JP6637087B2 - Photosensitive composition and its use - Google Patents

Photosensitive composition and its use Download PDF

Info

Publication number
JP6637087B2
JP6637087B2 JP2018021134A JP2018021134A JP6637087B2 JP 6637087 B2 JP6637087 B2 JP 6637087B2 JP 2018021134 A JP2018021134 A JP 2018021134A JP 2018021134 A JP2018021134 A JP 2018021134A JP 6637087 B2 JP6637087 B2 JP 6637087B2
Authority
JP
Japan
Prior art keywords
photosensitive composition
mass
composition according
conductive
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021134A
Other languages
Japanese (ja)
Other versions
JP2019139014A (en
Inventor
佑一朗 佐合
佑一朗 佐合
浩人 垣添
浩人 垣添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2018021134A priority Critical patent/JP6637087B2/en
Priority to CN201980012121.9A priority patent/CN111699436A/en
Priority to PCT/JP2019/000675 priority patent/WO2019155819A1/en
Priority to KR1020207025548A priority patent/KR102658648B1/en
Priority to TW108102793A priority patent/TWI796424B/en
Publication of JP2019139014A publication Critical patent/JP2019139014A/en
Application granted granted Critical
Publication of JP6637087B2 publication Critical patent/JP6637087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/0285Silver salts, e.g. a latent silver salt image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、感光性組成物とその利用に関する。   The present invention relates to a photosensitive composition and its use.

従来、光重合性化合物と光重合開始剤とを含む感光性組成物を用いて、光硬化により、基材上に導電層や樹脂絶縁層を形成する手法が知られている(特許文献1〜6参照)。
例えば特許文献1には、膜状体の成形工程と、露光工程と、現像工程と、焼成工程とを含むフォトリソグラフィ法により、基板上に配線パターンを形成することが開示されている。かかる方法では、まず、膜状体の成形工程において、印刷法等で基材上に感光性組成物を付与し、乾燥させて、膜状体を成形する。次に、露光工程において、上記成形した膜状体に所定の開口パターンを有するフォトマスクを被せた後、フォトマスクを介して膜状体を露光する。これによって、膜状体の露光部分を光硬化させる。次に、現像工程において、フォトマスクで遮光されていた未露光部分を、アルカリ性のエッチング液で腐食して除去する。そして、所望の現像パターンとなった膜状体を、焼成工程において焼成する。かかる方法によれば、従来の各種印刷法に比べて、高精細なパターンの導電層を形成することができる。
BACKGROUND ART Conventionally, there has been known a method of forming a conductive layer or a resin insulating layer on a substrate by photocuring using a photosensitive composition containing a photopolymerizable compound and a photopolymerization initiator (Patent Documents 1 to 4). 6).
For example, Patent Literature 1 discloses that a wiring pattern is formed on a substrate by a photolithography method including a film forming process, an exposure process, a development process, and a baking process. In such a method, first, in a film forming step, a photosensitive composition is applied to a substrate by a printing method or the like and dried to form a film. Next, in the exposure step, after a photomask having a predetermined opening pattern is placed on the formed film, the film is exposed through the photomask. Thus, the exposed portion of the film is light-cured. Next, in the developing step, the unexposed portions, which have been shielded from light by the photomask, are removed by corrosion with an alkaline etching solution. Then, the film-like body having the desired development pattern is fired in a firing step. According to such a method, a conductive layer having a higher definition pattern can be formed as compared with conventional various printing methods.

特許第4437603号Patent No. 4437603 特許第4095163号Patent No. 4095163 特開2003−183401号公報JP 2003-183401 A 特開2015−110745号公報JP 2015-110745 A 特開2015−184631号公報JP-A-2015-184631 特許第5393402号Patent No. 5393402

ところで近年、各種電子機器の小型化や高性能化が急速に進み、電子機器に実装される電子部品に対しても一層の小型化や高密度化が求められている。これに伴い、電子部品の製造にあたっては、導電層の低抵抗化と共に細線化(狭小化)が求められている。例えば、導電層を構成する配線の幅(ライン幅)が30μm以下の細線状の配線(以下、「ファインライン」ということがある。)を含んだ導電層を形成することが求められている。   In recent years, various electronic devices have been rapidly reduced in size and performance, and electronic components mounted on the electronic devices have been required to be further reduced in size and density. Along with this, in manufacturing electronic components, it is required to reduce the thickness of the conductive layer as well as to reduce the resistance of the conductive layer. For example, it is required to form a conductive layer including a fine line-shaped wiring (hereinafter, sometimes referred to as “fine line”) in which the width (line width) of the wiring forming the conductive layer is 30 μm or less.

しかし、本発明者らの検討によれば、上記特許文献に記載されるような従来の感光性組成物を使用すると、ファインラインを安定的に形成することが難しかった。例えば、現像工程で未露光部分が完全に除去できずに、隣り合う配線同士がつながってショート不良を生じることがあった。また、このようなショート不良の発生を抑制するために現像工程の時間を長めに設定すると、露光部分が細って、現像パターンに剥離や断線等を生じることがあった。   However, according to the study of the present inventors, it has been difficult to form a fine line stably when a conventional photosensitive composition as described in the above-mentioned patent document is used. For example, the unexposed portion may not be completely removed in the developing process, and adjacent wirings may be connected to each other to cause a short circuit failure. In addition, if the time of the developing step is set to be long in order to suppress the occurrence of such a short-circuit failure, the exposed portion may be narrowed, and the developed pattern may be peeled or disconnected.

上記のような問題は、現像マージンが短いことによって引き起こされるものと考えられる。ここで、「現像マージン」とは、現像工程において、未露光部分が完全に除去された点(ブレイクポイント(B.P.))から、現像パターンを構成する露光部分に剥離や断線等の不具合が生じるまでの時間の長さを表している。すなわち、現像マージンが十分に確保されていないと、未露光部分が除去された後、直ぐに露光部分に細りや消失が生じる。このため、特にファインラインを形成する場合には、現像工程を終了させるタイミングの見極めが難しい。したがって、工程管理の上では、現像マージンを長めに(例えば10秒以上)確保して、再現性良くファインラインを形成することのできる技術が求められていた。   It is considered that the above problem is caused by a short development margin. Here, the “development margin” refers to a defect such as peeling or disconnection from the point where the unexposed portion is completely removed in the developing step (breakpoint (BP)) to the exposed portion constituting the developed pattern. Represents the length of time until the occurrence of. That is, if the development margin is not sufficiently ensured, the unexposed portion is removed and the exposed portion immediately becomes thinned or disappears. For this reason, especially when forming a fine line, it is difficult to determine the timing of terminating the developing process. Therefore, from the viewpoint of process control, there has been a demand for a technique capable of securing a longer development margin (for example, 10 seconds or more) and forming a fine line with good reproducibility.

本発明はかかる点に鑑みてなされたものであり、その目的は、現像マージンが長く、ファインラインを安定的に形成することのできる感光性組成物を提供することである。また、関連する他の目的は、かかる感光性組成物の乾燥体からなる導電膜を備える複合体を提供することである。また、関連する他の目的は、かかる感光性組成物の焼成体からなる導電層を備える電子部品と、その製造方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide a photosensitive composition having a long development margin and capable of stably forming fine lines. Another related object is to provide a composite including a conductive film made of a dried product of the photosensitive composition. Another related object is to provide an electronic component including a conductive layer formed of a fired body of the photosensitive composition, and a method for manufacturing the same.

本発明により、線幅が30μm以下の配線を含む導電層を作製するために用いられる感光性組成物が提供される。この感光性組成物は、導電性粉末と、光重合性化合物と、光重合開始剤と、を含む。上記光重合開始剤は、少なくとも以下の2種類の成分:(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド;(2)α−アミノアルキルフェノン類;を含み、上記光重合開始剤の全体を100質量%としたときに、上記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドが50質量%以上を占めている。   According to the present invention, there is provided a photosensitive composition used for producing a conductive layer including a wiring having a line width of 30 μm or less. This photosensitive composition contains a conductive powder, a photopolymerizable compound, and a photopolymerization initiator. The photopolymerization initiator comprises at least the following two components: (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide; (2) α-aminoalkylphenones; When the total amount of the agent is 100% by mass, the above (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide accounts for 50% by mass or more.

上記感光性組成物は、光重合開始剤として、少なくとも上記(1),(2)の2種類の成分を含んでいる。このことにより、現像工程において現像マージンの時間を長めに確保することができると共に、露光部分の細線形成性を向上することができる。その結果、線幅が30μm以下のファインラインであっても再現性良く形成することができる。また、ショート不良、剥離、断線等の不具合の発生を抑制して、歩留まりを向上することができる。   The photosensitive composition contains at least the two components (1) and (2) as a photopolymerization initiator. As a result, a longer development margin time can be ensured in the development process, and the fine line forming property of the exposed portion can be improved. As a result, a fine line having a line width of 30 μm or less can be formed with good reproducibility. Further, it is possible to suppress the occurrence of defects such as short-circuit failure, peeling, and disconnection, and to improve the yield.

ここで開示される好ましい一態様では、上記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドと上記(2)α−アミノアセトフェノン類との質量比率が、50:50〜90:10である。このことにより、細線形成性をより良く向上して、ここに開示される技術の効果を一層高いレベルで発揮することができる。例えば、ファインライン化がより進んだ導電層であっても、精度よく形成することができる。   In a preferred embodiment disclosed herein, the mass ratio between (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and (2) α-aminoacetophenone is 50:50 to 90: It is 10. As a result, the fine line forming property can be further improved, and the effects of the technology disclosed herein can be exhibited at a higher level. For example, even a conductive layer having a finer line can be formed with high accuracy.

ここで開示される好ましい一態様では、上記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドと上記(2)α−アミノアセトフェノン類との質量比率が、50:50〜85:15である。このことにより、露光部分の耐エッチング性をより良く向上して、導電層の剥離を一層高いレベルで抑制することができる。   In a preferred embodiment disclosed herein, the mass ratio between (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and (2) α-aminoacetophenone is 50:50 to 85: Fifteen. Thereby, the etching resistance of the exposed portion can be further improved, and the peeling of the conductive layer can be suppressed at a higher level.

ここで開示される好ましい一態様では、上記感光性組成物の全体を100質量%としたときに、上記光重合開始剤の割合が2質量%以下である。このことにより、現像マージンの時間をより長めに確保する効果、および、細線形成性をより良く向上する効果、のうちの少なくとも1つを奏する。   In a preferred embodiment disclosed herein, the ratio of the photopolymerization initiator is 2% by mass or less when the entire photosensitive composition is 100% by mass. As a result, at least one of an effect of securing a longer development margin time and an effect of better improving fine line formability is achieved.

ここで開示される好ましい一態様では、上記光重合性化合物が、ウレタン結合を有する光重合性化合物を含む。このことにより、感光性組成物の乾燥体からなる導電膜を、柔軟性や伸縮性に優れたものとすることができる。また、露光部分の耐エッチング性をより良く向上することができる。その結果、基材と導電層との密着性を向上して、剥離等の不具合の発生を一層高いレベルで抑制することができる。   In a preferred embodiment disclosed herein, the photopolymerizable compound includes a photopolymerizable compound having a urethane bond. This makes it possible to make the conductive film made of the dried photosensitive composition excellent in flexibility and stretchability. Further, the etching resistance of the exposed portion can be further improved. As a result, the adhesion between the base material and the conductive layer can be improved, and occurrence of problems such as peeling can be suppressed at a higher level.

ここで開示される好ましい一態様では、上記導電性粉末が、銀系粒子を含む。このことにより、コストと低抵抗とのバランスに優れた導電層を実現することができる。   In a preferred embodiment disclosed herein, the conductive powder includes silver-based particles. This makes it possible to realize a conductive layer having an excellent balance between cost and low resistance.

ここで開示される好ましい一態様では、上記導電性粉末が、金属材料を含むコア部と、上記コア部の表面の少なくとも一部を被覆し、セラミック材料を含む被覆部と、を有するコアシェル粒子を含む。このことにより、露光部分の耐エッチング性をより良く向上すると共に、細線形成性をより良く高めることができる。加えて、セラミック製の基材(セラミック基材)上に導電層を備えるセラミック電子部品を製造する用途では、セラミック基材と導電層との一体性を高めて、セラミック電子部品の耐久性を向上することができる。   In a preferred embodiment disclosed herein, the conductive powder is a core portion containing a metal material, and covers at least a part of the surface of the core portion, and a coating portion containing a ceramic material, and a core-shell particle having a coating portion containing a ceramic material. Including. As a result, the etching resistance of the exposed portion can be further improved, and the fine line forming property can be further improved. In addition, in applications where ceramic electronic components with a conductive layer on a ceramic substrate (ceramic substrate) are used, the durability of the ceramic electronic component is improved by increasing the integration between the ceramic substrate and the conductive layer. can do.

