JP7429546B2 - Tire molding mold and pneumatic tire manufacturing method - Google Patents

Tire molding mold and pneumatic tire manufacturing method Download PDF

Info

Publication number
JP7429546B2
JP7429546B2 JP2020007630A JP2020007630A JP7429546B2 JP 7429546 B2 JP7429546 B2 JP 7429546B2 JP 2020007630 A JP2020007630 A JP 2020007630A JP 2020007630 A JP2020007630 A JP 2020007630A JP 7429546 B2 JP7429546 B2 JP 7429546B2
Authority
JP
Japan
Prior art keywords
temperature measurement
measurement probe
tire
tread
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007630A
Other languages
Japanese (ja)
Other versions
JP2021112896A (en
Inventor
倫一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2020007630A priority Critical patent/JP7429546B2/en
Publication of JP2021112896A publication Critical patent/JP2021112896A/en
Application granted granted Critical
Publication of JP7429546B2 publication Critical patent/JP7429546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型に関する。 The present invention includes a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous to an outer end in the tire radial direction of each of the sidewall portions and forming a tread surface. The present invention relates to a tire mold for vulcanizing an unvulcanized green tire.

ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。 When manufacturing pneumatic tires, which are rubber products, the vulcanization process is the most time-consuming process, so efforts are still being made to shorten the time of the vulcanization process. On the other hand, if the rubber part is not sufficiently vulcanized during the vulcanization process, air generated by the rubber vulcanization reaction will remain in the vulcanized rubber, and this residual air can cause tire failure at the product stage. In some cases, Therefore, in normal tire production sites, we take into account the fact that, due to seasonal factors, for example, the temperature of the unvulcanized raw tire, the temperature inside the mold, the ambient temperature, etc. The time required for the vulcanization process is set by adding the margin time that takes into account the above.

しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。 However, setting a margin time is not preferable from the viewpoint of improving tire productivity, and it has been desired to determine the end of vulcanization for each tire and efficiently execute the vulcanization process.

下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。 Patent Document 1 below discloses that the impedance of a vulcanized sample is measured while the vulcanization process is progressing, and the optimal vulcanization is determined at the point when the rate of increase in the polymer resistance value Rp of the vulcanized sample suddenly slows down. A method for real-time vulcanization control of vulcanized samples is described, with a stop time. However, this method requires impedance measurement of the vulcanized sample by sandwiching the vulcanized sample between two electrodes, and since tires are usually a laminate of composite materials, this method cannot be used. It is difficult to apply it to tires during tire vulcanization.

特開2003-211459号公報Japanese Patent Application Publication No. 2003-211459

本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能であり、かつ温度測定プローブの耐久性に優れたタイヤ成型用金型および該タイヤ成型用金型を使用した空気入りタイヤの製造方法を提供することにある。 The present invention was made in view of the above circumstances, and its purpose is to accurately measure the temperature of a pneumatic tire during vulcanization in order to reliably determine the end point of the vulcanization process for each tire. It is an object of the present invention to provide a tire molding mold that has a temperature measurement probe with excellent durability, and a method for manufacturing a pneumatic tire using the tire molding mold.

上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントの少なくとも一つは、温度測定プローブの外周面側端を固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により外周面側端が固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、前記温度測定プローブ挿入穴の内周面側側面に形成された凸部と前記温度測定プローブ表面とが接触することにより、前記温度測定プローブが固定されていることを特徴とするタイヤ成型用金型に関する。 The above object can be achieved by the present invention as described below. That is, the present invention provides a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous to the outer end of each of the sidewall portions in the tire radial direction to form a tread surface. A tire molding mold for vulcanizing an unvulcanized green tire, comprising at least a tread mold part that can be pressed into contact with the tread part, the tread mold part being divided in the circumferential direction, It has a plurality of segments that are movable in the radial direction of the green tire, and at least one of the segments includes a fixing means for fixing an end of the temperature measurement probe on the outer circumference side, and a fixing means for fixing an end of the temperature measurement probe toward the inner circumference side. The extending temperature measurement probe insertion hole has an outer peripheral surface side end fixed by the fixing means, extends inside the temperature measurement probe insertion hole toward the inner peripheral surface side, and has an inner peripheral surface side end fixed to the inner peripheral surface side of the temperature measurement probe insertion hole. a temperature measuring probe attached in a position that allows it to be buried in the shoulder portion of the tread portion beyond the circumferential side edge, and a convex portion formed on the inner circumferential side side surface of the temperature measuring probe insertion hole and the temperature measuring probe; The present invention relates to a tire molding mold, characterized in that the temperature measuring probe is fixed by contacting the surface of the measuring probe.

