WO2019116778A1 - Tire molding die and pneumatic tire manufacturing method - Google Patents

Tire molding die and pneumatic tire manufacturing method Download PDF

Info

Publication number
WO2019116778A1
WO2019116778A1 PCT/JP2018/040982 JP2018040982W WO2019116778A1 WO 2019116778 A1 WO2019116778 A1 WO 2019116778A1 JP 2018040982 W JP2018040982 W JP 2018040982W WO 2019116778 A1 WO2019116778 A1 WO 2019116778A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature measurement
measurement probe
tire
vulcanization
temperature
Prior art date
Application number
PCT/JP2018/040982
Other languages
French (fr)
Japanese (ja)
Inventor
倫一 中山
英樹 島
Original Assignee
Toyo Tire株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017240581A external-priority patent/JP7030500B2/en
Priority claimed from JP2017240579A external-priority patent/JP2019107790A/en
Application filed by Toyo Tire株式会社 filed Critical Toyo Tire株式会社
Publication of WO2019116778A1 publication Critical patent/WO2019116778A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)

Definitions

  • the present invention comprises a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface
  • the present invention relates to a tire molding mold for heating and vulcanizing an unvulcanized green tire.
  • the vulcanization process is the most time-consuming process, efforts are still being made to shorten the time of the vulcanization process.
  • the vulcanization of the rubber portion is insufficient in the vulcanization process, air generated by the vulcanization reaction of the rubber remains in the vulcanized rubber, and such residual air is the cause of tire failure at the product stage. It may be Therefore, in the normal tire production site, the overall variation in the vulcanization process is taken into consideration, for example, due to variations in the temperature of the unvulcanized raw tire, the temperature in the mold, the ambient temperature, etc. due to seasonal factors.
  • the time required for the vulcanization process is set by adding the allowance time that takes into account.
  • Patent Document 1 the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the point at which the increase rate of the polymer resistance value Rp of the vulcanized sample becomes extremely slow is the optimum vulcanization.
  • a real-time cure control method for a vulcanized sample is described which provides a dwell time.
  • the present invention has been made in view of the above situation, and its object is to accurately measure the temperature of a pneumatic tire during vulcanization in order to reliably determine the end point of the vulcanization process for each tire. It is providing a mold for tire molding.
  • a mold for molding a tire for heating and vulcanizing an unvulcanized green tire comprising at least a tread mold portion pressable to the tread portion, wherein the tread mold portion is circumferentially divided,
  • a plurality of radially movable segments of the green tire, at least one of the segments is a fixing means for fixing a temperature measurement probe, and a temperature measurement probe extending from the fixing means toward the inner circumferential surface
  • the insertion hole is fixed by the fixing means, extends toward the inner peripheral surface in the temperature measurement probe insertion hole, and the inner peripheral surface side end is the inner peripheral surface end of the temperature measurement probe insertion hole
  • the tire molding mold according to the present invention is a so-called “segmental mold” in which at least a tread mold portion is divided in the circumferential direction, and at least one of the segments is provided with the above-mentioned specific temperature measurement probe.
  • a tread surface is connected to a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tire radial direction outer end of each sidewall portion.
  • a tire molding mold for heating and vulcanizing an unvulcanized green tire having a tread portion comprising at least a tread mold portion pressable to the tread portion, wherein the tread mold portion is circumferentially divided
  • the temperature measurement probe insertion hole extending in the radial direction toward the side and the fixing means are fixed by the fixing means, and the inside of the temperature measurement probe insertion hole in the tire radial direction toward the inner peripheral surface side
  • the present invention relates to a tire molding mold characterized in that the outer diameter D1 is smaller than the inner diameter D2 of the temperature measurement probe insertion hole.
  • the tire molding mold according to the present invention is a so-called “segmental mold” in which at least the tread mold portion is divided in the circumferential direction, and of the divided segments, at least two or more of the divided segments Equipped with a temperature measurement probe.
  • a temperature measurement probe is disposed in two or more segments, temperature measurement can be performed at a plurality of points, which enables accurate temperature measurement, and even if a certain temperature measurement probe is broken, Measurement with other temperature measurement probes is possible.
  • the traveling direction of the segments and the disposition direction of the temperature measurement probe are both in the radial direction of the green tire.
  • the load is minimized when the temperature measurement probe is embedded in the shoulder when the arrangement direction of the temperature measurement probe is also the radial direction of the green tire.
  • the deviation between the direction of movement of the segment in the radial direction and the arrangement direction of the temperature measurement probe in the radial direction be 3 ° or less More preferably, it is 1 ° or less.
  • the outer diameter D1 of the temperature measurement probe is preferably 1 to 10 mm.
  • L1 / D1 is preferably 10 or more.
  • a gap between the inner peripheral surface side end of the temperature measurement probe insertion hole and the temperature measurement probe is closed by a spacer having a smaller thermal conductivity than the segment.
  • a gap between the temperature measurement probe insertion hole and the temperature measurement probe is closed by a heat insulating material having a thermal conductivity smaller than that of the segment.
  • the temperature measurement probe is preferably a platinum resistance temperature detector.
  • the present invention is a method of manufacturing a pneumatic tire including a vulcanization step of heat curing in the tire molding mold according to any one of the above, wherein the vulcanization step includes a pair of bead portions, A tread portion of an unvulcanized green tire comprising: sidewall portions extending from the bead portions outward in the tire radial direction; and a tread portion connected to the tire radial direction outer ends of the sidewall portions to form a tread surface
  • the present invention relates to a method of manufacturing a pneumatic tire including the step of measuring the temperature of the shoulder portion by embedding a temperature measurement probe in the shoulder portion included in the above.
  • the temperature of the pneumatic tire during vulcanization in particular, the temperature of the shoulder portion of the tread portion where the vulcanization of the tire is most difficult to proceed can be accurately measured.
  • the end point of the process can be determined with certainty.
  • the vulcanization step includes a first step of embedding a temperature measurement probe in a shoulder portion, and time series data of the temperature of the green tire during vulcanization by the temperature measurement probe. And a third step of terminating the vulcanization step when an endothermic reaction is detected in the vicinity of a target vulcanization temperature based on the time series data. Is preferred.
  • a temperature measurement probe is embedded in the tread portion corresponding to the vulcanization latest portion of an unvulcanized green tire provided with a first step (first stage), and the temperature measurement probe is used to time-series the temperature of the green tire during vulcanization Data are acquired at intervals of 10 seconds or less (second stage).
  • the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage).
  • the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire.
  • it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced.
  • a quality assurance system can be established.
  • the term “near the target vulcanization temperature” preferably means a range of ⁇ 10 ° C. of the set target vulcanization temperature.
  • the third step plots the vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time based on the time-series data.
  • the method further comprises the step 3b of terminating the vulcanization process when a downward convex inflection point appears in the vicinity of the target vulcanization temperature in the vulcanization temperature curve.
  • the target vulcanization temperature is preferably 125 to 165 ° C.
  • the vulcanization speed of the pneumatic tire is increased. Therefore, the end point of vulcanization is detected based on the detection of the heat absorption due to the vulcanization reaction, and further the target vulcanization temperature curve is plotted. It may be difficult to detect the end point of vulcanization based on the downward convex inflection point appearing near the vulcanization temperature.
  • the target vulcanization temperature is 125 to 165 ° C., particularly 125 to 145 ° C.
  • the end point of vulcanization can be easily determined, and therefore the productivity of the pneumatic tire can be further enhanced.
  • the case where the target vulcanization temperature is 125 to 145 ° C. is sometimes referred to as low temperature vulcanization of the pneumatic tire, but in the case of low temperature vulcanization, since the vulcanization speed of the pneumatic tire becomes slow, the conventional tire It was necessary to secure time longer than usual. For this reason, the merit of low temperature vulcanization, such as thermal deterioration suppression of the pneumatic tire under high temperature at the time of vulcanization, may be impaired by an increase in vulcanization time.
  • the margin time can be designed to be shorter than usual, so that the physical property deterioration of the pneumatic tire due to thermal deterioration is prevented. Can.
  • a tire meridional cross section showing an example of a tire that can be manufactured in the present invention Cross sectional view conceptually showing a tire molding mold of the present invention Sectional drawing which shows notionally the state which embeds a temperature measurement probe in a shoulder part in the segment which comprises the tread type
  • die of this invention An example of a graph showing a vulcanization temperature curve in an embodiment of the present invention
  • the green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread.
  • An annular bead core 1 a is disposed in the bead portion 1.
  • the carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a.
  • the carcass layer 4 is constituted by at least one carcass ply.
  • the carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
  • the belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside.
  • the belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
  • the tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
  • the green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
  • FIG. 2 is a cross-sectional view conceptually showing the tire molding mold of the present invention.
  • a green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
  • the mold 10 at least includes a tread mold portion 11 that can be in pressure contact with the tread portion 3 of the green tire 9.
  • the mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. Equipped with These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known.
  • the tread mold portion 11 is further divided into a plurality of segments in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
  • a central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this.
  • the central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
  • a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21.
  • the medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow.
  • the heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
  • a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed.
  • a discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34.
  • the pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
  • FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe is embedded in a shoulder portion in a segment constituting a tread mold portion of a mold of the present invention.
  • inner circumferential surface side means the side closer to the green tire 9 when the green tire 9 is set in the mold 10.
  • the segment 41 is one of those obtained by dividing the tread mold portion 11 into, for example, 6 to 12 in the circumferential direction, and each of the segments 41 is pressed against the tread portion 3 of the green tire 9 by moving in the radial direction of the green tire 9 It is possible. More preferably, the number of divisions of the segment 41 is an odd number within the range of 6-12.
  • At least one of the segments 41 is fixed by the fixing means 42 for fixing the temperature measurement probe 44, the temperature measurement probe insertion hole 43 extending from the fixing means 42 toward the inner circumferential surface, and the fixing means 42. It extends in the insertion hole 43 toward the inner peripheral surface, and the inner peripheral surface end is mounted in a posture where it can be embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface end of the temperature measurement probe insertion hole 43 And the temperature measurement probe 44.
  • the temperature measurement probe 44 may be attached to one of the plurality of segments 41, may be attached to the plurality of segments 41, or may be attached to all the segments 41.
  • the fixing means 42 for fixing the temperature measurement probe 44 includes, for example, a double nut or the like on the outer peripheral surface side and a screw structure on the inner peripheral surface side, whereby the temperature measurement probe 44 protrudes from the temperature measurement probe hole 43
  • the height L2 can be designed to be adjustable.
  • a temperature measurement probe insertion hole 43 is formed on the inner peripheral surface side of the fixing means 42.
  • the disposition direction of the temperature measurement probe insertion hole 43 is preferably in the radial direction of the green tire 9 as described later.
  • the inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and the temperature measurement probe 44 projects into the cavity of the mold 10 and is designed to be embedded in the shoulder portion 3S of the tread portion 3 .
