WO2019116757A1 - Pneumatic tire manufacturing method - Google Patents

Pneumatic tire manufacturing method Download PDF

Info

Publication number
WO2019116757A1
WO2019116757A1 PCT/JP2018/040322 JP2018040322W WO2019116757A1 WO 2019116757 A1 WO2019116757 A1 WO 2019116757A1 JP 2018040322 W JP2018040322 W JP 2018040322W WO 2019116757 A1 WO2019116757 A1 WO 2019116757A1
Authority
WO
WIPO (PCT)
Prior art keywords
vulcanization
temperature
tire
pneumatic tire
time
Prior art date
Application number
PCT/JP2018/040322
Other languages
French (fr)
Japanese (ja)
Inventor
倫一 中山
英樹 島
Original Assignee
Toyo Tire株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017240469A external-priority patent/JP6912365B2/en
Priority claimed from JP2017240480A external-priority patent/JP6912366B2/en
Application filed by Toyo Tire株式会社 filed Critical Toyo Tire株式会社
Publication of WO2019116757A1 publication Critical patent/WO2019116757A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould

Definitions

  • the present invention comprises a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface
  • the present invention relates to a method of manufacturing a pneumatic tire including a vulcanization step of heat-vulcanizing an unvulcanized green tire in a mold.
  • the vulcanization process is the most time-consuming process, efforts are still being made to shorten the time of the vulcanization process.
  • the vulcanization of the rubber portion is insufficient in the vulcanization process, air generated by the vulcanization reaction of the rubber remains in the vulcanized rubber, and such residual air is the cause of tire failure at the product stage. It may be Therefore, in the normal tire production site, the overall variation in the vulcanization process is taken into consideration, for example, due to variations in the temperature of the unvulcanized raw tire, the temperature in the mold, the ambient temperature, etc. due to seasonal factors.
  • the time required for the vulcanization process is set by adding the allowance time that takes into account.
  • Patent Document 1 the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the point at which the increase rate of the polymer resistance value Rp of the vulcanized sample becomes extremely slow is the optimum vulcanization.
  • a real-time cure control method for a vulcanized sample is described which provides a dwell time.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to reduce the curing time by positively determining the end point of the curing process for each tire, and to significantly increase the productivity.
  • a method of manufacturing a tire is provided.
  • a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface A method of manufacturing a pneumatic tire including a vulcanization step of heating and vulcanizing an unvulcanized green tire provided in the mold in a mold, wherein the vulcanization step is carried out at a vulcanization latest portion of the green tire.
  • a first step of embedding a temperature measurement probe a second step of acquiring a plurality of time series data including a predetermined number of temperature values acquired at intervals of 10 seconds or less by the temperature measurement probe, and a least squares method
  • a coefficient curve is created by approximating a predetermined number of temperature values included in the time series data into a linear equation, calculating the slope of the approximated linear equation for each of the time series data, and plotting against the vulcanization time.
  • the serial coefficient curve to a method for producing a pneumatic tire characterized by terminating the vulcanization step upon detecting an inflection point appearing in the vulcanization time to reach the target vulcanizing temperature near.
  • the present invention is characterized in the step of vulcanizing a pneumatic tire, and comprises at least first to third steps.
  • First a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface
  • a temperature measurement probe is embedded in the vulcanization latest part of a green tire (first stage), and time series data including a plurality of temperature values acquired at intervals of 10 seconds or less is acquired by the temperature measurement probe ( Second step).
  • the least squares method is used to approximate a predetermined number of temperature values included in time series data to a linear equation, and the inclination of the approximated linear equation is calculated for each time series data, and plotted against the vulcanization time Create a coefficient curve (step 3). Then, when the inflection point appearing in the vulcanization time to reach the vicinity of the target vulcanization temperature of the coefficient curve is detected, the vulcanization process is ended.
  • the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. As a result, it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced.
  • the target vulcanization temperature preferably means a range of ⁇ 20 ° C of the set target vulcanization temperature, and more preferably means a range of ⁇ 10 ° C of the set target vulcanization temperature. It shall be.
  • an acquisition interval of temperature values in the time-series data is preferably 1 second or less, and the predetermined number is preferably 10 to 30. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
  • the temperature measurement probe is a platinum resistance temperature detector.
  • the sensitivity of the temperature measurement probe is poor, detection of the end point of vulcanization based on detection of heat generation due to the vulcanization reaction in the vicinity of the target vulcanization temperature, and further, at the plotted vulcanization temperature curve, first in the vicinity of the target vulcanization temperature.
  • the platinum resistance bulb since the platinum resistance bulb has a very high sensitivity to temperature changes, the end point of vulcanization can be identified with certainty, and therefore the productivity of the pneumatic tire can be further enhanced.
  • the vulcanized slowest portion is a shoulder portion of the tread portion. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
  • the target vulcanization temperature is preferably 120 to 200 ° C.
  • a tread surface is connected to a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tire radial direction outer end of each sidewall portion. It is a manufacturing method of a pneumatic tire including a vulcanization process of heating and vulcanizing an unvulcanized green tire provided with a tread portion in a mold, wherein the vulcanization process is the highest curing of the green tire.
  • a first step of embedding a temperature measurement probe in a late part a second step of acquiring time series data of the temperature of the green tire during vulcanization by the temperature measurement probe at intervals of 10 seconds or less, and the time series
  • the present invention relates to a method of manufacturing a pneumatic tire, comprising: a third step of terminating the vulcanization process when an endotherm due to a vulcanization reaction is detected in the vicinity of a target vulcanization temperature based on data.
  • the present invention is characterized in the step of vulcanizing a pneumatic tire, and comprises at least first to third steps.
  • a temperature measurement probe is embedded in the vulcanization latest part of a green tire (first stage), and time series data of the temperature of the green tire during vulcanization is acquired by an interval of 10 seconds or less by the temperature measurement probe (Phase 2).
  • the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage).
  • the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire.
  • it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced.
  • a quality assurance system can be established.
  • the term “near the target vulcanization temperature” preferably means a range of ⁇ 10 ° C. of the set target vulcanization temperature.
  • the third step plots the vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time based on the time-series data.
  • the method further comprises the step 3b of terminating the vulcanization process when a downward convex inflection point appears in the vicinity of the target vulcanization temperature in the vulcanization temperature curve.
  • the temperature measurement probe is a platinum resistance temperature detector.
  • the sensitivity of the temperature measurement probe is poor, detection of the end point of vulcanization based on detection of the endotherm due to the vulcanization reaction in the vicinity of the target vulcanization temperature and furthermore, it appears in the vicinity of the target vulcanization temperature in the plotted vulcanization temperature curve. It may be difficult to detect the end point of vulcanization based on the point of inflection which is downwardly convex.
  • the platinum resistance bulb since the platinum resistance bulb has a very high sensitivity to temperature changes, the end point of vulcanization can be identified with certainty, and therefore the productivity of the pneumatic tire can be further enhanced.
  • the vulcanized slowest portion is a shoulder portion of the tread portion. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
  • the target vulcanization temperature is preferably 125 to 165 ° C., and more preferably 125 to 145 ° C.
  • the vulcanization speed of the pneumatic tire is increased. Therefore, the end point of vulcanization is detected based on the detection of the heat absorption due to the vulcanization reaction, and further the target vulcanization temperature curve is plotted. It may be difficult to detect the end point of vulcanization based on the downward convex inflection point appearing near the vulcanization temperature.
  • the target vulcanization temperature is 125 to 165 ° C., particularly 125 to 145 ° C.
  • the end point of vulcanization can be easily determined, and therefore the productivity of the pneumatic tire can be further enhanced.
  • the case where the target vulcanization temperature is 125 to 145 ° C. is sometimes referred to as low temperature vulcanization of the pneumatic tire, but in the case of low temperature vulcanization, since the vulcanization speed of the pneumatic tire becomes slow, the conventional tire It was necessary to secure time longer than usual. For this reason, the merit of low temperature vulcanization, such as thermal deterioration suppression of the pneumatic tire under high temperature at the time of vulcanization, may be impaired by an increase in vulcanization time.
  • the margin time can be designed to be shorter than usual, so that the physical property deterioration of the pneumatic tire due to thermal deterioration is prevented. Can.