上記タイヤ成型用金型において、前記凸部の頂部と前記温度測定プローブ表面とが接触することにより、前記温度測定プローブが固定されていることが好ましい。
In the tire mold, it is preferable that the temperature measurement probe is fixed by contacting the top of the convex portion with the surface of the temperature measurement probe.

上記タイヤ成型用金型において、前記凸部が、前記温度測定プローブ挿入穴の内周面側端から深さ方向にL1の範囲に形成されており、前記温度測定プローブ挿入穴の内周面側端から外周面側端までの前記温度測定プローブ挿入穴の深さLに対し、0.02≦L1/L≦0.05であることが好ましい。 In the above tire molding mold, the convex portion is formed in a range L1 in the depth direction from an end on the inner circumferential surface of the temperature measuring probe insertion hole, and the convex portion is formed on the inner circumferential surface side of the temperature measuring probe insertion hole. It is preferable that the depth L of the temperature measurement probe insertion hole from the end to the outer peripheral surface side end satisfies 0.02≦L1/L≦0.05.

前記L1の長さが少なくとも5mm以上であることが好ましい。 It is preferable that the length of L1 is at least 5 mm or more.

上記タイヤ成型用金型において、前記温度測定プローブの外径が1~10mmであることが好ましい。 In the tire molding mold described above, it is preferable that the temperature measuring probe has an outer diameter of 1 to 10 mm.

上記タイヤ成型用金型において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。 In the tire molding mold described above, it is preferable that the temperature measuring probe is a platinum resistance temperature detector.

また、本発明は、前記いずれかに記載のタイヤ成型用金型内で加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法に関する。 Further, the present invention provides a method for manufacturing a pneumatic tire, including a vulcanization step of vulcanizing in any of the tire molding molds described above, wherein the vulcanization step includes the step of vulcanizing a pair of bead portions, A tread portion of an unvulcanized green tire, comprising a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous to the outer end in the tire radial direction of each of the sidewall portions and forming a tread surface. The present invention relates to a method for manufacturing a pneumatic tire, comprising the step of embedding a temperature measuring probe in the shoulder portion included in the tire to measure the temperature of the shoulder portion.

本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、セグメントの少なくとも1つに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。 The tire molding die according to the present invention is a so-called "segmental mold" in which at least the tread mold part is divided in the circumferential direction, and at least one of the segments is equipped with the above-mentioned specific temperature measurement probe. This makes it possible to accurately measure the temperature of the pneumatic tire during vulcanization, particularly the temperature of the shoulder portion of the tread where vulcanization of the tire is most difficult to proceed.

本発明に係るタイヤ成型用金型では、生タイヤのトレッド部のショルダー部に、温度測定プローブが押し込まれつつ埋設される。一般的には、ショルダー部を構成するゴム部が未加硫状態であっても、ゴム中に温度測定プローブが押し込まれる際、温度測定プローブには大きな負荷が掛かり、場合によっては温度測定プローブが湾曲してしまう虞がある。しかしながら、本発明に係るタイヤ成型用金型では、温度測定プローブ挿入穴の内周面側側面に形成された凸部と温度測定プローブ表面とが接触することにより、温度測定プローブが固定されている。これにより、固定手段のみによって温度測定プローブの外周面側端を固定する構成に比して、温度測定プローブがより安定的に保持されるため、温度測定プローブの湾曲などの変形を防止し、温度測定プローブの耐久性を向上することができる。 In the tire molding die according to the present invention, the temperature measurement probe is pushed and embedded in the shoulder portion of the tread portion of the green tire. Generally, even if the rubber part that makes up the shoulder part is in an unvulcanized state, when the temperature measurement probe is pushed into the rubber, a large load is placed on the temperature measurement probe, and in some cases, the temperature measurement probe may be There is a risk of it becoming bent. However, in the tire molding die according to the present invention, the temperature measurement probe is fixed by the convex portion formed on the inner circumferential side surface of the temperature measurement probe insertion hole coming into contact with the surface of the temperature measurement probe. . This allows the temperature measurement probe to be held more stably compared to a configuration in which the outer circumferential end of the temperature measurement probe is fixed using only the fixing means, thereby preventing deformation such as curvature of the temperature measurement probe and increasing the temperature. The durability of the measurement probe can be improved.

