WO2016063941A1 - Conductive particles, conductive material and connection structure - Google Patents

Conductive particles, conductive material and connection structure Download PDF

Info

Publication number
WO2016063941A1
WO2016063941A1 PCT/JP2015/079816 JP2015079816W WO2016063941A1 WO 2016063941 A1 WO2016063941 A1 WO 2016063941A1 JP 2015079816 W JP2015079816 W JP 2015079816W WO 2016063941 A1 WO2016063941 A1 WO 2016063941A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive portion
core
connection
Prior art date
Application number
PCT/JP2015/079816
Other languages
French (fr)
Japanese (ja)
Inventor
暁舸 王
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020167027605A priority Critical patent/KR20170072169A/en
Priority to JP2015555877A priority patent/JPWO2016063941A1/en
Priority to KR1020227009140A priority patent/KR20220041240A/en
Priority to CN201580044245.7A priority patent/CN106605273A/en
Publication of WO2016063941A1 publication Critical patent/WO2016063941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive particles having base particles and conductive portions arranged on the outer surface of the base particles.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • Patent Document 1 listed below includes base material particles, a copper layer provided on the outer surface of the base material particle, and a palladium layer provided on the outer surface of the copper layer.
  • the electroconductive particle provided with these is disclosed.
  • the average thickness of the palladium layer is 5 nm or more.
  • the palladium layer is formed using a plating solution containing a hydrazine compound as a reducing agent.
  • Examples 8 to 10 of Patent Document 1 conductive particles having a plurality of protrusions formed on the outer surface of the palladium layer are disclosed.
  • metallic nickel particles are used as a core material.
  • the conductive particles may not sufficiently contact the electrode. This may increase the connection resistance between the electrodes.
  • an oxide film is often formed on the surfaces of the conductive portion and the electrode. This oxide film may interfere with the contact between the conductive portion and the electrode.
  • connection resistance may be increased. Furthermore, when a connection structure in which electrodes are connected using conductive particles is stored or used for a long time, the connection resistance may be increased. This is because the corrosion of the conductive particles proceeds due to the influence of acid or the like.
  • the base particle on the outer surface of the base particle, includes a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances.
  • the first conductive portion is disposed on the outer surface of the first conductive portion
  • the second conductive portion is disposed on the outer surface of the first conductive portion
  • the second conductive portion has a plurality of protrusions on the outer surface.
  • the core material is disposed inside the protrusion of the second conductive portion, and the outer surface of the second conductive portion is raised by the core material, and the material of the core material is Unlike nickel, conductive particles are provided in which the material of the core material has a Mohs hardness of greater than 5.
  • the ratio of the total thickness of the first conductive portion and the second conductive portion to the average diameter of the core substance is preferably 0.1 or more and 6 or less. It is preferable that the thickness of the first conductive portion is 20 nm or more and 300 nm or less. It is preferable that the average diameter of the core substance is 20 nm or more and 1000 nm or less.
  • the thickness of the second conductive part is preferably 3 nm or more and 40 nm or less. It is preferable that the first conductive portion has a Vickers hardness of less than 100.
  • the Mohs hardness of the core material is preferably 6 or more.
  • a conductive material including the above-described conductive particles and a binder resin.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the A connection portion connecting the second connection target member
  • the material of the connection portion is the conductive particles described above, or a conductive material containing the conductive particles and a binder resin
  • a connection structure is provided in which the first electrode and the second electrode are electrically connected by the conductive particles.
  • the conductive particle according to the present invention includes a base particle, a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances, on the outer surface of the base particle.
  • the first conductive portion is disposed on the outer surface of the first conductive portion, and the second conductive portion has a plurality of protrusions on the outer surface.
  • the core material is disposed inside the protrusion of the second conductive portion, the outer surface of the second conductive portion is raised by the core material, and the material of the core material is Unlike nickel, the material of the core material has a Mohs hardness of more than 5, so that when the electrodes are electrically connected, the connection resistance can be lowered, and further, corrosion of the conductive part is difficult to occur. Can do.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • the conductive particles according to the present invention include base particles, a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances.
  • the first conductive portion is disposed on the outer surface of the base particle, and the second conductive portion is disposed on the outer surface of the first conductive portion. ing.
  • the second conductive portion has a plurality of protrusions on the outer surface.
  • the core substance is disposed inside the protrusion of the second conductive part, and the outer surface of the second conductive part is raised by the core substance.
  • the protrusion is formed by the outer surface of the second conductive portion being raised by the core substance.
  • the material of the core substance is different from nickel, and the Mohs hardness of the material of the core substance exceeds 5.
  • the connection resistance can be lowered.
  • An oxide film is often formed on the surface of the electrode.
  • the conductive particles according to the present invention when the electrodes are connected, the protrusion penetrates the oxide film, and the conductive part and the electrode can be sufficiently brought into contact with each other.
  • the above-described configuration according to the present invention makes it difficult to cause corrosion of the conductive portion. Particularly, corrosion of the conductive part can be made difficult to occur in the presence of an acid. Even when the conductive particles are exposed to the presence of an acid, the conductive portion is hardly corroded, so that the performance of the conductive particles can be maintained high.
  • connection resistance can be lowered. Furthermore, when the connection structure in which the electrodes are connected using conductive particles is stored for a long time or used for a long time, it is possible to prevent the connection resistance from increasing. In the present invention, conduction reliability can be improved.
  • the core material is nickel particles
  • corrosion due to acid tends to occur.
  • the conductive portions may have slight cracks or pinholes, and thus the nickel particles are likely to be corroded.
  • corrosion can be suppressed even when the core material is not nickel.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particles 1 include substrate particles 2, a first conductive portion 3 (conductive layer) containing copper, a second conductive portion 4 (conductive layer) containing palladium, and a plurality of conductive particles 1. Core material 5 and insulating material 6. In the conductive particle 1, a multilayer conductive portion is formed.
  • the first conductive part 3 is disposed on the outer surface of the base particle 2.
  • the first conductive portion 3 is in contact with the base particle 2.
  • the second conductive portion 4 is disposed on the outer surface of the first conductive portion 3.
  • the second conductive part 4 is in contact with the first conductive part 3.
  • the conductive particle 1 is a coated particle in which the outer surface of the base particle 2 is covered with the first conductive part 3 and the second conductive part 4.
  • the conductive particle 1 has a plurality of protrusions 1 a on the outer surface of the second conductive portion 4.
  • the first conductive portion 3 has a plurality of protrusions 3a on the outer surface.
  • the second conductive portion 4 has a plurality of protrusions 4a on the outer surface.
  • the plurality of core substances 5 are disposed on the outer surface of the base particle 2.
  • the plurality of core materials 5 are disposed inside the first conductive portion 3.
  • the plurality of core materials 5 are embedded inside the first conductive part 3 and the second conductive part 4.
  • the core substance 5 is disposed inside the protrusions 1a, 3a, 4a.
  • the first conductive part 3 and the second conductive part 4 cover a plurality of core substances 5.
  • the second conductive portion 4 covers a plurality of core substances 5 via the first conductive portion 3.
  • the outer surfaces of the first conductive portion 3 and the second conductive portion 4 are raised by the plurality of core materials 5 to form protrusions 1a, 3a, 4a.
  • the outer surface of the second conductive portion 4 is rust-proofed.
  • a rust preventive film (not shown) is formed on the outer surface of the second conductive portion 4.
  • the conductive particles 1 have an insulating material 6 disposed on the outer surface of the second conductive portion 4. At least a part of the outer surface of the second conductive portion 4 is covered with the insulating material 6.
  • the insulating substance 6 is made of an insulating material and is an insulating particle.
  • the electroconductive particle which concerns on this invention may have the insulating substance arrange
  • FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
  • the conductive particle 1 ⁇ / b> A includes base material particles 2, a first conductive part 3 ⁇ / b> A (conductive layer) containing copper, a second conductive part 4 ⁇ / b> A (conductive layer) containing palladium, and a plurality of conductive particles 1 ⁇ / b> A.
  • the first conductive part 3 ⁇ / b> A is disposed on the outer surface of the base particle 2. Between the base particle 2 and the second conductive portion 4A, the first conductive portion 3A is disposed. The second conductive portion 4A is disposed on the outer surface of the first conductive portion 3A.
  • the conductive particle 1A has a plurality of protrusions 1Aa on the outer surface of the second conductive portion 4A.
  • the first conductive portion 3A has no protrusion on the outer surface.
  • the outer surface shape of the first conductive portion 3A is spherical.
  • the second conductive portion 4A has a plurality of protrusions 4Aa on the outer surface.
  • the plurality of core materials 5 are disposed on the outer surface of the first conductive portion 3A.
  • the plurality of core materials 5 are disposed outside the first conductive portion 3A.
  • the plurality of core materials 5 are arranged inside the second conductive portion 4A.
  • the plurality of core materials 5 are embedded inside the second conductive portion 4A.
  • the core substance 5 is disposed inside the protrusions 1Aa and 4Aa.
  • the second conductive portion 4 ⁇ / b> A covers a plurality of core materials 5.
  • the outer surface of the second conductive portion 4A is raised by the plurality of core materials 5, and the protrusions 1Aa and 4Aa are formed.
  • the core substance may be disposed outside the first conductive portion.
  • the arrangement position of the core substance is not particularly limited as long as it is arranged inside the protrusion of the second conductive portion.
  • the core substance may be disposed inside or inside the second conductive part.
  • the conductive particle 1A has an insulating material 6 disposed on the outer surface of the second conductive portion 4A. At least a part of the outer surface of the second conductive portion 4 ⁇ / b> A is covered with the insulating material 6.
  • (meth) acryl means one or both of “acryl” and “methacryl”
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”. means.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particles may be core-shell particles.
  • the base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, conductive particles more suitable for electrical connection between the electrodes can be obtained.
  • the conductive particles When connecting the electrodes using the conductive particles, the conductive particles are compressed by placing the conductive particles between the electrodes and then pressing them.
  • the substrate particles are resin particles or organic-inorganic hybrid particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the connection resistance between electrodes becomes still lower.
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylene
  • Resin for forming the resin particles can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, which is suitable for conductive materials and having physical properties at the time of compression.
  • the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
  • examples of the inorganic material for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • Examples of the material for forming the organic core include the resin for forming the resin particles described above.
  • Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles.
  • the material for forming the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 5 ⁇ m or less. . Particularly preferably, it is 3 ⁇ m or less.
  • the particle diameter of the substrate particles is not less than the above lower limit and not more than the above upper limit, even when the distance between the electrodes is small and the thickness of the conductive portion is increased, small conductive particles can be obtained.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the said electroconductive particle is equipped with the 1st electroconductive part containing copper as an electroconductive part.
  • the first conductive portion includes not only the case where only copper is used as the metal, but also the case where copper and another metal are used.
  • the copper layer may be a copper alloy layer.
  • metals other than copper in the first conductive part include gold, silver, platinum, zinc, iron, tin, lead, aluminum, cobalt, nickel, indium, palladium, chromium, titanium, antimony, bismuth, thallium, germanium, Examples thereof include cadmium, silicon, tungsten, molybdenum, and tin-doped indium oxide (ITO). As for these metals, only 1 type may be used and 2 or more types may be used together.
  • the first conductive part preferably contains copper as a main metal.
  • the content of copper is preferably 50% by weight or more in 100% by weight of the entire first conductive part.
  • the copper content is preferably 65% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, and particularly preferably 93% by weight or more, in 100% by weight of the entire first conductive part.
  • the copper content is not less than the above lower limit, the flexibility of the conductive particles is appropriately increased, and the connection resistance between the electrodes is further reduced.
  • the thickness of the first conductive portion is preferably 20 nm or more, more preferably 50 nm or more, still more preferably 80 nm or more, preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm or less.
  • the thickness of the first conductive portion is not less than the above lower limit and not more than the above upper limit, the connection resistance is effectively lowered, and corrosion of the conductive portion is further less likely to occur.
  • the Vickers hardness of the first conductive part is preferably 20 or more, more preferably 40 or more. When the Vickers hardness of the first conductive portion is equal to or higher than the lower limit, cracking of the conductive portion is reduced when the pressure is applied, leading to improvement in conduction reliability and connection reliability.
  • the Vickers hardness of the first conductive part is preferably less than 100, more preferably 70 or less. When the Vickers hardness of the first conductive portion is equal to or lower than the above upper limit, cracking of the conductive portion is considerably reduced when pressed, leading to improvement in conduction reliability and connection reliability.
  • the conductive particles include a first conductive part containing copper and a second conductive part containing palladium as a conductive part.
  • the second conductive portion includes not only the case where only palladium is used as the metal but also the case where palladium and another metal are used.
  • the palladium layer may be a palladium alloy layer. It is preferable that the said 2nd electroconductive part is arrange
  • Examples of the metal other than gold in the second conductive part include nickel, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, nickel, indium, chromium, titanium, antimony, bismuth, Examples include thallium, germanium, cadmium, silicon, tungsten, molybdenum, and tin-doped indium oxide (ITO). As for these metals, only 1 type may be used and 2 or more types may be used together.
  • the second conductive part preferably contains palladium as a main metal.
  • the content of palladium is preferably 50% by weight or more in 100% by weight of the entire second conductive part.
  • the content of palladium is preferably 90% by weight or more, more preferably 95% by weight or more, and further preferably 99.9% by weight or more in 100% by weight of the entire second conductive part.
  • the thickness of the second conductive part is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, preferably 45 nm or less, more preferably 40 nm or less, still more preferably 25 nm or less.
  • the thickness of the second conductive portion is not less than the above lower limit and not more than the above upper limit, the connection resistance is effectively lowered, and corrosion of the conductive portion is further less likely to occur.
  • the second conductive part has a plurality of protrusions on the outer surface.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles.