  • the temperature measurement probe 44 is fixed at the end on the outer peripheral surface side by the fixing means 42 and extends in the temperature measurement probe insertion hole 43 toward the inner peripheral surface side, and the inner peripheral surface end is the one of the temperature measurement probe insertion hole 43 It is attached in a posture capable of being embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end.
  • the disposition direction of the temperature measurement probe 44 is preferably in the radial direction of the green tire 9 as described later.
  • the cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.
  • the segments 41 move in the radial direction of the green tire 9, when the disposition direction of the temperature measurement probe 44 is also the radial direction of the green tire 9, when the temperature measurement probe 44 is embedded in the shoulder portion 3S. Because the load is minimized, it is preferable.
  • load reduction on the temperature measurement probe 44 the shift between the advancing direction when the segment 41 moves in the radial direction and the arrangement direction in the radial direction of the temperature measurement probe 44 is 3 ° or less Is preferable, and 1 ° or less is more preferable.
  • a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change.
  • metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high.
  • a resistor can be used particularly preferably.
  • the temperature measurement probe 44 is disposed in the temperature measurement probe insertion hole 43, and the outer diameter D1 of the temperature measurement probe 44 is formed smaller than the inner diameter D2 of the temperature measurement probe insertion hole 43 (FIG. 3 (b)) . According to this configuration, while the segment 41 is heated at the time of vulcanization, the rubber penetrates into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 and the segment 41 are directly Contact can be prevented. As a result, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion.
  • the outer diameter D1 of the temperature measurement probe 44 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but is preferably 1 to 10 mm. Further, the inner diameter D2 of the temperature measurement probe insertion hole 43 can also be appropriately designed according to the size of the pneumatic tire to be manufactured, but is 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measurement probe 44 preferable.
  • the length of the temperature measurement probe 44 measured from the inner circumferential surface side end of the fixing means 42 is L1
  • L1 / D1 is 10 or more
  • the projection height L2 of the temperature measurement probe 44 from L1 and the temperature measurement probe hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured.
  • L2 is preferably 0.5 to 10 mm.
  • the depth L3 of the temperature measurement probe hole from the inner peripheral end of the fixing means 42 can also be appropriately designed according to the size of the pneumatic tire to be manufactured.
  • FIG. 3 (b) shows an example in which the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 is not closed, as shown in FIG. 3 (c), the inside of the temperature measurement probe insertion hole 43
  • the gap between the circumferential surface side end and the temperature measurement probe 44 may be closed by a spacer 45 having a thermal conductivity smaller than that of the segment 41.
  • the rubber does not penetrate into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 is hollow. Even with this configuration, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion.
  • the length L4 of the spacer 45 is preferably, for example, 10 to 50 mm in the depth direction of the segment 41.
  • the spacer 45 can be made of a material exhibiting a thermal conductivity smaller than that of the segment 41, for example, a metal such as constantan, titanium or nichrome.
  • the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 may be closed by a heat insulating material 46 having a thermal conductivity smaller than that of the segment.
  • a heat insulating material 46 having a thermal conductivity smaller than that of the segment.
  • the length of the heat insulating material 46 is preferably, for example, 50 to 80% of the depth L3 of the temperature measurement probe hole.
  • the heat insulating material 46 can also be made of metal such as constantan, titanium, nichrome or the like.
  • the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15.
  • the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13.
  • a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage).
  • the slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3.
  • a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9.
  • the embedding method for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9.
  • the temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
  • the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9.
  • the mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed.
  • the inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9.
  • a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure.
  • steam or high-temperature water is used as the heating medium
  • an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
  • the temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage).
  • time series data For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. .
  • a high precision digital data logger generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values
  • the second stage when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately.
  • the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
  • the target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. .
  • the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
  • the end point of vulcanization can be determined more simply by dividing the third step into two.
  • a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a).
  • FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point.
  • the vulcanization temperature curve which makes a vertical axis
  • a minute temperature change within 1 ° C. can also be accurately measured.
  • a target vulcanizing temperature is set to 130 ° C.
  • a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals.
  • the vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A.
  • the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b).
  • a point P corresponding to a downwardly convex inflection point appearing in the vicinity of the target vulcanization temperature (130 ° C.) in the vulcanization temperature curve B (in FIG. 3, it is described as BPT) (Correction to point P) can be easily detected, and the point at which this point P is detected can be taken as the vulcanization end point to end the vulcanization.
  • the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state.
  • the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
  • FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe is embedded in a shoulder portion in a segment constituting a tread mold portion of a mold of the present invention.
  • inner circumferential surface side means the side closer to the green tire 9 when the green tire 9 is set in the mold 10.
  • the segment 41 is one of those obtained by dividing the tread mold portion 11 into, for example, 6 to 12 in the circumferential direction, and each of the segments 41 is pressed against the tread portion 3 of the green tire 9 by moving in the radial direction of the green tire 9 It is possible. More preferably, the number of divisions of the segment 41 is an odd number within the range of 6-12.
  • At least one of the segments 41 is fixed by a fixing means 42 for fixing the temperature measurement probe 44, a temperature measurement probe insertion hole 43 extending radially from the fixing means 42 toward the inner circumferential surface, and the fixing means 42. Extending toward the inner peripheral surface in the tire radial direction in the temperature measurement probe insertion hole 43, and the inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measurement probe insertion hole 43 and the shoulder portion of the tread portion 3 And a temperature measurement probe 44 mounted in a posture that can be embedded in the 3S.
  • the temperature measurement probe 44 may be attached to one of the plurality of segments 41, may be attached to the plurality of segments 41, or may be attached to all the segments 41.
  • the fixing means 42 for fixing the temperature measurement probe 44 includes, for example, a double nut or the like on the outer peripheral surface side and a screw structure on the inner peripheral surface side, whereby the temperature measurement probe 44 protrudes from the temperature measurement probe hole 43
  • the height L2 can be designed to be adjustable.
  • a temperature measurement probe insertion hole 43 extending in the radial direction is formed on the inner peripheral surface side of the fixing means 42.
  • the inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and the temperature measurement probe 44 projects into the cavity of the mold 10 and is designed to be embedded in the shoulder portion 3S of the tread portion 3 .
  • the temperature measurement probe 44 is fixed at the end on the outer peripheral surface side by the fixing means 42, extends in the tire radial direction in the temperature measurement probe insertion hole 43 toward the inner peripheral surface side, and the inner peripheral surface side measures temperature It is attached in a posture capable of being embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end of the probe insertion hole 43.
  • the cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.
  • a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change.
  • metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high.
  • a resistor can be used particularly preferably.
  • the temperature measurement probe 44 is disposed in the temperature measurement probe insertion hole 43, and the outer diameter D1 of the temperature measurement probe 44 is formed smaller than the inner diameter D2 of the temperature measurement probe insertion hole 43 (FIG. 3 (b)) . According to this configuration, while the segment 41 is heated at the time of vulcanization, the rubber penetrates into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 and the segment 41 are directly Contact can be prevented. As a result, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion.
  • the outer diameter D1 of the temperature measurement probe 44 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but is preferably 1 to 10 mm. Further, the inner diameter D2 of the temperature measurement probe insertion hole 43 can also be appropriately designed according to the size of the pneumatic tire to be manufactured, but is 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measurement probe 44 preferable.
  • the length of the temperature measurement probe 44 measured from the inner circumferential surface side end of the fixing means 42 is L1
  • L1 / D1 is 10 or more
  • the projection height L2 of the temperature measurement probe 44 from L1 and the temperature measurement probe hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured.
  • L2 is preferably 0.5 to 10 mm.
  • the depth L3 of the temperature measurement probe hole from the inner peripheral end of the fixing means 42 can also be appropriately designed according to the size of the pneumatic tire to be manufactured.
  • FIG. 3 (b) shows an example in which the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 is not closed, as shown in FIG. 3 (c), the inside of the temperature measurement probe insertion hole 43
  • the gap between the circumferential surface side end and the temperature measurement probe 44 may be closed by a spacer 45 having a thermal conductivity smaller than that of the segment 41.
  • the rubber does not penetrate into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 is hollow. Even with this configuration, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion.
  • the length L4 of the spacer 45 is preferably, for example, 10 to 50 mm in the depth direction of the segment 41.
  • the spacer 45 can be made of a material exhibiting a thermal conductivity smaller than that of the segment 41, for example, a metal such as constantan, titanium or nichrome.
  • the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 may be closed by a heat insulating material 46 having a thermal conductivity smaller than that of the segment.
  • a heat insulating material 46 having a thermal conductivity smaller than that of the segment.
  • the length of the heat insulating material 46 is preferably, for example, 50 to 80% of the depth L3 of the temperature measurement probe hole.
  • the heat insulating material 46 can also be made of metal such as constantan, titanium, nichrome or the like.
  • the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15.
  • the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13.
  • a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage).
  • the slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3.
  • a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9.
  • the embedding method for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9.
  • the temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
  • the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9.
  • the mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed.
  • the inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9.
  • a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure.
  • steam or high-temperature water is used as the heating medium
  • an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
  • the temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage).
  • time series data For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. .
  • a high precision digital data logger generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values
  • the second stage when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately.
  • the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
  • the target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. .
  • the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
  • the end point of vulcanization can be determined more simply by dividing the third step into two.
  • a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a).
  • FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point.
  • the vulcanization temperature curve which makes a vertical axis
  • a minute temperature change within 1 ° C. can also be accurately measured.
  • a target vulcanizing temperature is set to 130 ° C.
  • a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals.
  • the vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A.
  • the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b).
  • a point P corresponding to a downwardly convex inflection point appearing in the vicinity of the target vulcanization temperature (130 ° C.) in the vulcanization temperature curve B (in FIG. 3, it is described as BPT) (Correction to point P) can be easily detected, and the point at which this point P is detected can be taken as the vulcanization end point to end the vulcanization.
  • the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state.
  • the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

