JPH05162137A - Control method of vulcanization of tire - Google Patents

Control method of vulcanization of tire

Info

Publication number
JPH05162137A
JPH05162137A JP33043991A JP33043991A JPH05162137A JP H05162137 A JPH05162137 A JP H05162137A JP 33043991 A JP33043991 A JP 33043991A JP 33043991 A JP33043991 A JP 33043991A JP H05162137 A JPH05162137 A JP H05162137A
Authority
JP
Japan
Prior art keywords
vulcanization
temperature
tire
temperature rising
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33043991A
Other languages
Japanese (ja)
Inventor
Noriyuki Wakai
敬之 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP33043991A priority Critical patent/JPH05162137A/en
Publication of JPH05162137A publication Critical patent/JPH05162137A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To vulcanize an indivisual tire at the optimum and shortest time without injuring the tire, by a method wherein a temperature change within the tire until loss of flowability from a start of vulcanization is measured by a thermocouple, the thermocouple is pulled out and a necessary vulcanizing time is obtained by estimating a temperature rising state until completion of the vulcanization by an obtained initial temperature rising curve. CONSTITUTION:It is preferable that insertion of a temperature-sensing part such as a thermocouple into a tire is performed when a flow where an outer circumference of an unvulcanized tire is deformed along the inside of a mold is almost completed and measurement of at least one position is performed. Then a temperature rising pattern in a temperature region where it becomes a vulcanization starting temperature from the normal temperature is measured and the temperature-sensing part is pulled out. At this time, since rubber still has flowability, the tire is managed without being injured. An obtained initial temperature rising curve and an initial temperature rising part obtained by a reference curve are compared with each other and the temperature rising state up to completion of the vulcanization is estimated by a calculation formula of the temperature rising curve. A relation between a vulcanizing time and degree of vulcanization is calculated by the estimating curve and a necessary vulcanizing time is obtained. Then when this time is attained, a signal is given.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はタイヤの加硫制御方法
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a tire vulcanization control method.

【0002】[0002]

【従来の技術】従来より、品質の良好なタイヤを最短の
加硫時間で生産するため、モールド内に装填したグリー
ンタイヤの温度を個々のタイヤごとに個別に実測し、そ
の実測温度から実際の加硫量、加硫度分布を計算して加
硫終了を予測するタイヤの加硫制御方法が提案されてい
る(特開昭54−18881号、特開昭63−1570
8号、特開昭63−17010号)。
2. Description of the Related Art Conventionally, in order to produce a good quality tire in the shortest vulcanization time, the temperature of a green tire loaded in a mold is measured individually for each tire and the measured temperature A tire vulcanization control method has been proposed in which the vulcanization amount and vulcanization degree distribution are calculated to predict the end of vulcanization (Japanese Patent Laid-Open Nos. 54-18881 and 63-1570).
No. 8, JP-A-63-1710).

【0003】[0003]

【発明が解決しようとする課題】しかし特開昭54−1
8881号は、加硫温度を実測するに際して、熱電対等
の温度を電気信号に変える感温部を直接タイヤ内部に加
硫終了まで挿入する方法であるため、加硫終了後感温部
を抜いたとき、傷が残り、製品タイヤとして好ましくな
い問題があった。
However, JP-A-54-1
No. 8881 is a method in which, when actually measuring the vulcanization temperature, a temperature-sensitive part that changes the temperature of a thermocouple or the like into an electric signal is directly inserted into the tire until the end of vulcanization, so the temperature-sensitive part is removed after the end of vulcanization. At that time, there was a problem that scratches remained, which was not preferable as a product tire.