特に、本発明に係るタイヤ成型用金型において、凸部の頂部と温度測定プローブ表面とが接触することにより、温度測定プローブが固定されている場合、複数の部の頂部で温度測定プローブをより安定的に保持することができる。加えて、隣り合う部と温度測定プローブ表面との間には空気層が形成されるため、金型から温度測定プローブへの熱伝導をより小さくすることができる。その結果、加硫中の空気入りタイヤの温度をより正確に測定することができる。
In particular, in the tire molding die according to the present invention, when the temperature measuring probe is fixed by contacting the tops of the convex parts with the surface of the temperature measuring probe, the temperature measuring probes are fixed at the tops of the plurality of convex parts. It can be held more stably. In addition, since an air layer is formed between the adjacent convex portions and the surface of the temperature measurement probe, heat conduction from the mold to the temperature measurement probe can be further reduced. As a result, the temperature of the pneumatic tire during vulcanization can be measured more accurately.

本発明において製造可能なタイヤの一例を示すタイヤ子午線断面図Tire meridian cross-sectional view showing an example of a tire that can be manufactured according to the present invention 本発明のタイヤ成型用金型を概念的に示す断面図A sectional view conceptually showing a tire molding die of the present invention 本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図A cross-sectional view conceptually showing a state in which a temperature measurement probe is embedded in a shoulder part in a segment constituting a tread mold part of a mold of the present invention.

本発明の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。 Embodiments of the present invention will be described with reference to the drawings. The green tire 9 shown in FIG. 1 includes a pair of bead portions 1, a sidewall portion 2 extending outward in the tire radial direction from each bead portion 1, and a sidewall portion 2 continuous to the outer end of each sidewall portion 2 in the tire radial direction. This pneumatic tire includes a tread portion 3 that constitutes a tread surface. An annular bead core 1a is arranged in the bead portion 1.

カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 extends from the tread portion 3 via the sidewall portion 2 to the bead portion 1, and its end portion is folded back via the bead core 1a. The carcass layer 4 is composed of at least one carcass ply. The carcass ply is formed by covering a carcass cord extending at an angle of approximately 90 degrees with respect to the tire circumferential direction with topping rubber.

ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is bonded to the outside of the carcass layer 4 at the tread portion 3 and covered with tread rubber 6 from the outside. The belt layer 5 is composed of a plurality of (two in this embodiment) belt plies. Each belt ply is formed by covering belt cords extending obliquely with respect to the tire circumferential direction with topping rubber, and the belt cords are stacked so as to intersect in opposite directions between the plies.

トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成してもよい。 The tread rubber 6 may be composed of only one layer, or may be composed of a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side of the base tread.

図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The raw tire 9 shown in FIG. 1 is an unvulcanized raw tire, and in the vulcanization process described later, it is shaped into the shape of a product tire (see FIG. 2), and its tread surface is coated with various treads. A pattern is formed.

生タイヤ9の加硫成形では、本発明に係るタイヤ成型用金型(以下、単に「金型」ともいう)が使用される。図2に本発明のタイヤ成型用金型を概念的に表した断面図を示す。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 In the vulcanization molding of the green tire 9, a tire molding mold (hereinafter also simply referred to as a "mold") according to the present invention is used. FIG. 2 shows a conceptual cross-sectional view of the tire molding die of the present invention. The green tire 9 is set in the mold 10 in an unvulcanized state, and the green tire 9 in the mold 10 is heated and pressurized to perform a vulcanization process.

金型10は、生タイヤ9のトレッド部3に圧接可能なトレッド型部11を少なくとも備える。本実施形態では、金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個のセグメントに分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 includes at least a tread mold part 11 that can be pressed against the tread part 3 of the green tire 9. In this embodiment, the mold 10 includes a tread mold part 11 in contact with the tread surface of the green tire 9, a lower mold part 12 in contact with the tire outer surface facing downward, and an upper mold part 13 in contact with the tire outer surface facing upward. Equipped with These are configured to be freely displaceable between a mold-clamping state and a mold-opening state by an opening/closing mechanism (not shown) installed around them, and the structure of such opening/closing mechanism is well known. The tread mold part 11 is further divided into a plurality of segments in the circumferential direction, and is movable in the radial direction of the green tire 9 disposed within the mold 10. Furthermore, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, which heats each mold part.

