver powders (silver powders a to g) were prepared. Incidentally, all of these silver powders have a lightness L * of 50 to 80 in an L * a * b * color system based on JIS Z 8781: 2013.
In addition, silver powder h was prepared using silver powder a. Specifically, first, zirconium butoxide was added to methanol to prepare a coating solution. Next, silver powder a was added to the coating solution and stirred for 1 hour. Next, the solid content was recovered from the coating solution and dried at 100 ° C. As a result, a silver powder (silver-zirconia core-shell particles) surface-coated with an amount of 0.5 parts by mass converted to zirconium oxide (ZrO 2 ) with respect to 100 parts by mass of silver powder was obtained. Thus, silver powder h was prepared.
 次に、熱重量測定装置を用いて、上記した加熱条件で銀粉末a~hの有機成分量をそれぞれ測定した。結果を表1,2の「有機成分量」の欄に示す。また、表1,2には、ガスクロマトグラフィー-質量分析法(GC-MS)によって検出される表面処理剤の種類と、レーザ回折・散乱法に基づく体積基準のD50粒径と、をあわせて示す。なお、表面処理剤の欄の「BTA系」とは、ベンゾトリアゾール系化合物を表している。 Next, the amounts of organic components of the silver powders a to h were each measured using the thermogravimetry apparatus under the above-described heating conditions. The results are shown in the column of "amount of organic component" in Tables 1 and 2. In Tables 1 and 2, the type of surface treatment agent detected by gas chromatography-mass spectrometry (GC-MS) and the volume-based D 50 particle size based on laser diffraction / scattering method are combined. Show. In addition, "BTA type" of the column of a surface treatment agent represents a benzotriazole type compound.
(感光性組成物の調製)
 まず、表1,2に示す銀粉末と、ベヒクルとを用意した。ベヒクルは、感光性樹脂としてのウレタンアクリレートモノマーと、光重合開始剤としてのイルガキュア369(登録商標)(チバスペシャリティ・ケミカルズ株式会社製)と、有機バインダと、重合禁止剤と、増感剤と、ゲル化防止剤と、紫外線吸収剤とを、有機溶媒としてのジプロピレングリコールメチルエーテルアセテートおよびジヒドロターピネオールとに溶解させて調製した。そして、銀粉末とベヒクルとを77:23の質量比で混合することにより、感光性組成物(例1~8、比較例1~7)を調製した。
(Preparation of photosensitive composition)
First, silver powders and vehicles shown in Tables 1 and 2 were prepared. The vehicle comprises a urethane acrylate monomer as a photosensitive resin, Irgacure 369 (registered trademark) (made by Ciba Specialty Chemicals Inc.) as a photopolymerization initiator, an organic binder, a polymerization inhibitor, and a sensitizer. An antigelling agent and an ultraviolet light absorber were prepared by dissolving in dipropylene glycol methyl ether acetate and dihydroterpineol as organic solvents. Then, photosensitive powders (Examples 1 to 8 and Comparative Examples 1 to 7) were prepared by mixing silver powder and a vehicle at a mass ratio of 77:23.
(配線パターンの作製)
 まず、ステンレス製のスクリーンを使用して、上記調製した感光性組成物を、市販のセラミックグリーンシート上にそれぞれ塗布した。次に、これを60℃で15分間乾燥させて、グリーンシート上に膜状体を成形した。次に、膜状体の上からフォトマスクを被せた。このとき、フォトマスクとしては、配線パターンのライン幅が20μmであり、隣り合ったラインの間隔部分(スペース)20μmであるもの(L/S=20μm/20μmのもの)を使用した。このフォトマスクを被せた状態で、露光機により2500mJ/cmの強度で光を照射し、膜状体を部分的に硬化させた。露光後、セラミックグリーングリーンシートに0.1質量%のNaCO水溶液を吹き付け、未硬化の膜状体部分をエッチング除去した後、純水で洗浄し、室温で乾燥させた。これにより、配線が渦巻き状に配置された配線パターン(スパイラルパターン)を作製した。
(Preparation of wiring pattern)