  • the oxide particles are effectively eliminated by the protrusions by placing the conductive particles between the electrodes and then pressing them. For this reason, an electrode and electroconductive particle can be made to contact still more reliably, and the connection resistance between electrodes becomes still lower.
  • the conductive particles have an insulating material on the surface, or when the conductive particles are dispersed in the resin and used as a conductive material, the conductive particles and the electrodes are insulated by the protrusions of the conductive particles. Substances or resins are effectively excluded. For this reason, the conduction
  • the number of protrusions on the outer surface of the second conductive portion per one of the conductive particles is preferably 3 or more, more preferably 5 or more, still more preferably 15 or more, and particularly preferably 20 or more.
  • the upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
  • the average height of the plurality of protrusions is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the height of the projection is a virtual line of the conductive portion (dashed line shown in FIG. 1) on the assumption that there is no projection on the line (dashed line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the projection.
  • L2 Indicates the distance from the top (on the outer surface of the spherical conductive particles assuming no projection) to the tip of the projection. That is, in FIG. 1, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.
  • a conductive part is formed by electroless plating, and a conductive part is formed by electroless plating on the surface of the base particle. Thereafter, a method of attaching a core substance and further forming a conductive portion by electroless plating can be used.
  • a first conductive part is formed on the surface of the base particle, and then a core substance is disposed on the first conductive part, and then the second conductive part. Examples thereof include a forming method and a method of adding a core substance in the middle of forming a conductive part (first conductive part or second conductive part) on the surface of the base particle.
  • a core substance is added to the dispersion of the base particle, and the core substance is added to the surface of the base particle, for example, van der Waals.
  • examples include a method of accumulating and attaching by force, and a method of adding a core substance to a container containing base particles and attaching the core substance to the surface of the base particles by a mechanical action such as rotation of the container. It is done.
  • the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
  • the core material is not particularly limited as long as it is different from nickel and the core material has a Mohs hardness of more than 5. When the Mohs hardness is 5 or less, the oxide film does not sufficiently penetrate and the connection resistance tends to increase.
  • the material of the core substance examples include silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide ( And Mohs hardness 9) and diamond (Mohs hardness 10).
  • the material of the core substance is more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, further preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, zirconia, alumina, carbonized. Particularly preferred is tungsten or diamond.
  • the Mohs hardness of the core material is preferably 5.5 or higher, more preferably 6 or higher, still more preferably 7 or higher, and particularly preferably 7.5 or higher.
  • the electrode and the conductive particles are more appropriately in contact with each other, and the connection resistance between the electrodes is further reduced.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 20 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 1000 nm or less, more preferably 600 nm or less, still more preferably 500 ⁇ m or less, particularly Preferably it is 250 nm or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the connection resistance is effectively lowered, and corrosion of the conductive part is further less likely to occur.
  • the “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • Ratio of the total thickness of the first conductive portion and the second conductive portion to the average diameter of the core material Is preferably 0.1 or more, more preferably 0.3 or more, preferably 6 or less, more preferably 5 or less, and still more preferably 2 or less.
  • the ratio is not less than the lower limit and not more than the upper limit, the connection resistance is effectively reduced, Corrosion is less likely to occur.
  • the conductive particles according to the present invention preferably include an insulating material disposed on the outer surface of the second conductive portion.
  • an insulating material disposed on the outer surface of the second conductive portion.
  • an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes.
  • the insulating particles between the conductive portions of the conductive particles and the electrodes can be easily removed by pressurizing the conductive particles with the two electrodes.
  • the insulating material is an insulating particle because the insulating material can be more easily removed when the electrodes are crimped.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • the outer surface of the second conductive part and the surface of the insulating particles may each be coated with a compound having a reactive functional group.
  • the outer surface of the second conductive part and the surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
  • the average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the conductive particles and the use of the conductive particles.
  • the average diameter (average particle diameter) of the insulating material is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average diameter of the insulating material is not less than the above lower limit, the conductive layers of the plurality of conductive particles are difficult to contact when the conductive particles are dispersed in the binder resin.
  • the average diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrodes and the conductive particles when the electrodes are connected. There is no need for heating.
  • the “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter).
  • the average diameter of the insulating material is obtained using a particle size distribution measuring device or the like.
  • the antioxidant is not particularly limited.
  • examples of the antioxidant include nitrogen-containing compounds.
  • the nitrogen-containing compound include benzotriazole compounds, imidazole compounds, thiazole compounds, triazines, 2-mercaptopyrimidine, indole, pyrrole, adenine, thiobarbituric acid, thiouracil, rhodanine, thiozolidinethione, 1-phenyl-2-tetrazoline- Examples include 5-thione and 2-mercaptopyridine.
  • the said antioxidant only 1 type may be used and 2 or more types may be used together.
  • benzotriazole compounds include benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole, 5-methyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, and benzotriazole. A butyl ester etc. are mentioned.
  • the imidazole compound include imidazole and benzimidazole.
  • the thiazole compound include thiazole or benzothiazole.
  • the conductive material according to the present invention includes the conductive particles described above and a binder resin.
  • the conductive particles are preferably used by being dispersed in a binder resin, and are preferably used as a conductive material by being dispersed in a binder resin.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a conductive material for circuit connection.
  • the binder resin is not particularly limited.
  • As the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably It is 99.99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. Hereinafter, it is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection object members using the conductive particles or using a conductive material containing the conductive particles and a binder resin.
  • connection structure includes a first connection target member, a second connection target member, and a connection part connecting the first and second connection target members, and the material of the connection part has been described above.
  • the connection structure is preferably a conductive particle or a conductive material including the above-described conductive particles and a binder resin. It is preferable that the connection portion is formed of the above-described conductive particles or a conductive material containing the above-described conductive particles and a binder resin. In the case where conductive particles are used, the connection portion itself is conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • FIG. 3 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
  • a connection structure 51 shown in FIG. 3 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53.
  • the connection part 54 is formed of a conductive material including the conductive particles 1. It is preferable that the conductive material has thermosetting properties and the connection portion 54 is formed by thermosetting the conductive material. It is preferable that the connection part 54 is a thermosetting material of a conductive material.
  • the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 1A or the like may be used.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • the manufacturing method of the connection structure is not particularly limited.
  • the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the connection target member is preferably an electronic component.
  • the conductive particles are preferably used for electrical connection of electrodes in an electronic component.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a silver electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Adhering Step of Core Material Divinylbenzene copolymer resin particles having a particle size of 3.0 ⁇ m (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) were prepared as base material particles A.
  • the substrate particles A were etched and washed with water. Next, the base particle A was added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash
  • the base particle A to which palladium was adhered was stirred and dispersed in 300 mL of ion exchange water for 3 minutes to obtain a dispersion.
  • 1 g of alumina particle slurry (average particle diameter 150 nm, Mohs hardness 9) was added to the dispersion over 3 minutes to obtain a suspension of substrate particles A to which the core material was adhered.
  • Copper layer forming step Copper sulfate (pentahydrate) 40 g / L, ethylenediaminetetraacetic acid (EDTA) 100 g / L, sodium gluconate 50 g / L, formaldehyde 25 g / L, and pH 10
  • EDTA ethylenediaminetetraacetic acid
  • the electroless plating solution was gradually added to the suspension of the base particle A, and electroless copper plating was performed while stirring at 50 ° C. Thus, copper plating particles having a copper layer provided on the surface were obtained. The thickness of the copper layer was 125 nm.
  • Palladium layer forming step 10 g of the obtained copper plating particles were dispersed in 500 mL of ion-exchanged water using an ultrasonic processor to obtain a particle suspension.
  • the electroless plating solution was gradually added to perform electroless palladium plating.
  • the amount of electroless plating solution added was adjusted so that the thickness of the palladium layer was 100 nm.
  • the obtained palladium-plated resin particles were washed with distilled water and methanol and then vacuum-dried.
  • the electroconductive particle by which the copper layer was provided in the surface of the resin particle and the palladium layer was provided in the surface of the copper layer was obtained.
  • the thickness of the palladium layer was 25 nm.
  • Example 2 Conductive particles were obtained in the same manner as in Example 1 except that the alumina particles were changed to titanium dioxide particles (average particle diameter 150 nm, Mohs hardness 7).
  • Example 3 Conductive particles were obtained in the same manner as in Example 1 except that the alumina particles were changed to tungsten carbide particles (average particle diameter 150 nm, Mohs hardness 9).
  • Example 4 The particles obtained in Example 1 were subjected to rust prevention treatment to obtain conductive particles. Benzotriazole was used as a rust inhibitor.
  • Example 5 Conductive particles were obtained in the same manner as Example 4. Using the obtained conductive particles, an adhesion process of insulating particles was performed.
  • the insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
  • Conductive particles 10 g obtained by the same manner as in Example 4 to which insulating particles were not attached were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 ⁇ m mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
  • Example 6 to 19 The particle diameter of the base particle, the type of core substance, the Mohs hardness and average diameter of the material, the main metal of the first conductive part (copper layer), the Cu content, the thickness and the Vickers hardness, and the second conductivity The content and thickness of the main metal of the part (palladium layer), Pd, presence / absence of an insulating material, presence / absence of rust prevention treatment, and the number of protrusions in the conductive particles were set as shown in Table 1 below. Except for the above, conductive particles of Examples 6 to 19 were obtained in the same manner as Example 1.
  • a transparent glass substrate having an ITO electrode pattern with an L / S of 20 ⁇ m / 20 ⁇ m on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern with L / S of 20 ⁇ m / 20 ⁇ m on the lower surface was prepared.
  • the anisotropic conductive paste immediately after production was applied to a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. It hardened
  • Connection resistance is 2.0 ⁇ or less ⁇ : Connection resistance exceeds 2.0 ⁇ , 3.0 ⁇ or less ⁇ : Connection resistance exceeds 3.0 ⁇ , 5.0 ⁇ or less ⁇ : Connection resistance exceeds 5.0 ⁇
  • connection resistance after reliability test (conduction reliability) The connection structure obtained by the above (2) evaluation of the initial connection resistance was left under the conditions of 85 ° C. and relative humidity of 85%. 150 hours after the start of standing, the connection resistance between the electrodes was measured by the 4-terminal method in the same manner as in the above (2) evaluation of the initial connection resistance. The connection resistance after the reliability test was determined according to the following criteria.
  • the obtained resin composition was applied to a 50 ⁇ m-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film.
  • the thickness of the obtained anisotropic conductive film was 12 ⁇ m.
  • the obtained anisotropic conductive film was cut into a size of 5 mm ⁇ 5 mm.
  • a two-layer flexible printed board width: 2 cm, length: 1 cm) having a Ni base Au electrode was bonded after being aligned so that the electrodes overlap each other.
  • the laminated body of the glass substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure.
  • a two-layer flexible printed board in which a Ni base and Au are sequentially formed on a polyimide film was used.
  • Counting the number of particles with plating cracks In the connection part of the obtained connection structure, the number of conductive particles in which plating cracks in 1000 conductive particles were confirmed was counted.
  • the plating crack was determined according to the following criteria.
  • connection resistance after the above (3) reliability test the obtained connection structure was left under conditions of 85 ° C. and relative humidity 85%. Even after obtaining the connection structure after leaving the conductive particles before obtaining the connection structure under the conditions of 85 ° C. and 85% relative humidity, the above-mentioned (3) after the reliability test The same tendency as the evaluation result of the connection resistance was observed.
  • connection resistance after (3) reliability test between Example 7 and Example 13 the amount of change in connection resistance in Example 7 is smaller than that in Example 13 and the conduction reliability is excellent. It was. This result is mainly influenced by the ratio (the total thickness of the first conductive portion and the second conductive portion / the average diameter of the core substance).
  • Example 1 was lower in connection resistance and superior in conductivity than Example 10.
  • the amount of change in connection resistance is smaller in Example 1 than in Example 10, and the conduction reliability is increased. It was excellent.
  • Example 8 had a lower connection resistance and superior conductivity than Example 9.
  • the change in connection resistance in Example 8 is smaller than that in Example 9 and conduction reliability is improved. It was excellent.
  • Example 8 Regarding the evaluation results of the connection resistance after (3) reliability test between Example 1 and Example 8, the amount of change in connection resistance is smaller in Example 1 than in Example 8, and the conduction reliability is excellent. It was. Regarding the evaluation results of (2) initial connection resistance between Example 8 and Example 12, Example 8 had a lower connection resistance than Example 12 and was excellent in conductivity. In addition, with regard to the evaluation results of the connection resistance after (3) reliability test between Example 8 and Example 12, Example 8 has a smaller amount of change in connection resistance than that of Example 12, and the conduction reliability. It was excellent. These results are mainly influenced by the average diameter of the core material.
  • Example 1 was lower in connection resistance and superior in conductivity than Example 6.
  • the amount of change in connection resistance in Example 1 is smaller than that in Example 6 and conduction reliability is improved. It was excellent.
  • Example 6 was lower in connection resistance than Example 7 and excellent in conductivity.
  • the amount of change in connection resistance is smaller in Example 6 than in Example 7, and the conduction reliability is increased. It was excellent.
  • the amount of change in connection resistance in Example 7 is smaller than that in Example 13 and the conduction reliability is excellent. It was.