ここで開示される好ましい一態様では、JIS Z 8781:2013年に基づくL表色系において、上記導電性粉末の明度Lが、50以上である。このことにより、露光工程において、露光部分の深部まで安定して光が届くようになり、厚膜状の導電層をも安定的に実現することができる。 In a preferred embodiment disclosed herein, in the L * a * b * color system based on JIS Z 8781: 2013, the lightness L * of the conductive powder is 50 or more. Accordingly, in the exposure step, light can reach stably to a deep portion of the exposed portion, and a thick conductive layer can be stably realized.

ここで開示される好ましい一態様では、感光性組成物に、沸点が150℃以上250℃以下の有機溶剤をさらに含む。このことにより、感光性組成物の保存安定性や、導電膜形成時の取扱性を向上すると共に、印刷後の乾燥温度を低く抑えることができる。   In a preferred embodiment disclosed herein, the photosensitive composition further includes an organic solvent having a boiling point of 150 ° C or higher and 250 ° C or lower. As a result, the storage stability of the photosensitive composition and the ease of handling during formation of the conductive film can be improved, and the drying temperature after printing can be kept low.

また、本発明により、グリーンシートと、上記グリーンシート上に配置され、上記感光性組成物の乾燥体からなる導電膜と、を備える、複合体が提供される。   Further, according to the present invention, there is provided a composite comprising a green sheet and a conductive film disposed on the green sheet and made of a dried body of the photosensitive composition.

また、本発明により、上記感光性組成物の焼成体からなる導電層を備える電子部品が提供される。上記感光性組成物によれば、ファインラインを安定して実現することができる。このため、小型および/または高密度な導電層を備えた電子部品を好適に実現することができる。   Further, according to the present invention, there is provided an electronic component provided with a conductive layer made of a fired body of the photosensitive composition. According to the photosensitive composition, fine lines can be stably realized. Therefore, an electronic component including a small and / or high-density conductive layer can be suitably realized.

また、本発明により、上記感光性組成物を基材上に付与して、露光、現像した後、焼成して、上記感光性組成物の焼成体からなる導電層を形成する工程を含む、電子部品の製造方法が提供される。上記感光性組成物は、現像マージンが長めに確保されている。そのため、このような製造方法によって、小型および/または高密度な導電層を備えた電子部品を安定して製造することができ、歩留まりを向上することができる。   Further, according to the present invention, the method includes applying the photosensitive composition on a substrate, exposing and developing, and baking to form a conductive layer made of a fired body of the photosensitive composition. A method for manufacturing a component is provided. The photosensitive composition has a longer development margin. Therefore, by such a manufacturing method, an electronic component having a small and / or high-density conductive layer can be stably manufactured, and the yield can be improved.

一実施形態に係る積層チップインダクタの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the multilayer chip inductor which concerns on one Embodiment. 開始剤cの含有割合と、配線パターンの線幅との関係を表すグラフである。4 is a graph showing a relationship between a content ratio of an initiator c and a line width of a wiring pattern.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば感光性組成物に含まれる光重合開始剤)以外の事柄であって本発明の実施に必要な事柄(例えば感光性組成物の調製方法、導電膜や導電層の形成方法、電子部品の製造方法等)は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて理解することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than matters specifically mentioned in this specification (for example, a photopolymerization initiator contained in a photosensitive composition) and matters necessary for carrying out the present invention (for example, a method for preparing a photosensitive composition, The method for forming a conductive film or a conductive layer, the method for manufacturing an electronic component, and the like) can be understood based on the technical contents taught by the present specification and general technical common knowledge of those skilled in the art. . The present invention can be implemented based on the contents disclosed in this specification and common technical knowledge in the field.

なお、以下の説明では、感光性組成物を、光重合性化合物および光重合開始剤の沸点以下の温度、具体的には、概ね200℃以下、例えば100℃以下で乾燥した膜状体(乾燥物)を、「導電膜」という。導電膜は、未焼成(焼成前)の膜状体全般を包含する。導電膜は、光硬化前の未硬化物であってもよく、光硬化後の硬化物であってもよい。また、以下の説明では、感光性組成物を、導電性粉末の焼結温度以上で焼成した焼結体(焼成物)を、「導電層」という。導電層は、配線(線状体)と配線パターンとを包含する。
また、本明細書において範囲を示す「A〜B」の表記は、A以上B以下を意味する。
In the following description, the photosensitive composition is dried at a temperature equal to or lower than the boiling point of the photopolymerizable compound and the photopolymerization initiator, specifically, at approximately 200 ° C. or lower, for example, 100 ° C. or lower. Object) is referred to as a “conductive film”. The conductive film encompasses the entire unfired (before firing) film. The conductive film may be an uncured material before light curing or a cured material after light curing. In the following description, a sintered body (fired product) obtained by firing the photosensitive composition at a temperature equal to or higher than the sintering temperature of the conductive powder is referred to as a “conductive layer”. The conductive layer includes a wiring (linear body) and a wiring pattern.
In this specification, the notation “A to B” indicating a range means A or more and B or less.

≪感光性組成物≫
ここに開示される感光性組成物は、焼成後の線幅(ライン幅)が30μm以下であるファインラインの配線を含む導電層を作製するために用いられる。例えば、線幅(ライン幅)が30μm以下の部分を含む導体膜の形成に好ましく用いられる。ここに開示される感光性組成物は、必須の成分として、導電性粉末と、光重合性化合物と、光重合開始剤と、を含んでいる。以下、各構成成分について順に説明する。
<< photosensitive composition >>
The photosensitive composition disclosed herein is used for producing a conductive layer including fine-line wiring having a line width (line width) of 30 μm or less after firing. For example, it is preferably used for forming a conductive film including a portion having a line width (line width) of 30 μm or less. The photosensitive composition disclosed herein contains conductive powder, a photopolymerizable compound, and a photopolymerization initiator as essential components. Hereinafter, each component will be described in order.

<導電性粉末>
導電性粉末は、感光性組成物を焼成して得られる導電層に電気伝導性を付与する成分である。導電性粉末としては、特に限定されず、従来公知のものの中から、例えば用途等に応じて、1種または2種以上を適宜選択して用いることができる。導電性粉末の一好適例として、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、タングステン(W)、イリジウム(Ir)、オスミウム(Os)等の金属の単体、およびこれらの混合物や合金等が挙げられる。合金としては、例えば、銀−パラジウム(Ag−Pd)、銀−白金(Ag−Pt)、銀−銅(Ag−Cu)等の銀合金が挙げられる。
<Conductive powder>
The conductive powder is a component that imparts electrical conductivity to a conductive layer obtained by baking the photosensitive composition. The conductive powder is not particularly limited, and one or two or more types can be appropriately selected from conventionally known ones according to, for example, the application. Preferred examples of the conductive powder include gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), ruthenium (Ru), and rhodium. (Rh), tungsten (W), iridium (Ir), osmium (Os) and other simple metals, and mixtures and alloys thereof. Examples of the alloy include silver alloys such as silver-palladium (Ag-Pd), silver-platinum (Ag-Pt), and silver-copper (Ag-Cu).

好適な一態様では、導電性粉末が銀系粒子を含んでいる。銀は、比較的コストが安く、かつ電気伝導度が高い。このため、導電性粉末が銀系粒子を含むことで、コストと低抵抗とのバランスに優れた導電層を実現することができる。なお、本明細書において、「銀系粒子」とは、銀成分を含むもの全般を包含する。銀系粒子の一例として、銀の単体、上記した銀合金、銀系粒子をコアとするコアシェル粒子等が挙げられる。   In a preferred embodiment, the conductive powder contains silver-based particles. Silver is relatively inexpensive and has high electrical conductivity. Therefore, when the conductive powder contains silver-based particles, a conductive layer having an excellent balance between cost and low resistance can be realized. In the present specification, “silver-based particles” include all particles containing a silver component. Examples of the silver-based particles include a simple substance of silver, the silver alloy described above, and core-shell particles having the silver-based particles as a core.

他の好適な一態様では、導電性粉末が金属−セラミックのコアシェル粒子を含んでいる。金属−セラミックのコアシェル粒子は、金属材料を含むコア部と、コア部の表面の少なくとも一部を被覆し、セラミック材料を含む被覆部と、を有する。セラミック材料は、化学的安定性や耐熱性、耐久性に優れる。このため、金属−セラミックのコアシェル粒子の形態を採用することにより、感光性組成物中での導電性粉末の安定性をより良く向上することができる。また、細線形成性をより良く高めることができる。加えて、セラミック電子部品を製造する用途では、セラミック基材と導電層との一体性や密着性を高めて、セラミック電子部品の耐久性を向上することができる。   In another preferred aspect, the conductive powder comprises metal-ceramic core-shell particles. The metal-ceramic core-shell particles have a core portion containing a metal material and a coating portion covering at least a part of the surface of the core portion and containing a ceramic material. Ceramic materials are excellent in chemical stability, heat resistance, and durability. For this reason, by adopting the form of metal-ceramic core-shell particles, the stability of the conductive powder in the photosensitive composition can be further improved. In addition, the fine line formability can be further improved. In addition, in the use of manufacturing a ceramic electronic component, the durability and the durability of the ceramic electronic component can be improved by increasing the integrity and adhesion between the ceramic base material and the conductive layer.

金属−セラミックのコアシェル粒子において、コア部を構成する金属材料としては、例えば上記した金属の単体、およびこれらの混合物や合金が挙げられる。なかでも、上述の理由から銀系粒子が好ましい。言い換えれば、導電性粉末が、銀−セラミックのコアシェル粒子を含むことが好ましい。   In the metal-ceramic core-shell particles, examples of the metal material constituting the core portion include the above-described metals alone, and mixtures and alloys thereof. Among them, silver-based particles are preferable for the above-mentioned reasons. In other words, the conductive powder preferably includes silver-ceramic core-shell particles.

被覆部を構成するセラミック材料としては、特に限定されるものではないが、例えば、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化セリウム(セリア)、酸化イットリウム(イットリア)、チタン酸バリウム等の酸化物系材料;コーディエライト、ムライト、フォルステライト、ステアタイト、サイアロン、ジルコン、フェライト等の複合酸化物系材料;窒化ケイ素(シリコンナイトライド)、窒化アルミニウム(アルミナイトライド)等の窒化物系材料;炭化ケイ素(シリコンカーバイド)等の炭化物系材料;ハイドロキシアパタイト等の水酸化物系材料;等が挙げられる。例えばセラミック基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミック基材と同じ種類あるいは親和性に優れた種類のセラミック材料が好ましい。   The ceramic material constituting the coating portion is not particularly limited, but for example, zirconium oxide (zirconia), magnesium oxide (magnesia), aluminum oxide (alumina), silicon oxide (silica), titanium oxide (titania) Oxide-based materials such as cerium oxide, cerium oxide (ceria), yttrium oxide (yttria), and barium titanate; composite oxide-based materials such as cordierite, mullite, forsterite, steatite, sialon, zircon, and ferrite; silicon nitride (Silicon nitride), nitride materials such as aluminum nitride (aluminum nitride); carbide materials such as silicon carbide (silicon carbide); and hydroxide materials such as hydroxyapatite. For example, in applications where a conductive layer is formed on a ceramic base material to manufacture a ceramic electronic component, a ceramic material of the same type as the ceramic base material or a type having excellent affinity is preferable.

特に限定されるものではないが、金属−セラミックのコアシェル粒子におけるセラミック材料の含有比率は、コア部の金属材料100質量部に対して、例えば0.01〜5.0質量部であってもよい。なお、金属−セラミックのコアシェル粒子は、従来公知の手法によって作製することができる。例えば、本願出願人の先願である特許第5075222号の段落0025〜0028に記載されるように、金属材料と、目的の金属元素を有する有機系金属化合物(例えば金属アルコキシドまたはキレート化合物)あるいは酸化物ゾルと、を反応させることによって、作製することができる。   Although not particularly limited, the content ratio of the ceramic material in the metal-ceramic core-shell particles may be, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the metal material in the core portion. . The metal-ceramic core-shell particles can be produced by a conventionally known method. For example, as described in paragraphs 0025 to 0028 of Japanese Patent No. 5075222, which is a prior application of the present applicant, a metal material and an organic metal compound (for example, a metal alkoxide or a chelate compound) having a target metal element or oxidation It can be produced by reacting with a material sol.

特に限定されるものではないが、導電性粉末のD50粒径は、露光工程における露光性能との兼ね合いから、概ね1.0〜5.0μmであるとよい。D50粒径を上記範囲とすることで、露光部分の露光性能を向上して、ファインラインを一層安定的に形成することができる。なお、本明細書において「D50粒径」とは、レーザ回折・散乱法に基づく体積基準の粒度分布において、粒径の小さい側から積算値50%に相当する粒径をいう。
感光性組成物中での凝集を抑制して、安定性を向上する観点からは、導電性粉末のD50粒径が、例えば、1.5μm以上、2.0μm以上、2.5μm以上であってもよい。また、細線形成性を向上したり、導電層の緻密化や低抵抗化を進めたりする観点からは、導電性粉末のD50粒径が、例えば、4.5μm以下、4.0μm以下であってもよい。
Although not particularly limited, D 50 particle size of the conductive powder is from consideration of the exposure performance in the exposure step, generally may is 1.0 to 5.0 m. D 50 particle size to within the above range, to improve the exposure performance of the exposure portion, it is possible to form a fine line even more stably. In this specification, "D 50 particle size" refers to the volume-based particle size distribution based on the laser diffraction scattering method, a particle diameter corresponding the small particle size side in the cumulative value of 50%.
By suppressing the aggregation of a photosensitive composition, from the viewpoint of improving the stability, D 50 particle size of the conductive powder is, for example, 1.5 [mu] m or more, 2.0 .mu.m or more, there at 2.5μm or more You may. You can also increase the fine wire forming, in view of or promoting densification and low resistance of the conductive layer, D 50 particle size of the conductive powder is, for example, 4.5 [mu] m or less, there below 4.0μm You may.