【0004】一方、特開昭63−15708号及び63
−17010号は、感温部をタイヤ内部ではなく、タイ
ヤの外面側と内面側の両位置に設置して実測することか
ら、製品タイヤに傷をつけることはないが、この方法は
タイヤの内外表面だけの測定によりタイヤ内部の温度分
布及び加硫度分布を予測するので、実際の個々のタイヤ
における内部の正確な熱履歴を判断できない問題があ
る。特にタイヤ内面側の感温部は実際はブラダーとの関
係からブラダー又はその近傍位置に取り付けざるを得
ず、取り付けが困難であり、また精度上の問題も大き
い。またたとえ取り付けたとしても加硫の際のブラダー
の伸長により位置ずれを起こすおそれもあり、この点に
おいても精度上問題がある。また繰り返しの使用により
感温部が破損するおそれもある。
On the other hand, JP-A-63-15708 and 63
-17010 does not damage the product tire because the temperature-sensing part is installed not at the inside of the tire but at both the outer surface side and the inner surface side of the tire for actual measurement, but this method does not damage the product tire. Since the temperature distribution and the vulcanization degree distribution inside the tire are predicted by measuring only the surface, there is a problem that the actual internal heat history of each individual tire cannot be determined. In particular, the temperature-sensitive part on the inner surface of the tire is inevitably attached to the bladder or a position in the vicinity thereof due to the relationship with the bladder, which is difficult to attach, and there is a great problem in accuracy. Further, even if it is attached, there is a possibility that the bladder may be stretched during the vulcanization to cause a positional shift, which is also a problem in terms of accuracy. In addition, the repeated use may damage the temperature sensing part.

【0005】従って、感温部をタイヤの両面側に設置し
て温度を実測し、有限要素法(FEM)或は差分法によ
って内部の温度分布及び加硫度分布を計算によって推定
し、加硫の最短時間を予測して加硫制御するこの種の方
法は、タイヤ温度の実測手段自体において問題があると
考えられる。
Therefore, the temperature sensitive parts are installed on both sides of the tire to measure the temperature, and the internal temperature distribution and the vulcanization degree distribution are calculated by the finite element method (FEM) or the difference method, and the vulcanization is performed. This kind of method of predicting the shortest time of vulcanization and controlling vulcanization is considered to have a problem in the tire temperature measuring means itself.

【0006】この発明の目的は、タイヤを傷つけること
なく、タイヤ内部の温度及び加硫分布を容易にかつ正確
に実測し推定することができ、温度履歴の検出精度が高
いタイヤの加硫制御方法を提供する点にある。
An object of the present invention is to provide a vulcanization control method for a tire, which can easily and accurately measure and estimate the temperature and vulcanization distribution inside the tire without damaging the tire and which has a high temperature history detection accuracy. Is in the point of providing.

【0007】[0007]

【課題を解決するための手段】ところでタイヤを加硫す
る際の変動要因を検討すると、まず第一にグリーンタイ
ヤの温度とブラダー温度の変動がある。これは日内、日
間、季節間で変動し、主に加硫初期温度に影響すると考
えられる。第二に加硫中の温度に対して変動を与える因
子としては、タイヤの厚みとブラダーの厚みがあり、こ
れはロット内、ロット間によって変動し、主としてタイ
ヤ各部の昇温速度、昇温レベルに影響する因子と考えら
れる。
[Means for Solving the Problems] When considering the factors of variation when vulcanizing a tire, first of all, there are variations in the temperature of the green tire and the bladder temperature. This fluctuates daily, daily, and seasonally, and is considered to mainly affect the initial vulcanization temperature. Secondly, the factors that affect the temperature during vulcanization are the thickness of the tire and the thickness of the bladder, which vary within the lot and between lots, and are mainly the temperature rise rate and temperature rise level of each part of the tire. It is considered to be a factor that affects the