Abstract

The present invention provides conductive particles which are capable of reducing the connection resistance if used for electrical connection between electrodes, and which enables a conductive part to be less susceptible to corrosion. Each one of conductive particles according to the present invention is provided with: a base particle; a first conductive part containing copper; a second conductive part containing palladium; and a plurality of core matters. The first conductive part is arranged on the outer surface of the base particle, and the second conductive part is arranged on the outer surface of the first conductive part. The outer surface of the second conductive part is provided with a plurality of projections, and the core matters are arranged inside the projections of the second conductive part. The outer surface of the second conductive part bulges due to the core matters. The material of the core matters is different from nickel, and has a Mohs hardness of more than 5.

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials, and connection structures
 本発明は、基材粒子と、該基材粒子の外表面上に配置された導電部とを有する導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles having base particles and conductive portions arranged on the outer surface of the base particles. The present invention also relates to a conductive material and a connection structure using the conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.
 上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。 In order to obtain various connection structures, for example, the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
 上記導電性粒子の一例として、下記の特許文献1には、基材粒子と、該基材粒子の外表面上に設けられた銅層と、該銅層の外表面上に設けられたパラジウム層とを備える導電性粒子が開示されている。上記パラジウム層の平均厚みは5nm以上である。上記パラジウム層は、還元剤としてヒドラジン化合物を含むめっき液を用いて形成されている。 As an example of the conductive particles, Patent Document 1 listed below includes base material particles, a copper layer provided on the outer surface of the base material particle, and a palladium layer provided on the outer surface of the copper layer. The electroconductive particle provided with these is disclosed. The average thickness of the palladium layer is 5 nm or more. The palladium layer is formed using a plating solution containing a hydrazine compound as a reducing agent.
 また、特許文献1の実施例8~10では、パラジウム層の外表面に複数の突起を形成した導電性粒子が開示されている。突起を形成するために、芯物質として、金属ニッケル粒子が用いられている。 In Examples 8 to 10 of Patent Document 1, conductive particles having a plurality of protrusions formed on the outer surface of the palladium layer are disclosed. In order to form protrusions, metallic nickel particles are used as a core material.
特開2011-204531号公報JP 2011-204531 A
 特許文献1に記載のような従来の導電性粒子では、導電性粒子が電極に十分に接触しないことがある。このことによって、電極間の接続抵抗が高くなることがある。特に、導電部及び電極の表面には、酸化膜が形成されていることが多い。この酸化膜が導電部と電極との接触を妨げることがある。 In the conventional conductive particles as described in Patent Document 1, the conductive particles may not sufficiently contact the electrode. This may increase the connection resistance between the electrodes. In particular, an oxide film is often formed on the surfaces of the conductive portion and the electrode. This oxide film may interfere with the contact between the conductive portion and the electrode.
 さらに、長期間保管された導電性粒子を用いて電極間を接続した接続構造体において、接続抵抗が高くなることがある。さらに、導電性粒子を用いて電極間が接続された接続構造体が長期間保管又は長期間使用されたときに、接続抵抗が高くなることがある。これは、酸等の影響によって導電性粒子の腐食が進行するためである。 Furthermore, in a connection structure in which electrodes are connected using conductive particles stored for a long time, the connection resistance may be increased. Furthermore, when a connection structure in which electrodes are connected using conductive particles is stored or used for a long time, the connection resistance may be increased. This is because the corrosion of the conductive particles proceeds due to the influence of acid or the like.
 本発明の目的は、電極間を電気的に接続した場合に、接続抵抗を低くすることができ、更に、導電部の腐食を生じ難くすることができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles that can reduce the connection resistance when the electrodes are electrically connected, and can further prevent corrosion of the conductive portion. Another object of the present invention is to provide a conductive material and a connection structure using the conductive particles.
 本発明の広い局面によれば、基材粒子と、銅を含む第1の導電部と、パラジウムを含む第2の導電部と、複数の芯物質とを備え、前記基材粒子の外表面上に前記第1の導電部が配置されており、前記第1の導電部の外表面上に前記第2の導電部が配置されており、前記第2の導電部が外表面に複数の突起を有し、前記芯物質が、前記第2の導電部の前記突起の内側に配置されており、前記芯物質によって前記第2の導電部の外表面が隆起されており、前記芯物質の材料がニッケルとは異なり、前記芯物質の材料のモース硬度が5を超える、導電性粒子が提供される。 According to a wide aspect of the present invention, on the outer surface of the base particle, the base particle includes a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances. The first conductive portion is disposed on the outer surface of the first conductive portion, the second conductive portion is disposed on the outer surface of the first conductive portion, and the second conductive portion has a plurality of protrusions on the outer surface. The core material is disposed inside the protrusion of the second conductive portion, and the outer surface of the second conductive portion is raised by the core material, and the material of the core material is Unlike nickel, conductive particles are provided in which the material of the core material has a Mohs hardness of greater than 5.
 前記第1の導電部と前記第2の導電部との合計の厚みの前記芯物質の平均径に対する比が0.1以上、6以下であることが好ましい。前記第1の導電部の厚みが、20nm以上、300nm以下であることが好ましい。前記芯物質の平均径が20nm以上、1000nm以下であることが好ましい。前記第2の導電部の厚みが3nm以上、40nm以下であることが好ましい。前記第1の導電部のビッカース硬度が100未満であることが好ましい。前記芯物質の材料のモース硬度が6以上であることが好ましい。 The ratio of the total thickness of the first conductive portion and the second conductive portion to the average diameter of the core substance is preferably 0.1 or more and 6 or less. It is preferable that the thickness of the first conductive portion is 20 nm or more and 300 nm or less. It is preferable that the average diameter of the core substance is 20 nm or more and 1000 nm or less. The thickness of the second conductive part is preferably 3 nm or more and 40 nm or less. It is preferable that the first conductive portion has a Vickers hardness of less than 100. The Mohs hardness of the core material is preferably 6 or more.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a wide aspect of the present invention, there is provided a conductive material including the above-described conductive particles and a binder resin.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電性粒であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connection portion connecting the second connection target member, the material of the connection portion is the conductive particles described above, or a conductive material containing the conductive particles and a binder resin, A connection structure is provided in which the first electrode and the second electrode are electrically connected by the conductive particles.
 本発明に係る導電性粒子は、基材粒子と、銅を含む第1の導電部と、パラジウムを含む第2の導電部と、複数の芯物質とを備え、上記基材粒子の外表面上に上記第1の導電部が配置されており、上記第1の導電部の外表面上に上記第2の導電部が配置されており、上記第2の導電部が外表面に複数の突起を有し、上記芯物質が、上記第2の導電部の上記突起の内側に配置されており、上記芯物質によって上記第2の導電部の外表面が隆起されており、上記芯物質の材料がニッケルとは異なり、上記芯物質の材料のモース硬度が5を超えるので、電極間を電気的に接続した場合に、接続抵抗を低くすることができ、更に、導電部の腐食を生じ難くすることができる。 The conductive particle according to the present invention includes a base particle, a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances, on the outer surface of the base particle. The first conductive portion is disposed on the outer surface of the first conductive portion, and the second conductive portion has a plurality of protrusions on the outer surface. The core material is disposed inside the protrusion of the second conductive portion, the outer surface of the second conductive portion is raised by the core material, and the material of the core material is Unlike nickel, the material of the core material has a Mohs hardness of more than 5, so that when the electrodes are electrically connected, the connection resistance can be lowered, and further, corrosion of the conductive part is difficult to occur. Can do.
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention. 図3は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (導電性粒子)
 本発明に係る導電性粒子は、基材粒子と、銅を含む第1の導電部と、パラジウムを含む第2の導電部と、複数の芯物質とを備える。本発明に係る導電性粒子では、上記基材粒子の外表面上に上記第1の導電部が配置されており、上記第1の導電部の外表面上に上記第2の導電部が配置されている。本発明に係る導電性粒子では、上記第2の導電部が外表面に、複数の突起を有する。本発明に係る導電性粒子では、上記芯物質が、上記第2の導電部の上記突起の内側に配置されており、上記芯物質によって上記第2の導電部の外表面が隆起されている。上記芯物質により上記第2の導電部の外表面が隆起されていることによって、上記突起が形成されている。本発明に係る導電性粒子では、上記芯物質の材料がニッケルとは異なり、上記芯物質の材料のモース硬度が5を超える。
(Conductive particles)
The conductive particles according to the present invention include base particles, a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances. In the conductive particles according to the present invention, the first conductive portion is disposed on the outer surface of the base particle, and the second conductive portion is disposed on the outer surface of the first conductive portion. ing. In the conductive particles according to the present invention, the second conductive portion has a plurality of protrusions on the outer surface. In the conductive particle according to the present invention, the core substance is disposed inside the protrusion of the second conductive part, and the outer surface of the second conductive part is raised by the core substance. The protrusion is formed by the outer surface of the second conductive portion being raised by the core substance. In the conductive particles according to the present invention, the material of the core substance is different from nickel, and the Mohs hardness of the material of the core substance exceeds 5.
 本発明に係る上述した構成によって、本発明に係る導電性粒子を用いて電極間を電気的に接続した場合に、接続抵抗を低くすることができる。電極の表面には、酸化膜が形成されていることが多い。本発明に係る導電性粒子の使用により、電極間の接続時に、突起が酸化膜を貫通し、導電部と電極とを十分に接触させることができる。さらに、本発明に係る上述した構成によって、導電部の腐食を生じ難くすることができる。特に、酸の存在下で導電部の腐食を生じ難くすることができる。導電性粒子が酸の存在下に晒されても、導電部の腐食が生じ難いことから、導電性粒子の性能を高く維持することができる。長期間保管された導電性粒子を用いて電極間を接続した接続構造体において、接続抵抗を低くすることができる。さらに、導電性粒子を用いて電極間が接続された接続構造体が長期間保管又は長期間使用されたときに、接続抵抗が高くなるのを防ぐことができる。本発明では、導通信頼性を高めることができる。 With the above-described configuration according to the present invention, when the electrodes are electrically connected using the conductive particles according to the present invention, the connection resistance can be lowered. An oxide film is often formed on the surface of the electrode. By using the conductive particles according to the present invention, when the electrodes are connected, the protrusion penetrates the oxide film, and the conductive part and the electrode can be sufficiently brought into contact with each other. Furthermore, the above-described configuration according to the present invention makes it difficult to cause corrosion of the conductive portion. Particularly, corrosion of the conductive part can be made difficult to occur in the presence of an acid. Even when the conductive particles are exposed to the presence of an acid, the conductive portion is hardly corroded, so that the performance of the conductive particles can be maintained high. In a connection structure in which electrodes are connected using conductive particles stored for a long time, the connection resistance can be lowered. Furthermore, when the connection structure in which the electrodes are connected using conductive particles is stored for a long time or used for a long time, it is possible to prevent the connection resistance from increasing. In the present invention, conduction reliability can be improved.
 なお、芯物質がニッケル粒子であると、酸による腐食が生じやすい。たとえ、ニッケル粒子が導電部により覆われていたとしても、導電部にはわずかなき裂やピンホールが存在することがあるため、ニッケル粒子の腐食が生じやすい。これに対して、本発明では、芯物質がニッケルではないことによっても、腐食を抑えることができる。 In addition, when the core material is nickel particles, corrosion due to acid tends to occur. Even if the nickel particles are covered with the conductive portion, the conductive portions may have slight cracks or pinholes, and thus the nickel particles are likely to be corroded. On the other hand, in the present invention, corrosion can be suppressed even when the core material is not nickel.
 以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより、本発明を明らかにする。なお、参照した図面では、大きさ及び厚みなどは、図示の便宜上、実際の大きさ及び厚みから適宜変更している。 Hereinafter, the present invention will be clarified by describing specific embodiments and examples of the present invention with reference to the drawings. In the referenced drawings, the size and thickness are appropriately changed from the actual size and thickness for convenience of illustration.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示すように、導電性粒子1は、基材粒子2と、銅を含む第1の導電部3(導電層)と、パラジウムを含む第2の導電部4(導電層)と、複数の芯物質5と、絶縁物質6を備える。導電性粒子1では、多層の導電部が形成されている。 As shown in FIG. 1, the conductive particles 1 include substrate particles 2, a first conductive portion 3 (conductive layer) containing copper, a second conductive portion 4 (conductive layer) containing palladium, and a plurality of conductive particles 1. Core material 5 and insulating material 6. In the conductive particle 1, a multilayer conductive portion is formed.
 第1の導電部3は、基材粒子2の外表面上に配置されている。第1の導電部3は、基材粒子2に接している。基材粒子2と第2の導電部4との間に、第1の導電部3が配置されている。第2の導電部4は、第1の導電部3の外表面上に配置されている。第2の導電部4は、第1の導電部3に接している。導電性粒子1は、基材粒子2の外表面が第1の導電部3及び第2の導電部4により被覆された被覆粒子である。 The first conductive part 3 is disposed on the outer surface of the base particle 2. The first conductive portion 3 is in contact with the base particle 2. Between the base particle 2 and the second conductive part 4, the first conductive part 3 is arranged. The second conductive portion 4 is disposed on the outer surface of the first conductive portion 3. The second conductive part 4 is in contact with the first conductive part 3. The conductive particle 1 is a coated particle in which the outer surface of the base particle 2 is covered with the first conductive part 3 and the second conductive part 4.
 導電性粒子1は、第2の導電部4の外表面に複数の突起1aを有する。第1の導電部3は外表面に、複数の突起3aを有する。第2の導電部4は外表面に、複数の突起4aを有する。突起1a,3a,4aは複数である。複数の芯物質5は、基材粒子2の外表面上に配置されている。複数の芯物質5は、第1の導電部3の内側に配置されている。複数の芯物質5は、第1の導電部3及び第2の導電部4の内側に埋め込まれている。芯物質5は、突起1a,3a,4aの内側に配置されている。第1の導電部3及び第2の導電部4は、複数の芯物質5を被覆している。第2の導電部4は、第1の導電部3を介して、複数の芯物質5を被覆している。複数の芯物質5により、第1の導電部3及び第2の導電部4の外表面が隆起されており、突起1a,3a,4aが形成されている。 The conductive particle 1 has a plurality of protrusions 1 a on the outer surface of the second conductive portion 4. The first conductive portion 3 has a plurality of protrusions 3a on the outer surface. The second conductive portion 4 has a plurality of protrusions 4a on the outer surface. There are a plurality of protrusions 1a, 3a, 4a. The plurality of core substances 5 are disposed on the outer surface of the base particle 2. The plurality of core materials 5 are disposed inside the first conductive portion 3. The plurality of core materials 5 are embedded inside the first conductive part 3 and the second conductive part 4. The core substance 5 is disposed inside the protrusions 1a, 3a, 4a. The first conductive part 3 and the second conductive part 4 cover a plurality of core substances 5. The second conductive portion 4 covers a plurality of core substances 5 via the first conductive portion 3. The outer surfaces of the first conductive portion 3 and the second conductive portion 4 are raised by the plurality of core materials 5 to form protrusions 1a, 3a, 4a.
 なお、第2の導電部4の外表面は防錆処理されている。導電性粒子1は、第2の導電部4の外表面上に、図示しない防錆膜が形成されている。 Note that the outer surface of the second conductive portion 4 is rust-proofed. In the conductive particles 1, a rust preventive film (not shown) is formed on the outer surface of the second conductive portion 4.
 導電性粒子1は、第2の導電部4の外表面上に配置された絶縁物質6を有する。第2の導電部4の外表面の少なくとも一部の領域が、絶縁物質6により被覆されている。絶縁物質6は、絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、第2の導電部の外表面上に配置された絶縁物質を有していてもよい。 The conductive particles 1 have an insulating material 6 disposed on the outer surface of the second conductive portion 4. At least a part of the outer surface of the second conductive portion 4 is covered with the insulating material 6. The insulating substance 6 is made of an insulating material and is an insulating particle. Thus, the electroconductive particle which concerns on this invention may have the insulating substance arrange | positioned on the outer surface of a 2nd electroconductive part.
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing conductive particles according to the second embodiment of the present invention.
 図2に示すように、導電性粒子1Aは、基材粒子2と、銅を含む第1の導電部3A(導電層)と、パラジウムを含む第2の導電部4A(導電層)と、複数の芯物質5と、絶縁物質6とを備える。 As shown in FIG. 2, the conductive particle 1 </ b> A includes base material particles 2, a first conductive part 3 </ b> A (conductive layer) containing copper, a second conductive part 4 </ b> A (conductive layer) containing palladium, and a plurality of conductive particles 1 </ b> A. Core material 5 and insulating material 6.
 第1の導電部3Aは、基材粒子2の外表面上に配置されている。基材粒子2と第2の導電部4Aとの間に、第1の導電部3Aが配置されている。第2の導電部4Aは、第1の導電部3Aの外表面上に配置されている。 The first conductive part 3 </ b> A is disposed on the outer surface of the base particle 2. Between the base particle 2 and the second conductive portion 4A, the first conductive portion 3A is disposed. The second conductive portion 4A is disposed on the outer surface of the first conductive portion 3A.