特に限定されるものではないが、導電性粉末全体の粒度分布は、多峰性を有しているとよい。言い換えれば、D50粒径の異なる第1導電性粉末と第2導電性粉末とを含むとよい。このことにより、第1導電性粉末と第2導電性粉末とのD50粒径の差が小さい場合に比べて、導電層の緻密性や充填性を向上すると共に、電気抵抗を好適に低減することができる。第1導電性粉末と第2導電性粉末とのD50粒径は、少なくとも0.5μm、典型的には0.5〜3.0μm、例えば1.0〜2.0μm程度離れているとよい。一具体例では、第1導電性粉末のD50粒径が、概ね3〜5μm、例えば3.5〜4.5μmの範囲にあり、第2導電性粉末のD50粒径が、概ね1〜3.5μm、例えば1.5〜3μmの範囲にあるとよい。 Although not particularly limited, it is preferable that the particle size distribution of the entire conductive powder has multimodality. In other words, it may comprise a first conductive powder and the second conductive powder having different D 50 particle size. Thus, as compared with the case the difference between the D 50 particle size of the first conductive powder and the second conductive powder is small, thereby improving the denseness and filling properties of the conductive layer, suitably reduce electric resistance be able to. The first conductive powder and the D 50 particle size of the second conductive powder, may at least 0.5 [mu] m, typically 0.5 to 3.0 [mu] m, for example, located several 1.0~2.0μm . In one embodiment, D 50 particle size of the first conductive powder, there generally 3 to 5 [mu] m, for example in the range of 3.5~4.5Myuemu, the D 50 particle size of the second conductive powder, generally 1 It is good to be in the range of 3.5 μm, for example, 1.5-3 μm.

特に限定されるものではないが、導電性粉末を構成する導電性粒子の形状は、典型的には、平均アスペクト比(長径/短径比)が概ね1〜2の略球状、好ましくは1〜1.5、例えば1〜1.2の球状である。このことにより、露光性能をより安定的に実現することができる。導電性粉末は、平均アスペクト比が上記範囲にあるとよい。なお、本明細書において「平均アスペクト比」とは、電子顕微鏡で複数の導電性粒子を観察し、得られた観察画像から算出されるアスペクト比の算術平均値をいう。また、本明細書において「球状」とは、全体として概ね球体(ボール)と見なせる形態であることを示し、楕円状、多角体状、円盤球状等を含み得る用語である。   Although not particularly limited, the shape of the conductive particles constituting the conductive powder is typically approximately spherical with an average aspect ratio (ratio of major axis / minor axis) of approximately 1 to 2, preferably 1 to 2. 1.5, for example 1 to 1.2 spherical. As a result, the exposure performance can be more stably realized. The conductive powder preferably has an average aspect ratio in the above range. In this specification, the “average aspect ratio” refers to an arithmetic average value of the aspect ratio calculated from an observation image obtained by observing a plurality of conductive particles with an electron microscope. Further, in the present specification, the term “spherical” refers to a form that can be generally regarded as a sphere (ball) as a whole, and is a term that can include an elliptical shape, a polygonal shape, a disc-shaped spherical shape, and the like.

特に限定されるものではないが、導電性粉末の全体は、JIS Z 8781:2013年に基づくL表色系において、明度Lが、50以上であるとよい。このことにより、露光工程において、露光部分の深部まで安定して照射光が届くようになり、例えば、膜厚が5μm以上、さらには10μm以上のような厚めの導電層をも安定的に実現することができる。かかる観点からは、導電性粉末の明度Lが、概ね55以上、例えば60以上であってもよい。明度Lは、例えば上記した導電性粉末の種類やD50粒径によって調整することができる。なお、明度Lの測定は、例えばJIS Z 8722:2009年に準拠する分光測色計で行うことができる。 Although not particularly limited, the entirety of the conductive powder preferably has a lightness L * of 50 or more in an L * a * b * color system based on JIS Z 8781: 2013. Thereby, in the exposure step, the irradiation light can reach the deep portion of the exposed portion stably, and, for example, a thick conductive layer having a film thickness of 5 μm or more, or even 10 μm or more can be stably realized. be able to. From such a viewpoint, the brightness L * of the conductive powder may be approximately 55 or more, for example, 60 or more. Lightness L * can be adjusted for example by the type and D 50 particle size of the conductive powder mentioned above. The measurement of the lightness L * can be performed by, for example, a spectrophotometer conforming to JIS Z 8722: 2009.

なお、導電性粉末は、その表面に有機表面処理剤が付着していてもよい。有機表面処理剤は、例えば、感光性組成物中における導電性粉末の分散性を向上する、他の含有成分との親和性を高める、導電性粉末を構成する金属の表面酸化を防止する、のうちの少なくとも1つの目的で使用され得る。有機表面処理剤としては、例えば、カルボン酸などの脂肪酸、ベンゾトリアゾール系化合物等が挙げられる。   The conductive powder may have an organic surface treating agent attached to its surface. Organic surface treatment agent, for example, to improve the dispersibility of the conductive powder in the photosensitive composition, to increase the affinity with other components, to prevent surface oxidation of the metal constituting the conductive powder, It can be used for at least one of these purposes. Examples of the organic surface treating agent include fatty acids such as carboxylic acid, and benzotriazole compounds.

特に限定されるものではないが、感光性組成物全体に占める導電性粉末の割合は、概ね50質量%以上、典型的には60〜95質量%、例えば70〜90質量%であるとよい。上記範囲を満たすことで、緻密性や電気伝導性に優れた導電層を形成することができる。また、感光性組成物の取扱性や、導電膜を成形する際の作業性を向上することができる。   Although not particularly limited, the proportion of the conductive powder in the entire photosensitive composition is preferably about 50% by mass or more, typically 60 to 95% by mass, for example, 70 to 90% by mass. By satisfying the above range, a conductive layer excellent in denseness and electric conductivity can be formed. Further, the handleability of the photosensitive composition and the workability when forming the conductive film can be improved.

<光重合性化合物>
光重合性化合物は、後述する光重合開始剤の分解で生じた活性種によって重合し、硬化する成分である。重合反応は、付加重合であってもよいし開環重合であってもよい。光重合性化合物は、典型的には、不飽和結合および/または環状構造を1つ以上有する。光重合性化合物は、モノマー、ポリマー、オリゴマーを包含する。なかでも、モノマーが好ましい。光重合性化合物としては、特に限定されず、従来公知のものの中から、例えば用途や基材の種類等に応じて、1種または2種以上を適宜選択して用いることができる。光重合性化合物の一好適例として、(メタ)アクリロイル基やビニル基のような不飽和結合を1つ以上有するラジカル重合性のモノマーや、エポキシ基のような環状構造を有するカチオン重合性のモノマーが挙げられる。
<Photopolymerizable compound>
The photopolymerizable compound is a component that is polymerized and cured by active species generated by decomposition of a photopolymerization initiator described below. The polymerization reaction may be addition polymerization or ring-opening polymerization. The photopolymerizable compound typically has one or more unsaturated bonds and / or cyclic structures. The photopolymerizable compound includes a monomer, a polymer, and an oligomer. Of these, monomers are preferred. The photopolymerizable compound is not particularly limited, and one or two or more types can be appropriately selected from conventionally known ones according to, for example, the application and the type of the substrate. Preferred examples of the photopolymerizable compound include a radical polymerizable monomer having at least one unsaturated bond such as a (meth) acryloyl group and a vinyl group, and a cationic polymerizable monomer having a cyclic structure such as an epoxy group. Is mentioned.

好適な一態様では、光重合性化合物が、(メタ)アクリロイル基を有する(メタ)アクリレートモノマーを含んでいる。(メタ)アクリレートモノマーを含むことにより、導電層の柔軟性や基材への追従性を向上することができる。その結果、剥離や断線等の不具合の発生を一層高いレベルで抑制することができる。なお、本明細書において、「(メタ)アクリロイル」とは、「メタクリロイル」および「アクリロイル」を包含し、「(メタ)アクリレート」とは、「メタクリレート」および「アクリレート」を包含する用語である。また、(メタ)アクリレートモノマーは、1分子あたり1つの官能基を有する単官能(メタ)アクリレートと、1分子あたり2つ以上の官能基を有する多官能(メタ)アクリレートと、それらの変性物とを包含する。   In a preferred embodiment, the photopolymerizable compound includes a (meth) acrylate monomer having a (meth) acryloyl group. By containing the (meth) acrylate monomer, the flexibility of the conductive layer and the followability to the base material can be improved. As a result, the occurrence of problems such as peeling and disconnection can be suppressed at a higher level. In this specification, “(meth) acryloyl” includes “methacryloyl” and “acryloyl”, and “(meth) acrylate” is a term including “methacrylate” and “acrylate”. The (meth) acrylate monomer is a monofunctional (meth) acrylate having one functional group per molecule, a polyfunctional (meth) acrylate having two or more functional groups per molecule, and a modified product thereof. Is included.

(メタ)アクリレートモノマーの一好適例として、トリエチレングリコールモノアクリレート、トリエチレングリコールモノメタクリレート、テトラエチレングリコールモノアクリレート、テトラエチレングリコールモノメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート等の多官能(メタ)アクリレートが挙げられる。なかでも、光硬化性を高める観点からは、1分子あたり5つ以上の(メタ)アクリロイル基を有するモノマーが好ましい。   Preferred examples of the (meth) acrylate monomer include triethylene glycol monoacrylate, triethylene glycol monomethacrylate, tetraethylene glycol monoacrylate, tetraethylene glycol monomethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, and dipentaerythritol pentaacrylate. And polyfunctional (meth) acrylates such as dipentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, and tetrapentaerythritol decaacrylate. Among them, from the viewpoint of enhancing photocurability, a monomer having 5 or more (meth) acryloyl groups per molecule is preferable.

好適な他の一態様では、光重合性化合物が、ウレタン結合(−NH−C(=O)−O−)を有する光重合性化合物(ウレタン結合含有化合物)を含んでいる。このことにより、露光部分の耐エッチング性をより良く向上すると共に、柔軟性や伸縮性に優れた導電層を実現することができる。したがって、基材と導電層との密着性を向上して、剥離や断線等の不具合の発生を一層高いレベルで抑制することができる。ウレタン結合含有化合物の一好適例として、ウレタン変性(メタ)アクリレートや、ウレタン変性エポキシ等が挙げられる。光重合性化合物全体に占めるウレタン結合含有化合物の割合は、質量基準で、概ね30質量%以上、典型的には50質量%以上であることがより好ましく、例えば95質量%以上、実質的に100質量%であってもよい。   In another preferred embodiment, the photopolymerizable compound includes a photopolymerizable compound having a urethane bond (—NH—C (= O) —O—) (urethane bond-containing compound). This makes it possible to further improve the etching resistance of the exposed portion and to realize a conductive layer having excellent flexibility and elasticity. Therefore, the adhesion between the base material and the conductive layer can be improved, and occurrence of problems such as peeling and disconnection can be suppressed at a higher level. Preferable examples of the urethane bond-containing compound include urethane-modified (meth) acrylate and urethane-modified epoxy. The proportion of the urethane bond-containing compound in the entire photopolymerizable compound is more preferably about 30% by mass or more, typically 50% by mass or more, for example, 95% by mass or more, substantially 100% by mass. % By mass.

特に限定されるものではないが、光重合性化合物の重量平均分子量は、概ね100〜10000、典型的には200〜5000、例えば300〜2000であるとよい。なお、本明細書において「重量平均分子量」とは、ゲルクロマトグラフィー(Gel Permeation Chromatography:GPC)によって測定し、標準ポリスチレン検量線を用いて換算した重量基準の平均分子量を言う。光重合性化合物がモノマーの場合は、分子量と同義である。   Although not particularly limited, the weight-average molecular weight of the photopolymerizable compound may be generally about 100 to 10,000, typically 200 to 5,000, for example, 300 to 2,000. In the present specification, the “weight average molecular weight” refers to a weight-based average molecular weight measured by gel chromatography (Gel Permeation Chromatography: GPC) and converted using a standard polystyrene calibration curve. When the photopolymerizable compound is a monomer, it has the same meaning as the molecular weight.

