JP7030500B2 - How to manufacture tire molding dies and pneumatic tires - Google Patents

How to manufacture tire molding dies and pneumatic tires Download PDF

Info

Publication number
JP7030500B2
JP7030500B2 JP2017240581A JP2017240581A JP7030500B2 JP 7030500 B2 JP7030500 B2 JP 7030500B2 JP 2017240581 A JP2017240581 A JP 2017240581A JP 2017240581 A JP2017240581 A JP 2017240581A JP 7030500 B2 JP7030500 B2 JP 7030500B2
Authority
JP
Japan
Prior art keywords
tire
measuring probe
temperature measuring
vulcanization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017240581A
Other languages
Japanese (ja)
Other versions
JP2019107791A (en
Inventor
倫一 中山
英樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2017240581A priority Critical patent/JP7030500B2/en
Priority to PCT/JP2018/040982 priority patent/WO2019116778A1/en
Publication of JP2019107791A publication Critical patent/JP2019107791A/en
Application granted granted Critical
Publication of JP7030500B2 publication Critical patent/JP7030500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型に関する。 In the present invention, a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial outer end of the sidewall portion to form a tread surface are provided. The present invention relates to a tire molding die for heating and vulcanizing a prepared unvulcanized raw tire.

ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。 When manufacturing pneumatic tires, which are rubber products, the vulcanization process is the most time-consuming process, and efforts are still being made to shorten the vulcanization process time. On the other hand, if the vulcanization of the rubber part is insufficient in the vulcanization process, the air generated by the vulcanization reaction of the rubber remains in the vulcanized rubber, and such residual air causes tire failure at the product stage. May be. Therefore, in a normal tire production site, considering that the temperature of raw unvulcanized tires, which are raw materials, the temperature inside the mold, the atmospheric temperature, etc., vary due to seasonal factors, etc., all variations in the vulcanization process are taken into consideration. The time required for the vulcanization process is set by adding the extra time in consideration of.

しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。 However, setting the margin time is not preferable from the viewpoint of improving the productivity of the tire, and it has been desired to determine the end time of vulcanization for each tire and efficiently execute the vulcanization process.

下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。 In Patent Document 1 below, the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the optimum vulcanization is when the rate of increase in the polymer resistance value Rp of the vulcanized sample suddenly slows down. A method for adjusting the real-time vulcanization of the vulcanized sample as the stop time is described. However, in this method, it is necessary to measure the impedance of the vulcanized sample by sandwiching the vulcanized sample between two electrodes, and since the tire is usually a laminate of composite materials, this method is used. It is difficult to apply to tires during tire vulcanization.

特開2003-211459号公報Japanese Unexamined Patent Publication No. 2003-21149

本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能なタイヤ成型用金型を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to be able to accurately measure the temperature of a pneumatic tire during vulcanization in order to surely determine the end time point of the vulcanization process for each tire. The purpose is to provide a mold for tire molding.

上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型に関する。
The above object can be achieved by the present invention as described below. That is, the present invention includes a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial outer end of the sidewall portion to form a tread surface. A tire molding die for heat-sulfurizing an unsulfurized raw tire provided with at least a tread mold portion that can be pressure-welded to the tread portion, and the tread mold portion is divided in the circumferential direction. It has a plurality of segments that can move in the radial direction of the raw tire, and at least two or more of the segments have a fixing means for fixing the temperature measuring probe and the fixing means toward the inner peripheral surface side. The tire is fixed by the radial temperature measuring probe insertion hole and the fixing means, and extends in the tire radial direction in the temperature measuring probe insertion hole toward the inner peripheral surface side, and the inner peripheral surface side end is the temperature measurement. It is equipped with a temperature measuring probe mounted in a posture that can be embedded in the shoulder portion of the tread portion beyond the inner peripheral surface side end of the probe insertion hole.
The tire molding die is characterized in that the outer diameter D1 of the temperature measuring probe is formed smaller than the inner diameter D2 of the temperature measuring probe insertion hole.

本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、分割されたセグメントのうち、少なくとも二つ以上のセグメントに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。また二つ以上のセグメントに温度測定プローブを配設しているため、複数個所で温度測定することになるため正確な温度測定が可能となり、かつ、万が一、ある温度測定プローブが破損しても、他の温度測定プローブでの測定が可能となる。 The tire molding die according to the present invention is a so-called "segmental mold" in which at least the tread mold portion is divided in the circumferential direction, and the above-mentioned specific is divided into at least two or more segments among the divided segments. Equipped with a temperature measuring probe. This makes it possible to accurately measure the temperature of the pneumatic tire during vulcanization, particularly the temperature of the shoulder portion of the tread portion where vulcanization of the tire is most difficult to proceed. In addition, since the temperature measurement probes are arranged in two or more segments, accurate temperature measurement is possible because the temperature is measured at multiple locations, and even if a certain temperature measurement probe is damaged, even if a certain temperature measurement probe is damaged. Measurement with other temperature measurement probes is possible.