 導電性粒子1Aは、第2の導電部4Aの外表面に複数の突起1Aaを有する。第1の導電部3Aは外表面に、突起を有さない。第1の導電部3Aの外表面形状は、球状である。第2の導電部4Aは外表面に、複数の突起4Aaを有する。突起1Aa,4Aaは複数である。複数の芯物質5は、第1の導電部3Aの外表面上に配置されている。複数の芯物質5は、第1の導電部3Aの外側に配置されている。複数の芯物質5は、第2の導電部4Aの内側に配置されている。複数の芯物質5は、第2の導電部4Aの内側に埋め込まれている。芯物質5は、突起1Aa,4Aaの内側に配置されている。第2の導電部4Aは、複数の芯物質5を被覆している。複数の芯物質5により、第2の導電部4Aの外表面が隆起されており、突起1Aa,4Aaが形成されている。このように、芯物質は、第1の導電部の外側に配置されていてもよい。芯物質は、第2の導電部の突起の内側に配置されていれば、その配置位置は特に限定されない。芯物質は、第2の導電部の内部又は内側に配置されていてもよい。 The conductive particle 1A has a plurality of protrusions 1Aa on the outer surface of the second conductive portion 4A. The first conductive portion 3A has no protrusion on the outer surface. The outer surface shape of the first conductive portion 3A is spherical. The second conductive portion 4A has a plurality of protrusions 4Aa on the outer surface. There are a plurality of protrusions 1Aa and 4Aa. The plurality of core materials 5 are disposed on the outer surface of the first conductive portion 3A. The plurality of core materials 5 are disposed outside the first conductive portion 3A. The plurality of core materials 5 are arranged inside the second conductive portion 4A. The plurality of core materials 5 are embedded inside the second conductive portion 4A. The core substance 5 is disposed inside the protrusions 1Aa and 4Aa. The second conductive portion 4 </ b> A covers a plurality of core materials 5. The outer surface of the second conductive portion 4A is raised by the plurality of core materials 5, and the protrusions 1Aa and 4Aa are formed. Thus, the core substance may be disposed outside the first conductive portion. The arrangement position of the core substance is not particularly limited as long as it is arranged inside the protrusion of the second conductive portion. The core substance may be disposed inside or inside the second conductive part.
 導電性粒子1Aは、第2の導電部4Aの外表面上に配置された絶縁物質6を有する。第2の導電部4Aの外表面の少なくとも一部の領域が、絶縁物質6により被覆されている。 The conductive particle 1A has an insulating material 6 disposed on the outer surface of the second conductive portion 4A. At least a part of the outer surface of the second conductive portion 4 </ b> A is covered with the insulating material 6.
 以下、導電性粒子の詳細を説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 Hereinafter, details of the conductive particles will be described. In the following description, “(meth) acryl” means one or both of “acryl” and “methacryl”, and “(meth) acrylate” means one or both of “acrylate” and “methacrylate”. means.
 [基材粒子]
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアシェル粒子であってもよい。
[Base material particles]
Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particles may be core-shell particles.
 上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが更に好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、電極間の電気的な接続により一層適した導電性粒子が得られる。 The base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, conductive particles more suitable for electrical connection between the electrodes can be obtained.
 上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の接続抵抗がより一層低くなる。 When connecting the electrodes using the conductive particles, the conductive particles are compressed by placing the conductive particles between the electrodes and then pressing them. When the substrate particles are resin particles or organic-inorganic hybrid particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the connection resistance between electrodes becomes still lower.
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene Oxide, polyacetal, polyimide, polyamideimide, polyether ether Tons, polyethersulfone, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof. Resin for forming the resin particles can be designed and synthesized, and the hardness of the base particles can be easily controlled within a suitable range, which is suitable for conductive materials and having physical properties at the time of compression. Is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom-containing (meth) acrylates; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane-containing monomers such as divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Can be mentioned.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 In the case where the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. . The inorganic substance is preferably not a metal. The particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of effectively reducing the connection resistance between the electrodes, the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
 上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。 Examples of the material for forming the organic core include the resin for forming the resin particles described above.
 上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles. The material for forming the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of a silane alkoxide.
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5μm以下である。特に好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電部の厚みを厚くしても、小さい導電性粒子が得られる。 The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, further preferably 1 μm or more, preferably 100 μm or less, more preferably 20 μm or less, and even more preferably 5 μm or less. . Particularly preferably, it is 3 μm or less. When the particle diameter of the substrate particles is not less than the above lower limit and not more than the above upper limit, even when the distance between the electrodes is small and the thickness of the conductive portion is increased, small conductive particles can be obtained.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
 [導電部]
 上記導電性粒子は、導電部として、銅を含む第1の導電部を備える。第1の導電部には、金属として、銅のみを用いた場合だけでなく、銅と他の金属とを用いた場合も含まれる。上記銅層は、銅合金層であってもよい。
[Conductive part]
The said electroconductive particle is equipped with the 1st electroconductive part containing copper as an electroconductive part. The first conductive portion includes not only the case where only copper is used as the metal, but also the case where copper and another metal are used. The copper layer may be a copper alloy layer.
 上記第1の導電部における銅以外の金属としては、金、銀、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、ニッケル、インジウム、パラジウム、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及び錫ドープ酸化インジウム(ITO)等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of metals other than copper in the first conductive part include gold, silver, platinum, zinc, iron, tin, lead, aluminum, cobalt, nickel, indium, palladium, chromium, titanium, antimony, bismuth, thallium, germanium, Examples thereof include cadmium, silicon, tungsten, molybdenum, and tin-doped indium oxide (ITO). As for these metals, only 1 type may be used and 2 or more types may be used together.
 上記第1の導電部は、銅を主金属として含むことが好ましい。上記第1の導電部全体100重量%中、銅の含有量は50重量%以上であることが好ましい。上記第1の導電部全体100重量%中、銅の含有量は好ましくは65重量%以上、より好ましくは80重量%以上、更に好ましくは90重量%以上、特に好ましくは93重量%以上である。銅の含有量が上記下限以上であると、導電性粒子の柔軟性が適度に高くなり、電極間の接続抵抗がより一層低くなる。 The first conductive part preferably contains copper as a main metal. The content of copper is preferably 50% by weight or more in 100% by weight of the entire first conductive part. The copper content is preferably 65% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, and particularly preferably 93% by weight or more, in 100% by weight of the entire first conductive part. When the copper content is not less than the above lower limit, the flexibility of the conductive particles is appropriately increased, and the connection resistance between the electrodes is further reduced.
 上記第1の導電部の厚みは、好ましくは20nm以上、より好ましくは50nm以上、更に好ましくは80nm以上であり、好ましくは300nm以下、より好ましくは200nm以下、更に好ましくは150nm以下である。上記第1の導電部の厚みが上記下限以上及び上記上限以下であると、接続抵抗が効果的に低くなり、導電部の腐食がより一層生じ難くなる。 The thickness of the first conductive portion is preferably 20 nm or more, more preferably 50 nm or more, still more preferably 80 nm or more, preferably 300 nm or less, more preferably 200 nm or less, still more preferably 150 nm or less. When the thickness of the first conductive portion is not less than the above lower limit and not more than the above upper limit, the connection resistance is effectively lowered, and corrosion of the conductive portion is further less likely to occur.
 上記第1の導電部のビッカース硬度は、好ましくは20以上、より好ましくは40以上である。第1の導電部のビッカース硬度が上記下限以上であると、加圧される際に導電部の割れが少なくなり、導通信頼性及び接続信頼性の向上に繋がる。上記第1の導電部のビッカース硬度は、好ましくは100未満、より好ましくは70以下である。第1の導電部のビッカース硬度が上記上限以下であると、加圧される際に導電部の割れがかなり少なくなり、導通信頼性及び接続信頼性の向上に繋がる。 The Vickers hardness of the first conductive part is preferably 20 or more, more preferably 40 or more. When the Vickers hardness of the first conductive portion is equal to or higher than the lower limit, cracking of the conductive portion is reduced when the pressure is applied, leading to improvement in conduction reliability and connection reliability. The Vickers hardness of the first conductive part is preferably less than 100, more preferably 70 or less. When the Vickers hardness of the first conductive portion is equal to or lower than the above upper limit, cracking of the conductive portion is considerably reduced when pressed, leading to improvement in conduction reliability and connection reliability.
 上記導電性粒子は、導電部として、銅を含む第1の導電部と、パラジウムを含む第2の導電部とを備える。第2の導電部には、金属として、パラジウムのみを用いた場合だけでなく、パラジウムと他の金属とを用いた場合も含まれる。上記パラジウム層は、パラジウム合金層であってもよい。上記第2の導電部は、導電性粒子における導電性部分の最表面(最も外側の表面)に配置されていることが好ましい。 The conductive particles include a first conductive part containing copper and a second conductive part containing palladium as a conductive part. The second conductive portion includes not only the case where only palladium is used as the metal but also the case where palladium and another metal are used. The palladium layer may be a palladium alloy layer. It is preferable that the said 2nd electroconductive part is arrange | positioned at the outermost surface (outermost surface) of the electroconductive part in electroconductive particle.
 上記第2の導電部における金以外の金属としては、例えば、ニッケル、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、ニッケル、インジウム、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及び錫ドープ酸化インジウム(ITO)等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the metal other than gold in the second conductive part include nickel, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, nickel, indium, chromium, titanium, antimony, bismuth, Examples include thallium, germanium, cadmium, silicon, tungsten, molybdenum, and tin-doped indium oxide (ITO). As for these metals, only 1 type may be used and 2 or more types may be used together.
 上記第2の導電部はパラジウムを主金属として含むことが好ましい。上記第2の導電部全体100重量%中、パラジウムの含有量は50重量%以上であることが好ましい。上記第2の導電部全体100重量%中、パラジウムの含有量は好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは99.9重量%以上である。パラジウムの含有量が上記下限以上であると、電極と導電性粒子とがより一層適度に接触し、電極間の接続抵抗がより一層低くなる。 The second conductive part preferably contains palladium as a main metal. The content of palladium is preferably 50% by weight or more in 100% by weight of the entire second conductive part. The content of palladium is preferably 90% by weight or more, more preferably 95% by weight or more, and further preferably 99.9% by weight or more in 100% by weight of the entire second conductive part. When the palladium content is not less than the above lower limit, the electrode and the conductive particles are more appropriately brought into contact with each other, and the connection resistance between the electrodes is further reduced.
 上記第2の導電部の厚みは、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは10nm以上であり、好ましくは45nm以下、より好ましくは40nm以下、更に好ましくは25nm以下である。上記第2の導電部の厚みが上記下限以上及び上記上限以下であると、接続抵抗が効果的に低くなり、導電部の腐食がより一層生じ難くなる。 The thickness of the second conductive part is preferably 3 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, preferably 45 nm or less, more preferably 40 nm or less, still more preferably 25 nm or less. When the thickness of the second conductive portion is not less than the above lower limit and not more than the above upper limit, the connection resistance is effectively lowered, and corrosion of the conductive portion is further less likely to occur.
 上記第2の導電部は外表面に複数の突起を有する。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電性の突起を有する導電性粒子の使用により、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗がより一層低くなる。さらに、導電性粒子が表面に絶縁物質を有する場合、又は導電性粒子が樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁物質又は樹脂が効果的に排除される。このため、電極間の導通信頼性が高くなる。 The second conductive part has a plurality of protrusions on the outer surface. An oxide film is often formed on the surface of the electrode connected by the conductive particles. By using conductive particles having conductive protrusions, the oxide particles are effectively eliminated by the protrusions by placing the conductive particles between the electrodes and then pressing them. For this reason, an electrode and electroconductive particle can be made to contact still more reliably, and the connection resistance between electrodes becomes still lower. Further, when the conductive particles have an insulating material on the surface, or when the conductive particles are dispersed in the resin and used as a conductive material, the conductive particles and the electrodes are insulated by the protrusions of the conductive particles. Substances or resins are effectively excluded. For this reason, the conduction | electrical_connection reliability between electrodes becomes high.
 上記突起は複数である。上記導電性粒子1個当たりの上記第2の導電部の外表面の突起は、好ましくは3個以上、より好ましくは5個以上、更に好ましくは15個以上、特に好ましくは20個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。 There are a plurality of protrusions. The number of protrusions on the outer surface of the second conductive portion per one of the conductive particles is preferably 3 or more, more preferably 5 or more, still more preferably 15 or more, and particularly preferably 20 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle diameter of the conductive particles.
 複数の上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average height of the plurality of protrusions is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average height of the protrusions is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is effectively reduced.
 上記突起の高さは、導電性粒子の中心と突起の先端とを結ぶ線(図1に示す破線L1)上における、突起が無いと想定した場合の導電部の仮想線(図1に示す破線L2)上(突起が無いと想定した場合の球状の導電性粒子の外表面上)から突起の先端までの距離を示す。すなわち、図1においては、破線L1と破線L2との交点から突起の先端までの距離を示す。 The height of the projection is a virtual line of the conductive portion (dashed line shown in FIG. 1) on the assumption that there is no projection on the line (dashed line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the projection. L2) Indicates the distance from the top (on the outer surface of the spherical conductive particles assuming no projection) to the tip of the projection. That is, in FIG. 1, the distance from the intersection of the broken line L1 and the broken line L2 to the tip of the protrusion is shown.
 [芯物質]
 上記芯物質が上記導電部(導電層)中に埋め込まれていることによって、上記第2の導電部が外表面に、複数の突起を有するようにすることが容易である。
[Core material]
Since the core substance is embedded in the conductive portion (conductive layer), it is easy for the second conductive portion to have a plurality of protrusions on the outer surface.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、更に無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電部を形成した後、該第1の導電部上に芯物質を配置し、次に第2の導電部形成する方法、並びに基材粒子の表面上に導電部(第1の導電部又は第2の導電部等)を形成する途中段階で、芯物質を添加する方法等が挙げられる。 As a method for forming the protrusions, after a core substance is attached to the surface of the base particle, a conductive part is formed by electroless plating, and a conductive part is formed by electroless plating on the surface of the base particle. Thereafter, a method of attaching a core substance and further forming a conductive portion by electroless plating can be used. As another method for forming the protrusion, a first conductive part is formed on the surface of the base particle, and then a core substance is disposed on the first conductive part, and then the second conductive part. Examples thereof include a forming method and a method of adding a core substance in the middle of forming a conductive part (first conductive part or second conductive part) on the surface of the base particle.
 上記基材粒子の外表面上に芯物質を配置する方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method for disposing the core substance on the outer surface of the base particle, for example, a core substance is added to the dispersion of the base particle, and the core substance is added to the surface of the base particle, for example, van der Waals. Examples include a method of accumulating and attaching by force, and a method of adding a core substance to a container containing base particles and attaching the core substance to the surface of the base particles by a mechanical action such as rotation of the container. It is done. Especially, since the quantity of the core substance to adhere is easy to control, the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