First, using the stainless steel screen, the photosensitive compositions prepared above were each coated on a commercially available ceramic green sheet. Next, this was dried at 60 ° C. for 15 minutes to form a film-like body on a green sheet. Next, a photomask was placed over the film-like body. At this time, as the photomask, a mask having a wiring pattern with a line width of 20 μm and an interval (space) of 20 μm between adjacent lines (a mask of L / S = 20 μm / 20 μm) was used. With the photomask covered, light was irradiated at an intensity of 2500 mJ / cm 2 by an exposure machine to partially cure the film-like body. After the exposure, a 0.1% by mass aqueous solution of Na 2 CO 3 was sprayed on the ceramic green sheet to etch away the uncured film-like part, and then it was washed with pure water and dried at room temperature. Thus, a wiring pattern (spiral pattern) in which the wiring was arranged in a spiral was produced.
(配線パターンの評価)
 上記作製した配線パターンについて、残渣、剥離、線幅を評価し、これらの評価に基づいて総合評価を行った。
(Evaluation of wiring pattern)
The residue, peeling, and line width were evaluated for the produced wiring patterns, and comprehensive evaluation was performed based on these evaluations.
・残渣の評価:
 配線パターンを電子顕微鏡で観察し、得られた観察画像から、残渣の評価を行った。観察画像は、倍率200倍で撮影した。そして、観察画像で配線間のスペース部分に残存している線間残渣の数をカウントした。なお、線間残渣のカウントは複数視野について行い、複数視野における線間残渣の算術平均値を「線間残渣の数」とした。結果を、表1,2の「残渣の評価」の欄に示す。当該欄の表記は、下記の通りである。
 「○」:線間残渣の数が、0個/視野(線間残渣が確認されなかった)
 「△」:線間残渣の数が、1~3個/視野
 「×」:線間残渣の数が、4個以上/視野
Evaluation of residue:
The wiring pattern was observed with an electron microscope, and the residue was evaluated from the obtained observation image. The observation image was taken at a magnification of 200 times. Then, the number of interline residue remaining in the space between the wires in the observation image was counted. The interline residue was counted for a plurality of fields of view, and the arithmetic mean value of interline residues in a plurality of fields of view was taken as the “number of interline residues”. The results are shown in the column "Evaluation of residue" in Tables 1 and 2. The notation of the said column is as follows.
"○": The number of interline residues is 0 / field (no interline residues identified)
“△”: number of interline residue is 1 to 3 per field of view “x”: number of interline residue is 4 or more per field of view
・剥離の評価:
 上記観察画像から、剥離と断線の有無を確認した。結果を、表1,2の「剥離の評価」の欄に示す。当該欄の表記は、下記の通りである。
 「○」:剥離なし
 「×」:剥離有り
Evaluation of peeling:
The presence or absence of peeling and disconnection was confirmed from the said observation image. A result is shown in the column of "evaluation of peeling" of Tables 1 and 2. The notation of the said column is as follows.
"○": no peeling "×": peeling
・線幅の評価:
 上記観察画像から、配線パターンの線幅を計測した。なお、線幅の計測は複数視野について行い、その算術平均値を、線幅とした。結果を、表1,2の「線幅」の欄に示す。また、評価の欄の表記は、下記の通りである。
 「○」:20~25μm(目標値)
 「△」:25~28μm
 「×」:28μm以上
・ Evaluation of line width:
The line width of the wiring pattern was measured from the observation image. The line width was measured for a plurality of fields of view, and the arithmetic mean value was taken as the line width. The results are shown in the "line width" column of Tables 1 and 2. Moreover, the notation of the column of evaluation is as follows.