また本発明に係るタイヤ成型用金型は、セグメントの進行方向および温度測定プローブの配設方向をいずれも生タイヤの径方向としている。前記のとおり、セグメントは生タイヤの径方向に移動するため、温度測定プローブの配設方向も生タイヤの径方向とした場合、温度測定プローブをショルダー部内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブへの負荷軽減を考慮した場合、セグメントが径方向に移動する際の進行方向と、温度測定プローブの径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。 Further, in the tire molding die according to the present invention, both the traveling direction of the segment and the disposing direction of the temperature measuring probe are the radial directions of the raw tire. As described above, since the segment moves in the radial direction of the raw tire, if the arrangement direction of the temperature measuring probe is also the radial direction of the raw tire, the load is minimized when the temperature measuring probe is embedded in the shoulder portion. preferable. Considering the reduction of the load on the temperature measuring probe, the deviation between the traveling direction when the segment moves in the radial direction and the radial arrangement direction of the temperature measuring probe is preferably 3 ° or less. It is more preferably 1 ° or less.

上記タイヤ成型用金型において、前記温度測定プローブの外径D1が、1~10mmであることが好ましい。 In the tire molding die, the outer diameter D1 of the temperature measuring probe is preferably 1 to 10 mm.

上記タイヤ成型用金型において、前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上であることが好ましい。 In the tire molding die, when the length of the temperature measuring probe measured from the inner peripheral surface side end of the fixing means is L1, it is preferable that L1 / D1 is 10 or more.

上記タイヤ成型用金型において、前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれていることが好ましい。 In the tire molding die, it is preferable that the gap between the inner peripheral surface side end of the temperature measuring probe insertion hole and the temperature measuring probe is closed by a spacer having a thermal conductivity smaller than that of the segment.

上記タイヤ成型用金型において、前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれていることが好ましい。 In the tire molding die, it is preferable that the gap between the temperature measuring probe insertion hole and the temperature measuring probe is closed by a heat insulating material having a thermal conductivity smaller than that of the segment.

上記タイヤ成型用金型において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。 In the tire molding die, it is preferable that the temperature measuring probe is a platinum resistance temperature detector.

また本発明は、前記いずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法に関する。 Further, the present invention is a method for manufacturing a pneumatic tire including a vulcanization step of heating and vulcanizing in the tire molding mold according to any one of the above, wherein the vulcanization step includes a pair of bead portions and the above. A tread portion of an unvulcanized raw tire provided with a sidewall portion extending outward in the tire radial direction from each of the bead portions and a tread portion connecting to the tire radial outer end of each of the sidewall portions to form a tread. The present invention relates to a method for manufacturing a pneumatic tire, which comprises a step of measuring the temperature of the shoulder portion by embedding a temperature measuring probe in the shoulder portion included in the above.

上記製造方法によれば、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができるため、タイヤ毎に加硫工程の終了時点を確実に決定できる。 According to the above manufacturing method, the temperature of the pneumatic tire during vulcanization, particularly the temperature of the shoulder portion of the tread portion where vulcanization of the tire is most difficult to proceed can be accurately measured, so that vulcanization is performed for each tire. The end point of the process can be reliably determined.

上記空気入りタイヤの製造方法において、前記加硫工程が、ショルダー部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、加硫中の前記生タイヤの温度の時系列データを10秒以下の間隔で取得する第2段階と、前記時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で前記加硫工程を終了する第3段階とを備えることが好ましい。 In the method for manufacturing a pneumatic tire, the vulcanization step obtains time-series data of the temperature of the raw tire being vulcanized by the first step of embedding a temperature measuring probe in the shoulder portion and the temperature measuring probe. It is provided with a second step of acquiring at intervals of seconds or less and a third step of ending the vulcanization step when heat absorption due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time series data. Is preferable.

上記製造方法では、まず、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤの加硫最遅部に相当するトレッド部に、温度測定プローブを埋設し(第1段階)、温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。次いで、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。その結果、余分な余裕時間の設定が不要となり、空気入りタイヤの生産性を高めることができる。加えて、空気入りタイヤ1本毎に加硫反応が確実に終了していることが確認できるため、品質保証体制を確立することができる。なお、「目標加硫温度の近傍」とは、好ましくは設定した目標加硫温度の±10℃の範囲を意味するものとする。 In the above manufacturing method, first, a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion connecting to each tire radial outer end of the sidewall portion to form a tread surface. A temperature measurement probe is embedded in the tread portion corresponding to the slowest vulcanization portion of the unvulcanized raw tire provided with the above (first stage), and the temperature series of the raw tire being vulcanized by the temperature measurement probe is used. Data is acquired at intervals of 10 seconds or less (second stage). Then, based on the time-series data, the vulcanization step is terminated when the endothermic reaction due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature (third stage). This makes it possible to easily identify the vulcanization end point in the vulcanization process of the pneumatic tire. As a result, it is not necessary to set an extra spare time, and the productivity of the pneumatic tire can be increased. In addition, since it can be confirmed that the vulcanization reaction is surely completed for each pneumatic tire, a quality assurance system can be established. The term "near the target vulcanization temperature" preferably means a range of ± 10 ° C. of the set target vulcanization temperature.