 上記芯物質の材料は、ニッケルとは異なり、かつ芯物質の材料のモース硬度が5を超えていれば特に限定されない。モース硬度が5以下であると、酸化膜を十分に貫通せず、接続抵抗が高くなる傾向がある。 The core material is not particularly limited as long as it is different from nickel and the core material has a Mohs hardness of more than 5. When the Mohs hardness is 5 or less, the oxide film does not sufficiently penetrate and the connection resistance tends to increase.
 上記芯物質の材料の具体例としては、シリカ(二酸化珪素、モース硬度6~7)、酸化チタン(モース硬度7)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。上記芯物質の材料は、シリカ、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることがより好ましく、酸化チタン、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが更に好ましく、ジルコニア、アルミナ、炭化タングステン又はダイヤモンドであることが特に好ましい。上記芯物質の材料のモース硬度は好ましくは5.5以上、より好ましくは6以上、更に好ましくは7以上、特に好ましくは7.5以上である。モース硬度が上記下限以上であると、電極と導電性粒子とがより一層適度に接触し、電極間の接続抵抗がより一層低くなる。 Specific examples of the material of the core substance include silica (silicon dioxide, Mohs hardness 6-7), titanium oxide (Mohs hardness 7), zirconia (Mohs hardness 8-9), alumina (Mohs hardness 9), tungsten carbide ( And Mohs hardness 9) and diamond (Mohs hardness 10). The material of the core substance is more preferably silica, titanium oxide, zirconia, alumina, tungsten carbide or diamond, further preferably titanium oxide, zirconia, alumina, tungsten carbide or diamond, zirconia, alumina, carbonized. Particularly preferred is tungsten or diamond. The Mohs hardness of the core material is preferably 5.5 or higher, more preferably 6 or higher, still more preferably 7 or higher, and particularly preferably 7.5 or higher. When the Mohs hardness is equal to or higher than the lower limit, the electrode and the conductive particles are more appropriately in contact with each other, and the connection resistance between the electrodes is further reduced.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 上記芯物質の平均径(平均粒子径)は、好ましくは20nm以上、より好ましくは50nm以上、更に好ましくは100nm以上であり、好ましくは1000nm以下、より好ましくは600nm以下、更に好ましくは500μm以下、特に好ましくは250nm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。上記芯物質の平均径が上記下限以上及び上記上限以下であると、接続抵抗が効果的に低くなり、導電部の腐食がより一層生じ難くなる。 The average diameter (average particle diameter) of the core substance is preferably 20 nm or more, more preferably 50 nm or more, still more preferably 100 nm or more, preferably 1000 nm or less, more preferably 600 nm or less, still more preferably 500 μm or less, particularly Preferably it is 250 nm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is effectively reduced. When the average diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance is effectively lowered, and corrosion of the conductive part is further less likely to occur.
 上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average diameter (average particle diameter)” of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
 上記第1の導電部と上記第2の導電部との合計の厚みの上記芯物質の平均径に対する比(第1の導電部と第2の導電部との合計の厚み/芯物質の平均径)は、好ましくは0.1以上、より好ましくは0.3以上であり、好ましくは6以下、より好ましくは5以下、更に好ましくは2以下である。上記比(第1の導電部と第2の導電部との合計の厚み/芯物質の平均径)が上記下限以上及び上記上限以下であると、接続抵抗が効果的に低くなり、導電部の腐食がより一層生じ難くなる。 Ratio of the total thickness of the first conductive portion and the second conductive portion to the average diameter of the core material (total thickness of the first conductive portion and the second conductive portion / average diameter of the core material ) Is preferably 0.1 or more, more preferably 0.3 or more, preferably 6 or less, more preferably 5 or less, and still more preferably 2 or less. When the ratio (the total thickness of the first conductive portion and the second conductive portion / the average diameter of the core substance) is not less than the lower limit and not more than the upper limit, the connection resistance is effectively reduced, Corrosion is less likely to occur.
 [絶縁物質]
 本発明に係る導電性粒子は、上記第2の導電部の外表面上に配置された絶縁物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁物質を容易に排除できる。
[Insulating material]
The conductive particles according to the present invention preferably include an insulating material disposed on the outer surface of the second conductive portion. In this case, when the conductive particles are used for connection between the electrodes, a short circuit between adjacent electrodes can be prevented. Specifically, when a plurality of conductive particles are in contact with each other, an insulating material is present between the plurality of electrodes, so that it is possible to prevent a short circuit between electrodes adjacent in the lateral direction instead of between the upper and lower electrodes. In addition, when connecting the electrodes, the insulating particles between the conductive portions of the conductive particles and the electrodes can be easily removed by pressurizing the conductive particles with the two electrodes.
 電極間の圧着時に上記絶縁物質をより一層容易に排除できることから、上記絶縁物質は、絶縁性粒子であることが好ましい。 It is preferable that the insulating material is an insulating particle because the insulating material can be more easily removed when the electrodes are crimped.
 上記絶縁物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating material include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, and thermosetting. Resin, water-soluble resin, and the like.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
 上記第2の導電部の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。第2の導電部の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。第2の導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。 The outer surface of the second conductive part and the surface of the insulating particles may each be coated with a compound having a reactive functional group. The outer surface of the second conductive part and the surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the outer surface of the second conductive part, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating particle through a polymer electrolyte such as polyethyleneimine.
 上記絶縁物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The average diameter (average particle diameter) of the insulating material can be appropriately selected depending on the particle diameter of the conductive particles and the use of the conductive particles. The average diameter (average particle diameter) of the insulating material is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less. When the average diameter of the insulating material is not less than the above lower limit, the conductive layers of the plurality of conductive particles are difficult to contact when the conductive particles are dispersed in the binder resin. When the average diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating material between the electrodes and the conductive particles when the electrodes are connected. There is no need for heating.
 上記絶縁物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁物質の平均径は、粒度分布測定装置等を用いて求められる。 The “average diameter (average particle diameter)” of the insulating material indicates a number average diameter (number average particle diameter). The average diameter of the insulating material is obtained using a particle size distribution measuring device or the like.
 [防錆処理]
 導電性粒子の腐食を抑え、電極間の接続抵抗を低くするために、上記第2の導電部の外表面は、酸化防止剤により防錆処理されていることが好ましい。
[Rust prevention treatment]
In order to suppress corrosion of the conductive particles and reduce the connection resistance between the electrodes, it is preferable that the outer surface of the second conductive portion is rust-proofed with an antioxidant.
 上記酸化防止剤は特に限定されない。上記酸化防止剤としては、窒素含有化合物等が挙げられる。上記窒素含有化合物としては、ベンゾトリアゾール化合物、イミダゾール化合物、チアゾール化合物、トリアジン、2-メルカプトピリミジン、インドール、ピロール、アデニン、チオバルビツル酸、チオウラシル、ロダニン、チオゾリジンチオン、1-フェニル-2-テトラゾリン-5-チオン及び2-メルカプトピリジン等が挙げられる。上記酸化防止剤は1種のみが用いられてもよく、2種以上が併用されてもよい。 The antioxidant is not particularly limited. Examples of the antioxidant include nitrogen-containing compounds. Examples of the nitrogen-containing compound include benzotriazole compounds, imidazole compounds, thiazole compounds, triazines, 2-mercaptopyrimidine, indole, pyrrole, adenine, thiobarbituric acid, thiouracil, rhodanine, thiozolidinethione, 1-phenyl-2-tetrazoline- Examples include 5-thione and 2-mercaptopyridine. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
 上記ベンゾトリアゾール化合物としては、ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、5,6-ジメチル-1H-ベンゾトリアゾール及びベンゾトリアゾールブチルエステル等が挙げられる。上記イミダゾール化合物としては、イミダゾール又はベンゾイミダゾール等が挙げられる。上記チアゾール化合物としては、チアゾール又はベンゾチアゾール等が挙げられる。 Examples of the benzotriazole compounds include benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole, 5-methyl-1H-benzotriazole, 5,6-dimethyl-1H-benzotriazole, and benzotriazole. A butyl ester etc. are mentioned. Examples of the imidazole compound include imidazole and benzimidazole. Examples of the thiazole compound include thiazole or benzothiazole.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the conductive particles described above and a binder resin. The conductive particles are preferably used by being dispersed in a binder resin, and are preferably used as a conductive material by being dispersed in a binder resin. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a conductive material for circuit connection.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used.
 上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. It is preferable that the said photocurable component contains a photocurable compound and a photoinitiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste and a conductive film. When the conductive material according to the present invention is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably It is 99.99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. Hereinafter, it is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
 (接続構造体)
 上記導電性粒子を用いて、又は上記導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
A connection structure can be obtained by connecting the connection object members using the conductive particles or using a conductive material containing the conductive particles and a binder resin.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部の材料が上述した導電性粒子であるか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料である接続構造体であることが好ましい。上記接続部が上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されていることが好ましい。導電性粒子が用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。 The connection structure includes a first connection target member, a second connection target member, and a connection part connecting the first and second connection target members, and the material of the connection part has been described above. The connection structure is preferably a conductive particle or a conductive material including the above-described conductive particles and a binder resin. It is preferable that the connection portion is formed of the above-described conductive particles or a conductive material containing the above-described conductive particles and a binder resin. In the case where conductive particles are used, the connection portion itself is conductive particles. That is, the first and second connection target members are connected by the conductive particles.
 図3に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に断面図で示す。 FIG. 3 is a cross-sectional view schematically showing a connection structure using conductive particles according to the first embodiment of the present invention.
 図3に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料により形成されている。上記導電材料が熱硬化性を有し、接続部54が導電材料を熱硬化させることにより形成されていることが好ましい。接続部54が導電材料の熱硬化物であることが好ましい。なお、図3では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子1A等を用いてもよい。 A connection structure 51 shown in FIG. 3 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Prepare. The connection part 54 is formed of a conductive material including the conductive particles 1. It is preferable that the conductive material has thermosetting properties and the connection portion 54 is formed by thermosetting the conductive material. It is preferable that the connection part 54 is a thermosetting material of a conductive material. In FIG. 3, the conductive particles 1 are schematically shown for convenience of illustration. Instead of the conductive particles 1, conductive particles 1A or the like may be used.
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。 The first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface). The second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface). The first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of the connection structure, the conductive material is disposed between the first connection target member and the second connection target member to obtain a laminate, and then the laminate is heated and pressurized. Methods and the like. The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The connection target member is preferably an electronic component. The conductive particles are preferably used for electrical connection of electrodes in an electronic component.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銀電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a silver electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)芯物質の付着工程
 粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を基材粒子Aとして用意した。
(Example 1)
(1) Adhering Step of Core Material Divinylbenzene copolymer resin particles having a particle size of 3.0 μm (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) were prepared as base material particles A.
 上記基材粒子Aをエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に上記基材粒子Aを添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に上記基材粒子Aを添加し、パラジウムが付着された基材粒子Aを得た。 The substrate particles A were etched and washed with water. Next, the base particle A was added to 100 mL of a palladium-catalyzed solution containing 8% by weight of a palladium catalyst and stirred. Then, it filtered and wash | cleaned. The base material particle A was added to a 0.5 wt% dimethylamine borane solution having a pH of 6 to obtain base material particles A to which palladium was attached.
 パラジウムが付着された基材粒子Aをイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、アルミナ粒子スラリー(平均粒子径150nm、モース硬度9)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子Aの懸濁液を得た。 The base particle A to which palladium was adhered was stirred and dispersed in 300 mL of ion exchange water for 3 minutes to obtain a dispersion. Next, 1 g of alumina particle slurry (average particle diameter 150 nm, Mohs hardness 9) was added to the dispersion over 3 minutes to obtain a suspension of substrate particles A to which the core material was adhered.
 (2)銅層の形成工程
 硫酸銅(5水和物)40g/Lと、エチレンジアミン四酢酸(EDTA)100g/Lと、グルコン酸ナトリウム50g/Lと、ホルムアルデヒド25g/Lとを含み、かつpH10.5に調整された無電解めっき液を用意した。
(2) Copper layer forming step Copper sulfate (pentahydrate) 40 g / L, ethylenediaminetetraacetic acid (EDTA) 100 g / L, sodium gluconate 50 g / L, formaldehyde 25 g / L, and pH 10 An electroless plating solution adjusted to .5 was prepared.
 上記基材粒子Aの懸濁液に、上記無電解めっき液を徐々に添加し、50℃で攪拌しながら無電解銅めっきを行った。このようにして銅層が表面に設けられた銅めっき粒子を得た。銅層の厚みは125nmであった。 The electroless plating solution was gradually added to the suspension of the base particle A, and electroless copper plating was performed while stirring at 50 ° C. Thus, copper plating particles having a copper layer provided on the surface were obtained. The thickness of the copper layer was 125 nm.
 (3)パラジウム層の形成工程
 得られた銅めっき粒子10gを、超音波処理機により、イオン交換水500mLに分散させ、粒子懸濁液を得た。
(3) Palladium layer forming step 10 g of the obtained copper plating particles were dispersed in 500 mL of ion-exchanged water using an ultrasonic processor to obtain a particle suspension.
 また、硫酸パラジウム(無水物)4g/Lと、エチレンジアミン2.4g/Lと、硫酸ヒドラジウム4.0g/Lと、次亜リン酸ナトリウム3.5g/Lとを含み、かつpH10に調整された無電解めっき液を用意した。 Moreover, palladium sulfate (anhydride) 4 g / L, ethylenediamine 2.4 g / L, hydradium sulfate 4.0 g / L, and sodium hypophosphite 3.5 g / L were included, and the pH was adjusted to 10. An electroless plating solution was prepared.
 上記粒子懸濁液を50℃で攪拌しながら、上記無電解めっき液を徐々に添加し、無電解パラジウムめっきを行った。無電解めっき液の添加量は、パラジウム層の厚みが100nmになるように調整した。得られたパラジウムめっきされた樹脂粒子を蒸留水及びメタノールで洗浄した後、真空乾燥した。このようにして、樹脂粒子の表面に銅層が設けられており、かつ銅層の表面にパラジウム層が設けられた導電性粒子を得た。パラジウム層の厚みは25nmであった。 While stirring the particle suspension at 50 ° C., the electroless plating solution was gradually added to perform electroless palladium plating. The amount of electroless plating solution added was adjusted so that the thickness of the palladium layer was 100 nm. The obtained palladium-plated resin particles were washed with distilled water and methanol and then vacuum-dried. Thus, the electroconductive particle by which the copper layer was provided in the surface of the resin particle and the palladium layer was provided in the surface of the copper layer was obtained. The thickness of the palladium layer was 25 nm.
 (実施例2)
 アルミナ粒子を二酸化チタン粒子(平均粒子径150nm、モース硬度7)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Example 2)
Conductive particles were obtained in the same manner as in Example 1 except that the alumina particles were changed to titanium dioxide particles (average particle diameter 150 nm, Mohs hardness 7).
 (実施例3)
 アルミナ粒子を炭化タングステン粒子(平均粒子径150nm、モース硬度9)に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(Example 3)
Conductive particles were obtained in the same manner as in Example 1 except that the alumina particles were changed to tungsten carbide particles (average particle diameter 150 nm, Mohs hardness 9).