"○": 20 to 25 μm (target value)
"△": 25 to 28 μm
"X": 28 μm or more
・総合評価:
 「○」:上記した残渣、剥離、線幅の各評価で、×が1つもない
 「×」:上記した残渣、剥離、線幅の各評価で、×が1つ以上ある
·Comprehensive evaluation:
"○": In each evaluation of the above-mentioned residue, exfoliation, line width, there is not one x "x": In each evaluation of the above-mentioned residue, exfoliation, line width, there is one or more x
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、比較例1は、有機成分量の少ない銀粉末aのみを使用した試験例である。比較例1では、配線パターンに線幅のバラつきが大きく、所々に線幅の太りが確認された。その結果、平均の線幅が目標値よりも大きくなり過ぎて、安定したファインラインの形成が困難だった。この理由としては、導電膜の光硬化性が高すぎたために、フォトマスクの開口部分から散乱された光で遮光部分の導電膜の一部が硬化されてしまったことや、導電膜の耐エッチング性が高すぎたために、エッチングの際に未硬化部分の除去が不完全だったことが考えられる。また、比較例2は、有機成分量の相対的に多い銀粉末bのみを使用した試験例である。比較例2では、配線パターンに剥離や断線が多く確認され、配線パターンの形成が困難だった。この理由としては、エッチングの際に未硬化部分と共に硬化部が流れてしまったことが考えられる。また、比較例3は、表面に脂肪酸とベンゾトリアゾール系化合物とが付着している銀粉末eのみを使用した試験例である。比較例3では、配線パターンに剥離や断線が多く確認され、ファインラインの形成が困難だった。さらに、配線間のスペース部分には線間残渣が多く残っていた。 As shown in Table 1, Comparative Example 1 is a test example using only silver powder a having a small amount of organic components. In Comparative Example 1, variation in line width was large in the wiring pattern, and thickening of the line width was confirmed in some places. As a result, the average line width became larger than the target value, making it difficult to form a stable fine line. The reason for this is that the light-scattering property of the conductive film is too high, so that light scattered from the opening of the photomask hardens part of the conductive film in the light-shielding portion, and etching resistance of the conductive film It is considered that the removal of the uncured portion was incomplete during etching because the conductivity was too high. Further, Comparative Example 2 is a test example using only silver powder b having a relatively large amount of organic component. In the comparative example 2, many peeling and disconnection were confirmed by the wiring pattern, and formation of the wiring pattern was difficult. As the reason for this, it is considered that the cured portion has flowed together with the uncured portion during the etching. Further, Comparative Example 3 is a test example using only silver powder e having fatty acid and a benzotriazole compound adhering to the surface. In the comparative example 3, many peeling and disconnection were confirmed by the wiring pattern, and formation of the fine line was difficult. Furthermore, a lot of interline residue remains in the space between the wires.
 例1~4は、銀粉末aと銀粉末bとを併用した試験例である。例1~4では、これら比較例1~3に比べて、線間残渣がなく、かつ、ライン幅が28μm以下、さらには25μm以下に抑えられたファインラインの配線パターンを、高解像度で形成することができた。すなわち、配線の剥離や断線、ショート不良が無く、かつ配線間に安定的にスペースの確保されたファインラインの配線パターンを形成することができた。 Examples 1 to 4 are test examples in which silver powder a and silver powder b are used in combination. In Examples 1 to 4, fine line wiring patterns with no line residue and with a line width of 28 μm or less, and further suppressed to 25 μm or less are formed with high resolution compared to Comparative Examples 1 to 3. I was able to. That is, it was possible to form a fine line wiring pattern in which there was no peeling, disconnection or short circuit of the wiring, and a stable space was secured between the wirings.