金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 At the center of the mold 10, a center mechanism 14 is provided coaxially with the tire, and around this a tread mold part 11, a lower mold part 12, and an upper mold part 13 are installed. The center mechanism 14 has a rubber bag-shaped bladder 15 and a center post 16 extending in the tire axial direction, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end of the bladder 15. ing.

中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 A medium supply path 21 for supplying a heating medium into the bladder 15 extends vertically in the central mechanism 14, and an ejection port 22 is formed at the upper end of the medium supply path 21. The medium supply path 21 is connected to a supply pipe 24 through which a heating medium supplied from a heating medium supply source 23 and a pressurizing medium supplied from a pressurizing medium supply source 26 flow. The heating medium is supplied according to the opening/closing operation of the valve 25, and the pressurizing medium is supplied according to the opening/closing operation of the valve 28.

また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 Further, in the central mechanism 14, a medium discharge path 31 for discharging the high temperature and high pressure fluid in which the heating medium and the pressurizing medium are mixed in the bladder 15 is vertically extended. A recovery port 32 is formed. A discharge pipe 34 through which high-temperature, high-pressure fluid flows is connected to the medium discharge path 31, and the discharge pipe 34 is provided with a blow valve 33 for opening and closing the blow valve 33. The pump 35 may use a method of forcibly circulating the high-temperature, high-pressure fluid so that the high-temperature, high-pressure fluid passing through the medium discharge path 31 is resupplied to the inside of the bladder 15 via the medium supply path 21.

以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部3Sに温度測定プローブ44を埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6~12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6~12の範囲内で奇数であることがより好ましい。 Hereinafter, the segments 41 constituting the tread mold part 11 included in the mold 10 of the present invention will be described. FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe 44 is embedded in a shoulder portion 3S in a segment constituting a tread mold portion of a mold according to the present invention. In FIG. 3, the "inner peripheral surface side" means the side closer to the green tire 9 when the green tire 9 is set in the mold 10. The segment 41 is one in which the tread mold part 11 is divided into, for example, 6 to 12 parts in the circumferential direction, and each segment 41 is pressed into contact with the tread part 3 of the raw tire 9 by moving in the radial direction of the raw tire 9. It is possible. It is more preferable that the number of divisions of the segment 41 is an odd number within the range of 6 to 12.

セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって延びる温度測定プローブ挿入穴43と、固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端Iを超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。 At least one of the segments 41 is fixed by the fixing means 42 for fixing the temperature measuring probe 44, a temperature measuring probe insertion hole 43 extending from the fixing means 42 toward the inner peripheral surface side, and the temperature measuring probe 44 is fixed by the fixing means 42. The probe extends inside the insertion hole 43 toward the inner peripheral surface side, and is in a position where the inner peripheral surface end can be embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end I of the temperature measurement probe insertion hole 43. and a temperature measurement probe 44 attached thereto. Such temperature measurement probe 44 may be attached to one of the plurality of segments 41, may be attached to a plurality of segments 41, or may be attached to all segments 41.

温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さを調製可能となるように設計可能である。 The fixing means 42 for fixing the temperature measurement probe 44 is configured by, for example, a double nut on the outer circumference side and a threaded structure on the inner circumference side, thereby preventing the temperature measurement probe 44 from protruding from the temperature measurement probe hole 43. It can be designed so that the height can be adjusted.

固定手段42の内周面側には、温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。 A temperature measurement probe insertion hole 43 is formed on the inner peripheral surface side of the fixing means 42 . The temperature measurement probe insertion hole 43 is preferably arranged in the radial direction of the green tire 9, as will be described later. The inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and is designed so that the temperature measurement probe 44 can protrude into the cavity of the mold 10 and be buried in the shoulder part 3S of the tread part 3. .