  • a tire meridional cross section showing an example of a tire according to the present invention Sectional view conceptually showing a mold used for vulcanizing a tire Example of coefficient curve and vulcanization temperature curve in one embodiment of the present invention
  • the green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread.
  • An annular bead core 1 a is disposed in the bead portion 1.
  • the carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a.
  • the carcass layer 4 is constituted by at least one carcass ply.
  • the carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
  • the belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside.
  • the belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
  • the tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
  • the green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
  • a mold 10 as shown in FIG. 2 is used.
  • a green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
  • the mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known.
  • the tread mold portion 11 is further divided into a plurality of parts in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
  • a central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this.
  • the central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
  • a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21.
  • the medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow.
  • the heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
  • a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed.
  • a discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34.
  • the pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
  • the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15.
  • the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13.
  • a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage).
  • the slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3.
  • a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9.
  • the embedding method for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9.
  • the temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
  • a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change.
  • metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high.
  • a resistor can be used particularly preferably.
  • the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9.
  • the mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed.
  • the inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9.
  • a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure.
  • steam or high-temperature water is used as the heating medium
  • an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
  • the temperature measurement probe acquires time series data including a plurality of temperature values acquired at intervals of 10 seconds or less (second stage).
  • time series data For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market.
  • the acquisition interval of the temperature value in the time series data is preferably 5 seconds or less, and more preferably 1 second or less.
  • the acquisition interval of the temperature value in the time series data is preferably 0.5 seconds or more.
  • FIG. 3 shows an example of a coefficient curve and a vulcanization temperature curve in an embodiment of the present invention.
  • the horizontal axis represents the time (seconds) when the end point of mold clamping of the mold 10 is the vulcanization start point
  • the vertical axis represents the temperature (° C.) of the green tire
  • A represents a vulcanization temperature curve
  • B Indicates a coefficient curve.
  • the acquisition interval of the temperature value is 1 second
  • 20 temperature values acquired at 1-second intervals are grouped as one time-series data
  • the slope of this time-series data is calculated using the least squares method
  • vulcanization time is calculated for each time-series data.
  • the slope calculated in time series is plotted.
  • the inclination calculated based on each time series data is plotted at a point with respect to the vulcanization time.
  • the predetermined number of temperature values to be used is preferably 10 to 30 continuous in time series, and more preferably 15 to 25. If the predetermined number is 5 or less, the noise of the coefficient curve may be large, and detection of the inflection point may be difficult. If the predetermined number exceeds 30, the size of the inflection point may be reduced, which is also detected May be difficult.
  • the target vulcanization temperature when the target vulcanization temperature is set to 150 ° C., an inflection point P is observed around a portion where the vulcanization temperature curve exceeds 140 ° C. When this inflection point P is detected, the vulcanization process is ended.
  • the target vulcanization temperature is preferably 120 to 200 ° C., and more preferably 140 to 180 ° C.
  • the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state.
  • the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
  • the green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread.
  • An annular bead core 1 a is disposed in the bead portion 1.
  • the carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a.
  • the carcass layer 4 is constituted by at least one carcass ply.
  • the carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
  • the belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside.
  • the belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
  • the tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
  • the green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
  • a mold 10 as shown in FIG. 2 is used.
  • a green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
  • the mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known.
  • the tread mold portion 11 is further divided into a plurality of parts in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
  • a central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this.
  • the central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
  • a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21.
  • the medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow.
  • the heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
  • a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed.
  • a discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34.
  • the pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
  • the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15.
  • the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13.
  • a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage).
  • the slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3.
  • a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9.
  • the embedding method for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9.
  • the temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
  • a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change.
  • metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high.
  • a resistor can be used particularly preferably.
  • the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9.
  • the mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed.
  • the inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9.
  • a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure.
  • steam or high-temperature water is used as the heating medium
  • an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
  • the temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage).
  • time series data For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. .
  • a high precision digital data logger generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values
  • the second stage when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately.
  • the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
  • the target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. .
  • the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
  • the end point of vulcanization can be determined more simply by dividing the third step into two.
  • a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a).
  • FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point.
  • the vulcanization temperature curve which makes a vertical axis
  • a target vulcanizing temperature is set to 130 ° C.
  • a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals.
  • the vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A.
  • the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b).
  • a point P corresponding to a downwardly convex inflection point appearing near the target vulcanization temperature (130 ° C.) can be easily detected, and this point P is detected. Vulcanization can be terminated with the time point of curing as the vulcanization end point.
  • the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state.
  • the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
  • the vulcanization target temperature was set to 150 ° C., and the sample tire was heated and vulcanized so as to have a vulcanization temperature curve shown in FIG.
  • the vulcanization process was completed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

In this pneumatic tire manufacturing method, the vulcanization process involves a first stage in which a temperature measurement probe is embedded in the slowest-vulcanizing part of a green tire, a second stage in which, by means of the temperature measurement probe, time series data is acquired that includes a prescribed number of temperature values acquired at intervals 10 seconds or less, and a third stage in which the least-squares method is used to approximate the prescribed number of temperature values included in the time series data with a linear equation and the slope of the approximated linear equation is calculated for each time series data and a coefficient curve is created by plotting these against vulcanization time; the vulcanization process is ended at the time when the inflection point in the coefficient curve has been detected that occurs at the vulcanization time when the vicinity of a target vulcanization temperature is reached. Or, in the pneumatic tire manufacturing method, the vulcanization step involves a first stage in which a temperature measurement probe is embedded in the slowest-vulcanizing part of a green tire, a second stage in which, by means of the temperature measurement probe, time series data is acquired, at intervals 10 seconds or less, of the temperatures of the green tire being vulcanized, and a third stage in which, on the basis of the time series data, the vulcanization process is ended at the time point when heat absorption by the vulcanization reaction has been detected in the vicinity of the target vulcanization temperature.