上記空気入りタイヤの製造方法において、さらに前記第3段階が、前記時系列データに基づき、前記生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする第3a段階と、プロットした前記加硫温度曲線で前記目標加硫温度の近傍に現れる、下に凸な変曲点を検出した時点で前記加硫工程を終了する第3b段階とを備えることが好ましい。かかる構成によれば、プロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点を加硫終点とするため、見極めが容易で簡便である。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。 In the method for manufacturing a pneumatic tire, the third step further plots a vulcanization temperature curve showing the relationship between the temperature of the raw tire and the vulcanization time based on the time series data. It is preferable to include a third b step in which the vulcanization step is terminated when a downwardly convex inflection that appears in the vicinity of the target vulcanization temperature is detected in the vulcanization temperature curve. According to this configuration, since the downwardly convex inflection point that appears near the target vulcanization temperature in the plotted vulcanization temperature curve is set as the vulcanization end point, it is easy and convenient to identify. This makes it possible to more reliably determine the vulcanization end point of the pneumatic tire, and further increase the productivity of the pneumatic tire.

上記空気入りタイヤの製造方法において、前記目標加硫温度が125~165℃であることが好ましい。目標加硫温度の設定が高い場合、空気入りタイヤの加硫速度が速くなるため、加硫反応による吸熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、目標加硫温度が125~165℃、特には125~145℃であると、加硫終点の見極めが容易であるため、空気入りタイヤの生産性をさらに高めることができる。なお、目標加硫温度が125~145℃である場合を空気入りタイヤの低温加硫という場合があるが、低温加硫の場合は、空気入りタイヤの加硫速度が遅くなるため、従来は余裕時間を通常よりも長く確保する必要があった。このため、加硫時における高温下での空気入りタイヤの熱劣化抑制という低温加硫のメリットが、加硫時間増加により損なわれる場合があった。しかしながら本発明では、低温加硫(目標加硫温度が125~145℃)であっても、余裕時間を通常よりも短く設計可能であるため、熱劣化による空気入りタイヤの物性悪化を防止することができる。 In the method for manufacturing a pneumatic tire, the target vulcanization temperature is preferably 125 to 165 ° C. If the target vulcanization temperature is set high, the vulcanization rate of pneumatic tires will be high, so the detection of the vulcanization end point based on the time when heat absorption due to the vulcanization reaction is detected, and the target vulcanization with the plotted vulcanization temperature curve. It may be difficult to detect the vulcanization end point based on the downwardly convex turning point that appears near the sulfurization temperature. On the other hand, when the target vulcanization temperature is 125 to 165 ° C., particularly 125 to 145 ° C., it is easy to identify the vulcanization end point, so that the productivity of the pneumatic tire can be further improved. When the target vulcanization temperature is 125 to 145 ° C, it may be called low temperature vulcanization of the pneumatic tire, but in the case of low temperature vulcanization, the vulcanization speed of the pneumatic tire becomes slow, so there is a margin in the past. It was necessary to secure more time than usual. Therefore, the merit of low-temperature vulcanization, which is to suppress thermal deterioration of pneumatic tires under high temperature during vulcanization, may be impaired by an increase in vulcanization time. However, in the present invention, even in low temperature vulcanization (target vulcanization temperature is 125 to 145 ° C.), the margin time can be designed to be shorter than usual, so that deterioration of the physical properties of the pneumatic tire due to thermal deterioration can be prevented. Can be done.

本発明において製造可能なタイヤの一例を示すタイヤ子午線断面図A tire meridian sectional view showing an example of a tire that can be manufactured in the present invention. 本発明のタイヤ成型用金型を概念的に示す断面図Cross-sectional view conceptually showing the tire molding die of the present invention. 本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図A cross-sectional view conceptually showing a state in which a temperature measuring probe is embedded in a shoulder portion in a segment constituting the tread mold portion of the mold of the present invention. 本発明の一実施形態における加硫温度曲線を示すグラフの一例An example of a graph showing a vulcanization temperature curve in one embodiment of the present invention.

本発明の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。 An embodiment of the present invention will be described with reference to the drawings. The raw tire 9 shown in FIG. 1 is continuous with a pair of bead portions 1, a sidewall portion 2 extending outward in the tire radial direction from each of the bead portions 1, and each tire radial outer end of the sidewall portion 2. It is a pneumatic tire provided with a tread portion 3 constituting a tread surface. An annular bead core 1a is arranged in the bead portion 1.

カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 reaches the bead portion 1 from the tread portion 3 via the sidewall portion 2, and its end portion is folded back via the bead core 1a. The carcass layer 4 is composed of at least one carcass ply. The carcass ply is formed by covering a carcass cord extending at an angle of approximately 90 ° with respect to the tire circumferential direction with a topping rubber.

ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is attached to the outside of the carcass layer 4 at the tread portion 3, and is covered from the outside by the tread rubber 6. The belt layer 5 is composed of a plurality of belt plies (two in the present embodiment). Each belt ply is formed by covering a belt cord extending inclined with respect to the tire circumferential direction with a topping rubber, and the belt cords are laminated so as to intersect each other in opposite directions between the plies.

トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成しても良い。 The tread rubber 6 may be configured with only one layer, or may be configured with a so-called cap base structure having a base tread on the inner side in the tire radial direction and a cap tread located on the outer peripheral side thereof.

図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The raw tire 9 shown in FIG. 1 is a raw tire in an unvulcanized state, and is shaped into the shape of a product tire in the vulcanization process described later (see FIG. 2), and various treads are formed on the tread surface thereof. A pattern is formed.