This tire molding die is provided with at least a tread die that can be pressed against the tread. Divided in the circumferential direction, the tread die has multiple segments that can move in the radial direction of a green tire. At least one of the segments is provided with a fixing means for fixing a temperature measurement probe, a temperature measurement probe insertion hole which extends from the fixing means towards the inner peripheral surface, and a temperature measurement probe which is fixed by the fixing means, extends in the temperature measurement probe insertion hole towards the inner peripheral surface, and has an inner peripheral surface-side end that goes beyond the inner peripheral surface-side end of the temperature measurement probe insertion hole and is attached in an orientation that enables embedding inside of the shoulder of the tread, wherein the outer diameter D1 of the temperature measurement probe is formed smaller than the inner diameter D2 of the temperature measurement probe insertion hole.

Description

タイヤ成型用金型および空気入りタイヤの製造方法Tire molding mold and method of manufacturing pneumatic tire
 本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型に関する。 The present invention comprises a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface The present invention relates to a tire molding mold for heating and vulcanizing an unvulcanized green tire.
 ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。 When manufacturing a pneumatic tire that is a rubber product, since the vulcanization process is the most time-consuming process, efforts are still being made to shorten the time of the vulcanization process. On the other hand, if the vulcanization of the rubber portion is insufficient in the vulcanization process, air generated by the vulcanization reaction of the rubber remains in the vulcanized rubber, and such residual air is the cause of tire failure at the product stage. It may be Therefore, in the normal tire production site, the overall variation in the vulcanization process is taken into consideration, for example, due to variations in the temperature of the unvulcanized raw tire, the temperature in the mold, the ambient temperature, etc. due to seasonal factors. The time required for the vulcanization process is set by adding the allowance time that takes into account.
 しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。 However, setting of the spare time is not preferable from the viewpoint of improving the productivity of the tire, and it has been desired to determine the end of vulcanization for each tire and efficiently execute the vulcanization process.
 下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。 In the following Patent Document 1, the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the point at which the increase rate of the polymer resistance value Rp of the vulcanized sample becomes extremely slow is the optimum vulcanization. A real-time cure control method for a vulcanized sample is described which provides a dwell time. However, in this method, it is necessary to measure the impedance measurement for the vulcanized sample by sandwiching the vulcanized sample between the two electrodes, and since the tire is usually a laminate of composite materials, It is difficult to apply to a tire at the time of tire vulcanization.
特開2003-211459号公報JP 2003-211459 A
 本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能なタイヤ成型用金型を提供することにある。 The present invention has been made in view of the above situation, and its object is to accurately measure the temperature of a pneumatic tire during vulcanization in order to reliably determine the end point of the vulcanization process for each tire. It is providing a mold for tire molding.
 上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントの少なくとも一つは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型に関する。 The above object can be achieved by the present invention as described below. That is, according to the present invention, a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface A mold for molding a tire for heating and vulcanizing an unvulcanized green tire, comprising at least a tread mold portion pressable to the tread portion, wherein the tread mold portion is circumferentially divided, A plurality of radially movable segments of the green tire, at least one of the segments is a fixing means for fixing a temperature measurement probe, and a temperature measurement probe extending from the fixing means toward the inner circumferential surface The insertion hole is fixed by the fixing means, extends toward the inner peripheral surface in the temperature measurement probe insertion hole, and the inner peripheral surface side end is the inner peripheral surface end of the temperature measurement probe insertion hole And a temperature measurement probe attached in a posture capable of being embedded in the shoulder portion of the tread portion, the outer diameter D1 of the temperature measurement probe being smaller than the inner diameter D2 of the temperature measurement probe insertion hole The present invention relates to a tire molding mold characterized in that.
 本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、セグメントの少なくとも1つに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。 The tire molding mold according to the present invention is a so-called "segmental mold" in which at least a tread mold portion is divided in the circumferential direction, and at least one of the segments is provided with the above-mentioned specific temperature measurement probe. As a result, the temperature of the pneumatic tire during vulcanization, in particular, the temperature of the shoulder portion of the tread portion where vulcanization of the tire is most difficult to proceed can be accurately measured.
 また、別の本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型に関する。 According to another aspect of the present invention, a tread surface is connected to a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tire radial direction outer end of each sidewall portion. A tire molding mold for heating and vulcanizing an unvulcanized green tire having a tread portion, comprising at least a tread mold portion pressable to the tread portion, wherein the tread mold portion is circumferentially divided A plurality of radially movable segments of the green tire, at least two or more of the segments being fixed means for fixing a temperature measurement probe, and an inner circumferential surface from the fixing means The temperature measurement probe insertion hole extending in the radial direction toward the side and the fixing means are fixed by the fixing means, and the inside of the temperature measurement probe insertion hole in the tire radial direction toward the inner peripheral surface side And a temperature measurement probe attached in such a posture that the inner peripheral surface side end can be embedded in the shoulder portion of the tread portion beyond the inner peripheral surface side end of the temperature measurement probe insertion hole; The present invention relates to a tire molding mold characterized in that the outer diameter D1 is smaller than the inner diameter D2 of the temperature measurement probe insertion hole.
 上記本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、分割されたセグメントのうち、少なくとも二つ以上のセグメントに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。また二つ以上のセグメントに温度測定プローブを配設しているため、複数個所で温度測定することになるため正確な温度測定が可能となり、かつ、万が一、ある温度測定プローブが破損しても、他の温度測定プローブでの測定が可能となる。 The tire molding mold according to the present invention is a so-called "segmental mold" in which at least the tread mold portion is divided in the circumferential direction, and of the divided segments, at least two or more of the divided segments Equipped with a temperature measurement probe. As a result, the temperature of the pneumatic tire during vulcanization, in particular, the temperature of the shoulder portion of the tread portion where vulcanization of the tire is most difficult to proceed can be accurately measured. In addition, since the temperature measurement probe is disposed in two or more segments, temperature measurement can be performed at a plurality of points, which enables accurate temperature measurement, and even if a certain temperature measurement probe is broken, Measurement with other temperature measurement probes is possible.
 また上記本発明に係るタイヤ成型用金型は、セグメントの進行方向および温度測定プローブの配設方向をいずれも生タイヤの径方向としている。前記のとおり、セグメントは生タイヤの径方向に移動するため、温度測定プローブの配設方向も生タイヤの径方向とした場合、温度測定プローブをショルダー部内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブへの負荷軽減を考慮した場合、セグメントが径方向に移動する際の進行方向と、温度測定プローブの径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。 Further, in the tire molding mold according to the present invention, the traveling direction of the segments and the disposition direction of the temperature measurement probe are both in the radial direction of the green tire. As described above, since the segments move in the radial direction of the green tire, the load is minimized when the temperature measurement probe is embedded in the shoulder when the arrangement direction of the temperature measurement probe is also the radial direction of the green tire. preferable. When load reduction on the temperature measurement probe is considered, it is preferable that the deviation between the direction of movement of the segment in the radial direction and the arrangement direction of the temperature measurement probe in the radial direction be 3 ° or less More preferably, it is 1 ° or less.
 上記タイヤ成型用金型において、前記温度測定プローブの外径D1が、1~10mmであることが好ましい。 In the tire molding mold, the outer diameter D1 of the temperature measurement probe is preferably 1 to 10 mm.
 上記タイヤ成型用金型において、前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上であることが好ましい。 In the tire molding mold, when the length of the temperature measurement probe measured from the inner peripheral surface side end of the fixing means is L1, L1 / D1 is preferably 10 or more.
 上記タイヤ成型用金型において、前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれていることが好ましい。 In the tire molding mold, it is preferable that a gap between the inner peripheral surface side end of the temperature measurement probe insertion hole and the temperature measurement probe is closed by a spacer having a smaller thermal conductivity than the segment.
 上記タイヤ成型用金型において、前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれていることが好ましい。 In the tire molding mold, it is preferable that a gap between the temperature measurement probe insertion hole and the temperature measurement probe is closed by a heat insulating material having a thermal conductivity smaller than that of the segment.
 上記タイヤ成型用金型において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。 In the tire molding mold, the temperature measurement probe is preferably a platinum resistance temperature detector.
 また本発明は、前記いずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法に関する。 The present invention is a method of manufacturing a pneumatic tire including a vulcanization step of heat curing in the tire molding mold according to any one of the above, wherein the vulcanization step includes a pair of bead portions, A tread portion of an unvulcanized green tire comprising: sidewall portions extending from the bead portions outward in the tire radial direction; and a tread portion connected to the tire radial direction outer ends of the sidewall portions to form a tread surface The present invention relates to a method of manufacturing a pneumatic tire including the step of measuring the temperature of the shoulder portion by embedding a temperature measurement probe in the shoulder portion included in the above.
 上記製造方法によれば、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができるため、タイヤ毎に加硫工程の終了時点を確実に決定できる。 According to the above manufacturing method, the temperature of the pneumatic tire during vulcanization, in particular, the temperature of the shoulder portion of the tread portion where the vulcanization of the tire is most difficult to proceed can be accurately measured. The end point of the process can be determined with certainty.
 上記空気入りタイヤの製造方法において、前記加硫工程が、ショルダー部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、加硫中の前記生タイヤの温度の時系列データを10秒以下の間隔で取得する第2段階と、前記時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で前記加硫工程を終了する第3段階とを備えることが好ましい。 In the method of manufacturing a pneumatic tire, the vulcanization step includes a first step of embedding a temperature measurement probe in a shoulder portion, and time series data of the temperature of the green tire during vulcanization by the temperature measurement probe. And a third step of terminating the vulcanization step when an endothermic reaction is detected in the vicinity of a target vulcanization temperature based on the time series data. Is preferred.