Description

空気入りタイヤの製造方法Method of manufacturing pneumatic tire
 本発明は、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを、金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法に関する。 The present invention comprises a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface The present invention relates to a method of manufacturing a pneumatic tire including a vulcanization step of heat-vulcanizing an unvulcanized green tire in a mold.
 ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。 When manufacturing a pneumatic tire that is a rubber product, since the vulcanization process is the most time-consuming process, efforts are still being made to shorten the time of the vulcanization process. On the other hand, if the vulcanization of the rubber portion is insufficient in the vulcanization process, air generated by the vulcanization reaction of the rubber remains in the vulcanized rubber, and such residual air is the cause of tire failure at the product stage. It may be Therefore, in the normal tire production site, the overall variation in the vulcanization process is taken into consideration, for example, due to variations in the temperature of the unvulcanized raw tire, the temperature in the mold, the ambient temperature, etc. due to seasonal factors. The time required for the vulcanization process is set by adding the allowance time that takes into account.
 しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。 However, setting of the spare time is not preferable from the viewpoint of improving the productivity of the tire, and it has been desired to determine the end of vulcanization for each tire and efficiently execute the vulcanization process.
 下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。 In the following Patent Document 1, the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the point at which the increase rate of the polymer resistance value Rp of the vulcanized sample becomes extremely slow is the optimum vulcanization. A real-time cure control method for a vulcanized sample is described which provides a dwell time. However, in this method, it is necessary to measure the impedance measurement for the vulcanized sample by sandwiching the vulcanized sample between the two electrodes, and since the tire is usually a laminate of composite materials, It is difficult to apply to a tire at the time of tire vulcanization.
特開2003-211459号公報JP 2003-211459 A
 本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定することにより、加硫時間を短縮し、生産性を著しく向上した空気入りタイヤの製造方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce the curing time by positively determining the end point of the curing process for each tire, and to significantly increase the productivity. A method of manufacturing a tire is provided.
 上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを、金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、前記生タイヤの加硫最遅部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、10秒以下の間隔で取得された温度値を所定数含む時系列データを複数取得する第2段階と、最小二乗法を用いて、前記時系列データが含む所定数の温度値を直線式に近似し、近似した直線式の傾きを前記時系列データ毎に算出し、加硫時間に対しプロットすることにより、係数曲線を作成する第3段階とを備え、前記係数曲線の、目標加硫温度近傍に到達する加硫時間に現れる変曲点を検出した時点で前記加硫工程を終了することを特徴とする空気入りタイヤの製造方法に関する。 The above object can be achieved by the present invention as described below. That is, according to the present invention, a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial direction outer end of the sidewall portions to constitute a tread surface A method of manufacturing a pneumatic tire including a vulcanization step of heating and vulcanizing an unvulcanized green tire provided in the mold in a mold, wherein the vulcanization step is carried out at a vulcanization latest portion of the green tire. A first step of embedding a temperature measurement probe, a second step of acquiring a plurality of time series data including a predetermined number of temperature values acquired at intervals of 10 seconds or less by the temperature measurement probe, and a least squares method A coefficient curve is created by approximating a predetermined number of temperature values included in the time series data into a linear equation, calculating the slope of the approximated linear equation for each of the time series data, and plotting against the vulcanization time. And the third stage, The serial coefficient curve to a method for producing a pneumatic tire characterized by terminating the vulcanization step upon detecting an inflection point appearing in the vulcanization time to reach the target vulcanizing temperature near.
 本発明は、空気入りタイヤの加硫工程に特徴があり、第1~第3段階を少なくとも有する。まず、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤの加硫最遅部に、温度測定プローブを埋設し(第1段階)、温度測定プローブにより、10秒以下の間隔で取得された温度値を複数含む時系列データを取得する(第2段階)。次いで、最小二乗法を用いて時系列データが含む所定数の温度値を直線式に近似し、近似した直線式の傾きを各時系列データ毎に算出し、加硫時間に対しプロットすることにより、係数曲線を作成する(第3段階)。そして、係数曲線の、目標加硫温度近傍に到達する加硫時間に現れる変曲点を検出した時点で加硫工程を終了する。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。その結果、余分な余裕時間の設定が不要となり、空気入りタイヤの生産性を高めることができる。加えて、空気入りタイヤ1本毎に加硫反応が確実に終了していることが確認できるため、品質保証体制を確立することができる。なお、「目標加硫温度近傍」とは、好ましくは設定した目標加硫温度の±20℃の範囲を意味するものとし、より好ましくは設定した目標加硫温度の±10℃の範囲を意味するものとする。 The present invention is characterized in the step of vulcanizing a pneumatic tire, and comprises at least first to third steps. First, a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A temperature measurement probe is embedded in the vulcanization latest part of a green tire (first stage), and time series data including a plurality of temperature values acquired at intervals of 10 seconds or less is acquired by the temperature measurement probe ( Second step). Then, the least squares method is used to approximate a predetermined number of temperature values included in time series data to a linear equation, and the inclination of the approximated linear equation is calculated for each time series data, and plotted against the vulcanization time Create a coefficient curve (step 3). Then, when the inflection point appearing in the vulcanization time to reach the vicinity of the target vulcanization temperature of the coefficient curve is detected, the vulcanization process is ended. Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. As a result, it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced. In addition, since it can be confirmed that the vulcanization reaction is surely completed for each pneumatic tire, a quality assurance system can be established. Note that "around the target vulcanization temperature" preferably means a range of ± 20 ° C of the set target vulcanization temperature, and more preferably means a range of ± 10 ° C of the set target vulcanization temperature. It shall be.
 上記空気入りタイヤの製造方法において、前記時系列データにおける温度値の取得間隔が1秒以下であることが好ましく、前記所定数が10~30であることが好ましい。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire, an acquisition interval of temperature values in the time-series data is preferably 1 second or less, and the predetermined number is preferably 10 to 30. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
 上記空気入りタイヤの製造方法において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。温度測定プローブの感度が悪い場合、目標加硫温度の近傍で加硫反応による発熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に最初に現れる、上に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、プラチナ測温抵抗体は温度変化に対する感度が非常に高いため、確実に加硫終点を見極めることが可能となるため、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire, it is preferable that the temperature measurement probe is a platinum resistance temperature detector. When the sensitivity of the temperature measurement probe is poor, detection of the end point of vulcanization based on detection of heat generation due to the vulcanization reaction in the vicinity of the target vulcanization temperature, and further, at the plotted vulcanization temperature curve, first in the vicinity of the target vulcanization temperature. In some cases, it may be difficult to detect the end point of vulcanization based on the upward convex inflection point. On the other hand, since the platinum resistance bulb has a very high sensitivity to temperature changes, the end point of vulcanization can be identified with certainty, and therefore the productivity of the pneumatic tire can be further enhanced.