温度測定プローブ44は、外周面側の端部が固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端Iを超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。また、温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。 The temperature measurement probe 44 has an end on the outer circumferential surface side fixed by the fixing means 42 and extends inside the temperature measurement probe insertion hole 43 toward the inner circumferential surface side. It is attached in such a manner that it can be embedded in the shoulder part 3S of the tread part 3 beyond the inner peripheral surface side edge I. As will be described later, the temperature measurement probe 44 is preferably arranged in the radial direction of the green tire 9. Furthermore, the cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.

前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブ44への負荷軽減を考慮した場合、セグメント41が径方向に移動する際の進行方向と、温度測定プローブ44の径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。 As described above, since the segments 41 move in the radial direction of the green tire 9, if the temperature measurement probe 44 is also arranged in the radial direction of the green tire 9, when the temperature measurement probe 44 is buried in the shoulder portion 3S, , is preferable because the load is the least. When considering the reduction of the load on the temperature measurement probe 44, the deviation between the direction in which the segment 41 moves in the radial direction and the direction in which the temperature measurement probe 44 is arranged in the radial direction should be 3 degrees or less. is preferable, and more preferably 1° or less.

図3に記載のとおり、本実施形態では温度測定プローブ挿入穴43の内周面側側面には、凸部4Mが形成され、部4Mの頂部と温度測定プローブ44表面とが接触することにより、温度測定プローブ44が固定されている。かかる構成によれば、温度測定プローブ44が温度測定プローブ挿入穴43内で安定的に保持されるため、温度測定プローブ44の湾曲などの変形を防止し、温度測定プローブ44の耐久性を向上することができる。また、隣り合う部4Mと温度測定プローブ44表面との間には空気層が形成されるため、金型から温度測定プローブへの熱伝導をより小さくすることができる。
As shown in FIG. 3, in this embodiment, a convex portion 4M is formed on the side surface of the inner peripheral surface of the temperature measurement probe insertion hole 43, and the top of the convex portion 4M contacts the surface of the temperature measurement probe 44. , the temperature measurement probe 44 is fixed. According to this configuration, the temperature measurement probe 44 is stably held within the temperature measurement probe insertion hole 43, thereby preventing deformation such as curvature of the temperature measurement probe 44 and improving the durability of the temperature measurement probe 44. be able to. Further, since an air layer is formed between the adjacent convex portions 4M and the surface of the temperature measurement probe 44, heat conduction from the mold to the temperature measurement probe can be further reduced.

温度測定プローブ挿入穴43の内周面側側面に形成された部4Mは、温度測定プローブ挿入穴43の内周面側側面のいずれの場所に形成されてもよいが、温度測定プローブ挿入穴43の内周面側端Iから外周面側に向かって形成されることが好ましい。また、部4Mは、温度測定プローブ挿入穴43の内周面側端Iから深さ方向にL1の範囲に形成されており、温度測定プローブ挿入穴43の内周面側端Iから外周面側端Oまでの温度測定プローブ挿入穴43の深さLに対し、0.02≦L1/L≦0.05であることが好ましい。かかる構成によれば、温度測定プローブ44が温度測定プローブ挿入穴43内でより安定的に保持されるため、温度測定プローブ44の湾曲などの変形をより確実に防止し、温度測定プローブ44の耐久性をさらに向上することができる。L1の長さは温度測定プローブ44の長さに応じて任意に設計可能であるが、例えば5mm以上であることが好ましい。 The convex portion 4M formed on the inner circumferential side surface of the temperature measurement probe insertion hole 43 may be formed anywhere on the inner circumferential side surface of the temperature measurement probe insertion hole 43; 43 is preferably formed from the inner circumferential surface side end I toward the outer circumferential surface side. Further, the convex portion 4M is formed in a range L1 in the depth direction from the inner peripheral surface side end I of the temperature measurement probe insertion hole 43, and extends from the inner peripheral surface side end I of the temperature measurement probe insertion hole 43 to the outer peripheral surface. It is preferable that the depth L of the temperature measurement probe insertion hole 43 to the side end O satisfies 0.02≦L1/L≦0.05. According to this configuration, the temperature measurement probe 44 is held more stably within the temperature measurement probe insertion hole 43, so deformation such as curvature of the temperature measurement probe 44 is more reliably prevented, and the durability of the temperature measurement probe 44 is improved. can further improve performance. The length L1 can be arbitrarily designed depending on the length of the temperature measurement probe 44, but is preferably 5 mm or more, for example.