 上記製造方法では、まず、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤの加硫最遅部に相当するトレッド部に、温度測定プローブを埋設し(第1段階)、温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。次いで、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。その結果、余分な余裕時間の設定が不要となり、空気入りタイヤの生産性を高めることができる。加えて、空気入りタイヤ1本毎に加硫反応が確実に終了していることが確認できるため、品質保証体制を確立することができる。なお、「目標加硫温度の近傍」とは、好ましくは設定した目標加硫温度の±10℃の範囲を意味するものとする。 In the above manufacturing method, first, a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface A temperature measurement probe is embedded in the tread portion corresponding to the vulcanization latest portion of an unvulcanized green tire provided with a first step (first stage), and the temperature measurement probe is used to time-series the temperature of the green tire during vulcanization Data are acquired at intervals of 10 seconds or less (second stage). Next, the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage). Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. As a result, it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced. In addition, since it can be confirmed that the vulcanization reaction is surely completed for each pneumatic tire, a quality assurance system can be established. The term “near the target vulcanization temperature” preferably means a range of ± 10 ° C. of the set target vulcanization temperature.
 上記空気入りタイヤの製造方法において、さらに前記第3段階が、前記時系列データに基づき、前記生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする第3a段階と、プロットした前記加硫温度曲線で前記目標加硫温度の近傍に現れる、下に凸な変曲点を検出した時点で前記加硫工程を終了する第3b段階とを備えることが好ましい。かかる構成によれば、プロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点を加硫終点とするため、見極めが容易で簡便である。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire according to the third aspect of the present invention, the third step plots the vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time based on the time-series data. Preferably, the method further comprises the step 3b of terminating the vulcanization process when a downward convex inflection point appears in the vicinity of the target vulcanization temperature in the vulcanization temperature curve. According to this configuration, since the downward convex inflection point appearing in the vicinity of the target vulcanization temperature in the vulcanization temperature curve plotted is taken as the vulcanization end point, it is easy and easy to identify. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
 上記空気入りタイヤの製造方法において、前記目標加硫温度が125~165℃であることが好ましい。目標加硫温度の設定が高い場合、空気入りタイヤの加硫速度が速くなるため、加硫反応による吸熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、目標加硫温度が125~165℃、特には125~145℃であると、加硫終点の見極めが容易であるため、空気入りタイヤの生産性をさらに高めることができる。なお、目標加硫温度が125~145℃である場合を空気入りタイヤの低温加硫という場合があるが、低温加硫の場合は、空気入りタイヤの加硫速度が遅くなるため、従来は余裕時間を通常よりも長く確保する必要があった。このため、加硫時における高温下での空気入りタイヤの熱劣化抑制という低温加硫のメリットが、加硫時間増加により損なわれる場合があった。しかしながら本発明では、低温加硫(目標加硫温度が125~145℃)であっても、余裕時間を通常よりも短く設計可能であるため、熱劣化による空気入りタイヤの物性悪化を防止することができる。 In the method of manufacturing a pneumatic tire, the target vulcanization temperature is preferably 125 to 165 ° C. When the setting of the target vulcanization temperature is high, the vulcanization speed of the pneumatic tire is increased. Therefore, the end point of vulcanization is detected based on the detection of the heat absorption due to the vulcanization reaction, and further the target vulcanization temperature curve is plotted. It may be difficult to detect the end point of vulcanization based on the downward convex inflection point appearing near the vulcanization temperature. On the other hand, when the target vulcanization temperature is 125 to 165 ° C., particularly 125 to 145 ° C., the end point of vulcanization can be easily determined, and therefore the productivity of the pneumatic tire can be further enhanced. The case where the target vulcanization temperature is 125 to 145 ° C. is sometimes referred to as low temperature vulcanization of the pneumatic tire, but in the case of low temperature vulcanization, since the vulcanization speed of the pneumatic tire becomes slow, the conventional tire It was necessary to secure time longer than usual. For this reason, the merit of low temperature vulcanization, such as thermal deterioration suppression of the pneumatic tire under high temperature at the time of vulcanization, may be impaired by an increase in vulcanization time. However, in the present invention, even if the low temperature vulcanization (target vulcanization temperature is 125 to 145 ° C.), the margin time can be designed to be shorter than usual, so that the physical property deterioration of the pneumatic tire due to thermal deterioration is prevented. Can.
本発明において製造可能なタイヤの一例を示すタイヤ子午線断面図A tire meridional cross section showing an example of a tire that can be manufactured in the present invention 本発明のタイヤ成型用金型を概念的に示す断面図Cross sectional view conceptually showing a tire molding mold of the present invention 本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図Sectional drawing which shows notionally the state which embeds a temperature measurement probe in a shoulder part in the segment which comprises the tread type | mold part of the metal mold | die of this invention 本発明の一実施形態における加硫温度曲線を示すグラフの一例An example of a graph showing a vulcanization temperature curve in an embodiment of the present invention
 本発明の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。 Embodiments of the present invention will be described with reference to the drawings. The green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread. An annular bead core 1 a is disposed in the bead portion 1.
 カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a. The carcass layer 4 is constituted by at least one carcass ply. The carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
 ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside. The belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
 トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成しても良い。 The tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
 図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
 生タイヤ9の加硫成形では、本発明に係るタイヤ成型用金型(以下、単に「金型」ともいう)が使用される。図2に本発明のタイヤ成型用金型を概念的に表した断面図を示す。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 In the vulcanization molding of the green tire 9, a tire molding mold (hereinafter, also simply referred to as a "mold") according to the present invention is used. FIG. 2 is a cross-sectional view conceptually showing the tire molding mold of the present invention. A green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
 金型10は、生タイヤ9のトレッド部3に圧接可能なトレッド型部11を少なくとも備える。本実施形態では、金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個のセグメントに分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 at least includes a tread mold portion 11 that can be in pressure contact with the tread portion 3 of the green tire 9. In the present embodiment, the mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. Equipped with These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known. The tread mold portion 11 is further divided into a plurality of segments in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
 金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 A central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this. The central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
 中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 In the central mechanism 14, a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21. The medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow. The heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
 また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 Further, a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed. A discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34. The pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
(第1実施形態)
 以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6~12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6~12の範囲内で奇数であることがより好ましい。
First Embodiment
Hereinafter, the segment 41 which comprises the tread type | mold part 11 with which the metal mold | die 10 of this invention is equipped is demonstrated. FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe is embedded in a shoulder portion in a segment constituting a tread mold portion of a mold of the present invention. In FIG. 3, “inner circumferential surface side” means the side closer to the green tire 9 when the green tire 9 is set in the mold 10. The segment 41 is one of those obtained by dividing the tread mold portion 11 into, for example, 6 to 12 in the circumferential direction, and each of the segments 41 is pressed against the tread portion 3 of the green tire 9 by moving in the radial direction of the green tire 9 It is possible. More preferably, the number of divisions of the segment 41 is an odd number within the range of 6-12.
 セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって延びる温度測定プローブ挿入穴43と、固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。 At least one of the segments 41 is fixed by the fixing means 42 for fixing the temperature measurement probe 44, the temperature measurement probe insertion hole 43 extending from the fixing means 42 toward the inner circumferential surface, and the fixing means 42. It extends in the insertion hole 43 toward the inner peripheral surface, and the inner peripheral surface end is mounted in a posture where it can be embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface end of the temperature measurement probe insertion hole 43 And the temperature measurement probe 44. The temperature measurement probe 44 may be attached to one of the plurality of segments 41, may be attached to the plurality of segments 41, or may be attached to all the segments 41.
 温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さL2を調製可能となるように設計可能である。 The fixing means 42 for fixing the temperature measurement probe 44 includes, for example, a double nut or the like on the outer peripheral surface side and a screw structure on the inner peripheral surface side, whereby the temperature measurement probe 44 protrudes from the temperature measurement probe hole 43 The height L2 can be designed to be adjustable.
 固定手段42の内周面側には、温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。 A temperature measurement probe insertion hole 43 is formed on the inner peripheral surface side of the fixing means 42. The disposition direction of the temperature measurement probe insertion hole 43 is preferably in the radial direction of the green tire 9 as described later. The inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and the temperature measurement probe 44 projects into the cavity of the mold 10 and is designed to be embedded in the shoulder portion 3S of the tread portion 3 .
 温度測定プローブ44は、外周面側の端部が固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。また、温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。 The temperature measurement probe 44 is fixed at the end on the outer peripheral surface side by the fixing means 42 and extends in the temperature measurement probe insertion hole 43 toward the inner peripheral surface side, and the inner peripheral surface end is the one of the temperature measurement probe insertion hole 43 It is attached in a posture capable of being embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end. The disposition direction of the temperature measurement probe 44 is preferably in the radial direction of the green tire 9 as described later. The cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.
 前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブ44への負荷軽減を考慮した場合、セグメント41が径方向に移動する際の進行方向と、温度測定プローブ44の径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。 As described above, since the segments 41 move in the radial direction of the green tire 9, when the disposition direction of the temperature measurement probe 44 is also the radial direction of the green tire 9, when the temperature measurement probe 44 is embedded in the shoulder portion 3S. Because the load is minimized, it is preferable. When load reduction on the temperature measurement probe 44 is considered, the shift between the advancing direction when the segment 41 moves in the radial direction and the arrangement direction in the radial direction of the temperature measurement probe 44 is 3 ° or less Is preferable, and 1 ° or less is more preferable.