特に限定されるものではないが、感光性組成物全体に占める光重合性化合物の割合は、概ね0.1〜20質量%、典型的には0.5〜10質量%、例えば2〜8質量%、さらには3〜6質量%であるとよい。上記範囲を満たすことで、感光性組成物の光硬化性が十分に発揮され、より高いレベルで安定して導電層を形成することができる。   Although not particularly limited, the proportion of the photopolymerizable compound in the entire photosensitive composition is generally 0.1 to 20% by mass, typically 0.5 to 10% by mass, for example, 2 to 8% by mass. %, More preferably 3 to 6% by mass. By satisfying the above range, the photocurability of the photosensitive composition is sufficiently exhibited, and a conductive layer can be stably formed at a higher level.

<光重合開始剤>
光重合開始剤は、紫外線等の光エネルギーの照射によって分解し、ラジカルや陽イオン等の活性種を発生させ、光重合性化合物の重合反応を開始させる成分である。ここに開示される感光性組成物において、光重合開始剤は、少なくとも次の2種類の成分:(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド;(2)α−アミノアルキルフェノン類;を必須として含んでいる。
<Photopolymerization initiator>
The photopolymerization initiator is a component that is decomposed by irradiation with light energy such as ultraviolet rays, generates active species such as radicals and cations, and starts the polymerization reaction of the photopolymerizable compound. In the photosensitive composition disclosed herein, the photopolymerization initiator comprises at least two kinds of components: (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide; (2) α-aminoalkyl Phenones; as essential components.

上記(1),(2)の光重合開始剤は、吸収波長が相互に異なっている。そのため、これらを併用することで、1種類の光重合開始剤を単独で用いる場合と比べて、吸収波長領域が広がり、高効率で活性種を発生させることができる。また、上記(1),(2)の光重合開始剤の相乗効果により、現像工程において、例えばブレイクポイント(B.P.)までの時間は従来のままに、現像マージンの時間を長めに確保することができる。以上のような効果が相俟って、ここに開示される技術では、細線形成性を向上して、線幅が30μm以下のファインラインであっても再現性良く形成することができる。以下、(1),(2)の光重合開始剤について説明する。   The photopolymerization initiators (1) and (2) have different absorption wavelengths. Therefore, when these are used in combination, the absorption wavelength region is broadened and active species can be generated with high efficiency as compared with the case where one type of photopolymerization initiator is used alone. Further, due to the synergistic effect of the photopolymerization initiators (1) and (2), a longer development margin time is secured in the development process, for example, the time to the break point (BP) remains unchanged. can do. In combination with the above-described effects, the technology disclosed herein can improve the fine line forming property and form a fine line with a line width of 30 μm or less with good reproducibility. Hereinafter, the photopolymerization initiators (1) and (2) will be described.

(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドは、モノアシルフォスフィンオキサイド(MAPO)である。市販品としては、DAROCUR(商標)TPO、IRGACURE(商標)TPO(いずれもBASFジャパン株式会社製)等が挙げられる。アシルフォスフィンオキサイド系の光重合開始剤は、光重合性化合物や有機系分散媒との相溶性に優れる。そのため、感光性組成物の保存安定性を向上するために有効である。 (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide is a monoacylphosphine oxide (MAPO). Examples of commercially available products include DAROCUR (trademark) TPO and IRGACURE (trademark) TPO (both are manufactured by BASF Japan Ltd.). Acylphosphine oxide-based photopolymerization initiators have excellent compatibility with photopolymerizable compounds and organic dispersion media. Therefore, it is effective for improving the storage stability of the photosensitive composition.

なお、上記(1)と同じアシルフォスフィンオキサイド系に分類される光重合開始剤として、ビスアシルフォスフィンオキサイド(BAPO)、例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイドが挙げられる。しかし、後述する試験例に示す通り、上記(1)にかえて、ビスアシルフォスフィンオキサイドを用いる場合には、上記したようなここに開示される技術の効果は発揮されない。すなわち、上記(1),(2)の光重合開始剤を併用することには、特異性があるといえる。   In addition, bisacylphosphine oxide (BAPO), for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide is used as a photopolymerization initiator classified into the same acylphosphine oxide system as the above (1). Is mentioned. However, when a bisacylphosphine oxide is used instead of the above (1), as shown in the test examples described below, the above-described effects of the technology disclosed herein are not exhibited. That is, it can be said that the combined use of the photopolymerization initiators (1) and (2) has specificity.

ここに開示される技術では、上記(1)が、光重合開始剤の主体となっている。言い換えれば、光重合開始剤の全体を100質量%としたときに、上記(1)の割合が、50質量%以上を占めている。このことにより、細線形成性を向上して、ファインラインを好適に形成することができる。かかる観点からは、上記(1)の割合が、例えば75質量%以上、好ましくは80質量%以上、より好ましくは85質量%以上であってもよい。また、上記(2)との相乗効果をより良く発揮する観点や、基材と導電層との密着性を向上する観点からは、上記(1)の割合が、概ね90質量%以下、好ましくは85質量%以下であってもよい。   In the technology disclosed herein, the above (1) is a main component of the photopolymerization initiator. In other words, when the total amount of the photopolymerization initiator is 100% by mass, the ratio of the above (1) accounts for 50% by mass or more. As a result, fine line forming properties can be improved, and a fine line can be suitably formed. From such a viewpoint, the ratio of the above (1) may be, for example, 75% by mass or more, preferably 80% by mass or more, more preferably 85% by mass or more. In addition, from the viewpoint of better exhibiting the synergistic effect with the above (2) and improving the adhesion between the base material and the conductive layer, the ratio of the above (1) is approximately 90% by mass or less, preferably. It may be 85% by mass or less.

(2)α−アミノアルキルフェノン類としては、α−アミノアルキルフェノン骨格を有する化合物であればよく、従来公知のものの中から1種または2種以上を適宜選択して用いることができる。α−アミノアルキルフェノン骨格は、例えば分子内開裂型の光重合開始能を有する官能基として把握され得る。アルキル部位は、直鎖状でもよく分岐状でもよい。アルキル部位は、置換基を有してもよい。α−アミノアルキルフェノン類の一好適例として、分子量が、概ね1000以下、典型的には200〜500、例えば250〜400の化合物が挙げられる。他の一好適例として、α−アミノアセトフェノン骨格を有する化合物が挙げられる。α−アミノアセトフェノン骨格を有する化合物の一好適例として、下記(A)の構造部分を有する化合物が挙げられる。 (2) As the α-aminoalkylphenones, any compound having an α-aminoalkylphenone skeleton may be used, and one or more conventionally known compounds may be appropriately selected and used. The α-aminoalkylphenone skeleton can be grasped, for example, as a functional group having an intramolecular cleavage type photopolymerization initiation ability. The alkyl moiety may be linear or branched. The alkyl moiety may have a substituent. Preferred examples of the α-aminoalkylphenones include compounds having a molecular weight of about 1000 or less, typically 200 to 500, for example, 250 to 400. Another preferred example is a compound having an α-aminoacetophenone skeleton. As a preferred example of the compound having an α-aminoacetophenone skeleton, a compound having the following structural portion (A) is given.

Figure 0006637087
Figure 0006637087

上記(A)において、R,Rは、それぞれ独立に、炭素原子数1〜18の炭化水素基から選択される。R,Rは、同一であってもよく、異なってもよい。Rは、例えば、炭素原子数1〜18のアルキル基である。Rの炭素原子数は、好ましくは1〜8、典型的には1〜4、例えば1,2または3である。Rは、例えば、炭素原子数1〜18のアルキル基、アリール基またはアリールアルキル基である。Rの炭素原子数は、好ましくは1〜8である。また、R,Rは、それぞれ独立に、水素原子、または炭素原子数1〜18の炭化水素基から選択される。R,Rは、同一であってもよく、異なってもよい。R,Rは、例えば、それぞれ独立に、炭素原子数1〜18のアルキル基、アリール基、アリールアルキル基、または、RとRとが結合した環状アルキルエーテル基である。RとRとの炭素原子数の合計は、好ましくは1〜8、典型的には1〜6、例えば2〜4である。 In the above (A), R 1 and R 2 are each independently selected from a hydrocarbon group having 1 to 18 carbon atoms. R 1 and R 2 may be the same or different. R 1 is, for example, an alkyl group having 1 to 18 carbon atoms. The number of carbon atoms in R 1 is preferably 1 to 8, typically 1 to 4, for example 1, 2 or 3. R 2 is, for example, an alkyl group having 1 to 18 carbon atoms, an aryl group or an arylalkyl group. R 2 preferably has 1 to 8 carbon atoms. Further, R 3 and R 4 are each independently selected from a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms. R 3 and R 4 may be the same or different. R 3 and R 4 are, for example, each independently an alkyl group having 1 to 18 carbon atoms, an aryl group, an arylalkyl group, or a cyclic alkyl ether group in which R 3 and R 4 are bonded. The total number of carbon atoms of R 3 and R 4 is preferably 1-8, typically 1-6, such as 2-4.

上記(2)の具体例として、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノプロパン−1−オン、N,N−ジメチルアミノアセトフェノン等が挙げられる。市販品としては、IRGACURE(商標)369、IRGACURE(商標)379、IRGACURE(商標)907(いずれもBASFジャパン株式会社製)等が挙げられる。   As a specific example of the above (2), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-monophorinopropan-1-one, N, N-dimethylaminoacetophenone And the like. Examples of commercially available products include IRGACURE (trademark) 369, IRGACURE (trademark) 379, and IRGACURE (trademark) 907 (all manufactured by BASF Japan Ltd.).

特に限定されるものではないが、ここに開示される技術の効果を高いレベルで発揮する観点からは、光重合開始剤の全体を100質量%としたときに、上記(2)の割合が、概ね10質量%以上であってもよい。また、基材と導電層との密着性を向上する観点からは、上記(2)の割合が、15質量%以上であってもよい。また、細線形成性をより良く向上する観点からは、上記(2)の割合が、例えば25質量%以下、好ましくは20質量%以下、より好ましくは15質量%以下であってもよい。   Although not particularly limited, from the viewpoint of exhibiting the effect of the technology disclosed herein at a high level, when the total amount of the photopolymerization initiator is 100% by mass, the ratio of the above (2) is: It may be about 10% by mass or more. Further, from the viewpoint of improving the adhesion between the base material and the conductive layer, the ratio of the above (2) may be 15% by mass or more. In addition, from the viewpoint of further improving the fine line forming property, the ratio of the above (2) may be, for example, 25% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less.

特に限定されるものではないが、ここに開示される技術の効果を高いレベルで発揮する観点からは、光重合開始剤の全体を100質量%としたときに、上記(1),(2)の合計割合が、概ね80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上であって、例えば100質量%であってもよい。   Although not particularly limited, from the viewpoint of exhibiting the effects of the technology disclosed herein at a high level, when the total amount of the photopolymerization initiator is 100% by mass, the above (1) and (2) Is about 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, for example, 100% by mass.

特に限定されるものではないが、上記(1),(2)の質量比率は、概ね50:50〜95:5であるとよい。このことにより、細線形成性を向上して、ここに開示される技術の効果を一層高いレベルで発揮することができる。例えば、ファインライン化がより進んだ導電層であっても、精度よく形成することができる。また、露光部分の耐エッチング性をより良く向上して、導電層の剥離を抑制する観点からは、上記(1),(2)の質量比率が、好ましくは50:50〜90:10、より好ましくは50:50〜85:15であるとよい。   Although not particularly limited, the mass ratio of the above (1) and (2) is preferably approximately 50:50 to 95: 5. As a result, the fine line formability can be improved, and the effects of the technology disclosed herein can be exhibited at a higher level. For example, even a conductive layer having a finer line can be formed with high accuracy. Further, from the viewpoint of further improving the etching resistance of the exposed portion and suppressing the peeling of the conductive layer, the mass ratio of the above (1) and (2) is preferably 50:50 to 90:10. Preferably, the ratio is 50:50 to 85:15.

特に限定されるものではないが、感光性組成物全体に占める光重合開始剤の割合は、概ね0.01質量%以上、典型的には0.04質量%以上、例えば0.05質量%以上であるとよい。このことにより、感光性組成物の光硬化性が十分に発揮され、安定して導電層を形成することができる。また、感光性組成物全体に占める光重合開始剤の割合は、概ね0.5質量%以下、典型的には0.3質量%以下、好ましくは0.2質量%以下、例えば0.1質量%以下であるとよい。このことにより、現像工程において、相反する耐エッチング性と剥離性とをより高いレベルでバランスすることができる。そのため、現像マージンの時間をより長めに確保して、細線形成性をより良く高めることができる。   Although not particularly limited, the proportion of the photopolymerization initiator in the entire photosensitive composition is generally at least 0.01% by mass, typically at least 0.04% by mass, for example, at least 0.05% by mass. It is good. Thereby, the photocurability of the photosensitive composition is sufficiently exhibited, and the conductive layer can be stably formed. The proportion of the photopolymerization initiator in the whole photosensitive composition is generally 0.5% by mass or less, typically 0.3% by mass or less, preferably 0.2% by mass or less, for example, 0.1% by mass. % Or less. Thus, in the developing step, the opposite etching resistance and peeling property can be balanced at a higher level. Therefore, a longer development margin time can be ensured, and the fine line formability can be further improved.