【0008】そこでグリーンタイヤとブラダー温度が変
動した場合と、タイヤ厚みとブラダー厚みが変動した場
合とでそれぞれタイヤ内部各部の昇温パターンの変化を
有限要素法(FEM)によりシミュレーション計算で再
現してみると、昇温シミュレーションにより実際の変動
要因を正確に再現することができることを見出した。ま
たタイヤ内各部、特に加硫の最遅部の昇温パターンか
ら、加硫初期温度とタイヤ厚み及びブラダー厚み及びこ
れらの初期温度とはきわめて密接な関係があることが判
明した。さらにこの事実は、タイヤの加硫条件(温度等
の外圧条件、スチーム、温水の温度及び時間等の内圧条
件)を変えた場合でも正確に一定の傾向が生じることを
見出だした。これは加硫機種を変えても同様であった。
Therefore, a change in the temperature rise pattern in each part inside the tire is reproduced by simulation calculation by the finite element method (FEM) when the temperature of the green tire and the bladder change and when the thickness of the tire and the bladder change. As a result, it was found that the actual fluctuation factors can be accurately reproduced by the temperature rise simulation. In addition, it was found from the temperature rise pattern of each part in the tire, particularly the latest part of vulcanization, that the vulcanization initial temperature has a very close relationship with the tire thickness, the bladder thickness, and these initial temperatures. Furthermore, this fact has been found that even when the vulcanization conditions of the tire (external pressure conditions such as temperature, internal pressure conditions such as steam, hot water temperature and time) are changed, a certain tendency occurs accurately. This was the same even if the vulcanization model was changed.

【0009】ここで重要な点は、温度の変動はタイヤ内
の初期昇温パターンを知ることができれば正確に把握で
きる点である。例えばグリーンタイヤやブラダーの初期
温度が低ければ加硫初期の昇温パターンの立上がりが遅
く、またタイヤ厚みやブラダーの厚みが厚ければ加硫初
期の昇温パターンの角度は鈍くなる。従って、これ以降
の温度は、外圧及び内圧(モールド側温度及びタイヤ内
側の内圧側の圧力と温度)を一定に制御することができ
れば、タイヤ内の上述の初期昇温パターンに基づいて加
硫最遅部の温度履歴を容易かつ正確に予想することがで
きる。
An important point is that the temperature fluctuation can be accurately grasped if the initial temperature rise pattern in the tire can be known. For example, if the initial temperature of the green tire or bladder is low, the rise of the temperature rise pattern in the early stage of vulcanization is slow, and if the tire thickness or the thickness of the bladder is thick, the angle of the temperature rise pattern in the early stage of vulcanization becomes dull. Therefore, if the external pressure and internal pressure (mold side temperature and internal pressure side pressure and temperature inside the tire) can be controlled to be constant, the vulcanization temperature based on the above-mentioned initial temperature rise pattern in the tire can be controlled. The temperature history of the lag part can be easily and accurately predicted.

【0010】ところでタイヤ内部の初期昇温パターンを
実測する場合、感温部をタイヤ内部の1か所以上の位置
に挿入して実測することが精度上最も好ましい。具体的
には図1に記載の様に、上型1及び下型2のそれぞれの
ビード最厚部A、E、ショルダー最厚部B、D、トレッ
ドセンター部Cに感温部3を突出自在に設置し測定す
る。ただしブラダー(図示せず。)内に送り込まれる水
蒸気が下型2側にドレインとなって溜まるため、一般的
には下型2側の方が昇温が遅いので、下型2側のビード
最厚部E、ショルダー最厚部Dに設置し測定することが
望ましい。
In the meantime, when actually measuring the initial temperature rise pattern inside the tire, it is most preferable in terms of accuracy to insert the temperature sensitive portion at one or more positions inside the tire for actual measurement. Specifically, as shown in FIG. 1, the temperature sensitive part 3 can be freely projected to the bead thickest parts A and E, the shoulder thickest parts B and D, and the tread center part C of the upper mold 1 and the lower mold 2, respectively. Install in and measure. However, since the water vapor sent into the bladder (not shown) accumulates as a drain on the lower mold 2 side, the temperature rise on the lower mold 2 side is generally slower. It is desirable to install and measure in the thick portion E and the shoulder thickest portion D.