 本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measurement probe used when measuring the vulcanization temperature, a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change. Such metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high. A resistor can be used particularly preferably.
 温度測定プローブ44は、温度測定プローブ挿入穴43内に配置され、温度測定プローブ44の外径D1は、温度測定プローブ挿入穴43の内径D2よりも小さく形成されている(図3(b))。かかる構成によれば、セグメント41が加硫時に加熱されるところ、加硫時には温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入し、温度測定プローブ44とセグメント41とが直接接触するのを防止することができる。その結果、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。温度測定プローブ44の外径D1は、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、1~10mmが好ましい。また、温度測定プローブ挿入穴43の内径D2も、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、温度測定プローブ44の外径D1よりも0.5~1.0mm大きいことが好ましい。 The temperature measurement probe 44 is disposed in the temperature measurement probe insertion hole 43, and the outer diameter D1 of the temperature measurement probe 44 is formed smaller than the inner diameter D2 of the temperature measurement probe insertion hole 43 (FIG. 3 (b)) . According to this configuration, while the segment 41 is heated at the time of vulcanization, the rubber penetrates into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 and the segment 41 are directly Contact can be prevented. As a result, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion. The outer diameter D1 of the temperature measurement probe 44 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but is preferably 1 to 10 mm. Further, the inner diameter D2 of the temperature measurement probe insertion hole 43 can also be appropriately designed according to the size of the pneumatic tire to be manufactured, but is 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measurement probe 44 preferable.
 固定手段42の内周面側端から測定した温度測定プローブ44の長さをL1としたとき、L1/D1が10以上であると、セグメント41からの温度測定プローブ44への熱伝導による測定誤差を低減できるため好ましい。L1および温度測定プローブ穴43からの温度測定プローブ44の突出高さL2は、製造する空気入りタイヤのサイズに応じて適宜設計可能である。このうち、L2は0.5~10mmが好ましい。また、固定手段42の内周側端からの温度測定プローブ穴の深さL3も製造する空気入りタイヤのサイズに応じて適宜設計可能である。 Assuming that the length of the temperature measurement probe 44 measured from the inner circumferential surface side end of the fixing means 42 is L1, if L1 / D1 is 10 or more, a measurement error due to heat conduction from the segment 41 to the temperature measurement probe 44 Is preferable because it can reduce the The projection height L2 of the temperature measurement probe 44 from L1 and the temperature measurement probe hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured. Among these, L2 is preferably 0.5 to 10 mm. In addition, the depth L3 of the temperature measurement probe hole from the inner peripheral end of the fixing means 42 can also be appropriately designed according to the size of the pneumatic tire to be manufactured.
 図3(b)では、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が塞がれていない例を示したが、図3(c)に示すとおり、温度測定プローブ挿入穴43の内周面側端と温度測定プローブ44との隙間が、セグメント41よりも小さい熱伝導率のスペーサー45により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入せず、温度測定プローブ44周りが中空となる。この構成でも、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。スペーサー45の長さL4は、例えばセグメント41の深さ方向に10~50mmであることが好ましい。スペーサー45は、セグメント41よりも小さい熱伝導率を示す素材、例えばコンスタンタン、チタン、ニクロムなどの金属で構成可能である。 Although FIG. 3 (b) shows an example in which the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 is not closed, as shown in FIG. 3 (c), the inside of the temperature measurement probe insertion hole 43 The gap between the circumferential surface side end and the temperature measurement probe 44 may be closed by a spacer 45 having a thermal conductivity smaller than that of the segment 41. According to this configuration, the rubber does not penetrate into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 is hollow. Even with this configuration, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion. The length L4 of the spacer 45 is preferably, for example, 10 to 50 mm in the depth direction of the segment 41. The spacer 45 can be made of a material exhibiting a thermal conductivity smaller than that of the segment 41, for example, a metal such as constantan, titanium or nichrome.
 また、図3(d)に示すとおり、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が、セグメントよりも小さい熱伝導率の断熱材46により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44が断熱材46により覆われるため、加硫最遅部に相当するトレッド部3の温度を、温度測定プローブ44により正確に測定することができる。断熱材46の長さは、例えば温度測定プローブ穴の深さL3の50~80%が好ましい。断熱材46についても、スペーサー45と同様、コンスタンタン、チタン、ニクロムなどの金属で構成可能である。 Further, as shown in FIG. 3D, the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 may be closed by a heat insulating material 46 having a thermal conductivity smaller than that of the segment. According to this configuration, since the temperature measurement probe 44 is covered with the heat insulating material 46 at the time of vulcanization, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the vulcanization latest delay portion. The length of the heat insulating material 46 is preferably, for example, 50 to 80% of the depth L3 of the temperature measurement probe hole. Similarly to the spacer 45, the heat insulating material 46 can also be made of metal such as constantan, titanium, nichrome or the like.
 次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。 Next, the vulcanization step in the method for manufacturing a pneumatic tire according to the present invention will be specifically described.
 まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。 First, as shown in FIG. 2, the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15. Thus, the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13. At this time, a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage). The slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3. In particular, among the shoulder portions, it is preferable to set a position at which the thickness of the tread portion 3 is maximized, which is measured along the normal to the inner surface of the tread portion 3 after vulcanization, as the vulcanized slowest portion. In any case, in the present invention, in order to measure the vulcanization temperature at the slowest vulcanization portion, a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9. As the embedding method, for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9. The temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
 続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9. The mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed. The inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9. After the heating medium is supplied for a predetermined time, a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure. For example, steam or high-temperature water is used as the heating medium, and an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
 温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、加硫中の生タイヤの温度の時系列データは、5秒以下の間隔で取得することが好ましく、1秒以下の間隔で取得することが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、加硫中の生タイヤの温度の時系列データのデータ取得間隔は0.5秒以上が好ましい。 The temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage). For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. . In the second stage, when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately. Specifically, it is preferable to acquire time series data of the temperature of the green tire during vulcanization at intervals of 5 seconds or less, and it is preferable to acquire at intervals of 1 second or less. On the other hand, if the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is too short, the noise may be rather large and it may be difficult to accurately determine the vulcanization end point. For this reason, the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
 第2段階の後、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。加硫終点の見極めが容易になることから、目標加硫温度は125℃~165℃であることが好ましく、125℃~145℃であることがより好ましく、125~135℃であることが特に好ましい。加硫反応による吸熱の検出方法としては、目標加硫温度の近傍で、所定期間(例えばデータ取得間隔が1秒であれば1秒)における生タイヤの温度変化量を算出し、その温度変化量に基づき決定することが可能である。 After the second stage, the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage). Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. The target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. . As a method of detecting the heat absorption due to the vulcanization reaction, the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
 本発明においては、第3工程を2つに分け、より簡便に加硫終点を決定することができる。まず、時系列データに基づき、生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする(第3a段階)。図4は本発明の一実施形態における加硫温度曲線を示すグラフの一例であり、Aは金型10の型締め完了時点を加硫開始点としたときの、生タイヤの温度(℃)を縦軸、時間(秒)を横軸とする加硫温度曲線を示す。図4に示すとおり、本発明に係るタイヤ成型用金型を使用して空気入りタイヤを加硫した場合、1℃以内の微小な温度変化も正確に測定できる。 In the present invention, the end point of vulcanization can be determined more simply by dividing the third step into two. First, based on the time series data, a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a). FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point. The vulcanization temperature curve which makes a vertical axis | shaft and time (seconds) a horizontal axis is shown. As shown in FIG. 4, when the pneumatic tire is vulcanized using the tire molding mold according to the present invention, a minute temperature change within 1 ° C. can also be accurately measured.
 本実施形態では、目標加硫温度を130℃に設定し、生タイヤの温度の時系列データを1秒間隔で取得した際の加硫温度曲線Aを示す。加硫温度曲線Bは、加硫温度曲線Aの目標加硫温度の近傍(2000秒手前~8000秒手前)を拡大したものである。第3a段階の後、プロットした加硫温度曲線Aで目標加硫温度の近傍に現れる下に凸な変曲点Pを検出した時点で加硫工程を終了する(第3b段階)。本実施形態では、加硫温度曲線Bにおいて、目標加硫温度(130℃)の近傍に現れる下に凸な変曲点に相当する点P(現在の図3ではBPTと記載されておりますが、点Pに修正します)が容易に検出可能であり、この点Pが検出された時点を加硫終点として、加硫を終了することができる。 In this embodiment, a target vulcanizing temperature is set to 130 ° C., and a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals. The vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A. After the step 3a, the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b). In this embodiment, a point P corresponding to a downwardly convex inflection point appearing in the vicinity of the target vulcanization temperature (130 ° C.) in the vulcanization temperature curve B (in FIG. 3, it is described as BPT) (Correction to point P) can be easily detected, and the point at which this point P is detected can be taken as the vulcanization end point to end the vulcanization.
 加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After completion of the vulcanization process, the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state. As a result, the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
(第2実施形態)
 以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6~12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6~12の範囲内で奇数であることがより好ましい。
Second Embodiment
Hereinafter, the segment 41 which comprises the tread type | mold part 11 with which the metal mold | die 10 of this invention is equipped is demonstrated. FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe is embedded in a shoulder portion in a segment constituting a tread mold portion of a mold of the present invention. In FIG. 3, “inner circumferential surface side” means the side closer to the green tire 9 when the green tire 9 is set in the mold 10. The segment 41 is one of those obtained by dividing the tread mold portion 11 into, for example, 6 to 12 in the circumferential direction, and each of the segments 41 is pressed against the tread portion 3 of the green tire 9 by moving in the radial direction of the green tire 9 It is possible. More preferably, the number of divisions of the segment 41 is an odd number within the range of 6-12.
 セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴43と、固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。 At least one of the segments 41 is fixed by a fixing means 42 for fixing the temperature measurement probe 44, a temperature measurement probe insertion hole 43 extending radially from the fixing means 42 toward the inner circumferential surface, and the fixing means 42. Extending toward the inner peripheral surface in the tire radial direction in the temperature measurement probe insertion hole 43, and the inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measurement probe insertion hole 43 and the shoulder portion of the tread portion 3 And a temperature measurement probe 44 mounted in a posture that can be embedded in the 3S. The temperature measurement probe 44 may be attached to one of the plurality of segments 41, may be attached to the plurality of segments 41, or may be attached to all the segments 41.