特に限定されるものではないが、光重合開始剤の含有比率は、導電性粉末100質量部に対して、概ね0.01〜1質量部、典型的には0.02〜0.2質量部、例えば0.05〜0.1質量部であってもよい。また、光重合開始剤の含有比率は、光重合性化合物100質量部に対して、概ね0.1〜25質量部、典型的には0.2〜5質量部、例えば0.5〜3質量部、さらには1〜2質量部であってもよい。   Although not particularly limited, the content ratio of the photopolymerization initiator is generally 0.01 to 1 part by mass, typically 0.02 to 0.2 part by mass, per 100 parts by mass of the conductive powder. For example, it may be 0.05 to 0.1 part by mass. The content ratio of the photopolymerization initiator is generally 0.1 to 25 parts by mass, typically 0.2 to 5 parts by mass, for example, 0.5 to 3 parts by mass, based on 100 parts by mass of the photopolymerizable compound. Parts, or even 1 to 2 parts by mass.

<有機バインダ>
感光性組成物は、上記した必須の成分に加えて、有機バインダを含有してもよい。有機バインダは、基材と未硬化の導電膜との接着性を高める成分である。有機バインダとしては、従来公知のものの中から、例えば基材の種類や光重合性化合物、光重合開始剤の種類等に応じて、1種または2種以上を適宜選択して用いることができる。有機バインダとしては、現像工程においてエッチング液で容易に除去可能なものが好ましい。例えば、現像工程においてアルカリ性のエッチング液を使用する場合には、ヒドロキシル基(−OH)、カルボキシル基(−C(=O)OH)、エステル結合(−C(=O)O−)、スルホ基(−SOH)等の、酸性を示す構造部分を有する化合物が好ましい。このことにより、未露光部分に残渣が残存し難くなり、例えばファインラインの間のスペースを安定して確保することができる。
<Organic binder>
The photosensitive composition may contain an organic binder in addition to the essential components described above. The organic binder is a component that enhances the adhesiveness between the base material and the uncured conductive film. As the organic binder, one or more types can be appropriately selected from conventionally known ones according to, for example, the type of the base material, the type of the photopolymerizable compound, the type of the photopolymerization initiator, and the like. The organic binder is preferably one that can be easily removed with an etchant in the developing step. For example, when an alkaline etching solution is used in the developing step, a hydroxyl group (—OH), a carboxyl group (—C (= O) OH), an ester bond (—C (= O) O—), a sulfo group of (-SO 3 H) or the like, a compound having a structural part showing acidity are preferable. This makes it difficult for residues to remain in unexposed portions, and for example, a space between fine lines can be stably secured.

有機バインダの一好適例として、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース系高分子、アクリル樹脂、フェノール樹脂、アルキド樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。なかでも、現像工程において除去し易い観点から、親水性の有機バインダ、例えば、セルロース系高分子やアクリル樹脂等が好ましい。   Preferred examples of the organic binder include cellulosic polymers such as methylcellulose, ethylcellulose, carboxymethylcellulose, and hydroxymethylcellulose, acrylic resins, phenolic resins, alkyd resins, polyvinyl alcohol, and polyvinyl butyral. Among them, a hydrophilic organic binder, for example, a cellulosic polymer or an acrylic resin is preferable from the viewpoint of easy removal in the developing step.

感光性組成物に有機バインダを含む場合、特に限定されるものではないが、感光性組成物全体に占める有機バインダの割合は、概ね0.1〜20質量%、典型的には0.5〜10質量%、例えば1〜5質量%であってもよい。また、特に限定されるものではないが、光重合性化合物と有機バインダとの含有割合が概ね同等(両者の含有割合の差が、概ね1質量%以下、例えば0.5質量%以下)であるとよい。このことにより、現像工程において、相反する耐エッチング性(密着性)と剥離性とをより高いレベルでバランスすることができる。   When the photosensitive composition contains an organic binder, the ratio of the organic binder in the whole photosensitive composition is not particularly limited, but is generally 0.1 to 20% by mass, typically 0.5 to 20% by mass. It may be 10% by weight, for example 1 to 5% by weight. Although not particularly limited, the content ratios of the photopolymerizable compound and the organic binder are substantially equal (the difference between the two content ratios is approximately 1% by mass or less, for example, 0.5% by mass or less). Good. Thus, in the developing step, the opposite etching resistance (adhesion) and releasability can be balanced at a higher level.

<有機系分散媒>
感光性組成物は、上記した必須の成分に加えて、これらを分散させる有機系分散媒を含有してもよい。有機系分散媒は、感光性組成物に適度な粘性や流動性を付与して、感光性組成物の取扱性を向上したり、導電膜を成形する際の作業性を向上したりする成分である。有機系分散媒としては、従来公知のものの中から、例えば光重合性化合物や光重合開始剤の種類等に応じて、1種または2種以上を適宜選択して用いることができる。
<Organic dispersion medium>
The photosensitive composition may contain, in addition to the essential components described above, an organic dispersion medium for dispersing these components. The organic dispersion medium is a component that imparts appropriate viscosity and fluidity to the photosensitive composition, improves the handleability of the photosensitive composition, and improves the workability when forming a conductive film. is there. As the organic dispersion medium, one or more kinds can be appropriately selected from conventionally known ones according to, for example, the type of the photopolymerizable compound and the photopolymerization initiator.

有機系分散媒の一好適例として、ターピネオール、ジヒドロターピネオール(メンタノール)、テキサノール、3−メチル−3−メトキシブタノール、ベンジルアルコール等のアルコール系溶剤;エチレングリコール、プロピレングリコール、ジエチレングリコール等のグリコール系溶剤;ジプロピレングリコールメチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、セロソルブ(エチレングリコールモノエチルエーテル)、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)等のエーテル系溶剤;ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ブチルグリコールアセテート、ブチルジグリコールアセテート、ブチルセロソルブアセテート、ブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセタート)、イソボルニルアセテート等のエステル系溶剤;トルエン、キシレン、ナフサ、石油系炭化水素等の炭化水素系溶剤;ミネラルスピリット;等の有機溶剤が挙げられる。   Preferable examples of the organic dispersion medium include alcohol solvents such as terpineol, dihydroterpineol (mentanol), texanol, 3-methyl-3-methoxybutanol, and benzyl alcohol; glycol solvents such as ethylene glycol, propylene glycol, and diethylene glycol; Ether solvents such as dipropylene glycol methyl ether, methyl cellosolve (ethylene glycol monomethyl ether), cellosolve (ethylene glycol monoethyl ether), butyl carbitol (diethylene glycol monobutyl ether); diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate; Butyl glycol acetate, butyl diglycol acetate, butyl cellosolve acetate And ester solvents such as butyl carbitol acetate (diethylene glycol monobutyl ether acetate) and isobornyl acetate; hydrocarbon solvents such as toluene, xylene, naphtha and petroleum hydrocarbons; and organic solvents such as mineral spirits. Can be

なかでも、感光性組成物の保存安定性や導電膜形成時の取扱性を向上する観点からは、沸点が150℃以上の有機溶剤、さらには170℃以上の有機溶剤が好ましい。また、他の一好適例として、導電膜を印刷した後の乾燥温度を低く抑える観点からは、沸点が250℃以下の有機溶剤、さらには沸点が220℃以下の有機溶剤が好ましい。このことにより、生産性を向上すると共に、生産コストを低減することができる。   Among them, an organic solvent having a boiling point of 150 ° C. or more, and more preferably an organic solvent having a boiling point of 170 ° C. or more, is preferable from the viewpoint of improving the storage stability of the photosensitive composition and the ease of handling during formation of the conductive film. As another preferred example, an organic solvent having a boiling point of 250 ° C. or lower, and more preferably an organic solvent having a boiling point of 220 ° C. or lower, is preferable from the viewpoint of suppressing the drying temperature after printing the conductive film. Thereby, productivity can be improved and production cost can be reduced.

また、例えばセラミック基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミックグリーンシートへの浸透性が低い有機溶剤が好ましい。セラミックグリーンシートへの浸透性が低い有機溶剤としては、例えば、シクロヘキシル基やtert−ブチル基等のように立体的に嵩高い構造を有する有機溶剤や、分子量の比較的大きな有機溶剤が挙げられる。さらに、例えば上記したようなセラミックグリーンシートへの浸透性が低い有機溶剤と、感光性組成物に含有される成分(例えば光重合性物質および/または光重合開始剤)を好適に溶解し得る有機溶剤とを、任意の割合で混合して、有機系分散媒として用いることも好ましい。   Further, for example, in a use of manufacturing a ceramic electronic component by forming a conductive layer on a ceramic base material, an organic solvent having low permeability to a ceramic green sheet is preferable. Examples of the organic solvent having low permeability to the ceramic green sheet include an organic solvent having a three-dimensionally bulky structure, such as a cyclohexyl group and a tert-butyl group, and an organic solvent having a relatively large molecular weight. Further, for example, an organic solvent having low permeability to the ceramic green sheet as described above and an organic solvent capable of suitably dissolving components (eg, a photopolymerizable substance and / or a photopolymerization initiator) contained in the photosensitive composition. It is also preferable to mix a solvent with an arbitrary ratio and use it as an organic dispersion medium.

上記したような性状(沸点およびセラミックグリーンシートへの浸透性)を有する市販の有機溶剤としては、例えば、ダワノールDPM(商標)(沸点:190℃、ダウ・ケミカル・カンパニー製)、ダワノールDPMA(商標)(沸点:209℃、ダウ・ケミカル・カンパニー製)、メンタノール(沸点:207℃)、メンタノールP(沸点:216℃)、アイソパーH(沸点:176℃、関東燃料株式会社製)、SW−1800(沸点:198℃、丸善石油株式会社製)等が挙げられる。   Examples of commercially available organic solvents having the above-mentioned properties (boiling point and permeability into ceramic green sheets) include, for example, Dwanol DPM (trademark) (boiling point: 190 ° C., manufactured by Dow Chemical Company) and Dwanol DPMA (trademark) ) (Boiling point: 209 ° C, manufactured by Dow Chemical Company), mentanol (boiling point: 207 ° C), mentanol P (boiling point: 216 ° C), Isopar H (boiling point: 176 ° C, manufactured by Kanto Fuel Co., Ltd.), SW-1800 (Boiling point: 198 ° C., manufactured by Maruzen Oil Co., Ltd.).

感光性組成物に有機系分散媒を含む場合、特に限定されるものではないが、感光性組成物全体に占める有機系分散媒の割合は、概ね1〜50質量%、典型的には3〜30質量%、例えば5〜20質量%であってもよい。   When the photosensitive composition contains an organic dispersion medium, the ratio of the organic dispersion medium in the entire photosensitive composition is not particularly limited, but is generally about 1 to 50% by mass, typically 3 to 50% by mass. It may be 30% by mass, for example 5 to 20% by mass.

<その他の成分>
感光性組成物は、ここに開示される技術の効果を著しく損なわない限りにおいて、上記した成分に加えて、さらに必要に応じて種々の添加成分を含有することができる。添加成分としては、従来公知のものの中から1種または2種以上を適宜選択して用いることができる。添加成分の一例としては、例えば、無機フィラー、光増感剤、重合禁止剤、ラジカル捕捉剤、酸化防止剤、紫外線吸収剤、可塑剤、界面活性剤、レベリング剤、増粘剤、分散剤、消泡剤、ゲル化防止剤、安定化剤、防腐剤、顔料等が挙げられる。特に限定されるものではないが、感光性組成物全体に占める添加成分の割合は、概ね5質量%以下、例えば3質量%以下とするとよい。
<Other ingredients>
The photosensitive composition may further contain, if necessary, various additional components in addition to the components described above, as long as the effects of the technology disclosed herein are not significantly impaired. As the additive component, one or more conventionally known components can be appropriately selected and used. Examples of the additional components include, for example, an inorganic filler, a photosensitizer, a polymerization inhibitor, a radical scavenger, an antioxidant, an ultraviolet absorber, a plasticizer, a surfactant, a leveling agent, a thickener, a dispersant, Examples include an antifoaming agent, a gelling inhibitor, a stabilizer, a preservative, and a pigment. Although not particularly limited, the proportion of the additive component in the entire photosensitive composition is preferably approximately 5% by mass or less, for example, 3% by mass or less.