生タイヤ9の加硫成形では、本発明に係るタイヤ成型用金型(以下、単に「金型」ともいう)が使用される。図2に本発明のタイヤ成型用金型を概念的に表した断面図を示す。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 In the vulcanization molding of the raw tire 9, the tire molding die (hereinafter, also simply referred to as “mold”) according to the present invention is used. FIG. 2 shows a cross-sectional view conceptually showing the tire molding die of the present invention. The raw tire 9 is set in the mold 10 in an unvulcanized state, and the vulcanization step is performed by applying heat and pressure to the raw tire 9 in the mold 10.

金型10は、生タイヤ9のトレッド部3に圧接可能なトレッド型部11を少なくとも備える。本実施形態では、金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個のセグメントに分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 includes at least a tread mold portion 11 that can be pressed against the tread portion 3 of the raw tire 9. In the present embodiment, the mold 10 includes a tread mold portion 11 in contact with the tread surface of the raw tire 9, a lower mold portion 12 in contact with the outer surface of the tire facing downward, and an upper mold portion 13 in contact with the outer surface of the tire facing upward. To prepare for. These are configured to be freely displaceable between the mold-fastened state and the mold open state by an opening / closing mechanism (not shown) installed around them, and the structure of such an opening / closing mechanism is well known. The tread mold portion 11 is further divided into a plurality of segments in the circumferential direction, and is movable in the radial direction of the raw tire 9 arranged in the mold 10. Further, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, whereby each mold portion is heated.

金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 A central mechanism 14 is provided coaxially with the tire in the central portion of the mold 10, and a tread mold portion 11, a lower mold portion 12, and an upper mold portion 13 are installed around the central mechanism 14. The central mechanism 14 has a rubber bag-shaped bladder 15 and a center post 16 extending in the tire axial direction. The center post 16 is provided with an upper clamp 17 and a lower clamp 18 for gripping the end portion of the bladder 15. ing.

中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 In the central mechanism 14, a medium supply path 21 for supplying the heating medium into the bladder 15 is extended vertically, and an ejection port 22 is formed at the upper end of the medium supply path 21. A heating medium supplied from the heating medium supply source 23 and a supply pipe 24 through which the pressure medium supplied from the pressure medium supply source 26 flows are connected to the medium supply path 21. The heating medium is supplied according to the opening / closing operation of the valve 25, and the pressurizing medium is supplied according to the opening / closing operation of the valve 28.

また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 Further, in the central mechanism 14, a medium discharge passage 31 for discharging a high-temperature high-pressure fluid in which a heating medium and a pressurized medium in the bladder 15 are mixed is extended up and down, and is provided at the upper end of the medium discharge passage 31. The collection port 32 is formed. A discharge pipe 34 through which a high-temperature high-pressure fluid flows is connected to the medium discharge passage 31, and a blow valve 33 for operating the opening / closing of the discharge pipe 34 is provided in the discharge pipe 34. The pump 35 may use a method of forcibly circulating the high-temperature high-pressure fluid so that the high-temperature high-pressure fluid passing through the medium discharge path 31 is re-supplied to the inside of the bladder 15 via the medium supply path 21.

以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6~12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6~12の範囲内で奇数であることがより好ましい。 Hereinafter, the segment 41 constituting the tread mold portion 11 included in the mold 10 of the present invention will be described. FIG. 3 shows a cross-sectional view conceptually showing a state in which a temperature measuring probe is embedded in a shoulder portion in a segment constituting the tread mold portion of the mold of the present invention. In FIG. 3, the “inner peripheral surface side” means the side close to the raw tire 9 when the raw tire 9 is set in the mold 10. The segment 41 is one in which the tread mold portion 11 is divided into, for example, 6 to 12 in the circumferential direction, and each of them moves in the radial direction of the raw tire 9 to press-contact the tread portion 3 of the raw tire 9. It is possible. It is more preferable that the number of divisions of the segment 41 is an odd number in the range of 6 to 12.

セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴43と、固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。 At least one of the segments 41 is fixed by the fixing means 42 for fixing the temperature measuring probe 44, the temperature measuring probe insertion hole 43 extending radially from the fixing means 42 toward the inner peripheral surface side, and the fixing means 42. , The inside of the temperature measuring probe insertion hole 43 extends in the tire radial direction toward the inner peripheral surface side, and the inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measuring probe insertion hole 43 and the shoulder portion of the tread portion 3. It is provided with a temperature measuring probe 44 mounted in a posture that can be embedded in the 3S. The temperature measuring probe 44 may be attached to one of a plurality of segments 41, may be attached to a plurality of segments 41, or may be attached to all the segments 41.

温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さL2を調製可能となるように設計可能である。 The fixing means 42 for fixing the temperature measuring probe 44 has, for example, a double nut on the outer peripheral surface side and a screw structure on the inner peripheral surface side, so that the temperature measuring probe 44 protrudes from the temperature measuring probe hole 43. It can be designed so that the height L2 can be adjusted.

固定手段42の内周面側には、径方向に延びる温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。 A temperature measuring probe insertion hole 43 extending in the radial direction is formed on the inner peripheral surface side of the fixing means 42. The inner peripheral surface side of the temperature measuring probe insertion hole 43 is open, and the temperature measuring probe 44 is designed so as to protrude into the cavity of the mold 10 and be embedded in the shoulder portion 3S of the tread portion 3. ..