 温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さL2を調製可能となるように設計可能である。 The fixing means 42 for fixing the temperature measurement probe 44 includes, for example, a double nut or the like on the outer peripheral surface side and a screw structure on the inner peripheral surface side, whereby the temperature measurement probe 44 protrudes from the temperature measurement probe hole 43 The height L2 can be designed to be adjustable.
 固定手段42の内周面側には、径方向に延びる温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。 A temperature measurement probe insertion hole 43 extending in the radial direction is formed on the inner peripheral surface side of the fixing means 42. The inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and the temperature measurement probe 44 projects into the cavity of the mold 10 and is designed to be embedded in the shoulder portion 3S of the tread portion 3 .
 温度測定プローブ44は、外周面側の端部が固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。 The temperature measurement probe 44 is fixed at the end on the outer peripheral surface side by the fixing means 42, extends in the tire radial direction in the temperature measurement probe insertion hole 43 toward the inner peripheral surface side, and the inner peripheral surface side measures temperature It is attached in a posture capable of being embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end of the probe insertion hole 43. The cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.
 前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。 As described above, since the segments 41 move in the radial direction of the green tire 9, when the disposition direction of the temperature measurement probe 44 is also the radial direction of the green tire 9, when the temperature measurement probe 44 is embedded in the shoulder portion 3S. Because the load is minimized, it is preferable.
 本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measurement probe used when measuring the vulcanization temperature, a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change. Such metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high. A resistor can be used particularly preferably.
 温度測定プローブ44は、温度測定プローブ挿入穴43内に配置され、温度測定プローブ44の外径D1は、温度測定プローブ挿入穴43の内径D2よりも小さく形成されている(図3(b))。かかる構成によれば、セグメント41が加硫時に加熱されるところ、加硫時には温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入し、温度測定プローブ44とセグメント41とが直接接触するのを防止することができる。その結果、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。温度測定プローブ44の外径D1は、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、1~10mmが好ましい。また、温度測定プローブ挿入穴43の内径D2も、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、温度測定プローブ44の外径D1よりも0.5~1.0mm大きいことが好ましい。 The temperature measurement probe 44 is disposed in the temperature measurement probe insertion hole 43, and the outer diameter D1 of the temperature measurement probe 44 is formed smaller than the inner diameter D2 of the temperature measurement probe insertion hole 43 (FIG. 3 (b)) . According to this configuration, while the segment 41 is heated at the time of vulcanization, the rubber penetrates into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 and the segment 41 are directly Contact can be prevented. As a result, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion. The outer diameter D1 of the temperature measurement probe 44 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but is preferably 1 to 10 mm. Further, the inner diameter D2 of the temperature measurement probe insertion hole 43 can also be appropriately designed according to the size of the pneumatic tire to be manufactured, but is 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measurement probe 44 preferable.
 固定手段42の内周面側端から測定した温度測定プローブ44の長さをL1としたとき、L1/D1が10以上であると、セグメント41からの温度測定プローブ44への熱伝導による測定誤差を低減できるため好ましい。L1および温度測定プローブ穴43からの温度測定プローブ44の突出高さL2は、製造する空気入りタイヤのサイズに応じて適宜設計可能である。このうち、L2は0.5~10mmが好ましい。また、固定手段42の内周側端からの温度測定プローブ穴の深さL3も製造する空気入りタイヤのサイズに応じて適宜設計可能である。 Assuming that the length of the temperature measurement probe 44 measured from the inner circumferential surface side end of the fixing means 42 is L1, if L1 / D1 is 10 or more, a measurement error due to heat conduction from the segment 41 to the temperature measurement probe 44 Is preferable because it can reduce the The projection height L2 of the temperature measurement probe 44 from L1 and the temperature measurement probe hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured. Among these, L2 is preferably 0.5 to 10 mm. In addition, the depth L3 of the temperature measurement probe hole from the inner peripheral end of the fixing means 42 can also be appropriately designed according to the size of the pneumatic tire to be manufactured.
 図3(b)では、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が塞がれていない例を示したが、図3(c)に示すとおり、温度測定プローブ挿入穴43の内周面側端と温度測定プローブ44との隙間が、セグメント41よりも小さい熱伝導率のスペーサー45により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入せず、温度測定プローブ44周りが中空となる。この構成でも、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。スペーサー45の長さL4は、例えばセグメント41の深さ方向に10~50mmであることが好ましい。スペーサー45は、セグメント41よりも小さい熱伝導率を示す素材、例えばコンスタンタン、チタン、ニクロムなどの金属で構成可能である。 Although FIG. 3 (b) shows an example in which the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 is not closed, as shown in FIG. 3 (c), the inside of the temperature measurement probe insertion hole 43 The gap between the circumferential surface side end and the temperature measurement probe 44 may be closed by a spacer 45 having a thermal conductivity smaller than that of the segment 41. According to this configuration, the rubber does not penetrate into the gap between the temperature measurement probe 44 and the temperature measurement probe insertion hole 43 at the time of vulcanization, and the temperature measurement probe 44 is hollow. Even with this configuration, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the slowest vulcanization portion. The length L4 of the spacer 45 is preferably, for example, 10 to 50 mm in the depth direction of the segment 41. The spacer 45 can be made of a material exhibiting a thermal conductivity smaller than that of the segment 41, for example, a metal such as constantan, titanium or nichrome.
 また、図3(d)に示すとおり、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が、セグメントよりも小さい熱伝導率の断熱材46により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44が断熱材46により覆われるため、加硫最遅部に相当するトレッド部3の温度を、温度測定プローブ44により正確に測定することができる。断熱材46の長さは、例えば温度測定プローブ穴の深さL3の50~80%が好ましい。断熱材46についても、スペーサー45と同様、コンスタンタン、チタン、ニクロムなどの金属で構成可能である。 Further, as shown in FIG. 3D, the gap between the temperature measurement probe insertion hole 43 and the temperature measurement probe 44 may be closed by a heat insulating material 46 having a thermal conductivity smaller than that of the segment. According to this configuration, since the temperature measurement probe 44 is covered with the heat insulating material 46 at the time of vulcanization, the temperature measurement probe 44 can accurately measure the temperature of the tread portion 3 corresponding to the vulcanization latest delay portion. The length of the heat insulating material 46 is preferably, for example, 50 to 80% of the depth L3 of the temperature measurement probe hole. Similarly to the spacer 45, the heat insulating material 46 can also be made of metal such as constantan, titanium, nichrome or the like.
 次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。 Next, the vulcanization step in the method for manufacturing a pneumatic tire according to the present invention will be specifically described.
 まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。 First, as shown in FIG. 2, the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15. Thus, the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13. At this time, a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage). The slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3. In particular, among the shoulder portions, it is preferable to set a position at which the thickness of the tread portion 3 is maximized, which is measured along the normal to the inner surface of the tread portion 3 after vulcanization, as the vulcanized slowest portion. In any case, in the present invention, in order to measure the vulcanization temperature at the slowest vulcanization portion, a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9. As the embedding method, for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9. The temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
 続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9. The mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed. The inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9. After the heating medium is supplied for a predetermined time, a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure. For example, steam or high-temperature water is used as the heating medium, and an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
 温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、加硫中の生タイヤの温度の時系列データは、5秒以下の間隔で取得することが好ましく、1秒以下の間隔で取得することが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、加硫中の生タイヤの温度の時系列データのデータ取得間隔は0.5秒以上が好ましい。 The temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage). For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. . In the second stage, when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately. Specifically, it is preferable to acquire time series data of the temperature of the green tire during vulcanization at intervals of 5 seconds or less, and it is preferable to acquire at intervals of 1 second or less. On the other hand, if the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is too short, the noise may be rather large and it may be difficult to accurately determine the vulcanization end point. For this reason, the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
 第2段階の後、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。加硫終点の見極めが容易になることから、目標加硫温度は125℃~165℃であることが好ましく、125℃~145℃であることがより好ましく、125~135℃であることが特に好ましい。加硫反応による吸熱の検出方法としては、目標加硫温度の近傍で、所定期間(例えばデータ取得間隔が1秒であれば1秒)における生タイヤの温度変化量を算出し、その温度変化量に基づき決定することが可能である。 After the second stage, the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage). Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. The target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. . As a method of detecting the heat absorption due to the vulcanization reaction, the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
 本発明においては、第3工程を2つに分け、より簡便に加硫終点を決定することができる。まず、時系列データに基づき、生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする(第3a段階)。図4は本発明の一実施形態における加硫温度曲線を示すグラフの一例であり、Aは金型10の型締め完了時点を加硫開始点としたときの、生タイヤの温度(℃)を縦軸、時間(秒)を横軸とする加硫温度曲線を示す。図4に示すとおり、本発明に係るタイヤ成型用金型を使用して空気入りタイヤを加硫した場合、1℃以内の微小な温度変化も正確に測定できる。 In the present invention, the end point of vulcanization can be determined more simply by dividing the third step into two. First, based on the time series data, a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a). FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point. The vulcanization temperature curve which makes a vertical axis | shaft and time (seconds) a horizontal axis is shown. As shown in FIG. 4, when the pneumatic tire is vulcanized using the tire molding mold according to the present invention, a minute temperature change within 1 ° C. can also be accurately measured.
 本実施形態では、目標加硫温度を130℃に設定し、生タイヤの温度の時系列データを1秒間隔で取得した際の加硫温度曲線Aを示す。加硫温度曲線Bは、加硫温度曲線Aの目標加硫温度の近傍(2000秒手前~8000秒手前)を拡大したものである。第3a段階の後、プロットした加硫温度曲線Aで目標加硫温度の近傍に現れる下に凸な変曲点Pを検出した時点で加硫工程を終了する(第3b段階)。本実施形態では、加硫温度曲線Bにおいて、目標加硫温度(130℃)の近傍に現れる下に凸な変曲点に相当する点P(現在の図3ではBPTと記載されておりますが、点Pに修正します)が容易に検出可能であり、この点Pが検出された時点を加硫終点として、加硫を終了することができる。 In this embodiment, a target vulcanizing temperature is set to 130 ° C., and a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals. The vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A. After the step 3a, the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b). In this embodiment, a point P corresponding to a downwardly convex inflection point appearing in the vicinity of the target vulcanization temperature (130 ° C.) in the vulcanization temperature curve B (in FIG. 3, it is described as BPT) (Correction to point P) can be easily detected, and the point at which this point P is detected can be taken as the vulcanization end point to end the vulcanization.
 加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After completion of the vulcanization process, the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state. As a result, the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
 本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.