本実施形態では、温度測定プローブ挿入穴43の内周面側端Iでの内径D1よりも外周面側端Oでの内径D2が大きく設計されている。かかる構成よれば、外周面側において、温度測定プローブ44と温度測定プローブ穴43との間の隙間部分をより大きく確保できるため、温度測定プローブ44によってトレッド部3のショルダー部3S内の温度を測定する際、金型10からの温度測定プローブ44への熱伝導をより少なくすることが可能となり、トレッド部3のショルダー部3S内の温度をより正確に測定することができる。温度測定プローブ挿入穴43において、内径がD1よりも大きくなる部分の深さ方向長さをL2としたとき、L2/L≦0.9であることが好ましい。温度測定プローブ44の外径としては、例えば1~10mm程度が好ましい。 In this embodiment, the inner diameter D2 at the outer peripheral surface side end O of the temperature measurement probe insertion hole 43 is designed to be larger than the inner diameter D1 at the inner peripheral surface side end I. According to this configuration, since a larger gap can be secured between the temperature measurement probe 44 and the temperature measurement probe hole 43 on the outer peripheral surface side, the temperature inside the shoulder part 3S of the tread part 3 can be measured by the temperature measurement probe 44. When doing so, it becomes possible to further reduce heat conduction from the mold 10 to the temperature measurement probe 44, and the temperature within the shoulder portion 3S of the tread portion 3 can be measured more accurately. In the temperature measurement probe insertion hole 43, when L2 is the length in the depth direction of the portion where the inner diameter is larger than D1, it is preferable that L2/L≦0.9. The outer diameter of the temperature measurement probe 44 is preferably about 1 to 10 mm, for example.

本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measurement probe used to measure the vulcanization temperature, a resistance temperature detector that utilizes the property that the electrical resistance of metal changes with temperature changes can be used. Examples of such metals include platinum, nickel, and copper; however, in the present invention, platinum thermometers have a large resistance value change (sensitivity) to temperature changes, and as a result, platinum thermometers have very high sensitivity to temperature changes. Resistors can be particularly preferably used.

次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。 Next, the vulcanization step in the method for manufacturing a pneumatic tire of the present invention will be specifically explained.

まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブ44をトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブ44が生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブ44により、加硫工程時には生タイヤ9の温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取ればよい。 First, as shown in FIG. 2, a green tire 9 is set in a mold 10, and the green tire 9 is shaped to approximate the inner shape of the mold 10 using an inflated bladder 15. Thereby, the green tire 9 is held by the bladder 15 and is applied to each of the tread mold part 11, the lower mold part 12, and the upper mold part 13. At this point, a temperature measuring probe is embedded in the slowest vulcanization part of the green tire 9. The slowest vulcanization section refers to a section of the tire where vulcanization is least likely to proceed, and usually refers to the shoulder section of the tread section 3. Particularly, in the shoulder portion, it is preferable to set the position where the thickness of the tread portion 3 becomes maximum, as measured along the normal line to the inner surface of the tread portion 3 after vulcanization, as the slowest vulcanization portion. In any case, in the present invention, a temperature measuring probe is embedded in the slowest vulcanization part of the green tire 9 in order to measure the vulcanization temperature at the slowest vulcanization part. As an embedding method, for example, the temperature measurement probe 44 is disposed at a position corresponding to the shoulder part of the tread mold part 11, and when the tread mold part 11 moves in the radial direction of the green tire 9 and the green tire 9 is placed. It is conceivable to design the temperature measurement probe 44 so that it is pushed into the green tire 9 and buried therein. The temperature measurement probe 44 embedded in the green tire 9 measures the temperature of the green tire 9 during the vulcanization process, and the tire is demolded from the mold 10 including the tread mold part 11 at the end of the vulcanization process. At this time, the temperature measurement probe may be simultaneously removed from the slowest vulcanization section.

続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, outer heating is performed in which the mold 10 is heated to heat the tire 9 from the tire outer surface side, and inner heating is performed in which a high temperature heating medium is supplied to the bladder 15 in the mold 10 to heat the tire 9 from the tire inner surface side. The green tire 9 is vulcanized by heating. The mold 10 is heated in advance by the above-mentioned steam jacket or the like, thereby performing external heating. The inner side heating is performed by supplying a heating medium into the bladder 15 through the medium supply path 21 after shaping the tire 9 . After supplying the heating medium for a predetermined period of time, a pressurizing medium is subsequently supplied into the bladder 15 to pressurize the tire 9 at high pressure. As the heating medium, for example, steam or high temperature water is used, and as the pressurizing medium, for example, an inert gas such as nitrogen gas or steam is used.