温度測定プローブ44は、外周面側の端部が固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。 The end of the temperature measuring probe 44 on the outer peripheral surface side is fixed by the fixing means 42, extends toward the inner peripheral surface side in the temperature measuring probe insertion hole 43 in the tire radial direction, and the temperature measuring on the inner peripheral surface side end. It is attached in a posture that can be embedded in the shoulder portion 3S of the tread portion 3 beyond the inner peripheral surface side end of the probe insertion hole 43. The cross-sectional shape of the temperature measuring probe 44 is not particularly limited, but is preferably circular.

前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。 As described above, since the segment 41 moves in the radial direction of the raw tire 9, when the arrangement direction of the temperature measuring probe 44 is also the radial direction of the raw tire 9, when the temperature measuring probe 44 is embedded in the shoulder portion 3S. , It is preferable because the load is the smallest.

本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, as a temperature measuring probe used when measuring the brewing temperature, a resistance temperature measuring resistor utilizing the property that the electric resistance of a metal changes with respect to a temperature change can be used. Examples of such metals include platinum, nickel, and copper, but in the present invention, the resistance value change (sensitivity) to a temperature change is large, and as a result, the platinum temperature measurement is extremely sensitive to a temperature change. Resistors can be used particularly preferably.

温度測定プローブ44は、温度測定プローブ挿入穴43内に配置され、温度測定プローブ44の外径D1は、温度測定プローブ挿入穴43の内径D2よりも小さく形成されている(図3(b))。かかる構成によれば、セグメント41が加硫時に加熱されるところ、加硫時には温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入し、温度測定プローブ44とセグメント41とが直接接触するのを防止することができる。その結果、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。温度測定プローブ44の外径D1は、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、1~10mmが好ましい。また、温度測定プローブ挿入穴43の内径D2も、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、温度測定プローブ44の外径D1よりも0.5~1.0mm大きいことが好ましい。 The temperature measuring probe 44 is arranged in the temperature measuring probe insertion hole 43, and the outer diameter D1 of the temperature measuring probe 44 is formed to be smaller than the inner diameter D2 of the temperature measuring probe insertion hole 43 (FIG. 3B). .. According to this configuration, when the segment 41 is heated during vulcanization, rubber penetrates into the gap between the temperature measuring probe 44 and the temperature measuring probe insertion hole 43 during vulcanization, and the temperature measuring probe 44 and the segment 41 are directly connected to each other. It is possible to prevent contact. As a result, the temperature of the tread portion 3 corresponding to the slowest vulcanization portion can be accurately measured by the temperature measuring probe 44. The outer diameter D1 of the temperature measuring probe 44 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but is preferably 1 to 10 mm. Further, the inner diameter D2 of the temperature measuring probe insertion hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured, but it may be 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measuring probe 44. preferable.

固定手段42の内周面側端から測定した温度測定プローブ44の長さをL1としたとき、L1/D1が10以上であると、セグメント41からの温度測定プローブ44への熱伝導による測定誤差を低減できるため好ましい。L1および温度測定プローブ穴43からの温度測定プローブ44の突出高さL2は、製造する空気入りタイヤのサイズに応じて適宜設計可能である。このうち、L2は0.5~10mmが好ましい。また、固定手段42の内周側端からの温度測定プローブ穴の深さL3も製造する空気入りタイヤのサイズに応じて適宜設計可能である。 When the length of the temperature measuring probe 44 measured from the inner peripheral surface side end of the fixing means 42 is L1, if L1 / D1 is 10 or more, the measurement error due to heat conduction from the segment 41 to the temperature measuring probe 44. Is preferable because it can reduce the amount of heat. The protrusion height L2 of L1 and the temperature measuring probe 44 from the temperature measuring probe hole 43 can be appropriately designed according to the size of the pneumatic tire to be manufactured. Of these, L2 is preferably 0.5 to 10 mm. Further, the depth L3 of the temperature measuring probe hole from the inner peripheral side end of the fixing means 42 can also be appropriately designed according to the size of the pneumatic tire to be manufactured.

図3(b)では、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が塞がれていない例を示したが、図3(c)に示すとおり、温度測定プローブ挿入穴43の内周面側端と温度測定プローブ44との隙間が、セグメント41よりも小さい熱伝導率のスペーサー45により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入せず、温度測定プローブ44周りが中空となる。この構成でも、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。スペーサー45の長さL4は、例えばセグメント41の深さ方向に10~50mmであることが好ましい。スペーサー45は、セグメント41よりも小さい熱伝導率を示す素材、例えばコンスタンタン、チタン、ニクロムなどの金属で構成可能である。 FIG. 3B shows an example in which the gap between the temperature measuring probe insertion hole 43 and the temperature measuring probe 44 is not closed, but as shown in FIG. 3C, the inside of the temperature measuring probe insertion hole 43 is shown. The gap between the peripheral end and the temperature measuring probe 44 may be closed by the spacer 45 having a thermal conductivity smaller than that of the segment 41. According to this configuration, rubber does not penetrate into the gap between the temperature measuring probe 44 and the temperature measuring probe insertion hole 43 during vulcanization, and the circumference of the temperature measuring probe 44 becomes hollow. Even in this configuration, the temperature of the tread portion 3 corresponding to the slowest vulcanization portion can be accurately measured by the temperature measuring probe 44. The length L4 of the spacer 45 is preferably 10 to 50 mm in the depth direction of the segment 41, for example. The spacer 45 can be made of a material having a thermal conductivity smaller than that of the segment 41, for example, a metal such as constantan, titanium, or nichrome.