 上記空気入りタイヤの製造方法において、前記加硫最遅部が、前記トレッド部のショルダー部であることが好ましい。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire, it is preferable that the vulcanized slowest portion is a shoulder portion of the tread portion. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
 上記空気入りタイヤの製造方法において、前記目標加硫温度が120~200℃であることが好ましい。 In the method of manufacturing a pneumatic tire, the target vulcanization temperature is preferably 120 to 200 ° C.
 また、別の本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを、金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、前記生タイヤの加硫最遅部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、加硫中の前記生タイヤの温度の時系列データを10秒以下の間隔で取得する第2段階と、前記時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で前記加硫工程を終了する第3段階とを備えることを特徴とする空気入りタイヤの製造方法に関する。 According to another aspect of the present invention, a tread surface is connected to a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tire radial direction outer end of each sidewall portion. It is a manufacturing method of a pneumatic tire including a vulcanization process of heating and vulcanizing an unvulcanized green tire provided with a tread portion in a mold, wherein the vulcanization process is the highest curing of the green tire. A first step of embedding a temperature measurement probe in a late part, a second step of acquiring time series data of the temperature of the green tire during vulcanization by the temperature measurement probe at intervals of 10 seconds or less, and the time series The present invention relates to a method of manufacturing a pneumatic tire, comprising: a third step of terminating the vulcanization process when an endotherm due to a vulcanization reaction is detected in the vicinity of a target vulcanization temperature based on data.
 本発明は、空気入りタイヤの加硫工程に特徴があり、第1~第3段階を少なくとも有する。まず、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤの加硫最遅部に、温度測定プローブを埋設し(第1段階)、温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。次いで、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。その結果、余分な余裕時間の設定が不要となり、空気入りタイヤの生産性を高めることができる。加えて、空気入りタイヤ1本毎に加硫反応が確実に終了していることが確認できるため、品質保証体制を確立することができる。なお、「目標加硫温度の近傍」とは、好ましくは設定した目標加硫温度の±10℃の範囲を意味するものとする。 The present invention is characterized in the step of vulcanizing a pneumatic tire, and comprises at least first to third steps. First, a pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A temperature measurement probe is embedded in the vulcanization latest part of a green tire (first stage), and time series data of the temperature of the green tire during vulcanization is acquired by an interval of 10 seconds or less by the temperature measurement probe (Phase 2). Next, the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage). Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. As a result, it is unnecessary to set extra spare time, and the productivity of the pneumatic tire can be enhanced. In addition, since it can be confirmed that the vulcanization reaction is surely completed for each pneumatic tire, a quality assurance system can be established. The term “near the target vulcanization temperature” preferably means a range of ± 10 ° C. of the set target vulcanization temperature.
 上記空気入りタイヤの製造方法において、さらに前記第3段階が、前記時系列データに基づき、前記生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする第3a段階と、プロットした前記加硫温度曲線で前記目標加硫温度の近傍に現れる、下に凸な変曲点を検出した時点で前記加硫工程を終了する第3b段階とを備えることが好ましい。かかる構成によれば、プロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点を加硫終点とするため、見極めが容易で簡便である。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire according to the third aspect of the present invention, the third step plots the vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time based on the time-series data. Preferably, the method further comprises the step 3b of terminating the vulcanization process when a downward convex inflection point appears in the vicinity of the target vulcanization temperature in the vulcanization temperature curve. According to this configuration, since the downward convex inflection point appearing in the vicinity of the target vulcanization temperature in the vulcanization temperature curve plotted is taken as the vulcanization end point, it is easy and easy to identify. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
 上記空気入りタイヤの製造方法において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。温度測定プローブの感度が悪い場合、目標加硫温度の近傍で加硫反応による吸熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、プラチナ測温抵抗体は温度変化に対する感度が非常に高いため、確実に加硫終点を見極めることが可能となるため、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire, it is preferable that the temperature measurement probe is a platinum resistance temperature detector. When the sensitivity of the temperature measurement probe is poor, detection of the end point of vulcanization based on detection of the endotherm due to the vulcanization reaction in the vicinity of the target vulcanization temperature and furthermore, it appears in the vicinity of the target vulcanization temperature in the plotted vulcanization temperature curve. It may be difficult to detect the end point of vulcanization based on the point of inflection which is downwardly convex. On the other hand, since the platinum resistance bulb has a very high sensitivity to temperature changes, the end point of vulcanization can be identified with certainty, and therefore the productivity of the pneumatic tire can be further enhanced.
 上記空気入りタイヤの製造方法において、前記加硫最遅部が、前記トレッド部のショルダー部であることが好ましい。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method of manufacturing a pneumatic tire, it is preferable that the vulcanized slowest portion is a shoulder portion of the tread portion. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and can further improve the productivity of the pneumatic tire.
 上記空気入りタイヤの製造方法において、前記目標加硫温度が125~165℃であることが好ましく、125~145℃であることがより好ましい。目標加硫温度の設定が高い場合、空気入りタイヤの加硫速度が速くなるため、加硫反応による吸熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、目標加硫温度が125~165℃、特には125~145℃であると、加硫終点の見極めが容易であるため、空気入りタイヤの生産性をさらに高めることができる。なお、目標加硫温度が125~145℃である場合を空気入りタイヤの低温加硫という場合があるが、低温加硫の場合は、空気入りタイヤの加硫速度が遅くなるため、従来は余裕時間を通常よりも長く確保する必要があった。このため、加硫時における高温下での空気入りタイヤの熱劣化抑制という低温加硫のメリットが、加硫時間増加により損なわれる場合があった。しかしながら本発明では、低温加硫(目標加硫温度が125~145℃)であっても、余裕時間を通常よりも短く設計可能であるため、熱劣化による空気入りタイヤの物性悪化を防止することができる。 In the method of manufacturing a pneumatic tire, the target vulcanization temperature is preferably 125 to 165 ° C., and more preferably 125 to 145 ° C. When the setting of the target vulcanization temperature is high, the vulcanization speed of the pneumatic tire is increased. Therefore, the end point of vulcanization is detected based on the detection of the heat absorption due to the vulcanization reaction, and further the target vulcanization temperature curve is plotted. It may be difficult to detect the end point of vulcanization based on the downward convex inflection point appearing near the vulcanization temperature. On the other hand, when the target vulcanization temperature is 125 to 165 ° C., particularly 125 to 145 ° C., the end point of vulcanization can be easily determined, and therefore the productivity of the pneumatic tire can be further enhanced. The case where the target vulcanization temperature is 125 to 145 ° C. is sometimes referred to as low temperature vulcanization of the pneumatic tire, but in the case of low temperature vulcanization, since the vulcanization speed of the pneumatic tire becomes slow, the conventional tire It was necessary to secure time longer than usual. For this reason, the merit of low temperature vulcanization, such as thermal deterioration suppression of the pneumatic tire under high temperature at the time of vulcanization, may be impaired by an increase in vulcanization time. However, in the present invention, even if the low temperature vulcanization (target vulcanization temperature is 125 to 145 ° C.), the margin time can be designed to be shorter than usual, so that the physical property deterioration of the pneumatic tire due to thermal deterioration is prevented. Can.