Claims (8)

  1.  一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、
     前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
     前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
     前記セグメントの少なくとも一つは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
     前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型。
    A pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A tire molding mold for heating and vulcanizing a vulcanized green tire,
    At least a tread mold portion pressable to the tread portion;
    The tread portion is divided in the circumferential direction and has a plurality of segments movable in the radial direction of the green tire,
    At least one of the segments is fixed by fixing means for fixing the temperature measurement probe, a temperature measurement probe insertion hole extending from the fixing means toward the inner peripheral surface, and the fixing means, and the inside of the temperature measurement probe insertion hole A temperature measurement probe which is extended toward the inner peripheral surface side and whose inner peripheral surface side end can be embedded in the shoulder portion of the tread portion beyond the inner peripheral surface side end of the temperature measurement probe insertion hole; Equipped with
    An outer diameter D1 of the temperature measurement probe is formed smaller than an inner diameter D2 of the temperature measurement probe insertion hole.
  2.  一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、
     前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
     前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
     前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
     前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型。
    A pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A tire molding mold for heating and vulcanizing a vulcanized green tire,
    At least a tread mold portion pressable to the tread portion;
    The tread portion is divided in the circumferential direction and has a plurality of segments movable in the radial direction of the green tire,
    At least two or more of the segments are fixed by fixing means for fixing a temperature measurement probe, a temperature measurement probe insertion hole extending radially from the fixing means toward the inner peripheral surface, and the fixing means It is fixed and extends in the tire radial direction in the temperature measurement probe insertion hole toward the inner peripheral surface side, and the inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measurement probe insertion hole and the shoulder of the tread portion And a temperature measurement probe mounted in a posture that can be buried in the
    An outer diameter D1 of the temperature measurement probe is formed smaller than an inner diameter D2 of the temperature measurement probe insertion hole.
  3.  前記温度測定プローブの外径D1が、1~10mmである請求項1または2に記載のタイヤ成型用金型。 The tire molding mold according to claim 1 or 2, wherein the outer diameter D1 of the temperature measurement probe is 1 to 10 mm.
  4.  前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上である請求項1~3のいずれかに記載のタイヤ成型用金型。 The tire molding mold according to any one of claims 1 to 3, wherein L1 / D1 is 10 or more when the length of the temperature measurement probe measured from the inner peripheral surface side end of the fixing means is L1.
  5.  前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれている請求項1~4のいずれかに記載のタイヤ成型用金型。 The tire according to any one of claims 1 to 4, wherein a gap between the inner peripheral surface side end of the temperature measurement probe insertion hole and the temperature measurement probe is closed by a spacer having a smaller thermal conductivity than the segment. Mold for molding.
  6.  前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれている請求項1~4のいずれかに記載のタイヤ成型用金型。 The tire molding mold according to any one of claims 1 to 4, wherein a gap between the temperature measurement probe insertion hole and the temperature measurement probe is closed by a heat insulating material having a smaller thermal conductivity than the segment.
  7.  前記温度測定プローブが、プラチナ測温抵抗体である請求項1~6のいずれかに記載のタイヤ成型用金型。 The tire molding mold according to any one of claims 1 to 6, wherein the temperature measurement probe is a platinum resistance temperature detector.
  8.  請求項1~7のいずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、
     前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法。
    A method of manufacturing a pneumatic tire comprising a vulcanization step of heating and vulcanizing in the tire molding mold according to any one of claims 1 to 7, comprising:
    The vulcanizing step includes a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to respective tire radial direction outer ends of the sidewall portions to constitute a tread surface And a step of measuring the temperature of the shoulder portion by embedding a temperature measurement probe in the shoulder portion included in the tread portion of an unvulcanized green tire comprising .
PCT/JP2018/040982 2017-12-15 2018-11-05 Tire molding die and pneumatic tire manufacturing method WO2019116778A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-240579 2017-12-15
JP2017-240581 2017-12-15
JP2017240581A JP7030500B2 (en) 2017-12-15 2017-12-15 How to manufacture tire molding dies and pneumatic tires
JP2017240579A JP2019107790A (en) 2017-12-15 2017-12-15 Die for tire molding and method for manufacturing pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019116778A1 true WO2019116778A1 (en) 2019-06-20