また、図3(d)に示すとおり、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が、セグメントよりも小さい熱伝導率の断熱材46により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44が断熱材46により覆われるため、加硫最遅部に相当するトレッド部3の温度を、温度測定プローブ44により正確に測定することができる。断熱材46の長さは、例えば温度測定プローブ穴の深さL3の50~80%が好ましい。断熱材46についても、スペーサー45と同様、コンスタンタン、チタン、ニクロムなどの金属で構成可能である。 Further, as shown in FIG. 3D, the gap between the temperature measuring probe insertion hole 43 and the temperature measuring probe 44 may be closed by the heat insulating material 46 having a thermal conductivity smaller than that of the segment. According to such a configuration, since the temperature measuring probe 44 is covered with the heat insulating material 46 at the time of vulcanization, the temperature of the tread portion 3 corresponding to the slowest vulcanization portion can be accurately measured by the temperature measuring probe 44. The length of the heat insulating material 46 is preferably, for example, 50 to 80% of the depth L3 of the temperature measuring probe hole. Like the spacer 45, the heat insulating material 46 can also be made of a metal such as constantan, titanium, or nichrome.

次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。 Next, the vulcanization step in the method for manufacturing a pneumatic tire of the present invention will be specifically described.

まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。 First, the raw tire 9 is set in the mold 10 as shown in FIG. 2, and the raw tire 9 is shaped to be close to the inner surface shape of the mold 10 by the expanded bladder 15. As a result, the raw tire 9 is held by the bladder 15 and addressed to each of the tread mold portion 11, the lower mold portion 12, and the upper mold portion 13. At this point, a temperature measuring probe is embedded in the slowest part of the vulcanization of the raw tire 9 (first stage). The slowest vulcanization portion means a portion where vulcanization of the tire is most difficult to proceed, and usually means a shoulder portion of the tread portion 3. In particular, among the shoulder portions, the position where the thickness of the tread portion 3 is maximized, which is measured along the normal of the inner surface of the tread portion 3 after vulcanization, is preferably the slowest vulcanization portion. In any case, in the present invention, in order to measure the vulcanization temperature in the slowest vulcanization portion, the temperature measuring probe is embedded in the slowest vulcanization portion of the raw tire 9. As an embedding method, for example, when a temperature measuring probe is arranged at a position corresponding to the shoulder portion of the tread mold portion 11 and the tread mold portion 11 moves in the radial direction of the raw tire 9 and the raw tire 9 is addressed. It is conceivable to design the temperature measuring probe so as to be embedded while being pushed into the raw tire 9. With the temperature measuring probe embedded in the raw tire 9 in this way, the temperature of the raw tire is measured at the time of the vulcanization process, and at the end of the vulcanization process, when the tire is removed from the mold 10 including the tread mold portion 11. The temperature measuring probe may be extracted from the slowest part of the vulcanization at the same time.

続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Subsequently, outside heating is performed by heating the mold 10 to heat the tire 9 from the tire outer surface side, and inside heating is performed by supplying a high-temperature heating medium to the bladder 15 in the mold 10 to heat the tire 9 from the tire inner surface side. The raw tire 9 is vulcanized by heating the tire. The mold 10 is preheated by the steam jacket or the like described above, whereby the outside heating is performed. The inner heating is performed by supplying the heating medium into the bladder 15 through the medium supply path 21 after shaping the tire 9. After supplying the heating medium for a predetermined time, the pressurizing medium is subsequently supplied into the bladder 15 to pressurize the tire 9 at a high pressure. As the heating medium, for example, steam or high-temperature water is used, and as the pressure medium, for example, an inert gas such as nitrogen gas or steam is used.

温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、加硫中の生タイヤの温度の時系列データは、5秒以下の間隔で取得することが好ましく、1秒以下の間隔で取得することが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、加硫中の生タイヤの温度の時系列データのデータ取得間隔は0.5秒以上が好ましい。 The temperature measurement probe acquires time-series data of the temperature of the raw tire being vulcanized at intervals of 10 seconds or less (second stage). For the acquisition of such time-series data, a high-precision digital data logger generally distributed in the market (temperature resolution of about 0.001 ° C, accuracy of about ± 0.005 ° C, minimum temperature value acquisition interval of 1 second) can be used. .. In the second stage, when the data acquisition interval of the time-series data of the temperature of the raw tire during vulcanization is short, it is preferable because the final vulcanization end point can be determined more accurately. Specifically, the time-series data of the temperature of the raw tire during vulcanization is preferably acquired at intervals of 5 seconds or less, and preferably at intervals of 1 second or less. On the other hand, if the data acquisition interval of the time-series data of the temperature of the raw tire during vulcanization is too short, the noise may become large and it may be difficult to accurately determine the vulcanization end point. Therefore, the data acquisition interval of the time-series data of the temperature of the raw tire during vulcanization is preferably 0.5 seconds or more.