本発明に係るタイヤの一例を示すタイヤ子午線断面図A tire meridional cross section showing an example of a tire according to the present invention タイヤの加硫に用いる金型を概念的に示す断面図Sectional view conceptually showing a mold used for vulcanizing a tire 本発明の一実施形態における係数曲線および加硫温度曲線の一例Example of coefficient curve and vulcanization temperature curve in one embodiment of the present invention 本発明の別の一実施形態における加硫温度曲線を示すグラフの一例An example of a graph showing a vulcanization temperature curve in another embodiment of the present invention
(第1実施形態)
 本発明の第1の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。
First Embodiment
A first embodiment of the present invention will be described with reference to the drawings. The green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread. An annular bead core 1 a is disposed in the bead portion 1.
 カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a. The carcass layer 4 is constituted by at least one carcass ply. The carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
 ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside. The belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
 トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成しても良い。 The tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
 図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
 生タイヤ9の加硫成形では、図2に示すような金型10が用いられる。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 In vulcanization molding of the green tire 9, a mold 10 as shown in FIG. 2 is used. A green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
 金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個に分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known. The tread mold portion 11 is further divided into a plurality of parts in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
 金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 A central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this. The central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
 中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 In the central mechanism 14, a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21. The medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow. The heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
 また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 Further, a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed. A discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34. The pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
 以下、本発明の製造方法における加硫工程について具体的に説明する。 Hereinafter, the vulcanization step in the production method of the present invention will be specifically described.
 まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。 First, as shown in FIG. 2, the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15. Thus, the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13. At this time, a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage). The slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3. In particular, among the shoulder portions, it is preferable to set a position at which the thickness of the tread portion 3 is maximized, which is measured along the normal to the inner surface of the tread portion 3 after vulcanization, as the vulcanized slowest portion. In any case, in the present invention, in order to measure the vulcanization temperature at the slowest vulcanization portion, a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9. As the embedding method, for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9. The temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
 本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measurement probe used when measuring the vulcanization temperature, a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change. Such metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high. A resistor can be used particularly preferably.
 続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9. The mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed. The inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9. After the heating medium is supplied for a predetermined time, a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure. For example, steam or high-temperature water is used as the heating medium, and an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
 温度測定プローブにより、10秒以下の間隔で取得された温度値を複数含む時系列データを取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、時系列データ中の温度値の取得間隔は、5秒以下であることが好ましく、1秒以下であることが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、時系列データ中の温度値の取得間隔は0.5秒以上が好ましい。 The temperature measurement probe acquires time series data including a plurality of temperature values acquired at intervals of 10 seconds or less (second stage). For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. . In the second stage, when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately. Specifically, the acquisition interval of the temperature value in the time series data is preferably 5 seconds or less, and more preferably 1 second or less. On the other hand, if the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is too short, the noise may be rather large and it may be difficult to accurately determine the vulcanization end point. Therefore, the acquisition interval of the temperature value in the time series data is preferably 0.5 seconds or more.
 第2段階の後、最小二乗法を用いて時系列データが含む所定数の温度値を直線式に近似し、近似した直線式の傾きの値を時系列データ毎に算出し、加硫時間に対しプロットすることにより、係数曲線を作成する(第3段階)。図3に本発明の一実施形態における係数曲線および加硫温度曲線の一例を示す。図3中、横軸は金型10の型締め完了時点を加硫開始点としたときの時間(秒)、縦軸は生タイヤの温度(℃)を表し、Aは加硫温度曲線、Bは係数曲線を示す。本実施形態では、温度値の取得間隔を1秒とし、1つの時系列データが含む温度値を20とする((所定数)=20)。具体的には、1秒間隔で取得した20の温度値を1つの時系列データとしてグループ化し、最小二乗法を用いてこの時系列データの傾きを算出し、時系列データ毎に加硫時間に対し、時系列的に算出した傾きをプロットする。図3では、各時系列データに基づき算出した傾きを加硫時間に対し、点でプロットしている。 After the second step, the least squares method is used to approximate a predetermined number of temperature values included in the time series data to a linear equation, and the value of the slope of the approximated linear equation is calculated for each time series data. A coefficient curve is created by plotting against (step 3). FIG. 3 shows an example of a coefficient curve and a vulcanization temperature curve in an embodiment of the present invention. In FIG. 3, the horizontal axis represents the time (seconds) when the end point of mold clamping of the mold 10 is the vulcanization start point, the vertical axis represents the temperature (° C.) of the green tire, A represents a vulcanization temperature curve, B Indicates a coefficient curve. In this embodiment, the acquisition interval of the temperature value is 1 second, and the temperature value included in one time series data is 20 ((predetermined number) = 20). Specifically, 20 temperature values acquired at 1-second intervals are grouped as one time-series data, the slope of this time-series data is calculated using the least squares method, and vulcanization time is calculated for each time-series data. On the other hand, the slope calculated in time series is plotted. In FIG. 3, the inclination calculated based on each time series data is plotted at a point with respect to the vulcanization time.