【0011】実測するに際して問題は、感温部の挿入の
タイミングであるが、これは例えばモールド内にグリー
ンタイヤを装填し、スチームなどを充填したブラダーに
よりグリーンタイヤを膨らまし、モールドの上型と下型
を近づけて金型を締める間にゴムが大幅に流動して未加
硫タイヤの外面がモールド内面の形状に沿う時期があ
る。その時期に感温部をタイヤ内部に挿入すると、感温
部を曲げたり、傷をつけたりするおそれがあるので、流
動がほぼおさまったときに感温部を未加硫タイヤ内部に
挿入して位置決めすることが望ましい。この時期は条件
により多少異なるが、タイヤの内部温度でおよそ40〜
50℃前後である。時間的にはタイヤの種類、タイヤサ
イズごとに大体決まってくるが、釜閉じを開始して内圧
を導入して加硫開始後約120秒後である。なおモール
ド温度で挿入時期を決定することも考えられるが、モー
ルド温度はタイヤ製造過程では当初から140〜190
℃に達しているので、挿入のタイミングを温度でコント
ロールすることはできない。なお、感温部は円柱状のも
のが好ましく、直径はなるべく小さい方が良い。これは
感温部自体が測定温度に影響を与え誤差の原因となるか
らである。
The problem in the actual measurement is the timing of the insertion of the temperature sensitive part. This is, for example, when a green tire is loaded in a mold, the green tire is inflated with a bladder filled with steam, and the upper and lower molds of the mold are inflated. There is a time when the rubber largely flows while the molds are brought close to each other and the molds are tightened, and the outer surface of the unvulcanized tire follows the shape of the inner surface of the mold. If the temperature sensing part is inserted inside the tire at that time, the temperature sensing part may be bent or scratched.Therefore, when the flow is almost stopped, insert the temperature sensing part inside the unvulcanized tire for positioning. It is desirable to do. This time is slightly different depending on the conditions, but the internal temperature of the tire is about 40-
It is around 50 ° C. In terms of time, it is roughly determined for each tire type and tire size, but about 120 seconds after the start of vulcanization by starting the closing of the kettle and introducing the internal pressure. Although it may be possible to determine the insertion time by the mold temperature, the mold temperature is 140 to 190 from the beginning in the tire manufacturing process.
Since the temperature reaches ℃, the timing of insertion cannot be controlled by temperature. It should be noted that the temperature-sensitive portion is preferably cylindrical, and the diameter is preferably as small as possible. This is because the temperature sensing unit itself affects the measured temperature and causes an error.

【0012】一方、ゴムの加硫反応は温度依存性があ
り、高温では早く加硫反応が完結し、低温では加硫反応
は遅い。しかし高温で加熱されても直ちに加硫反応をせ
ず、加硫反応が開始するまでイントロダクションタイム
を有する様に配合設計してあるので、100℃前後では
実際には加硫反応はほとんど進行しない。そして130
℃程度になると徐々に加硫反応が開始する。図2はショ
ルダー最厚部Dにおける昇温曲線と加硫反応速度との関
係を示すグラフである。加硫反応速度曲線とX軸で囲ま
れた面積がその時間までの相対加硫反応量である。図2
から、130℃に達するまではほとんど加硫反応が進行
しないことが認められる。ただ実測地点はショルダー最
厚部Dの中央位置であるので、モールド表面に近づくほ
ど熱回りはよいので、モールド表面ではある程度の加硫
反応は始まっているが、支障のない程度の加硫反応量で
ある。
On the other hand, the vulcanization reaction of rubber is temperature-dependent, and at high temperatures the vulcanization reaction is completed quickly, and at low temperatures the vulcanization reaction is slow. However, even if it is heated at a high temperature, the vulcanization reaction does not immediately occur, and the compounding design is designed to have an introduction time until the vulcanization reaction starts. And 130
The vulcanization reaction gradually starts when the temperature reaches about ℃. FIG. 2 is a graph showing the relationship between the temperature rising curve and the vulcanization reaction rate in the thickest part D of the shoulder. The area surrounded by the vulcanization reaction rate curve and the X axis is the relative vulcanization reaction amount up to that time. Figure 2
From this, it is recognized that the vulcanization reaction hardly progresses until the temperature reaches 130 ° C. However, since the actual measurement point is the center position of the thickest part D of the shoulder, the closer the heat is to the mold surface, the more the vulcanization reaction has started on the mold surface, but the amount of vulcanization reaction does not hinder. Is.