第2段階の後、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。加硫終点の見極めが容易になることから、目標加硫温度は125℃~165℃であることが好ましく、125℃~145℃であることがより好ましく、125~135℃であることが特に好ましい。加硫反応による吸熱の検出方法としては、目標加硫温度の近傍で、所定期間(例えばデータ取得間隔が1秒であれば1秒)における生タイヤの温度変化量を算出し、その温度変化量に基づき決定することが可能である。 After the second step, the vulcanization step is terminated when the endothermic reaction due to the vulcanization reaction is detected in the vicinity of the target vulcanization temperature based on the time series data (third step). This makes it possible to easily identify the vulcanization end point in the vulcanization process of the pneumatic tire. The target vulcanization temperature is preferably 125 ° C. to 165 ° C., more preferably 125 ° C. to 145 ° C., and particularly preferably 125 to 135 ° C., because it is easy to identify the vulcanization end point. .. As a method of detecting heat absorption by the vulcanization reaction, the temperature change amount of the raw tire in a predetermined period (for example, 1 second if the data acquisition interval is 1 second) is calculated in the vicinity of the target vulcanization temperature, and the temperature change amount is calculated. It is possible to make a decision based on.

本発明においては、第3工程を2つに分け、より簡便に加硫終点を決定することができる。まず、時系列データに基づき、生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする(第3a段階)。図4は本発明の一実施形態における加硫温度曲線を示すグラフの一例であり、Aは金型10の型締め完了時点を加硫開始点としたときの、生タイヤの温度(℃)を縦軸、時間(秒)を横軸とする加硫温度曲線を示す。図4に示すとおり、本発明に係るタイヤ成型用金型を使用して空気入りタイヤを加硫した場合、1℃以内の微小な温度変化も正確に測定できる。 In the present invention, the third step can be divided into two, and the vulcanization end point can be determined more easily. First, based on the time series data, a vulcanization temperature curve showing the relationship between the temperature of the raw tire and the vulcanization time is plotted (stage 3a). FIG. 4 is an example of a graph showing a vulcanization temperature curve according to an embodiment of the present invention, in which A is the temperature (° C.) of a raw tire when the vulcanization start point is the time when the mold 10 is completed. The vulcanization temperature curve with the vertical axis and time (seconds) as the horizontal axis is shown. As shown in FIG. 4, when a pneumatic tire is vulcanized using the tire molding die according to the present invention, even a minute temperature change within 1 ° C. can be accurately measured.

本実施形態では、目標加硫温度を130℃に設定し、生タイヤの温度の時系列データを1秒間隔で取得した際の加硫温度曲線Aを示す。加硫温度曲線Bは、加硫温度曲線Aの目標加硫温度の近傍(2000秒手前~8000秒手前)を拡大したものである。第3a段階の後、プロットした加硫温度曲線Aで目標加硫温度の近傍に現れる下に凸な変曲点Pを検出した時点で加硫工程を終了する(第3b段階)。本実施形態では、加硫温度曲線Bにおいて、目標加硫温度(130℃)の近傍に現れる下に凸な変曲点に相当する点P(現在の図3ではBPTと記載されておりますが、点Pに修正します)が容易に検出可能であり、この点Pが検出された時点を加硫終点として、加硫を終了することができる。 In this embodiment, the vulcanization temperature curve A when the target vulcanization temperature is set to 130 ° C. and the time-series data of the temperature of the raw tire is acquired at 1-second intervals is shown. The vulcanization temperature curve B is an enlargement of the vicinity of the target vulcanization temperature of the vulcanization temperature curve A (2000 seconds before to 8000 seconds before). After the third a step, the vulcanization step is terminated when a downwardly convex inflection point P appearing in the vicinity of the target vulcanization temperature is detected on the plotted vulcanization temperature curve A (third step 3b). In the present embodiment, in the vulcanization temperature curve B, a point P corresponding to a downwardly convex inflection that appears near the target vulcanization temperature (130 ° C.) (although it is described as BPT in the current FIG. 3). , Corrected to point P) is easily detectable, and vulcanization can be completed with the point when this point P is detected as the vulcanization end point.

加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After the vulcanization step is completed, the temperature measuring probe arranged in the mold 10 is taken out from the vulcanized tire while the mold 10 is in the open state. As a result, it is possible to identify the vulcanization end point for each tire and manufacture a pneumatic tire while shortening the vulcanization time.

本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the spirit of the present invention.

Claims (7)