 (実施例4)
 実施例1で得られた粒子に、防錆処理を施して、導電性粒子を得た。ベンゾトリアゾールを防錆剤として用いた。
Example 4
The particles obtained in Example 1 were subjected to rust prevention treatment to obtain conductive particles. Benzotriazole was used as a rust inhibitor.
 (実施例5)
 実施例4と同様にして導電性粒子を得た。得られた導電性粒子を用いて、絶縁性粒子の付着工程を行った。
(Example 5)
Conductive particles were obtained in the same manner as Example 4. Using the obtained conductive particles, an adhesion process of insulating particles was performed.
 (絶縁性粒子の付着工程)
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
(Insulating particle adhesion process)
To a 1000 mL separable flask equipped with a four-necked separable cover, stirring blade, three-way cock, condenser and temperature probe, 100 mmol of methyl methacrylate and N, N, N-trimethyl-N-2-methacryloyloxyethyl A monomer composition containing 1 mmol of ammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride was weighed in ion-exchanged water so that the solid content was 5% by weight, and then at 200 rpm. The mixture was stirred and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, it was freeze-dried to obtain insulating particles having an ammonium group on the surface, an average particle size of 220 nm, and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 The insulating particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating particles.
 実施例4と同様にして得られた絶縁性粒子が付着していない導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。 Conductive particles 10 g obtained by the same manner as in Example 4 to which insulating particles were not attached were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtration through a 3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating particles attached thereto.
 走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の外表面上に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer of insulating particles was formed on the outer surface of the conductive particles. The coverage of the insulating particles with respect to the area of 2.5 μm from the center of the conductive particles by image analysis (that is, the projected area of the particle diameter of the insulating particles) was calculated to be 30%.
 (比較例1)
 二酸化チタン粒子を金属ニッケル粒子スラリー(平均粒子径150nm、モース硬度5)に変更したこと以外は実施例4と同様にして、導電性粒子を得た。
(Comparative Example 1)
Conductive particles were obtained in the same manner as in Example 4 except that the titanium dioxide particles were changed to metal nickel particle slurry (average particle diameter 150 nm, Mohs hardness 5).
 (実施例6~19)
 基材粒子の粒子径と、芯物質の種類、材料のモース硬度及び平均径と、第1の導電部(銅層)の主金属、Cuの含有量、厚み及びビッカース硬度と、第2の導電部(パラジウム層)の主金属、Pdの含有量及び厚みと、絶縁物質の有無と、防錆処理の有無と、導電性粒子における突起の数とを下記の表1に示すように設定したこと以外は、実施例1と同様にして、実施例6~19の導電性粒子を得た。
(Examples 6 to 19)
The particle diameter of the base particle, the type of core substance, the Mohs hardness and average diameter of the material, the main metal of the first conductive part (copper layer), the Cu content, the thickness and the Vickers hardness, and the second conductivity The content and thickness of the main metal of the part (palladium layer), Pd, presence / absence of an insulating material, presence / absence of rust prevention treatment, and the number of protrusions in the conductive particles were set as shown in Table 1 below. Except for the above, conductive particles of Examples 6 to 19 were obtained in the same manner as Example 1.
 (評価)
 (1)第1の導電部及び第2の導電部における金属の含有量
 集束イオンビームを用いて、得られた導電性粒子の薄膜切片を作製した。透過型電子顕微鏡FE-TEM(日本電子社製「JEM-2010FEF」)を用いて、エネルギー分散型X線分析装置(EDS)により、第1の導電部全体及び第2の導電部全体における金属の含有量を測定した。
(Evaluation)
(1) Content of metal in the first conductive portion and the second conductive portion A thin film slice of the obtained conductive particles was prepared using a focused ion beam. Using a transmission electron microscope FE-TEM (“JEM-2010FEF” manufactured by JEOL Ltd.), an energy dispersive X-ray analyzer (EDS) is used to measure the metal in the entire first conductive portion and the entire second conductive portion. The content was measured.
 (2)初期の接続抵抗
 得られた導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させて、異方性導電ペーストを作製した。
(2) Initial connection resistance The obtained conductive particles were added to “Strectbond XN-5A” manufactured by Mitsui Chemicals Co., Ltd. so as to have a content of 10% by weight. Produced.
 L/Sが20μm/20μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが20μm/20μmである金電極パターンを下面に有する半導体チップを用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 20 μm / 20 μm on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern with L / S of 20 μm / 20 μm on the lower surface was prepared.
 上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、1MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。 On the transparent glass substrate, the anisotropic conductive paste immediately after production was applied to a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. It hardened | cured at 185 degreeC and the connection structure was obtained.
 得られた接続構造体の上下の電極間の接続抵抗を、4端子法により測定した。2つの接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。初期の接続抵抗を下記の基準で判定した。 The connection resistance between the upper and lower electrodes of the obtained connection structure was measured by a four-terminal method. The average value of the two connection resistances was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The initial connection resistance was determined according to the following criteria.
 [初期の接続抵抗の判定基準]
 ○○:接続抵抗が2.0Ω以下
 ○:接続抵抗が2.0Ωを超え、3.0Ω以下
 △:接続抵抗が3.0Ωを超え、5.0Ω以下
 ×:接続抵抗が5.0Ωを超える
[Initial connection resistance criteria]
○○: Connection resistance is 2.0Ω or less ○: Connection resistance exceeds 2.0Ω, 3.0Ω or less △: Connection resistance exceeds 3.0Ω, 5.0Ω or less ×: Connection resistance exceeds 5.0Ω
 (3)信頼性試験後の接続抵抗(導通信頼性)
 上記(2)初期の接続抵抗の評価で得られた接続構造体を、85℃及び相対湿度85%の条件で放置した。放置開始から150時間後に、上記(2)初期の接続抵抗の評価と同様に電極間の接続抵抗を4端子法により測定した。信頼性試験後の接続抵抗を下記の基準で判定した。
(3) Connection resistance after reliability test (conduction reliability)
The connection structure obtained by the above (2) evaluation of the initial connection resistance was left under the conditions of 85 ° C. and relative humidity of 85%. 150 hours after the start of standing, the connection resistance between the electrodes was measured by the 4-terminal method in the same manner as in the above (2) evaluation of the initial connection resistance. The connection resistance after the reliability test was determined according to the following criteria.
 [信頼性試験後の接続抵抗の判定基準]
 ○○:接続抵抗(放置前)の平均値に比べ、接続抵抗(放置後)の平均値が125%未満
 ○:接続抵抗(放置前)の平均値に比べ、接続抵抗(放置後)の平均値が125%以上、150%未満
 △:接続抵抗(放置前)の平均値に比べ、接続抵抗(放置後)の平均値が150%以上、200%未満
 ×:接続抵抗(放置前)の平均値に比べ、接続抵抗(放置後)の平均値が200%以上
[Criteria for connection resistance after reliability test]
○○: Less than 125% average connection resistance (after leaving) compared to the average value of connection resistance (before leaving) ○: Average of connection resistance (after leaving) compared to the average value of connection resistance (before leaving) Value: 125% or more and less than 150% Δ: Compared with the average value of connection resistance (before leaving), the average value of connection resistance (after leaving) is 150% or more and less than 200% ×: Average of connection resistance (before leaving) The average value of connection resistance (after leaving) is 200% or more
 (4)導電性粒子におけるめっき割れの観察
 ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が5重量%となるように添加し、分散させ、樹脂組成物を得た。
(4) Observation of plating cracks in conductive particles 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 1009” manufactured by Mitsubishi Chemical Corporation), 40 parts by weight of acrylic rubber (weight average molecular weight of about 800,000), and 200 parts by weight of methyl ethyl ketone And 50 parts by weight of a microcapsule type curing agent (“HX3941HP” manufactured by Asahi Kasei Chemicals) and 2 parts by weight of a silane coupling agent (“SH6040” manufactured by Toray Dow Corning Silicone) are mixed to contain conductive particles. Was added and dispersed so as to be 5% by weight to obtain a resin composition.
 得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。 The obtained resin composition was applied to a 50 μm-thick PET (polyethylene terephthalate) film whose one surface was release-treated, and dried with hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film. The thickness of the obtained anisotropic conductive film was 12 μm.
 得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方にITO電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ3cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、Ni下地Au電極を有する2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムにNi下地とAuを順次形成されている2層フレキシブルプリント基板を用いた。 The obtained anisotropic conductive film was cut into a size of 5 mm × 5 mm. The cut anisotropic conductive film is attached to the center of the aluminum electrode side of the glass substrate (width 3 cm, length 3 cm) having an ITO electrode (height 0.2 μm, L / S = 20 μm / 20 μm) on one side. I attached. Next, a two-layer flexible printed board (width: 2 cm, length: 1 cm) having a Ni base Au electrode was bonded after being aligned so that the electrodes overlap each other. The laminated body of the glass substrate and the two-layer flexible printed circuit board was thermocompression bonded under pressure bonding conditions of 10 N, 180 ° C., and 20 seconds to obtain a connection structure. A two-layer flexible printed board in which a Ni base and Au are sequentially formed on a polyimide film was used.
 めっき割れ発生した粒子個数のカウント:
 得られた接続構造体の接続部において、1000個の導電性粒子中のめっき割れが確認された導電性粒子の数を数えた。めっき割れを下記の基準で判定した。
Counting the number of particles with plating cracks:
In the connection part of the obtained connection structure, the number of conductive particles in which plating cracks in 1000 conductive particles were confirmed was counted. The plating crack was determined according to the following criteria.
 [めっき割れの判定基準]
 ○○:めっき割れが確認された粒子の数が1000個中10個以下
 ○:めっき割れが確認された粒子の数が1000個中10個を超え、50個以下
 △:めっき割れが確認された粒子の数が1000個中50個を超え、200個以下
 ×:めっき割れが確認された粒子の数が1000個中200個を超える
[Criteria for plating cracks]
◯: The number of particles in which plating cracks were confirmed was 10 or less in 1000. ○: The number of particles in which plating cracks were confirmed exceeded 10 in 1000, and 50 or less. Δ: Plating cracks were confirmed. The number of particles exceeds 50 out of 1,000 and is 200 or less. ×: The number of particles in which plating cracks are confirmed exceeds 200 out of 1,000.
 導電性粒子の詳細及び結果を下記の表1,2に示す。 Details and results of the conductive particles are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記(3)信頼性試験後の接続抵抗の評価では、得られた接続構造体を85℃及び相対湿度85%の条件で放置した。接続構造体を得る前の導電性粒子を85℃及び相対湿度85%の条件で放置した後に、接続構造体を得た場合にも、接続抵抗の上昇傾向について、上記(3)信頼性試験後の接続抵抗の評価結果と同様の傾向が見られた。 In the evaluation of connection resistance after the above (3) reliability test, the obtained connection structure was left under conditions of 85 ° C. and relative humidity 85%. Even after obtaining the connection structure after leaving the conductive particles before obtaining the connection structure under the conditions of 85 ° C. and 85% relative humidity, the above-mentioned (3) after the reliability test The same tendency as the evaluation result of the connection resistance was observed.
 実施例7と実施例13との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例7の方が実施例13よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。この結果は、比(第1の導電部と第2の導電部との合計の厚み/芯物質の平均径)が主に影響している。 Regarding the evaluation results of the connection resistance after (3) reliability test between Example 7 and Example 13, the amount of change in connection resistance in Example 7 is smaller than that in Example 13 and the conduction reliability is excellent. It was. This result is mainly influenced by the ratio (the total thickness of the first conductive portion and the second conductive portion / the average diameter of the core substance).
 実施例1と実施例10との(2)初期の接続抵抗の評価結果に関しては、実施例1の方が実施例10よりも、接続抵抗が低く、導通性に優れていた。また、実施例1と実施例10との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例1の方が実施例10よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。これらの結果は、第1の導電部の厚みが主に影響している。 Regarding (2) evaluation results of the initial connection resistance between Example 1 and Example 10, Example 1 was lower in connection resistance and superior in conductivity than Example 10. In addition, with regard to the evaluation results of the connection resistance after (3) reliability test between Example 1 and Example 10, the amount of change in connection resistance is smaller in Example 1 than in Example 10, and the conduction reliability is increased. It was excellent. These results are mainly influenced by the thickness of the first conductive portion.
 実施例8と実施例9との(2)初期の接続抵抗の評価結果に関しては、実施例8の方が実施例9よりも、接続抵抗が低く、導通性に優れていた。また、実施例8と実施例9との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例8の方が実施例9よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。これらの結果は、第1の導電部の厚みが主に影響している。 Regarding (2) the initial connection resistance evaluation results between Example 8 and Example 9, Example 8 had a lower connection resistance and superior conductivity than Example 9. As for the connection resistance evaluation results after the reliability test between Example 8 and Example 9, the change in connection resistance in Example 8 is smaller than that in Example 9 and conduction reliability is improved. It was excellent. These results are mainly influenced by the thickness of the first conductive portion.
 実施例1と実施例8との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例1の方が実施例8よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。実施例8と実施例12との(2)初期の接続抵抗の評価結果に関しては、実施例8の方が実施例12よりも、接続抵抗が低く、導通性に優れていた。また、実施例8と実施例12との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例8の方が実施例12よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。これらの結果は、芯物質の平均径が主に影響している。 Regarding the evaluation results of the connection resistance after (3) reliability test between Example 1 and Example 8, the amount of change in connection resistance is smaller in Example 1 than in Example 8, and the conduction reliability is excellent. It was. Regarding the evaluation results of (2) initial connection resistance between Example 8 and Example 12, Example 8 had a lower connection resistance than Example 12 and was excellent in conductivity. In addition, with regard to the evaluation results of the connection resistance after (3) reliability test between Example 8 and Example 12, Example 8 has a smaller amount of change in connection resistance than that of Example 12, and the conduction reliability. It was excellent. These results are mainly influenced by the average diameter of the core material.
 実施例1と実施例6との(2)初期の接続抵抗の評価結果に関しては、実施例1の方が実施例6よりも、接続抵抗が低く、導通性に優れていた。また、実施例1と実施例6との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例1の方が実施例6よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。実施例6と実施例7との(2)初期の接続抵抗の評価結果に関しては、実施例6の方が実施例7よりも、接続抵抗が低く、導通性に優れていた。また、実施例6と実施例7との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例6の方が実施例7よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。実施例7と実施例13との(3)信頼性試験後の接続抵抗の評価結果に関しては、実施例7の方が実施例13よりも、接続抵抗の変化量が小さく、導通信頼性に優れていた。これらの結果は、芯物質の平均径が主に影響している。 Regarding (2) evaluation results of the initial connection resistance between Example 1 and Example 6, Example 1 was lower in connection resistance and superior in conductivity than Example 6. In addition, with regard to the evaluation results of the connection resistance after (3) reliability test between Example 1 and Example 6, the amount of change in connection resistance in Example 1 is smaller than that in Example 6 and conduction reliability is improved. It was excellent. Regarding the evaluation results of (2) initial connection resistance between Example 6 and Example 7, Example 6 was lower in connection resistance than Example 7 and excellent in conductivity. Further, regarding the evaluation results of the connection resistance after (3) reliability test between Example 6 and Example 7, the amount of change in connection resistance is smaller in Example 6 than in Example 7, and the conduction reliability is increased. It was excellent. Regarding the evaluation results of the connection resistance after (3) reliability test between Example 7 and Example 13, the amount of change in connection resistance in Example 7 is smaller than that in Example 13 and the conduction reliability is excellent. It was. These results are mainly influenced by the average diameter of the core material.
 1,1A…導電性粒子
 1a,1Aa…突起
 2…基材粒子
 3,3A…第1の導電部
 3a…突起
 4,4A…第2の導電部
 4a,4Aa…突起
 5…芯物質
 6…絶縁物質
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
DESCRIPTION OF SYMBOLS 1,1A ... Conductive particle 1a, 1Aa ... Protrusion 2 ... Base material particle 3, 3A ... 1st electroconductive part 3a ... Protrusion 4, 4A ... 2nd electroconductive part 4a, 4Aa ... Protrusion 5 ... Core substance 6 ... Insulation Substance 51 ... Connection structure 52 ... First connection object member 52a ... First electrode 53 ... Second connection object member 53a ... Second electrode 54 ... Connection part