【0013】上述の点より、常温から約130℃になる
温度域での昇温パターンを実測し、この温度域を越えた
ときに感温部を抜き取れば、未だ流動性を保っているの
で、感温部を抜き取った箇所にもゴムが流れるのでタイ
ヤを傷つけずに済む。また最低100℃程度までの昇温
パターンを実測しないと、計算された類似パターンを正
確に選択することが困難となり、正確な推定が難しい問
題もある。またトラックバス用と乗用車用などの様にタ
イヤ品種が異なれば、昇温速度や到達最高温度が異なる
ため、初期昇温パターンの実測精度を十分確保する必要
から、初期の室温あたりから100〜130℃程度まで
の初期の昇温パターンを実測してこれを有限要素法(F
EM)の変動因子を解析決定し、演算してそれ以降の最
遅部の昇温パターンを推定して加硫終了の判断をするこ
とが適切である。
From the above point, if the temperature rise pattern in the temperature range from room temperature to about 130 ° C. is actually measured and the temperature sensing part is pulled out when exceeding this temperature range, the fluidity is still maintained. , Rubber also flows to the part where the temperature sensing part is pulled out, so you do not have to damage the tire. Further, unless the temperature rise pattern up to at least about 100 ° C. is actually measured, it becomes difficult to accurately select the calculated similar pattern, and there is also a problem that it is difficult to make an accurate estimation. Further, when the tire type is different for trucks and buses and passenger cars, the temperature rising rate and the maximum temperature reached differ, so that it is necessary to secure sufficient measurement accuracy of the initial temperature rising pattern. Measure the initial temperature rise pattern up to about ℃ and use the finite element method (F
It is appropriate to determine the vulcanization end by analyzing and determining the variation factor of EM), calculating it, estimating the temperature rise pattern of the latest portion after that.

【0014】以上の知見に基づきこの発明は、モールド
に充填したグリーンタイヤの表面部のゴムが流動してモ
ールド内面に沿った形状に変形する流動期間がほぼ終了
した時点で、モールド内面に突出自在に設けた感温部を
グリーンタイヤに予め定めた深さだけ挿し込むステッ
プ、ゴムの加硫反応が開始して流動性を失う直前まで変
化するタイヤの内部温度を測定するステップ、予め定め
られた温度に達した時点で感温部をモールド内面まで後
退するステップ、上記温度測定で求めた初期昇温曲線
を、予め設定してあった標準昇温曲線で演算した初期昇
温部分と比較照会して昇温曲線算出式によって加硫終了
に至るまでの昇温状態を推定するステップ、この推定さ
れた昇温曲線から加硫時間の経過と加硫度の関係を計算
して所要加硫時間を定めるステップ、及び所要加硫時間
に達すれば加硫終了ステップに移行する信号を発するス
テップを包含することを特徴とするタイヤの加硫制御方
法を採用した。
Based on the above findings, the present invention is capable of protruding to the inner surface of the mold when the flow period during which the rubber on the surface of the green tire filled in the mold flows and is deformed into a shape along the inner surface of the mold. The step of inserting the temperature-sensing part provided in the green tire to a predetermined depth, the step of measuring the internal temperature of the tire which changes until just before the vulcanization reaction of the rubber starts to lose fluidity, the predetermined When the temperature reaches the temperature, the step of retracting the temperature sensitive part to the inner surface of the mold, the initial temperature rise curve obtained by the temperature measurement above is compared and inquired with the initial temperature rise part calculated by the preset standard temperature rise curve. Then, the step of estimating the temperature rise state until the end of vulcanization by the temperature rise curve calculation formula is calculated, and the relationship between the vulcanization time and the vulcanization degree is calculated from the estimated temperature rise curve to calculate the required vulcanization time. Fixed That step, and it was adopted pressurized 硫制 control method of the tire, characterized in that comprising the step of issuing a signal to move to reaches if vulcanization end step between the required vulcanization.

【0015】なお、熱解析の計算方法としては有限要素
法(FEM)又は差分法が採用できる。
The finite element method (FEM) or the difference method can be adopted as the calculation method of the thermal analysis.