以上の通り、ここに開示される感光性組成物は、光重合開始剤として、上記(1),(2)の2種類の成分を共に含有している。そして、光重合開始剤の全体を100質量%としたときに、上記(1)の割合が50質量%以上を占めている。このことにより、現像工程において、耐エッチング性(密着性)と剥離性とをより高いレベルでバランスすることができる。すなわち、露光部分の耐エッチング性を向上することができ、現像マージンの時間を長めに確保することができる。その結果、現像工程の後に露光部分を適切に基材上に留めることでき、剥離や断線等の不具合の発生を抑制することができる。また、導電膜の剥離性を向上して、未露光部分を適切に除去すると共に、露光部分が太くなり過ぎることを抑制することができる。言い換えれば、露光部分の細線形成性を向上することができる。その結果、隣り合う配線間に安定してスペースを確保することができ、ショート不良の発生を抑制することができる。加えて、ここに開示される技術によれば、これらの効果が相俟って、線幅が30μm以下のファインラインであっても再現性良く形成することができる。また、歩留まりを向上することができる。   As described above, the photosensitive composition disclosed herein contains both of the above two components (1) and (2) as a photopolymerization initiator. When the total amount of the photopolymerization initiator is 100% by mass, the ratio of the above (1) accounts for 50% by mass or more. Thereby, in the developing step, the etching resistance (adhesion) and the releasability can be balanced at a higher level. That is, the etching resistance of the exposed portion can be improved, and a longer development margin time can be secured. As a result, the exposed portion can be appropriately fixed on the substrate after the development step, and occurrence of problems such as peeling and disconnection can be suppressed. In addition, it is possible to improve the peelability of the conductive film, appropriately remove unexposed portions, and suppress the exposed portions from becoming too thick. In other words, it is possible to improve the fine line formability of the exposed portion. As a result, a space can be stably secured between the adjacent wirings, and occurrence of a short circuit can be suppressed. In addition, according to the technology disclosed herein, these effects can be combined to form a fine line with a line width of 30 μm or less with good reproducibility. Further, the yield can be improved.

<感光性組成物の用途>
ここに開示される感光性組成物によれば、ライン幅が30μmよりも微細なファインラインを高解像度で安定して形成することができる。また、導電層の剥離や断線等を低減すると共に、ショート不良の発生を抑制することができる。そのため、ここに開示される感光性組成物は、例えば、インダクタンス部品やコンデンサ部品、多層回路基板等の様々な電子部品における導電層の形成に好適に利用することができる。
<Uses of photosensitive composition>
According to the photosensitive composition disclosed herein, fine lines with a line width finer than 30 μm can be stably formed with high resolution. In addition, peeling of the conductive layer, disconnection, and the like can be reduced, and occurrence of a short circuit can be suppressed. Therefore, the photosensitive composition disclosed herein can be suitably used for forming a conductive layer in various electronic components such as an inductance component, a capacitor component, and a multilayer circuit board.

電子部品は、表面実装タイプやスルーホール実装タイプ等、各種の実装形態のものであってよい。電子部品は、積層型であってもよいし、巻線型であってもよいし、薄膜型であってもよい。インダクタンス部品の典型例としては、高周波フィルタ、コモンモードフィルタ、高周波回路用インダクタ(コイル)、一般回路用インダクタ(コイル)、高周波フィルタ、チョークコイル、トランス等が挙げられる。   The electronic component may be of various mounting forms such as a surface mounting type and a through-hole mounting type. The electronic component may be a laminated type, a wound type, or a thin film type. Typical examples of the inductance component include a high-frequency filter, a common mode filter, an inductor (coil) for a high-frequency circuit, an inductor (coil) for a general circuit, a high-frequency filter, a choke coil, and a transformer.

また、導電性粉末が金属−セラミックのコアシェル粒子を含む感光性組成物は、セラミック電子部品の導電層の形成に好適に利用することができる。なお、本明細書において、「セラミック電子部品」とは、非晶質のセラミック基材(ガラスセラミック基材)あるいは結晶質(すなわち非ガラス)のセラミック基材を有する電子部品全般を包含する。典型例として、セラミック基材を有する高周波フィルタ、セラミックインダクタ(コイル)、セラミックコンデンサ、低温焼成積層セラミック基材(Low Temperature Co-fired Ceramics Substrate:LTCC基材)、高温焼成積層セラミック基材(High Temperature Co-fired Ceramics Substrate:HTCC基材)等が挙げられる。   The photosensitive composition in which the conductive powder contains metal-ceramic core-shell particles can be suitably used for forming a conductive layer of a ceramic electronic component. In this specification, the term “ceramic electronic component” includes all electronic components having an amorphous ceramic base (glass ceramic base) or a crystalline (ie, non-glass) ceramic base. Typical examples are a high-frequency filter having a ceramic substrate, a ceramic inductor (coil), a ceramic capacitor, a low-temperature co-fired ceramics substrate (LTCC substrate), and a high-temperature co-fired multilayer ceramic substrate (LTC substrate). Co-fired Ceramics Substrate: HTCC substrate) and the like.

図1は、積層チップインダクタ1の構造を模式的に示した断面図である。なお、図1における寸法関係(長さ、幅、厚み等)は必ずしも実際の寸法関係を反映するものではない。また、図面中の符号X、Yは、それぞれ左右方向、上下方向を表す。ただし、これは説明の便宜上の方向に過ぎない。   FIG. 1 is a cross-sectional view schematically showing the structure of the multilayer chip inductor 1. Note that the dimensional relationships (length, width, thickness, etc.) in FIG. 1 do not necessarily reflect actual dimensional relationships. Reference signs X and Y in the drawings represent a left-right direction and a vertical direction, respectively. However, this is only for convenience of explanation.

積層チップインダクタ1は、本体部10と、本体部10の左右方向Xの両側面部分に設けられた外部電極20とを備えている。積層チップインダクタ1は、例えば、1608形状(1.6mm×0.8mm)、2520形状(2.5mm×2.0mm)等のサイズである。   The multilayer chip inductor 1 includes a main body 10 and external electrodes 20 provided on both side surfaces of the main body 10 in the left-right direction X. The multilayer chip inductor 1 has a size of, for example, a 1608 shape (1.6 mm × 0.8 mm), a 2520 shape (2.5 mm × 2.0 mm), or the like.

本体部10は、セラミック層(誘電体層)12と内部電極層14とが一体化された構造を有する。セラミック層12は、例えば、導電性粉末の被覆部を構成し得るものとして上記したようなセラミック材料で構成されている。上下方向Yにおいて、セラミック層12の間には、内部電極層14が配置されている。内部電極層14は、上述の感光性組成物を用いて形成されている。セラミック層12を挟んで上下方向Yに隣り合う内部電極層14は、セラミック層12に設けられたビア16を通じて導通されている。このことにより、内部電極層14は、3次元的な渦巻き形状(螺旋状)に構成されている。内部電極層14の両端はそれぞれ外部電極20と接続されている。   The main body 10 has a structure in which a ceramic layer (dielectric layer) 12 and an internal electrode layer 14 are integrated. The ceramic layer 12 is made of, for example, the above-described ceramic material as a material capable of forming a coating portion of the conductive powder. The internal electrode layers 14 are arranged between the ceramic layers 12 in the vertical direction Y. The internal electrode layer 14 is formed using the above-described photosensitive composition. The internal electrode layers 14 adjacent to each other in the vertical direction Y with the ceramic layer 12 interposed therebetween are electrically connected through vias 16 provided in the ceramic layer 12. Thus, the internal electrode layer 14 is formed in a three-dimensional spiral shape (spiral shape). Both ends of the internal electrode layer 14 are connected to the external electrodes 20, respectively.

このような積層チップインダクタ1は、例えば、以下の手順で製造することができる。
すなわち、まず、原料となるセラミック材料とバインダ樹脂と有機溶剤とを含むペーストを調製し、これをキャリアシート上に供給して、セラミックグリーンシートを形成する。次いで、このセラミックグリーンシートを圧延後、所望のサイズにカットして、複数のセラミック層形成用グリーンシートを得る。次いで、複数のセラミック層形成用グリーンシートの所定の位置に、穿孔機等を用いて適宜ビアホールを形成する。
Such a multilayer chip inductor 1 can be manufactured, for example, by the following procedure.
That is, first, a paste containing a ceramic material as a raw material, a binder resin, and an organic solvent is prepared and supplied onto a carrier sheet to form a ceramic green sheet. Next, after rolling the ceramic green sheet, it is cut into a desired size to obtain a plurality of green sheets for forming a ceramic layer. Next, via holes are appropriately formed at predetermined positions of the plurality of green sheets for forming a ceramic layer using a punch or the like.

次いで、上述の感光性組成物を用いて、複数のセラミック層形成用グリーンシートの所定の位置に、所定のコイルパターンの導電膜を形成する。一例として、以下の工程:(ステップS1:膜状体の成形工程)感光性組成物をセラミック層形成用グリーンシート上に付与して乾燥することにより、感光性組成物の乾燥体からなる導電膜を成形する工程;(ステップS2:露光工程)導電膜に所定の開口パターンのフォトマスクを被せ、フォトマスクを介して露光して、導電膜を部分的に光硬化させる工程;(ステップS3:現像工程)光硬化後の導電膜をエッチングして、未露光部分を除去する工程;を包含する製造方法によって、未焼成の状態の導電膜を形成することができる。   Next, using the above-described photosensitive composition, a conductive film having a predetermined coil pattern is formed at predetermined positions of the plurality of green sheets for forming a ceramic layer. As an example, the following steps: (Step S1: Step of forming a film) A conductive film formed of a dried photosensitive composition is applied by drying the photosensitive composition on a green sheet for forming a ceramic layer. (Step S2: exposure step) A step of covering the conductive film with a photomask having a predetermined opening pattern, exposing through the photomask, and partially photocuring the conductive film; (Step S3: developing Step) A step of etching the photo-cured conductive film to remove an unexposed portion, whereby a non-fired conductive film can be formed.

なお、上記感光性組成物を用いて導電膜を形成するにあたっては、従来公知の手法を適宜用いることができる。例えば、(ステップS1)において、感光性組成物の付与は、スクリーン印刷等の各種印刷法や、バーコータ等を用いて行うことができる。感光性組成物の乾燥は、光重合性化合物および光重合開始剤の沸点以下の温度、典型的には50〜100℃で行うとよい。(ステップS2)において、露光には、例えば10〜500nmの波長範囲の光線を発する露光機、例えば高圧水銀灯、メタルハライドランプ、キセノンランプ等の紫外線照射灯を用いることができる。(ステップS3)において、エッチングには、典型的には、アルカリ性のエッチング液を用いることができる。例えば、水酸化ナトリウムや炭酸ナトリウム等を含む水溶液を用いることができる。アルカリ性の水溶液の濃度は、例えば、0.01〜0.5質量%に調整するとよい。   In forming a conductive film using the photosensitive composition, a conventionally known method can be appropriately used. For example, in (Step S1), the application of the photosensitive composition can be performed using various printing methods such as screen printing, a bar coater, or the like. The drying of the photosensitive composition may be performed at a temperature equal to or lower than the boiling point of the photopolymerizable compound and the photopolymerization initiator, typically 50 to 100 ° C. In (Step S2), for the exposure, for example, an exposure machine that emits light in a wavelength range of 10 to 500 nm, for example, an ultraviolet irradiation lamp such as a high-pressure mercury lamp, a metal halide lamp, or a xenon lamp can be used. In (Step S3), typically, an alkaline etchant can be used for the etching. For example, an aqueous solution containing sodium hydroxide, sodium carbonate, or the like can be used. The concentration of the alkaline aqueous solution may be adjusted to, for example, 0.01 to 0.5% by mass.

次いで、(ステップS4:焼成工程)未焼成の状態の導電膜が形成されているセラミック層形成用グリーンシートを複数枚積層し、圧着する。このことによって、未焼成のセラミックグリーンシートの積層体を作製する。次いで、セラミックグリーンシートの積層体を、例えば600〜1000℃で焼成する。これによって、セラミックグリーンシートが一体的に焼結され、セラミック層12と、感光性組成物の焼成体からなる内部電極層14とを備えた本体部10が形成される。そして、本体部10の両端部に適当な外部電極形成用ペーストを付与し、焼成することによって、外部電極20を形成する。
以上のようにして、積層チップインダクタ1を製造することができる。
Next, (Step S4: firing step) A plurality of green sheets for forming a ceramic layer on which the unfired conductive film is formed are laminated and pressed. Thus, a laminate of unfired ceramic green sheets is produced. Next, the laminate of ceramic green sheets is fired at, for example, 600 to 1000C. As a result, the ceramic green sheets are integrally sintered, and the main body 10 including the ceramic layer 12 and the internal electrode layer 14 made of the fired body of the photosensitive composition is formed. Then, an appropriate external electrode forming paste is applied to both end portions of the main body 10 and the external electrode 20 is formed by firing.
As described above, the multilayer chip inductor 1 can be manufactured.

以下、本発明に関するいくつかの実施例を説明するが、本発明を係る実施例に示すものに限定することを意図したものではない。   Hereinafter, some embodiments of the present invention will be described, but it is not intended to limit the present invention to those shown in the embodiments.