Family

ID=66819172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040982 WO2019116778A1 (en) 2017-12-15 2018-11-05 Tire molding die and pneumatic tire manufacturing method

Country Status (1)

Country Link
WO (1) WO2019116778A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317010A (en) * 1986-07-08 1988-01-25 Bridgestone Corp Controlling method for curing of tire
JPS63209817A (en) * 1987-02-25 1988-08-31 Bridgestone Corp Control method of vulcanization
JPH05162137A (en) * 1991-12-13 1993-06-29 Toyo Tire & Rubber Co Ltd Control method of vulcanization of tire
JP2006027115A (en) * 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2010284863A (en) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Vulcanizer for tire
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317010A (en) * 1986-07-08 1988-01-25 Bridgestone Corp Controlling method for curing of tire
JPS63209817A (en) * 1987-02-25 1988-08-31 Bridgestone Corp Control method of vulcanization
JPH05162137A (en) * 1991-12-13 1993-06-29 Toyo Tire & Rubber Co Ltd Control method of vulcanization of tire
JP2006027115A (en) * 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2010284863A (en) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Vulcanizer for tire
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Similar Documents

Publication Publication Date Title
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP6912366B2 (en) How to make a pneumatic tire
JP5314214B1 (en) Heavy duty pneumatic tire and manufacturing method thereof
JP2019107790A (en) Die for tire molding and method for manufacturing pneumatic tire
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP7475136B2 (en) TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
WO2019116778A1 (en) Tire molding die and pneumatic tire manufacturing method
JP2006341471A (en) Vulcanization system and vulcanization control method
JP6912365B2 (en) How to make a pneumatic tire
WO2019116757A1 (en) Pneumatic tire manufacturing method
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
JP7321040B2 (en) Method for manufacturing pneumatic tires
JP2019025780A (en) Tire vulcanization method and tire vulcanization apparatus
JP7178242B2 (en) Temperature sensor and pneumatic tire manufacturing method
JP2016203554A (en) Pneumatic tire production method and pneumatic tire
JP6465735B2 (en) Pneumatic tire manufacturing method
JP6465731B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP6939208B2 (en) Tire vulcanization method
JP2022101835A (en) Manufacturing method of pneumatic tire
KR100995661B1 (en) Inner temperature sensing apparatus of volcanizer bladder
JP2022101880A (en) Manufacturing method of pneumatic tire
JP2022101883A (en) Manufacturing method of pneumatic tire
JP2007168208A (en) Vulcanization apparatus for tire
JP2022101837A (en) Tire molding metal mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887601

Country of ref document: EP

Kind code of ref document: A1