 表2では、2種類以上の銀粉末の混合系について、さらに検討を行っている。例5,6は、銀粉末bにかえて銀粉末cあるいは銀粉末dを使用した試験例である。例7は、銀粉末aと銀粉末bとに加えて銀粉末gを使用した試験例である。例8は、銀粉末aにかえて銀粉末hを使用した試験例である。表2に示すように、例5,6や例7、例8でも、例1~4と同様に、ファインラインの配線パターンを高解像度で形成することができた。 Table 2 further investigates a mixed system of two or more types of silver powder. Examples 5 and 6 are test examples in which silver powder c or silver powder d is used instead of silver powder b. Example 7 is a test example using silver powder g in addition to silver powder a and silver powder b. Example 8 is a test example using silver powder h in place of silver powder a. As shown in Table 2, in Examples 5 and 6, 7 and 8 as well as Examples 1 to 4, the fine line wiring pattern could be formed with high resolution.
 一方で、比較例4~6は、銀粉末bにかえて銀粉末e~gをそれぞれ使用した試験例である。比較例7は、銀粉末aと銀粉末bとの合計を銀粉末全体の80%と低減した試験例である。比較例4~6および比較例7では、配線間のスペース部分に線間残渣が多く残っていた。また、比較例5,6では、配線パターンに線幅のバラつきが大きく、線幅がやや目標値よりも大きかった。 On the other hand, Comparative Examples 4 to 6 are test examples in which silver powders e to g are used instead of silver powder b. The comparative example 7 is a test example which reduced the sum total of silver powder a and silver powder b to 80% of the whole silver powder. In Comparative Examples 4 to 6 and Comparative Example 7, a large amount of interline residue remains in the space between the wires. Moreover, in Comparative Examples 5 and 6, the variation in line width was large in the wiring pattern, and the line width was slightly larger than the target value.
 以上の結果から、熱重量分析に基づく有機成分量が0.1質量%以下である第1導電性粉末と、表面にベンゾトリアゾール系化合物が付着しており、熱重量分析に基づく有機成分量が少なくとも0.5%である第2導電性粉末とを併用し、かつこれらの合計を導電性粉末全体の90質量%以上の割合とすることにより、線間残渣の少ないファインラインの配線パターンを高解像度で形成することができるとわかった。これらの結果は、ここに開示される技術の意義を示すものである。 From the above results, the first conductive powder having an organic component content of 0.1% by mass or less based on thermogravimetric analysis, and the benzotriazole compound adhering to the surface, the organic component content based on thermogravimetric analysis is By using the second conductive powder which is at least 0.5% in combination and setting the total of these to a proportion of 90% by mass or more of the entire conductive powder, the fine line wiring pattern with little interline residue can be made high. It turned out that it could be formed in resolution. These results show the significance of the technology disclosed herein.
 以上、本発明を詳細に説明したが、これらは例示に過ぎず、本発明はその主旨を逸脱しない範囲で種々変更を加え得るものである。 As mentioned above, although this invention was demonstrated in detail, these are only an illustration and this invention can add a various change in the range which does not deviate from the main point.
 1   積層チップインダクタ
 10  本体部
 12  セラミック層
 14  内部電極層
 20  外部電極
Reference Signs List 1 laminated chip inductor 10 main body 12 ceramic layer 14 internal electrode layer 20 external electrode