 最小二乗法を用いて直線式に近似する際、使用する温度値の所定数は、時系列的に連続する10~30であることが好ましく、15~25であることがより好ましい。所定数が5以下であると、係数曲線のノイズが大きくなり、変曲点の検出が困難になる場合があり、所定数が30を超えると、変曲点の大きさが小さくなり、やはり検出が困難になる場合がある。 When approximating to a linear equation using the least squares method, the predetermined number of temperature values to be used is preferably 10 to 30 continuous in time series, and more preferably 15 to 25. If the predetermined number is 5 or less, the noise of the coefficient curve may be large, and detection of the inflection point may be difficult. If the predetermined number exceeds 30, the size of the inflection point may be reduced, which is also detected May be difficult.
 本実施形態では、目標加硫温度を150℃に設定したところ、加硫温度曲線が140℃を超えた辺りに変曲点Pが観測されている。この変曲点Pを検出した時点で加硫工程を終了する。本発明においては、目標加硫温度は120~200℃であることが好ましく、140~180℃であることがより好ましい。 In the present embodiment, when the target vulcanization temperature is set to 150 ° C., an inflection point P is observed around a portion where the vulcanization temperature curve exceeds 140 ° C. When this inflection point P is detected, the vulcanization process is ended. In the present invention, the target vulcanization temperature is preferably 120 to 200 ° C., and more preferably 140 to 180 ° C.
 加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After completion of the vulcanization process, the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state. As a result, the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
 本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.
(第2実施形態)
 本発明の第2の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。
Second Embodiment
A second embodiment of the present invention will be described with reference to the drawings. The green tire 9 shown in FIG. 1 is continued to the tire radial direction outer end of each of the pair of bead portions 1, the sidewall portion 2 extending outward from the bead portions 1 in the tire radial direction, and the sidewall portion 2 It is a pneumatic tire provided with the tread part 3 which constitutes a tread. An annular bead core 1 a is disposed in the bead portion 1.
 カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 passes from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and the end portion thereof is folded back via the bead core 1a. The carcass layer 4 is constituted by at least one carcass ply. The carcass ply is formed by covering a carcass cord extending at an angle of about 90 ° with the circumferential direction of the tire with a topping rubber.
 ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered with the tread rubber 6 from the outside. The belt layer 5 is composed of a plurality of (two in the present embodiment) belt plies. Each belt ply is formed by covering a belt cord extending obliquely with respect to the tire circumferential direction with a topping rubber, and the belt cords are stacked so as to cross the plies in opposite directions.
 トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成しても良い。 The tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.
 図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The green tire 9 shown in FIG. 1 is a green tire in an unvulcanized state, and is shaped into the shape of a product tire in a vulcanization step to be described later (see FIG. 2) and various treads on its tread surface A pattern is formed.
 生タイヤ9の加硫成形では、図2に示すような金型10が用いられる。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 In vulcanization molding of the green tire 9, a mold 10 as shown in FIG. 2 is used. A green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.
 金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個に分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 includes a tread mold portion 11 in contact with the tread surface of the green tire 9, a lower mold portion 12 in contact with the tire outer surface facing downward, and an upper mold portion 13 in contact with the tire outer surface facing upward. These are configured to be displaceable between the mold clamping state and the mold opening state by an opening and closing mechanism (not shown) installed around the periphery, and the structure of such an opening and closing mechanism is known. The tread mold portion 11 is further divided into a plurality of parts in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, thereby heating each mold portion.
 金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 A central mechanism 14 is provided coaxially with the tire at a central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12 and an upper mold portion 13 are installed around this. The central mechanism 14 has a rubber bag-like bladder 15 and a center post 16 extending in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15 ing.
 中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 In the central mechanism 14, a medium supply passage 21 for supplying a heating medium into the bladder 15 is vertically extended, and a jet outlet 22 is formed at the upper end of the medium supply passage 21. The medium supply passage 21 is connected to a supply pipe 24 through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow. The heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.
 また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 Further, a medium discharge path 31 for discharging the high-temperature high-pressure fluid in which the heating medium and the pressure medium in the bladder 15 are mixed is vertically extended in the central mechanism 14, and the upper end of the medium discharge path 31 is A recovery port 32 is formed. A discharge pipe 34 through which a high temperature and high pressure fluid flows is connected to the medium discharge path 31, and a blow valve 33 for operating the opening and closing of the medium discharge path 31 is provided in the discharge pipe 34. The pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge passage 31 is re-supplied to the inside of the bladder 15 via the medium supply passage 21.
 以下、本発明の製造方法における加硫工程について具体的に説明する。 Hereinafter, the vulcanization step in the production method of the present invention will be specifically described.
 まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。 First, as shown in FIG. 2, the green tire 9 is set in the mold 10, and the green tire 9 is shaped close to the inner surface of the mold 10 by the inflated bladder 15. Thus, the green tire 9 is held by the bladder 15 and is applied to each of the tread mold portion 11, the lower mold portion 12 and the upper mold portion 13. At this time, a temperature measurement probe is embedded in the lowest cure part of the green tire 9 (first stage). The slowest vulcanization portion means a portion where the vulcanization of the tire is most difficult to progress, and usually means the shoulder portion of the tread portion 3. In particular, among the shoulder portions, it is preferable to set a position at which the thickness of the tread portion 3 is maximized, which is measured along the normal to the inner surface of the tread portion 3 after vulcanization, as the vulcanized slowest portion. In any case, in the present invention, in order to measure the vulcanization temperature at the slowest vulcanization portion, a temperature measurement probe is embedded in the slowest vulcanization portion of the green tire 9. As the embedding method, for example, when the temperature measurement probe is disposed at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the green tire 9, the green tire 9 is addressed It is conceivable to design the temperature measurement probe to be embedded while being pushed into the green tire 9. The temperature measurement probe embedded in the green tire 9 as described above measures the temperature of the green tire during the vulcanization process, and when the vulcanization process is finished, the tire is removed from the mold 10 including the tread mold portion 11. It is sufficient to simultaneously withdraw the temperature measurement probe from the slowest part of the vulcanization.