【0016】[0016]

【作用】この発明は、加硫時のタイヤの温度の変動はタ
イヤ内の初期昇温パターンで十分推定できるとの知見に
基づき、加硫初期の段階で感温部をタイヤ内に挿入し、
加硫開始時点でそれを抜き取ることにより、個々のタイ
ヤごとに個別に最適かつ最短の加硫時間で加硫すること
ができるため、同種同品名のタイヤを画一的な時間設定
で加硫する従来の方法に比べ、生産性が大幅に向上す
る。また個々のタイヤごとに個別に最適かつ最短の加硫
時間で加硫するので、オーバー加硫することもなく、ま
た加硫不足にもならないことから不良タイヤを製造する
こともなく、タイヤの耐久性が向上する。
The present invention is based on the knowledge that the temperature variation of the tire during vulcanization can be sufficiently estimated by the initial temperature rise pattern in the tire, and the temperature-sensitive part is inserted into the tire at the early stage of vulcanization.
By extracting it at the start of vulcanization, each tire can be individually vulcanized in the optimum and shortest vulcanization time, so vulcanizing tires of the same type and same name with a uniform time setting The productivity is significantly improved as compared with the conventional method. In addition, each tire is individually vulcanized in the optimum and shortest vulcanization time, so over-vulcanization does not occur and vulcanization does not become insufficient. The property is improved.

【0017】またこの発明は感温部を加硫初期段階を経
過した際に抜き取ることができるため、従来の様に、加
硫後の製品タイヤに傷がついたり穴があく等の問題がな
く、外観及び性の面でも良好なタイヤを提供することが
できる。
Further, according to the present invention, since the temperature sensitive portion can be removed after the initial stage of vulcanization, there is no problem such as scratches or holes in the product tire after vulcanization as in the conventional case. In addition, it is possible to provide a tire that is excellent in terms of appearance and properties.

【0018】またこの発明の方法は、感温部をタイヤ内
に挿入してタイヤ内部の温度を直接実測するため、タイ
ヤの表面を測定し、これによりタイヤ内部の熱履歴を推
定する従来の方法に比べて精度上良好であり、また感温
部をブラダー側に設置する必要もなく、モールド側から
挿入・抜き取りを行なえばよいので、実測がきわめて容
易である。
Further, in the method of the present invention, the temperature inside the tire is directly measured by inserting the temperature sensitive portion into the tire, so that the surface of the tire is measured, and thereby the thermal history inside the tire is estimated. Compared with the above, the accuracy is better, and since it is not necessary to install the temperature sensing part on the bladder side and insertion / extraction can be performed from the mold side, actual measurement is extremely easy.

【0019】[0019]

【実施例】タイヤサイズ1000R20 14PRのトラックバスラ
ジアルタイヤ及びタイヤサイズ195/70R14 の乗用車用ラ
ジアルタイヤについて、本発明による精度を検討した。
[Examples] The accuracy according to the present invention was examined for a truck-bus radial tire having a tire size of 1000R20 14PR and a radial tire for a passenger vehicle having a tire size of 195 / 70R14.

【0020】表1はその結果を示している。なお表中、
タイヤ厚みはショルダー最厚部の厚みを示し、加硫終了
時点での信頼範囲は、各タイヤのショルダー最厚部に感
温部を加硫終了まで測定した実測値と、初期加硫のみ測
定し、これを予め設定しておいた標準昇温曲線と比較照
会して推定した推定値(理論値)のズレ、すなわち精度
を示している。なお標準昇温曲線は、ショルダー最厚部
の標準厚み40、40±0.1、40±0.2、40±
0.3…40±1.0、40±1.5、40±2.0 m
/m、グリーンタイヤの標準温度23±1、23±2、2
3±3、……23±10、23±15、23±20℃の
それぞれを組み合わせた実測値で作成した。
Table 1 shows the results. In the table,
The tire thickness indicates the thickness of the thickest part of the shoulder, and the confidence range at the end of vulcanization is the measured value of the temperature-sensitive part in the thickest part of the shoulder of each tire measured until the end of vulcanization, and only the initial vulcanization is measured. , The deviation of the estimated value (theoretical value) estimated by comparing and inquiring with a preset standard temperature rising curve, that is, the accuracy is shown. The standard temperature rise curve is the standard thickness of the thickest part of the shoulder 40, 40 ± 0.1, 40 ± 0.2, 40 ±
0.3 ... 40 ± 1.0, 40 ± 1.5, 40 ± 2.0 m
/ m, standard temperature of green tires 23 ± 1, 23 ± 2, 2
3 ± 3, ... 23 ± 10, 23 ± 15, 23 ± 20 ° C. were combined and measured values were created.