温度測定プローブ44により、加硫中の生タイヤの温度の時系列データを取得することができる。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。取得した時系列データを解析することにより、タイヤ毎に加硫工程の終了時点を確実に決定することができる。 The temperature measurement probe 44 can obtain time-series data on the temperature of the green tire during vulcanization. To acquire such time-series data, it is possible to use a high-precision digital data logger commonly available in the market (temperature resolution of about 0.001°C, accuracy of about ±0.005°C, minimum temperature value acquisition interval of 1 second). . By analyzing the acquired time series data, it is possible to reliably determine the end point of the vulcanization process for each tire.

加硫工程終了後は、金型10を開放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After the vulcanization process is completed, the temperature measuring probe disposed inside the mold 10 is removed from the vulcanized tire while the mold 10 is left open. As a result, it is possible to determine the end point of vulcanization for each tire and to manufacture pneumatic tires while shortening the vulcanization time.

本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiments described above, and various improvements and changes can be made without departing from the spirit of the present invention.

Claims (6)

一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型であって、
前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
前記セグメントの少なくとも一つは、温度測定プローブの外周面側端を固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により外周面側端が固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
前記温度測定プローブ挿入穴の内周面側側面に形成された凸部と前記温度測定プローブ表面とが接触することにより、前記温度測定プローブが固定されており、
前記凸部の頂部と前記温度測定プローブ表面とが接触することにより、前記温度測定プローブが固定されており、隣り合う凸部と温度測定プローブ表面との間には空気層が形成されたものであることを特徴とするタイヤ成型用金型。
An unfinished tread comprising a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion continuous to the outer end of each of the sidewall portions in the tire radial direction and forming a tread surface. A tire molding mold for vulcanizing a raw sulfur tire,
At least a tread mold part that can be pressed into contact with the tread part,
The tread mold part is divided in the circumferential direction and has a plurality of segments movable in the radial direction of the green tire,
At least one of the segments includes a fixing means for fixing the outer circumferential surface side end of the temperature measurement probe, a temperature measurement probe insertion hole extending from the fixing means toward the inner circumferential surface side, and an outer circumferential surface side end by the fixing means. is fixed and extends inside the temperature measurement probe insertion hole toward the inner peripheral surface side, and the inner peripheral surface side end can be embedded in the shoulder portion of the tread portion beyond the inner peripheral surface side end of the temperature measurement probe insertion hole. Equipped with a temperature measurement probe attached in a comfortable position,
The temperature measurement probe is fixed by contacting the surface of the temperature measurement probe with a convex portion formed on a side surface of the inner peripheral surface of the temperature measurement probe insertion hole ,
The temperature measurement probe is fixed by the contact between the top of the protrusion and the temperature measurement probe surface , and an air layer is formed between the adjacent protrusion and the temperature measurement probe surface. A tire molding mold that is characterized by:
前記凸部が、前記温度測定プローブ挿入穴の内周面側端から深さ方向にL1の範囲に形成されており、前記温度測定プローブ挿入穴の内周面側端から外周面側端までの前記温度測定プローブ挿入穴の深さLに対し、0.02≦L1/L≦0.05である請求項1に記載のタイヤ成型用金型。 The convex portion is formed in a range L1 in the depth direction from the inner peripheral surface side end of the temperature measurement probe insertion hole, and extends from the inner peripheral surface side end of the temperature measurement probe insertion hole to the outer peripheral surface side end. The tire molding die according to claim 1 , wherein the depth L of the temperature measurement probe insertion hole satisfies 0.02≦L1/L≦0.05. 前記L1の長さが少なくとも5mm以上である請求項に記載のタイヤ成型用金型。 The tire molding die according to claim 2 , wherein the length of the L1 is at least 5 mm or more. 前記温度測定プローブの外径が1~10mmである請求項1~のいずれかに記載のタイヤ成型用金型。 The tire molding mold according to any one of claims 1 to 3 , wherein the temperature measuring probe has an outer diameter of 1 to 10 mm. 前記温度測定プローブが、プラチナ測温抵抗体である請求項1~のいずれかに記載のタイヤ成型用金型。 The tire molding mold according to any one of claims 1 to 4 , wherein the temperature measuring probe is a platinum resistance temperature sensor. 請求項1~のいずれかに記載のタイヤ成型用金型内で加硫する加硫工程を含む空気入りタイヤの製造方法であって、
前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法。
A method for manufacturing a pneumatic tire, comprising a vulcanization step of vulcanizing in a tire mold according to any one of claims 1 to 5 ,
The vulcanization step includes a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion that is continuous with the outer end of each of the sidewall portions in the tire radial direction to form a tread surface. A method for manufacturing a pneumatic tire, comprising the step of embedding a temperature measurement probe in a shoulder part included in a tread part of an unvulcanized green tire, and measuring the temperature of the shoulder part. .
JP2020007630A 2020-01-21 2020-01-21 Tire molding mold and pneumatic tire manufacturing method Active JP7429546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007630A JP7429546B2 (en) 2020-01-21 2020-01-21 Tire molding mold and pneumatic tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007630A JP7429546B2 (en) 2020-01-21 2020-01-21 Tire molding mold and pneumatic tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2021112896A JP2021112896A (en) 2021-08-05
JP7429546B2 true JP7429546B2 (en) 2024-02-08