Claims (9)

  1.  基材粒子と、銅を含む第1の導電部と、パラジウムを含む第2の導電部と、複数の芯物質とを備え、
     前記基材粒子の外表面上に前記第1の導電部が配置されており、前記第1の導電部の外表面上に前記第2の導電部が配置されており、
     前記第2の導電部が外表面に複数の突起を有し、
     前記芯物質が、前記第2の導電部の前記突起の内側に配置されており、前記芯物質によって前記第2の導電部の外表面が隆起されており、
     前記芯物質の材料がニッケルとは異なり、前記芯物質の材料のモース硬度が5を超える、導電性粒子。
    Comprising a base particle, a first conductive part containing copper, a second conductive part containing palladium, and a plurality of core substances,
    The first conductive portion is disposed on the outer surface of the base particle, and the second conductive portion is disposed on the outer surface of the first conductive portion,
    The second conductive portion has a plurality of protrusions on the outer surface;
    The core material is disposed inside the protrusion of the second conductive portion, and the outer surface of the second conductive portion is raised by the core material;
    Conductive particles in which the material of the core substance is different from nickel and the Mohs hardness of the material of the core substance exceeds 5.
  2.  前記第1の導電部と前記第2の導電部との合計の厚みの前記芯物質の平均径に対する比が0.1以上、6以下である、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein a ratio of a total thickness of the first conductive portion and the second conductive portion to an average diameter of the core substance is 0.1 or more and 6 or less.
  3.  前記第1の導電部の厚みが、20nm以上、300nm以下である、請求項1又は2に記載の導電性粒子。 The conductive particle according to claim 1 or 2, wherein a thickness of the first conductive portion is 20 nm or more and 300 nm or less.
  4.  前記芯物質の平均径が20nm以上、1000nm以下である、請求項1~3のいずれか1項に記載の導電性粒子。 The conductive particles according to any one of claims 1 to 3, wherein an average diameter of the core substance is 20 nm or more and 1000 nm or less.
  5.  前記第2の導電部の厚みが3nm以上、40nm以下である、請求項1~4のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 4, wherein the thickness of the second conductive portion is 3 nm or more and 40 nm or less.
  6.  前記第1の導電部のビッカース硬度が100未満である、請求項1~5のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 5, wherein the first conductive portion has a Vickers hardness of less than 100.
  7.  前記芯物質の材料のモース硬度が6以上である、請求項1~6のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 6, wherein the material of the core substance has a Mohs hardness of 6 or more.
  8.  請求項1~7のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 7 and a binder resin.
  9.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~7のいずれか1項に記載の導電性粒子であるか、又は前記導電性粒子とバインダー樹脂とを含む導電材料であり、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The material of the connecting portion is the conductive particles according to any one of claims 1 to 7, or a conductive material containing the conductive particles and a binder resin,
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2015/079816 2014-10-22 2015-10-22 Conductive particles, conductive material and connection structure WO2016063941A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167027605A KR20170072169A (en) 2014-10-22 2015-10-22 Conductive particles, conductive material and connection structure
JP2015555877A JPWO2016063941A1 (en) 2014-10-22 2015-10-22 Conductive particles, conductive materials, and connection structures
KR1020227009140A KR20220041240A (en) 2014-10-22 2015-10-22 Conductive particles, conductive material and connection structure
CN201580044245.7A CN106605273A (en) 2014-10-22 2015-10-22 Conductive particles, conductive material and connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-215456 2014-10-22
JP2014215456 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063941A1 true WO2016063941A1 (en) 2016-04-28