 本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measurement probe used when measuring the vulcanization temperature, a resistance temperature detector can be used which utilizes the property that the electric resistance of metal changes with temperature change. Such metals can be exemplified by platinum, nickel, copper and the like, but in the present invention, platinum temperature measurement with a large change in resistance (sensitivity) to temperature changes and as a result, the sensitivity to temperature changes is extremely high. A resistor can be used particularly preferably.
 続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, the mold 10 is heated to heat the tire 9 from the outer surface of the tire, and the heating medium is supplied to the bladder 15 in the mold 10 at a high temperature to heat the tire 9 from the inner surface. And heating is performed to cure the green tire 9. The mold 10 is preheated by the above-described steam jacket or the like, whereby the outside heating is performed. The inner heating is performed by supplying a heating medium into the bladder 15 through the medium supply passage 21 after shaping of the tire 9. After the heating medium is supplied for a predetermined time, a pressurized medium is subsequently supplied into the bladder 15 to press the tire 9 at a high pressure. For example, steam or high-temperature water is used as the heating medium, and an inert gas such as nitrogen gas or steam is used as the pressurizing medium.
 温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、加硫中の生タイヤの温度の時系列データは、5秒以下の間隔で取得することが好ましく、1秒以下の間隔で取得することが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、加硫中の生タイヤの温度の時系列データのデータ取得間隔は0.5秒以上が好ましい。 The temperature measurement probe acquires time-series data of the temperature of the green tire during vulcanization at intervals of 10 seconds or less (second stage). For acquisition of such time series data, it is possible to use a high precision digital data logger (generally having a temperature resolution of about 0.001 ° C., an accuracy of about 0.005 ° C., a minimum acquisition interval of 1 second for temperature values) commonly available in the market. . In the second stage, when the data acquisition interval of the time series data of the temperature of the green tire during vulcanization is short, it is preferable because the final end point of vulcanization can be determined more accurately. Specifically, it is preferable to acquire time series data of the temperature of the green tire during vulcanization at intervals of 5 seconds or less, and it is preferable to acquire at intervals of 1 second or less. On the other hand, if the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is too short, the noise may be rather large and it may be difficult to accurately determine the vulcanization end point. For this reason, the data acquisition interval of the time-series data of the temperature of the green tire during vulcanization is preferably 0.5 seconds or more.
 第2段階の後、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。加硫終点の見極めが容易になることから、目標加硫温度は125℃~165℃であることが好ましく、125℃~145℃であることがより好ましく、125~135℃であることが特に好ましい。加硫反応による吸熱の検出方法としては、目標加硫温度の近傍で、所定期間(例えばデータ取得間隔が1秒であれば1秒)における生タイヤの温度変化量を算出し、その温度変化量に基づき決定することが可能である。 After the second stage, the end of the vulcanization process is ended when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data (third stage). Thus, the end point of vulcanization can be easily determined in the step of vulcanizing the pneumatic tire. The target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 ° C. to 135 ° C., because this makes it easy to identify the vulcanization end point. . As a method of detecting the heat absorption due to the vulcanization reaction, the temperature change amount of the green tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount It is possible to make a decision based on
 本発明においては、第3工程を2つに分け、より簡便に加硫終点を決定することができる。まず、時系列データに基づき、生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする(第3a段階)。図4は本発明の一実施形態における加硫温度曲線を示すグラフの一例であり、Aは金型10の型締め完了時点を加硫開始点としたときの、生タイヤの温度(℃)を縦軸、時間(秒)を横軸とする加硫温度曲線を示す。本実施形態では、目標加硫温度を130℃に設定し、生タイヤの温度の時系列データを1秒間隔で取得した際の加硫温度曲線Aを示す。加硫温度曲線Bは、加硫温度曲線Aの目標加硫温度の近傍(2000秒手前~8000秒手前)を拡大したものである。第3a段階の後、プロットした加硫温度曲線Aで目標加硫温度の近傍に現れる下に凸な変曲点Pを検出した時点で加硫工程を終了する(第3b段階)。本実施形態では、加硫温度曲線Bにおいて、目標加硫温度(130℃)の近傍に現れる下に凸な変曲点に相当する点Pが容易に検出可能であり、この点Pが検出された時点を加硫終点として、加硫を終了することができる。 In the present invention, the end point of vulcanization can be determined more simply by dividing the third step into two. First, based on the time series data, a vulcanization temperature curve showing the relationship between the temperature of the green tire and the vulcanization time is plotted (step 3a). FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, where A is the temperature (° C.) of the green tire when the mold 10 completion point is the vulcanization start point. The vulcanization temperature curve which makes a vertical axis | shaft and time (seconds) a horizontal axis is shown. In this embodiment, a target vulcanizing temperature is set to 130 ° C., and a vulcanizing temperature curve A is shown when time-series data of the temperature of a green tire is acquired at one second intervals. The vulcanization temperature curve B is an enlarged view of the vicinity of the target vulcanization temperature (about 2000 seconds to about 8000 seconds before) of the vulcanization temperature curve A. After the step 3a, the vulcanization step is ended when a downwardly convex inflection point P appearing near the target vulcanization temperature is detected in the vulcanization temperature curve A plotted (step 3b). In the present embodiment, in the vulcanization temperature curve B, a point P corresponding to a downwardly convex inflection point appearing near the target vulcanization temperature (130 ° C.) can be easily detected, and this point P is detected. Vulcanization can be terminated with the time point of curing as the vulcanization end point.
 加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After completion of the vulcanization process, the temperature measurement probe disposed in the mold 10 is removed from the vulcanized tire while the mold 10 is in the released state. As a result, the end point of vulcanization can be determined for each tire, and the pneumatic tire can be manufactured while shortening the vulcanization time.
 本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.
(第1実施形態)
 実施例1、比較例1
 本発明の構成と効果を具体的に示すため、図2に記載の加硫金型10を用いて、サンプルタイヤ(タイヤサイズ:275/70R22.5)の加硫を実施した。その際、高精度デジタルデータロガー(Fluke社製、商品名「1586A」)に接続されたプラチナ測温抵抗体(山里産業社製 「細管型測温抵抗体」)を金型10内であって、空気入りタイヤのショルダー部に対応する位置に配設した。
First Embodiment
Example 1, Comparative Example 1
In order to specifically show the constitution and effect of the present invention, the vulcanization of the sample tire (tire size: 275 / 70R22.5) was carried out using the vulcanization mold 10 described in FIG. At that time, a platinum RTD connected to a high precision digital data logger (manufactured by Fluke, trade name "1586A") in the mold 10 , It was disposed at a position corresponding to the shoulder portion of the pneumatic tire.
 加硫目標温度を150℃に設定し、図3に示す加硫温度曲線となるように、サンプルタイヤを加熱・加硫した。比較例1では変曲点Pの変曲始点時間57分(=3420秒)で加硫工程を終了し、実施例1では変曲点Pの変曲終点時間59分(=3540秒)で加硫工程を終了した。 The vulcanization target temperature was set to 150 ° C., and the sample tire was heated and vulcanized so as to have a vulcanization temperature curve shown in FIG. In the comparative example 1, the vulcanization process is completed at the inflection start point time 57 minutes (= 3420 seconds) of the inflection point P, and in the example 1, the inflection end point time of the inflection point P is added at 59 minutes (= 3540 seconds) The vulcanization process was completed.
 得られたサンプルタイヤを解体したところ、比較例1ではプローブ先端付近のゴム部にブリスターと呼ばれる1~2mmの気泡が残存していた。一方、実施例1ではプローブ先端付近のゴム部にブリスターは残存しておらず、加硫反応が確実に終了していることがわかった。
 