一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、
前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
前記温度測定プローブ挿入穴の内径D2は、前記温度測定プローブの外径D1よりも0.5~1.0mm大きく形成されていることを特徴とするタイヤ成型用金型。
A pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tread portion connected to each tire radial outer end of the sidewall portion to form a tread surface. A tire molding die that heats and vulcanizes raw vulcanized tires.
At least a tread mold portion that can be pressure-welded to the tread portion is provided.
The tread mold portion is divided in the circumferential direction and has a plurality of segments that are movable in the radial direction of the raw tire.
Of the segments, at least two or more segments are provided by the fixing means for fixing the temperature measuring probe, the temperature measuring probe insertion hole extending radially from the fixing means toward the inner peripheral surface side, and the fixing means. It is fixed and extends in the tire radial direction in the temperature measuring probe insertion hole toward the inner peripheral surface side, and the inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measuring probe insertion hole and the shoulder of the tread portion. Equipped with a temperature measuring probe mounted in a position that can be embedded in the part,
A tire molding die characterized in that the inner diameter D2 of the temperature measuring probe insertion hole is formed to be 0.5 to 1.0 mm larger than the outer diameter D1 of the temperature measuring probe .
前記温度測定プローブの外径D1が、1~10mmである請求項1に記載のタイヤ成型用金型。 The tire molding die according to claim 1, wherein the outer diameter D1 of the temperature measuring probe is 1 to 10 mm. 前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上である請求項1または2に記載のタイヤ成型用金型。 The tire molding die according to claim 1 or 2, wherein L1 / D1 is 10 or more when the length of the temperature measuring probe measured from the inner peripheral surface side end of the fixing means is L1. 前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれている請求項1~3のいずれかに記載のタイヤ成型用金型。 The tire according to any one of claims 1 to 3, wherein the gap between the inner peripheral surface side end of the temperature measuring probe insertion hole and the temperature measuring probe is closed by a spacer having a thermal conductivity smaller than that of the segment. Mold for molding. 前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれている請求項1~3のいずれかに記載のタイヤ成型用金型。 The tire molding die according to any one of claims 1 to 3, wherein the gap between the temperature measuring probe insertion hole and the temperature measuring probe is closed by a heat insulating material having a thermal conductivity smaller than that of the segment. 前記温度測定プローブが、プラチナ測温抵抗体である請求項1~5のいずれかに記載のタイヤ成型用金型。 The tire molding die according to any one of claims 1 to 5, wherein the temperature measuring probe is a platinum resistance temperature detector. 請求項1~6のいずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、
前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法。
A method for manufacturing a pneumatic tire, comprising a vulcanization step of heating and vulcanizing in the tire molding die according to any one of claims 1 to 6.
The tread portion in which the vulcanization step is connected to a pair of bead portions, a sidewall portion extending outward in the tire radial direction from each of the bead portions, and a tire radial outer end of each of the sidewall portions to form a tread surface. A method for manufacturing a pneumatic tire, comprising a step of measuring the temperature of the shoulder portion by embedding a temperature measuring probe in the shoulder portion included in the tread portion of the unvulcanized raw tire provided with the above. ..
JP2017240581A 2017-12-15 2017-12-15 How to manufacture tire molding dies and pneumatic tires Active JP7030500B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017240581A JP7030500B2 (en) 2017-12-15 2017-12-15 How to manufacture tire molding dies and pneumatic tires
PCT/JP2018/040982 WO2019116778A1 (en) 2017-12-15 2018-11-05 Tire molding die and pneumatic tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240581A JP7030500B2 (en) 2017-12-15 2017-12-15 How to manufacture tire molding dies and pneumatic tires

Publications (2)

Publication Number Publication Date
JP2019107791A JP2019107791A (en) 2019-07-04
JP7030500B2 true JP7030500B2 (en) 2022-03-07

Family

ID=67178730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240581A Active JP7030500B2 (en) 2017-12-15 2017-12-15 How to manufacture tire molding dies and pneumatic tires

Country Status (1)

Country Link
JP (1) JP7030500B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475136B2 (en) * 2019-12-26 2024-04-26 Toyo Tire株式会社 TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
JP7429546B2 (en) * 2020-01-21 2024-02-08 Toyo Tire株式会社 Tire molding mold and pneumatic tire manufacturing method
JP7553349B2 (en) 2020-12-25 2024-09-18 Toyo Tire株式会社 Tire molding mold
JP7550639B2 (en) 2020-12-25 2024-09-13 Toyo Tire株式会社 Manufacturing method of pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027115A (en) 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2010284863A (en) 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Vulcanizer for tire
JP2016203553A (en) 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317010A (en) * 1986-07-08 1988-01-25 Bridgestone Corp Controlling method for curing of tire
JPS63209817A (en) * 1987-02-25 1988-08-31 Bridgestone Corp Control method of vulcanization
JPH05162137A (en) * 1991-12-13 1993-06-29 Toyo Tire & Rubber Co Ltd Control method of vulcanization of tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027115A (en) 2004-07-16 2006-02-02 Bridgestone Corp Tire vulcanizing method
JP2010284863A (en) 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Vulcanizer for tire
JP2016203553A (en) 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire

Also Published As

Publication number Publication date
JP2019107791A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP6912366B2 (en) How to make a pneumatic tire
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2019214158A (en) Puncture detection method for tire vulcanizing bladder
JP2021104615A (en) Tire molding die and manufacturing method of pneumatic tire
JP2019107790A (en) Die for tire molding and method for manufacturing pneumatic tire
JP6912365B2 (en) How to make a pneumatic tire
WO2020039713A1 (en) Rubber temperature measuring device and method for manufacturing rubber product
WO2019116778A1 (en) Tire molding die and pneumatic tire manufacturing method
JP7178242B2 (en) Temperature sensor and pneumatic tire manufacturing method
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
WO2019116757A1 (en) Pneumatic tire manufacturing method
JP6939209B2 (en) Tire vulcanization method
JP6465735B2 (en) Pneumatic tire manufacturing method
JP7321040B2 (en) Method for manufacturing pneumatic tires
JP7550639B2 (en) Manufacturing method of pneumatic tire
JP2016203554A (en) Pneumatic tire production method and pneumatic tire
JP2022101880A (en) Manufacturing method of pneumatic tire
JP2022101835A (en) Manufacturing method of pneumatic tire
JP6935700B2 (en) Tire vulcanization method
JP2022101837A (en) Tire molding metal mold
JP7469628B2 (en) Manufacturing method and manufacturing device for pneumatic tire
JP2019025779A (en) Tire vulcanization method and tire vulcanization apparatus
JP2021171925A (en) Manufacturing method and manufacturing apparatus of pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150