(銀粉末の用意)
まず、D50粒径の異なる市販の2種類の銀粉末(銀粉末a,b)を用意した。なお、銀粉末aは、D50粒径が3.9μmであり、銀粉末bは、D50粒径が2.8μmである。また、銀粉末a,bは、いずれもJIS Z 8781:2013年に基づくL表色系において、明度Lが50〜80である。
(Preparation of silver powder)
First, it was prepared a commercially available two types of silver powders having different D 50 particle size (silver powder a, b). Incidentally, the silver powder a is a D 50 particle size is 3.9 .mu.m, silver powder b is D 50 particle size is 2.8 .mu.m. The silver powders a and b both have a lightness L * of 50 to 80 in the L * a * b * color system based on JIS Z 8781: 2013.

また、銀粉末aを用いて銀粉末cを用意した。具体的には、まず、メタノールにジルコニウムブトキシドを添加して、コーティング液を調製した。次に、このコーティング液に銀粉末aを添加して1時間撹拌した。次に、コーティング液から固形分を回収し、100℃で乾燥した。これにより、銀粉末100質量部に対して、酸化ジルコニウム(ZrO)換算で0.5質量部となる量のジルコニウムブトキシドで表面コートされた銀粉末(銀−ジルコニアのコアシェル粒子)を得た。このようにして、銀粉末cを用意した。 Further, silver powder c was prepared using silver powder a. Specifically, first, zirconium butoxide was added to methanol to prepare a coating solution. Next, silver powder a was added to the coating solution and stirred for 1 hour. Next, a solid content was recovered from the coating solution and dried at 100 ° C. As a result, silver powder (silver-zirconia core-shell particles) surface-coated with zirconium butoxide in an amount of 0.5 parts by mass in terms of zirconium oxide (ZrO 2 ) based on 100 parts by mass of the silver powder was obtained. Thus, silver powder c was prepared.

(光重合開始剤の用意)
次に、下記に示す市販の4種類の光重合開始剤(開始剤a〜d)を用意した。なお、開始剤a,bは、α―アミノアルキルフェノン系の光重合開始剤であり、開始剤c,dは、アシルフォスフィンオキサイド系の光重合開始剤である。
・開始剤a:2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1
・開始剤b:2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン
・開始剤c:2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド
・開始剤d:ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド
(Preparation of photopolymerization initiator)
Next, four types of commercially available photopolymerization initiators (initiators a to d) shown below were prepared. The initiators a and b are α-aminoalkylphenone-based photopolymerization initiators, and the initiators c and d are acylphosphine oxide-based photopolymerization initiators.
-Initiator a: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1
-Initiator b: 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone-Initiator c: 2,4,6 -Trimethylbenzoyl-diphenyl-phosphine oxide initiator d: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide

(感光性組成物の調製)
まず、光重合性化合物としてのウレタンアクリレートモノマーと、有機バインダと、上記光重合開始剤とを、表1に示す含有割合になるように秤量して、有機系分散媒に溶解させ、ベヒクルを調製した。そして、上記用意した銀粉末と、上記調製したベヒクルとを77:23の質量比で混合することにより、感光性組成物(例1〜7、比較例1〜6)を調製した。なお、表1に示す質量比は、感光性組成物の全体を100質量%としたときのものであり、表1に示す質量比の合計が100質量%に満たない場合は、その他の添加成分(例えば、重合禁止剤、増感剤、ゲル化防止剤、紫外線吸収剤)を微量に含んでいることを意味する。
(Preparation of photosensitive composition)
First, a urethane acrylate monomer as a photopolymerizable compound, an organic binder, and the above photopolymerization initiator were weighed so as to have a content shown in Table 1, and dissolved in an organic dispersion medium to prepare a vehicle. did. Then, the photosensitive compositions (Examples 1 to 7 and Comparative Examples 1 to 6) were prepared by mixing the prepared silver powder and the prepared vehicle at a mass ratio of 77:23. The mass ratios shown in Table 1 are based on 100% by mass of the entire photosensitive composition. When the total mass ratio shown in Table 1 is less than 100% by mass, other additive components are used. (E.g., a polymerization inhibitor, a sensitizer, a gelling inhibitor, an ultraviolet absorber).

(配線パターンの作製)
まず、ステンレス製のスクリーンを使用して、上記調製した感光性組成物を市販のセラミックグリーンシート上にそれぞれ塗布した。次に、これを60℃で15分間乾燥させて、グリーンシート上に導電膜を成形した(膜状体の成形工程)。次に、導電膜の上からフォトマスクを被せた。このとき、フォトマスクとしては、配線のライン幅が25μm、隣り合ったラインの間隔部分(スペース)が25μmである(L/S=25μm/25μmである)スパイラルパターンのものを使用した。このフォトマスクを被せた状態で露光機により2500mJ/cmの強度で光を照射し、露光部分を硬化させた(露光工程)。露光後、セラミックグリーングリーンシートの表面に、0.1質量%のアルカリ性のNaCO水溶液を、ブレイクポイント(B.P.)に到達するまで吹き付けた(現像工程)。ここで、B.P.としては、0.1質量%のアルカリ性のエッチング液で、未露光部分が現像され、目視で未露光部分が無くなったと確認できるまでの時間とした。このようにして未露光部分を除去した後、純水で洗浄し、室温で乾燥させた。そして、これを700℃で焼成した(焼成工程)。こうして、セラミックグリーンシート上に、渦巻き状の配線が配置された配線パターンの導電層を形成した。
(Preparation of wiring pattern)
First, using a stainless steel screen, the photosensitive composition prepared above was applied onto a commercially available ceramic green sheet. Next, it was dried at 60 ° C. for 15 minutes to form a conductive film on the green sheet (film forming step). Next, a photomask was placed over the conductive film. At this time, a spiral pattern having a line width of wiring of 25 μm and a space (space) between adjacent lines of 25 μm (L / S = 25 μm / 25 μm) was used as the photomask. With this photomask covered, light was irradiated at an intensity of 2500 mJ / cm 2 by an exposure machine to cure the exposed portion (exposure step). After the exposure, a 0.1% by mass aqueous solution of alkaline Na 2 CO 3 was sprayed on the surface of the ceramic green green sheet until the break point (BP) was reached (development step). Here, B. P. The time was defined as the time until the unexposed portion was developed with 0.1% by mass of an alkaline etching solution and it could be visually confirmed that the unexposed portion had disappeared. After removing the unexposed portions in this way, the substrate was washed with pure water and dried at room temperature. This was fired at 700 ° C. (firing step). Thus, a conductive layer of a wiring pattern in which spiral wirings were arranged was formed on the ceramic green sheet.

(配線パターンの評価)
上記作製した配線パターンについて、剥離、線幅、現像マージンを評価し、これらの評価に基づいて総合評価を行った。
(Evaluation of wiring pattern)
The peeling, the line width, and the development margin of the wiring pattern prepared above were evaluated, and a comprehensive evaluation was performed based on these evaluations.

・剥離の評価:
配線パターンを電子顕微鏡で観察し、剥離の評価を行った。なお、観察画像は、倍率200倍で撮影した。そして、得られた観察画像で、剥離と断線の有無を確認した。結果を、表1の「剥離の評価」の欄に示す。当該欄の表記は、下記の通りである。
「○」:剥離なし
「△」:部分的な剥離有り(断線はなし)
「×」:剥離、断線有り
・ Evaluation of peeling:
The wiring pattern was observed with an electron microscope, and the peeling was evaluated. The observation image was taken at a magnification of 200 times. Then, the presence or absence of peeling and disconnection was confirmed from the obtained observation image. The results are shown in the column of "Evaluation of peeling" in Table 1. The notation in this column is as follows.
"○": No peeling "△": Partial peeling (no disconnection)
"X": Peeling, disconnection

・線幅の評価:
上記観察画像から、配線パターンの線幅を計測した。なお、線幅の計測は複数視野について行い、その算術平均値を、線幅(μm)とした。結果を、表1の「線幅」の欄に示す。また、評価の欄の表記は、下記の通りである。
「○」:20〜30μm(目標値の範囲内)
「×」:30μm以上
また、図2には、比較例1〜3、例1〜4の評価結果について、開始剤cの含有割合と配線パターンの線幅との関係を表している。
・ Evaluation of line width:
The line width of the wiring pattern was measured from the observation image. The measurement of the line width was performed for a plurality of visual fields, and the arithmetic average value was defined as the line width (μm). The results are shown in the column of “line width” in Table 1. The notations in the evaluation column are as follows.
“O”: 20 to 30 μm (within target value)
“×”: 30 μm or more FIG. 2 shows the relationship between the content ratio of the initiator c and the line width of the wiring pattern for the evaluation results of Comparative Examples 1 to 3 and Examples 1 to 4.

・現像マージンの評価:
上記露光工程において、ブレイクポイントを超えてなお10秒間(B.P.+10秒間の時間)、アルカリ性のエッチング液を吹き付けた。そして、露光工程後の導電膜を、上記同様に電子顕微鏡で観察し、得られた観察画像から、現像マージンの評価を行った。結果を、表1の「現像マージンの評価」の欄に示す。当該欄の表記は、下記の通りである。
「○」:導電膜の形状が保たれている
「×」:導電膜の形状が保たれていない
・ Evaluation of development margin:
In the above exposure step, an alkaline etching solution was sprayed for 10 seconds (BP + 10 seconds) beyond the break point. Then, the conductive film after the exposure step was observed with an electron microscope in the same manner as described above, and a development margin was evaluated from the obtained observation image. The results are shown in the column of "Evaluation of development margin" in Table 1. The notation in this column is as follows.
“O”: The shape of the conductive film is maintained “X”: The shape of the conductive film is not maintained

・総合評価:
「○」:上記した剥離、線幅、現像マージンの各評価で、△および×が1つもない(全て〇である)
「△」:上記した剥離、線幅、現像マージンの各評価で、△が1つで、残りは〇である
「×」:上記した剥離、線幅、現像マージンの各評価で、×が1つ以上ある
·Comprehensive evaluation:
“○”: In each of the above-described evaluations of peeling, line width, and development margin, none of Δ and X was found (all are Δ).
“△”: In each of the above-described evaluations of peeling, line width, and development margin, there is one Δ and the rest are Δ. “×”: In each of the above-described evaluations of peeling, line width, and development margin, X is 1 More than one

Figure 0006637087
Figure 0006637087

比較例1,2は、開始剤aのみを使用した試験例である。表1に示すように、比較例1では、現像マージンが10秒間以上確保できたものの、導電パターンに線幅のバラつきが大きく、所々に線幅の太りが確認された。その結果、線幅が目標値よりも大きくなり過ぎ、安定したファインラインの形成が困難だった。また、比較例1よりも開始剤aの含有割合を低減した比較例2では、現像マージンが十分に確保できなかった。
比較例4は、開始剤cのみを使用した試験例である。表1に示すように、比較例4では、導電パターンに剥離や断線が確認され、もはやファインラインの形成自体が困難だった。
Comparative Examples 1 and 2 are test examples using only initiator a. As shown in Table 1, in Comparative Example 1, although the developing margin was secured for 10 seconds or more, the line width of the conductive pattern was largely varied, and the line width was thickened in some places. As a result, the line width became too large than the target value, and it was difficult to form a stable fine line. In Comparative Example 2 in which the content of the initiator a was smaller than that in Comparative Example 1, a sufficient development margin could not be secured.
Comparative Example 4 is a test example using only initiator c. As shown in Table 1, in Comparative Example 4, peeling or disconnection was observed in the conductive pattern, and it was difficult to form a fine line itself.

比較例3、例1〜4は、開始剤a、cを併用した試験例である。表1および図2に示すように、開始剤cの含有割合が少ない比較例3では、開始剤cの添加の効果が十分に発現されず、比較例1と同様に、安定したファインラインの形成が困難だった。これに対して、開始剤cの含有割合を、光重合開始剤全体の50質量%以上とした例1〜4では、現像マージンが十分に確保され、かつ、所望の線幅のファインラインが安定して形成されていた。また、開始剤cの含有割合を高めることで、細線形成性が一層向上していた。特に、開始剤c:開始剤aの質量比を、50:50〜85:15とした例1〜3では、露光部分の耐エッチング性が向上し、導電層の剥離がより良く抑制されていた。   Comparative Example 3, Examples 1 to 4 are test examples in which initiators a and c were used in combination. As shown in Table 1 and FIG. 2, in Comparative Example 3 in which the content of the initiator c was small, the effect of the addition of the initiator c was not sufficiently exhibited, and as in Comparative Example 1, a stable fine line was formed. Was difficult. On the other hand, in Examples 1 to 4 in which the content of the initiator c was 50% by mass or more of the entire photopolymerization initiator, a sufficient development margin was secured and a fine line having a desired line width was stable. Was formed. Further, by increasing the content of the initiator c, the fine line forming property was further improved. In particular, in Examples 1 to 3 in which the mass ratio of the initiator c: the initiator a was 50:50 to 85:15, the etching resistance of the exposed portion was improved, and the peeling of the conductive layer was better suppressed. .