Claims (9)

  1.  導電性粉末と、感光性有機成分と、を含み、
     前記導電性粉末は、レーザ回折・散乱法に基づく体積基準のD50粒径が1μm以上5μm以下であり、かつ、以下の2種類:
     (1)熱重量測定に基づく有機成分量が0.1質量%以下である、第1導電性粉末;
     (2)表面にベンゾトリアゾール系化合物が付着しており、熱重量測定に基づく有機成分量が少なくとも0.5質量%である、第2導電性粉末;
    の成分の合計が、前記導電性粉末の全体を100質量%としたときに、90質量%以上を占める、感光性組成物。
    Containing conductive powder and photosensitive organic component,
    Wherein the conductive powder is, D 50 particle size based on volume based on the laser diffraction scattering method is at 1μm or more 5μm or less, and, following two types:
    (1) The first conductive powder, wherein the amount of organic component based on thermogravimetry is 0.1% by mass or less;
    (2) A second conductive powder, wherein a benzotriazole-based compound is attached to the surface, and the amount of the organic component based on thermogravimetry is at least 0.5% by mass;
    The photosensitive composition which the sum total of the component occupies 90 mass% or more, when the whole of the said electroconductive powder is 100 mass%.
  2.  前記導電性粉末が、銀系粒子を含む、
    請求項1に記載の感光性組成物。
    The conductive powder contains silver-based particles,
    The photosensitive composition according to claim 1.
  3.  前記第1導電性粉末と前記第2導電性粉末との質量比率が、第1導電性粉末:第2導電性粉末=85:15~20:80である、
    請求項1または2に記載の感光性組成物。
    The mass ratio of the first conductive powder to the second conductive powder is: first conductive powder: second conductive powder = 85: 15 to 20:80.
    The photosensitive composition according to claim 1 or 2.
  4.  前記第1導電性粉末が、コアとなる金属材料と前記コアの表面の少なくとも一部を被覆するセラミック材料とを含んだコアシェル粒子である、
    請求項1~3の何れか一つに記載の感光性組成物。
    The first conductive powder is a core-shell particle comprising a metal material as a core and a ceramic material covering at least a part of the surface of the core.
    The photosensitive composition according to any one of claims 1 to 3.
  5.  JIS Z 8781:2013年に基づくL表色系において、前記導電性粉末の明度Lが、50以上である、
    請求項1~4の何れか一つに記載の感光性組成物。
    In the L * a * b * color system based on JIS Z 8781: 2013, the lightness L * of the conductive powder is 50 or more.
    The photosensitive composition according to any one of claims 1 to 4.
  6.  沸点が150℃以上250℃以下の有機溶剤をさらに含む、
    請求項1~5の何れか一つに記載の感光性組成物。
    It further includes an organic solvent having a boiling point of 150 ° C. or more and 250 ° C. or less,
    The photosensitive composition according to any one of claims 1 to 5.
  7.  グリーンシートと、前記グリーンシート上に配置され、請求項1~6の何れか一つに記載の感光性組成物の乾燥体からなる導電膜と、を備える、複合体。 A composite, comprising: a green sheet; and a conductive film disposed on the green sheet, the conductive film comprising the dried body of the photosensitive composition according to any one of claims 1 to 6.
  8.  請求項1~6の何れか一つに記載の感光性組成物の焼成体からなる導電層を備える、電子部品。 An electronic component comprising a conductive layer comprising the fired body of the photosensitive composition according to any one of claims 1 to 6.
  9.  請求項1~6の何れか一つに記載の感光性組成物を基材上に付与して、光硬化およびエッチング処理を行った後、焼成して、前記感光性組成物の焼成体からなる導電層を形成する工程を含む、電子部品の製造方法。 A photosensitive composition according to any one of claims 1 to 6 is applied to a substrate, subjected to photocuring and etching, and then fired to form a fired body of the photosensitive composition. A method of manufacturing an electronic component, comprising the step of forming a conductive layer.
PCT/JP2018/043421 2017-12-14 2018-11-26 Photosensitive composition and use of same WO2019116874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207020081A KR102579847B1 (en) 2017-12-14 2018-11-26 Photosensitive composition and its use
CN201880080385.3A CN111465899B (en) 2017-12-14 2018-11-26 Photosensitive composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017239464A JP6646643B2 (en) 2017-12-14 2017-12-14 Photosensitive composition and its use
JP2017-239464 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019116874A1 true WO2019116874A1 (en) 2019-06-20