Family

ID=55760971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079816 WO2016063941A1 (en) 2014-10-22 2015-10-22 Conductive particles, conductive material and connection structure

Country Status (4)

Country Link
JP (1) JPWO2016063941A1 (en)
KR (2) KR20170072169A (en)
CN (1) CN106605273A (en)
WO (1) WO2016063941A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210031641A (en) 2018-07-10 2021-03-22 니폰 가가쿠 고교 가부시키가이샤 Coated particles
KR20210083246A (en) 2018-11-07 2021-07-06 니폰 가가쿠 고교 가부시키가이샤 Coated particles, conductive material containing same, and method for producing coated particles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646643B2 (en) * 2017-12-14 2020-02-14 株式会社ノリタケカンパニーリミテド Photosensitive composition and its use
KR102598343B1 (en) 2020-10-06 2023-11-06 덕산네오룩스 주식회사 Conductive Particles, Conductive materials used the same
CN113299892B (en) * 2021-05-21 2022-06-28 葫芦岛市铭浩新能源材料有限公司 Preparation method of iron-doped titanium dioxide/tungsten carbide lithium ion battery cathode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135086A (en) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd Conductive particle, insulating coating conductive particle, method of manufacturing the same, and anisotropically conductive adhesive
JP2011204531A (en) * 2010-03-26 2011-10-13 Sekisui Chem Co Ltd Conductive particle, manufacturing method of conductive particle, anisotropic conductive material, and connection structure
WO2014054572A1 (en) * 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure
JP2014132542A (en) * 2012-01-11 2014-07-17 Hitachi Chemical Co Ltd Conductive particle, insulation coating conductive particle, and anisotropic conductive adhesive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151072B1 (en) * 2007-11-01 2012-06-01 히다치 가세고교 가부시끼가이샤 Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
WO2013094636A1 (en) * 2011-12-21 2013-06-27 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP6034177B2 (en) * 2011-12-22 2016-11-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6188456B2 (en) * 2012-07-03 2017-08-30 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP6478308B2 (en) * 2012-11-28 2019-03-06 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135086A (en) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd Conductive particle, insulating coating conductive particle, method of manufacturing the same, and anisotropically conductive adhesive
JP2011204531A (en) * 2010-03-26 2011-10-13 Sekisui Chem Co Ltd Conductive particle, manufacturing method of conductive particle, anisotropic conductive material, and connection structure
JP2014132542A (en) * 2012-01-11 2014-07-17 Hitachi Chemical Co Ltd Conductive particle, insulation coating conductive particle, and anisotropic conductive adhesive
WO2014054572A1 (en) * 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210031641A (en) 2018-07-10 2021-03-22 니폰 가가쿠 고교 가부시키가이샤 Coated particles
US11311934B2 (en) 2018-07-10 2022-04-26 Nippon Chemical Industrial Co., Ltd. Covered particle
KR20210083246A (en) 2018-11-07 2021-07-06 니폰 가가쿠 고교 가부시키가이샤 Coated particles, conductive material containing same, and method for producing coated particles

Also Published As

Publication number Publication date
JPWO2016063941A1 (en) 2017-08-03
CN106605273A (en) 2017-04-26
KR20170072169A (en) 2017-06-26
KR20220041240A (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP6475805B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
JP6734159B2 (en) Conductive particles, conductive material and connection structure
WO2016063941A1 (en) Conductive particles, conductive material and connection structure
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6687408B2 (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP7381547B2 (en) Conductive particles, conductive materials and connected structures
JP6568467B2 (en) Conductive particles, conductive materials, and connection structures
JP6355474B2 (en) Conductive particles, conductive materials, and connection structures
JP6411194B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
JP6457743B2 (en) Connection structure
JP2018137225A (en) Conductive particles, conductive material and connection structure
JP6333624B2 (en) Connection structure
JP6345075B2 (en) Conductive particles, conductive materials, and connection structures
JP6352103B2 (en) Conductive particles, conductive materials, and connection structures
JP2022008631A (en) Conductive particle, manufacturing method of conductive particle, conductive material and connection structure
JP2015109267A (en) Conductive particle, conductive material, and connection structure
JP2016028384A (en) Conductive particle, method for producing conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015555877

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167027605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852498

Country of ref document: EP

Kind code of ref document: A1