Family

ID=77076468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007630A Active JP7429546B2 (en) 2020-01-21 2020-01-21 Tire molding mold and pneumatic tire manufacturing method

Country Status (1)

Country Link
JP (1) JP7429546B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211459A (en) 2002-01-09 2003-07-29 Korea Kumho Petrochem Co Ltd Method for regulating optimum actual time vulcanization through impedance measurement and analysis of vulcanized sample and method for determining optimum content of component constituting vulcanizing composition
JP2006027115A (en) 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2006300649A (en) 2005-04-19 2006-11-02 Yokohama Rubber Co Ltd:The Temperature measuring instrument
JP2019107791A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
JP2021104615A (en) 2019-12-26 2021-07-26 Toyo Tire株式会社 Tire molding die and manufacturing method of pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211459A (en) 2002-01-09 2003-07-29 Korea Kumho Petrochem Co Ltd Method for regulating optimum actual time vulcanization through impedance measurement and analysis of vulcanized sample and method for determining optimum content of component constituting vulcanizing composition
JP2006027115A (en) 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2006300649A (en) 2005-04-19 2006-11-02 Yokohama Rubber Co Ltd:The Temperature measuring instrument
JP2019107791A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
JP2021104615A (en) 2019-12-26 2021-07-26 Toyo Tire株式会社 Tire molding die and manufacturing method of pneumatic tire

Also Published As

Publication number Publication date
JP2021112896A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
US2962757A (en) Method of and apparatus for molding and vulcanizing a fabric reinforced rubber air spring bellows
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP7475136B2 (en) TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
JP6912366B2 (en) How to make a pneumatic tire
CN102476462B (en) Measuring tire pressure in tire mold
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2019107790A (en) Die for tire molding and method for manufacturing pneumatic tire
JP6939209B2 (en) Tire vulcanization method
JP6912365B2 (en) How to make a pneumatic tire
JP7321040B2 (en) Method for manufacturing pneumatic tires
WO2019116778A1 (en) Tire molding die and pneumatic tire manufacturing method
WO2019116757A1 (en) Pneumatic tire manufacturing method
JP7178242B2 (en) Temperature sensor and pneumatic tire manufacturing method
JP6489920B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2022101883A (en) Manufacturing method of pneumatic tire
JP2022101835A (en) Manufacturing method of pneumatic tire
JP2022101880A (en) Manufacturing method of pneumatic tire
JP6465735B2 (en) Pneumatic tire manufacturing method
US20210229384A1 (en) Rubber temperature measuring device and rubber product manufacturing method
JP2007168208A (en) Vulcanization apparatus for tire
JP2022101837A (en) Tire molding metal mold
CN213291010U (en) Vacuum auxiliary exhaust type tire two-half mold
JP7102764B2 (en) Tire manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240129

R150 Certificate of patent or registration of utility model

Ref document number: 7429546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150