Family

ID=66819691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043421 WO2019116874A1 (en) 2017-12-14 2018-11-26 Photosensitive composition and use of same

Country Status (5)

Country Link
JP (1) JP6646643B2 (en)
KR (1) KR102579847B1 (en)
CN (1) CN111465899B (en)
TW (1) TWI780277B (en)
WO (1) WO2019116874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112893866A (en) * 2021-01-13 2021-06-04 中国科学院金属研究所 Photocuring 3D printing metal-ceramic composite material part and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283508A (en) * 1998-03-31 1999-10-15 Toray Ind Inc Substrate for plasma display and its manufacture
JP2012214873A (en) * 2011-03-28 2012-11-08 Dowa Electronics Materials Co Ltd Silver powder, method for manufacturing the same, and conductive paste
JP2014170051A (en) * 2013-03-01 2014-09-18 Noritake Co Ltd Photosensitive paste
JP2017130147A (en) * 2016-01-22 2017-07-27 積水化学工業株式会社 Conductive particulate powder, conductive particles, and touch panel with tactile feedback function
WO2017135138A1 (en) * 2016-02-03 2017-08-10 Dowaエレクトロニクス株式会社 Silver-coated copper powder and method for producing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163687U (en) 1974-11-14 1976-05-19
KR100558563B1 (en) * 2002-07-31 2006-03-13 주식회사 동진쎄미켐 High viscous and alkali developable negative photoresist composition for dispersion of conductive fine powder
KR100581971B1 (en) * 2003-02-11 2006-05-22 주식회사 동진쎄미켐 An Ag paste composition for forming micro-electrode and the micro-electrode manufactured using the same
EP2668239B1 (en) * 2011-01-26 2018-08-15 Dow Silicones Corporation High temperature stable thermally conductive materials
KR101306778B1 (en) * 2013-04-02 2013-09-17 남수용 Photosensitive paste composition for forming fine electrode patterns in touch panels, method of fabrication the composition and application thereof
JP2015133317A (en) * 2013-12-10 2015-07-23 Dowaエレクトロニクス株式会社 Conductive paste and production method of conductive film using the same
KR101985581B1 (en) * 2014-01-14 2019-06-03 도요 알루미늄 가부시키가이샤 Composite conductive particles, conductive resin composition containing same and conductive coated article
JP2015184648A (en) * 2014-03-26 2015-10-22 東洋紡株式会社 Photosensitive conductive paste, conductive thin film, electric circuit and touch panel
KR20150122345A (en) 2014-04-23 2015-11-02 (주)라누베 Skin Moisturizer and penetration enhancer with the distilled mineral water from thermal seawater
RU2629098C1 (en) 2014-04-30 2017-08-24 Кимберли-Кларк Ворлдвайд, Инк. Absorbent product containing fluid medium distributing structure
WO2016063941A1 (en) * 2014-10-22 2016-04-28 積水化学工業株式会社 Conductive particles, conductive material and connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283508A (en) * 1998-03-31 1999-10-15 Toray Ind Inc Substrate for plasma display and its manufacture
JP2012214873A (en) * 2011-03-28 2012-11-08 Dowa Electronics Materials Co Ltd Silver powder, method for manufacturing the same, and conductive paste
JP2014170051A (en) * 2013-03-01 2014-09-18 Noritake Co Ltd Photosensitive paste
JP2017130147A (en) * 2016-01-22 2017-07-27 積水化学工業株式会社 Conductive particulate powder, conductive particles, and touch panel with tactile feedback function
WO2017135138A1 (en) * 2016-02-03 2017-08-10 Dowaエレクトロニクス株式会社 Silver-coated copper powder and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112893866A (en) * 2021-01-13 2021-06-04 中国科学院金属研究所 Photocuring 3D printing metal-ceramic composite material part and preparation method thereof

Also Published As

Publication number Publication date
TW201932980A (en) 2019-08-16
CN111465899A (en) 2020-07-28
KR102579847B1 (en) 2023-09-18
TWI780277B (en) 2022-10-11
CN111465899B (en) 2023-05-16
KR20200097774A (en) 2020-08-19
JP6646643B2 (en) 2020-02-14
JP2019105792A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP5163687B2 (en) Photosensitive conductive paste, method for manufacturing multilayer electronic component using the same, and multilayer electronic component
TWI812688B (en) Photosensitive composition, complex, electronic part, and method for producing electronic part
JP5828851B2 (en) Photosensitive paste
JP6637087B2 (en) Photosensitive composition and its use
KR102643291B1 (en) Photosensitive composition, composite, electronic component and electronic component manufacturing method
JP7446355B2 (en) Photosensitive composition and its use
WO2019116874A1 (en) Photosensitive composition and use of same
JP7113779B2 (en) Photosensitive composition and its use
KR20220034178A (en) A method for producing a photosensitive composition, a paste-like photosensitive composition, a method for producing an electronic component and an electronic component, and an apparatus for determining the mixing ratio of organic components in the photosensitive composition, computer program
WO2022191054A1 (en) Photosensitive composition and use thereof
JP2022142730A (en) Photosensitive composition and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020081

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18889232

Country of ref document: EP

Kind code of ref document: A1