When the obtained sample tire was disassembled, in Comparative Example 1, air bubbles of 1 to 2 mm called blisters remained in the rubber portion in the vicinity of the tip of the probe. On the other hand, in Example 1, no blister remained in the rubber portion in the vicinity of the tip of the probe, and it was found that the vulcanization reaction was surely completed.

Claims (11)

  1.  一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを、金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、
     前記加硫工程が、前記生タイヤの加硫最遅部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、10秒以下の間隔で取得された温度値を所定数含む時系列データを複数取得する第2段階と、最小二乗法を用いて、前記時系列データが含む所定数の温度値を直線式に近似し、近似した直線式の傾きを前記時系列データ毎に算出し、加硫時間に対しプロットすることにより、係数曲線を作成する第3段階とを備え、
     前記係数曲線の、目標加硫温度近傍に到達する加硫時間に現れる変曲点を検出した時点で前記加硫工程を終了することを特徴とする空気入りタイヤの製造方法。
    A pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A method for producing a pneumatic tire, comprising a vulcanization step of heat-curing a green tire in a mold in a mold.
    A time series including a predetermined number of temperature values acquired at intervals of 10 seconds or less by the first step of embedding a temperature measurement probe in the vulcanization latest portion of the green tire, and the first step of the vulcanization step; A predetermined number of temperature values included in the time series data are approximated to a linear equation using a second step of acquiring a plurality of data and a least squares method, and the slope of the approximated linear equation is calculated for each of the time sequential data , And a third step of creating a coefficient curve by plotting against the vulcanization time,
    A method of manufacturing a pneumatic tire, comprising: terminating the vulcanization step when detecting an inflection point appearing in a vulcanization time for reaching near a target vulcanization temperature of the coefficient curve.
  2.  前記時系列データにおける温度値の取得間隔が1秒以下である請求項1に記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to claim 1, wherein an acquisition interval of temperature values in the time-series data is 1 second or less.
  3.  前記所定数が10~30である請求項1または2に記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to claim 1 or 2, wherein the predetermined number is 10 to 30.
  4.  前記温度測定プローブが、プラチナ測温抵抗体である請求項1~3のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 1 to 3, wherein the temperature measurement probe is a platinum resistance temperature detector.
  5.  前記加硫最遅部が、前記トレッド部のショルダー部である請求項1~4のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 1 to 4, wherein the vulcanization latest portion is a shoulder portion of the tread portion.
  6.  前記目標加硫温度が120~200℃である請求項1~5のいずれかに記載の空気入りタイヤの製造方法。 The method for producing a pneumatic tire according to any one of claims 1 to 5, wherein the target vulcanization temperature is 120 to 200 属 C.
  7.  一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを、金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、
     前記加硫工程が、前記生タイヤの加硫最遅部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、加硫中の前記生タイヤの温度の時系列データを10秒以下の間隔で取得する第2段階と、前記時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で前記加硫工程を終了する第3段階とを備えることを特徴とする空気入りタイヤの製造方法。
    A pair of bead portions, sidewall portions extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous with each tire radial direction outer end of the sidewall portions to form a tread surface A method for producing a pneumatic tire, comprising a vulcanization step of heat-curing a green tire in a mold in a mold.
    The first step of embedding a temperature measurement probe in the vulcanization latest portion of the green tire, and the time-series data of the temperature of the green tire being vulcanized by the temperature measurement probe by the first step of embedding the temperature measurement probe in the last stage of vulcanization of the green tire And a third step of terminating the vulcanization process when an endotherm due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time-series data. And a method of manufacturing a pneumatic tire.
  8.  さらに前記第3段階が、前記時系列データに基づき、前記生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする第3a段階と、プロットした前記加硫温度曲線で前記目標加硫温度の近傍に現れる、下に凸な変曲点を検出した時点で前記加硫工程を終了する第3b段階とを備える請求項7に記載の空気入りタイヤの製造方法。 Furthermore, the third step is a step 3a of plotting a vulcanization temperature curve indicating the relationship between the temperature of the green tire and the vulcanization time based on the time series data, and the target by the vulcanization temperature curve plotted. The method for manufacturing a pneumatic tire according to claim 7, comprising the step 3b of terminating the vulcanization step when a downward convex inflection point appearing near the vulcanization temperature is detected.
  9.  前記温度測定プローブが、プラチナ測温抵抗体である請求項7または8に記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to claim 7, wherein the temperature measurement probe is a platinum resistance temperature detector.
  10.  前記加硫最遅部が、前記トレッド部のショルダー部である請求項7~9のいずれかに記載の空気入りタイヤの製造方法。 The method for manufacturing a pneumatic tire according to any one of claims 7 to 9, wherein the vulcanization latest portion is a shoulder portion of the tread portion.
  11.  前記目標加硫温度が125~165℃である請求項7~10のいずれかに記載の空気入りタイヤの製造方法。 The method for producing a pneumatic tire according to any one of claims 7 to 10, wherein the target vulcanization temperature is 125 to 165 ° C.
PCT/JP2018/040322 2017-12-15 2018-10-30 Pneumatic tire manufacturing method WO2019116757A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017240469A JP6912365B2 (en) 2017-12-15 2017-12-15 How to make a pneumatic tire
JP2017240480A JP6912366B2 (en) 2017-12-15 2017-12-15 How to make a pneumatic tire
JP2017-240480 2017-12-15
JP2017-240469 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019116757A1 true WO2019116757A1 (en) 2019-06-20

Family

ID=66819072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040322 WO2019116757A1 (en) 2017-12-15 2018-10-30 Pneumatic tire manufacturing method

Country Status (1)

Country Link
WO (1) WO2019116757A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030322A (en) * 2005-07-26 2007-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for controlling vulcanization of green tire
JP2016203483A (en) * 2015-04-22 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030322A (en) * 2005-07-26 2007-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for controlling vulcanization of green tire
JP2016203483A (en) * 2015-04-22 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Similar Documents

Publication Publication Date Title
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP6912366B2 (en) How to make a pneumatic tire
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP5314214B1 (en) Heavy duty pneumatic tire and manufacturing method thereof
WO2019116757A1 (en) Pneumatic tire manufacturing method
JP2019107790A (en) Die for tire molding and method for manufacturing pneumatic tire
JP7475136B2 (en) TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
JP6912365B2 (en) How to make a pneumatic tire
CN109263096A (en) Tyre vulcanization forming method
WO2019116778A1 (en) Tire molding die and pneumatic tire manufacturing method
JP6489920B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP7321040B2 (en) Method for manufacturing pneumatic tires
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
JP6245017B2 (en) Manufacturing method of pneumatic tire for passenger car
JP2019214158A (en) Puncture detection method for tire vulcanizing bladder
JP6465735B2 (en) Pneumatic tire manufacturing method
JP6465731B2 (en) Pneumatic tire manufacturing method and pneumatic tire
KR101294563B1 (en) Green Tire Cure System
JP7178242B2 (en) Temperature sensor and pneumatic tire manufacturing method
JP2022101835A (en) Manufacturing method of pneumatic tire
KR100995661B1 (en) Inner temperature sensing apparatus of volcanizer bladder
JP2022101880A (en) Manufacturing method of pneumatic tire
JP2022101883A (en) Manufacturing method of pneumatic tire
JP2022101837A (en) Tire molding metal mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889074

Country of ref document: EP

Kind code of ref document: A1