例5は、開始剤aにかえて、同じα−アミノアルキルフェノン類である開始剤bを使用した試験例である。表1に示すように、例5でも、例1〜4と同様に、現像マージンが十分に確保され、かつ、安定したファインラインの形成が実現されていた。言い換えれば、開始剤aにかえて開始剤bを使用した場合においても、ここに開示される技術の効果が発揮されていた。   Example 5 is a test example using the same α-aminoalkylphenones as initiator b instead of initiator a. As shown in Table 1, in Example 5, as in Examples 1 to 4, a sufficient development margin was secured, and a stable fine line was formed. In other words, even when the initiator b is used instead of the initiator a, the effect of the technology disclosed herein has been exhibited.

比較例5,6は、開始剤cにかえて、同じアシルフォスフィンオキサイド系の開始剤dを使用した試験例である。表1に示すように、比較例5,6では、例1〜4とは異なり、現像マージンが不十分、および/または、安定したファインラインの形成が困難だった。言い換えれば、開始剤cにかえて開始剤dを使用した場合には、ここに開示される技術の効果は発揮されなかった。   Comparative Examples 5 and 6 are test examples in which the same acylphosphine oxide-based initiator d was used instead of the initiator c. As shown in Table 1, in Comparative Examples 5 and 6, unlike Examples 1 to 4, the development margin was insufficient and / or it was difficult to form a stable fine line. In other words, when the initiator d was used instead of the initiator c, the effect of the technology disclosed herein was not exhibited.

例6,7は、銀粉末a,bにかえて、銀粉末cを使用した試験例である。表1に示すように、例6,7でも、例1〜4と同様に、現像マージンが十分に確保され、かつ、安定したファインラインの形成が実現されていた。さらに、銀粉末a,bを使用した場合に比べて、ここに開示される技術の効果がさらに高いレベルで発揮され、細線形成性が一層向上していた。   Examples 6 and 7 are test examples using silver powder c instead of silver powders a and b. As shown in Table 1, in Examples 6 and 7, similarly to Examples 1 to 4, a sufficient development margin was secured, and stable fine line formation was realized. Furthermore, the effects of the technology disclosed herein were exhibited at a higher level than in the case where silver powders a and b were used, and the fine line forming property was further improved.

以上の結果から、光重合開始剤として、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(開始剤c)と、α−アミノアルキルフェノン類(開始剤a,b)と、を併用し、かつ、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドを光重合開始剤全体の50質量%以上の割合で含むことにより、現像工程において、現像マージンの時間を長めに確保することができると共に、露光部分の細線形成性を向上することができる。その結果、線幅が30μm以下のファインラインであっても再現性良く形成することができる。また、ショート不良、剥離、断線等の不具合の発生を抑制して、歩留まりを向上することができるとわかった。
これらの結果は、ここに開示される技術の意義を示すものである。
From the above results, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (initiator c) and α-aminoalkylphenones (initiators a and b) were used in combination as photopolymerization initiators. In addition, by containing 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide in a proportion of 50% by mass or more of the entire photopolymerization initiator, a longer development margin time can be secured in the development step. In addition to this, it is possible to improve the fine line forming property of the exposed portion. As a result, a fine line having a line width of 30 μm or less can be formed with good reproducibility. In addition, it has been found that the occurrence of defects such as short-circuit failure, peeling, and disconnection can be suppressed, and the yield can be improved.
These results show the significance of the technology disclosed herein.

以上、本発明を詳細に説明したが、これらは例示に過ぎず、本発明はその主旨を逸脱しない範囲で種々変更を加え得るものである。   As described above, the present invention has been described in detail, but these are merely examples, and the present invention can be variously modified without departing from the gist thereof.

1 積層チップインダクタ
10 本体部
12 セラミック層
14 内部電極層
20 外部電極
DESCRIPTION OF SYMBOLS 1 Multilayer chip inductor 10 Main part 12 Ceramic layer 14 Internal electrode layer 20 External electrode

Claims (12)

線幅が30μm以下の配線を含む導電層を作製するために用いられる感光性組成物であって、
導電性粉末と、光重合性化合物と、光重合開始剤と、有機バインダ(ただし、分子内に光反応性の(メタ)アクリロイル基を有する有機バインダを除く)と、を含み、
前記光重合開始剤は、
少なくとも以下の2種類の成分:
(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド;
(2)α−アミノアルキルフェノン類;
を含み、前記光重合開始剤の全体を100質量%としたときに、前記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドが50質量%以上を占めている、感光性組成物。
A photosensitive composition used for producing a conductive layer including a wiring having a line width of 30 μm or less,
Including a conductive powder, a photopolymerizable compound, a photopolymerization initiator, and an organic binder (excluding an organic binder having a photoreactive (meth) acryloyl group in a molecule) ,
The photopolymerization initiator,
At least two components:
(1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide;
(2) α-aminoalkylphenones;
Wherein the (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide accounts for 50% by mass or more when the entire photopolymerization initiator is 100% by mass. object.
前記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドと前記(2)α−アミノアセトフェノン類との質量比率が、50:50〜90:10である、
請求項1に記載の感光性組成物。
The mass ratio of the (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide to the (2) α-aminoacetophenones is 50:50 to 90:10,
The photosensitive composition according to claim 1.
前記(1)2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイドと前記(2)α−アミノアセトフェノン類との質量比率が、50:50〜85:15である、
請求項1または2に記載の感光性組成物。
The mass ratio of the (1) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide to the (2) α-aminoacetophenone is 50:50 to 85:15,
The photosensitive composition according to claim 1.
前記感光性組成物の全体を100質量%としたときに、前記光重合開始剤の割合が2質量%以下である、
請求項1〜3の何れか一つに記載の感光性組成物。
When the entire photosensitive composition is 100% by mass, the proportion of the photopolymerization initiator is 2% by mass or less.
The photosensitive composition according to claim 1.
前記光重合性化合物が、ウレタン結合を有する光重合性化合物を含む、
請求項1〜4の何れか一つに記載の感光性組成物。
The photopolymerizable compound includes a photopolymerizable compound having a urethane bond,
The photosensitive composition according to claim 1.
前記導電性粉末が、銀系粒子を含む、
請求項1〜5の何れか一つに記載の感光性組成物。
The conductive powder contains silver-based particles,
The photosensitive composition according to claim 1.
前記導電性粉末が、金属材料を含むコア部と、前記コア部の表面の少なくとも一部を被覆し、セラミック材料を含む被覆部と、を有するコアシェル粒子を含む、
請求項1〜6の何れか一つに記載の感光性組成物。
The conductive powder includes a core portion including a metal material, and at least a part of a surface of the core portion, and a coating portion including a ceramic material.
The photosensitive composition according to claim 1.
JIS Z 8781:2013年に基づくL表色系において、前記導電性粉末の明度Lが、50以上である、
請求項1〜7の何れか一つに記載の感光性組成物。
In the L * a * b * color system based on JIS Z 8781: 2013, the brightness L * of the conductive powder is 50 or more;
The photosensitive composition according to claim 1.
沸点が150℃以上250℃以下の有機溶剤をさらに含む、
請求項1〜8の何れか一つに記載の感光性組成物。
The organic solvent further having a boiling point of 150 ° C. or more and 250 ° C. or less,
The photosensitive composition according to claim 1.
グリーンシートと、
前記グリーンシート上に配置され、請求項1〜9の何れか一つに記載の感光性組成物の乾燥体からなる導電膜と、
を備える、複合体。
Green sheet,
A conductive film comprising a dried body of the photosensitive composition according to any one of claims 1 to 9, which is disposed on the green sheet,
A composite comprising:
請求項1〜9の何れか一つに記載の感光性組成物の焼成体からなる導電層を備える、電子部品。   An electronic component comprising a conductive layer formed of the fired body of the photosensitive composition according to claim 1. 請求項1〜9の何れか一つに記載の感光性組成物を基材上に付与して、露光、現像した後、焼成して、前記感光性組成物の焼成体からなる導電層を形成する工程を含む、電子部品の製造方法。
The photosensitive composition according to any one of claims 1 to 9 is applied to a substrate, exposed and developed, and then fired to form a conductive layer made of a fired body of the photosensitive composition. A method for manufacturing an electronic component, comprising:
JP2018021134A 2018-02-08 2018-02-08 Photosensitive composition and its use Active JP6637087B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018021134A JP6637087B2 (en) 2018-02-08 2018-02-08 Photosensitive composition and its use
CN201980012121.9A CN111699436A (en) 2018-02-08 2019-01-11 Photosensitive composition and application thereof
PCT/JP2019/000675 WO2019155819A1 (en) 2018-02-08 2019-01-11 Photosensitive composition and use thereof
KR1020207025548A KR102658648B1 (en) 2018-02-08 2019-01-11 Photosensitive composition and its use
TW108102793A TWI796424B (en) 2018-02-08 2019-01-24 Photosensitive composition, complex, electronic part and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021134A JP6637087B2 (en) 2018-02-08 2018-02-08 Photosensitive composition and its use

Publications (2)

Publication Number Publication Date
JP2019139014A JP2019139014A (en) 2019-08-22
JP6637087B2 true JP6637087B2 (en) 2020-01-29

Family

ID=67547946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021134A Active JP6637087B2 (en) 2018-02-08 2018-02-08 Photosensitive composition and its use

Country Status (5)

Country Link
JP (1) JP6637087B2 (en)
KR (1) KR102658648B1 (en)
CN (1) CN111699436A (en)
TW (1) TWI796424B (en)
WO (1) WO2019155819A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110453A1 (en) * 2018-11-30 2020-06-04 東レ株式会社 Photosensitive conductive paste, film for use in conductive pattern forming, and layered member
KR20230049063A (en) * 2020-08-07 2023-04-12 도레이 카부시키가이샤 Photosensitive conductive paste, cured product, sintered body, electronic component, manufacturing method of insulating ceramics layer with circuit pattern, manufacturing method of electronic component, manufacturing method of substrate with circuit pattern, and manufacturing method of inductor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393402U (en) 1976-12-29 1978-07-29
JP4437603B2 (en) * 2000-09-06 2010-03-24 京都エレックス株式会社 Alkali development type photosensitive paste composition
JP2003183401A (en) 2001-12-20 2003-07-03 Showa Denko Kk Curable resin composition and cured product thereof
JP4151363B2 (en) * 2002-09-27 2008-09-17 Jsr株式会社 Photosensitive resin composition and method for producing inorganic shaped article using the same
JP3779260B2 (en) * 2002-11-26 2006-05-24 京都エレックス株式会社 Alkali development type photosensitive resin composition
JP4389202B2 (en) * 2003-11-21 2009-12-24 昭栄化学工業株式会社 Photosensitive conductive paste
US7618766B2 (en) * 2005-12-21 2009-11-17 E. I. Du Pont De Nemours And Company Flame retardant photoimagable coverlay compositions and methods relating thereto
JP5043516B2 (en) * 2007-06-04 2012-10-10 太陽ホールディングス株式会社 Photocurable / thermosetting resin composition and printed wiring obtained using the same
JP2010138251A (en) * 2008-12-10 2010-06-24 Fujifilm Corp Dispersion composition, polymerizable composition, light shielding color filter, solid-state image sensor, and liquid crystal display device
JP5315441B1 (en) * 2012-03-30 2013-10-16 太陽インキ製造株式会社 Photocurable resin composition, dry film, cured product and printed wiring board
JP5463498B1 (en) * 2012-12-28 2014-04-09 東洋インキScホールディングス株式会社 Photosensitive conductive ink and cured product thereof
JP5828851B2 (en) * 2013-03-01 2015-12-09 株式会社ノリタケカンパニーリミテド Photosensitive paste
JP2015110745A (en) 2013-11-01 2015-06-18 セメダイン株式会社 Photocurable conductive composition
JP2015184631A (en) 2014-03-26 2015-10-22 太陽インキ製造株式会社 Photosensitive resin composition, two-layer electrode structure, method for manufacturing the same, and plasma display panel
JP2016071173A (en) * 2014-09-30 2016-05-09 東洋紡株式会社 Photosensitive conductive paste, conductive thin film, electric circuit and touch panel
JP2017182901A (en) * 2016-03-28 2017-10-05 東レ株式会社 Photosensitive conductive paste and manufacturing method of electronic component using the same

Also Published As

Publication number Publication date
JP2019139014A (en) 2019-08-22
KR20200118135A (en) 2020-10-14
TWI796424B (en) 2023-03-21
TW201937287A (en) 2019-09-16
CN111699436A (en) 2020-09-22
KR102658648B1 (en) 2024-04-19
WO2019155819A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP5828851B2 (en) Photosensitive paste
TWI812688B (en) Photosensitive composition, complex, electronic part, and method for producing electronic part
JP6637087B2 (en) Photosensitive composition and its use
JP6814237B2 (en) Photosensitive compositions and their use
JP7446355B2 (en) Photosensitive composition and its use
JP7113779B2 (en) Photosensitive composition and its use
JP6646643B2 (en) Photosensitive composition and its use
WO2022191054A1 (en) Photosensitive composition and use thereof
JP7108778B1 (en) Photosensitive composition and its use
JP2024129349A (en) Photosensitive composition and its use
TW202437009A (en) Photosensitive composition, conductive film and electronic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6637087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350