【0021】[0021]

【表1】 表1より、測定温度範囲が広いほど、推定範囲が狭いほ
ど、加硫温度が低いほど推定精度は高くなることから、
所要加硫時間を決めるステップにおいては、設定精度に
応じて、これらより生じる誤差を加味して時間を決定す
ることが重要である。
[Table 1] From Table 1, the wider the measurement temperature range, the narrower the estimation range, and the lower the vulcanization temperature, the higher the estimation accuracy becomes.
In the step of determining the required vulcanization time, it is important to determine the time in consideration of the errors caused by these in accordance with the setting accuracy.

【0022】次に、タイヤサイズ1000R20 14PRのトラッ
クバスラジアルタイヤにつき、本方法を用いて最短加硫
時間を決定し、従来のブローポイント法(比較例1)及
び等価加硫時間法(比較例2)と比較検討した。標準昇
温曲線は上記と同様であり、この実施例ではショルダー
最厚部の標準厚み40mmに対して±0.1mm、グリーン
タイヤの標準温度23℃に対して±10℃変化した場合
の昇温曲線で決定している。なお加硫終了ステップの算
出は、感温部位置の等価加硫時間が加硫ステップにおけ
る抜き圧時点で所定時間に達する様に算出している。
Next, with respect to a truck bus radial tire having a tire size of 1000R20 14PR, the shortest vulcanization time was determined using this method, and the conventional blow point method (Comparative Example 1) and the equivalent vulcanization time method (Comparative Example 2) were used. ) And examined. The standard temperature rising curve is similar to the above, and in this example, the temperature rises when the standard thickness of the thickest part of the shoulder is ± 0.1 mm and the standard temperature of the green tire is ± 10 ° C. It is decided by the curve. The calculation of the vulcanization end step is performed so that the equivalent vulcanization time at the temperature sensing portion position reaches a predetermined time at the time of venting pressure in the vulcanization step.

【0023】[0023]

【表2】 図3及び表2より、この発明の方法によれば、従来のブ
ローポイント法や等価加硫時間法に比して2〜6分ほど
短く、大幅な生産性の向上が図られる。また最短加硫の
みならず最適加硫がなされるので、加熱によるゴム分子
の解重合が減少し、過加硫に伴うコーナリングパワーの
低下や転動抵抗性の低下、さらには高速耐久力の低下の
抑止が図られる。
[Table 2] From FIG. 3 and Table 2, according to the method of the present invention, the productivity is shortened by about 2 to 6 minutes as compared with the conventional blow point method and the equivalent vulcanization time method, and the productivity is significantly improved. Also, not only the shortest vulcanization but also the optimum vulcanization is performed, so the depolymerization of rubber molecules due to heating is reduced, the cornering power and rolling resistance are reduced due to overvulcanization, and the high speed durability is also reduced. Is suppressed.

【0024】[0024]

【発明の効果】以上の通り、この発明は加硫初期の段階
でタイヤ内の初期昇温パターンで最適の加硫終了時点を
予測できる方法であるため、感温部によって製品タイヤ
に傷をつける恐れはなく、またタイヤ内部の熱履歴をも
良好に推定することができる。従って各グリーンタイヤ
を個別に最適かつ最短の加硫時間で加硫することがで
き、生産性が大幅に向上できるものである。
As described above, since the present invention is a method of predicting the optimum vulcanization end point by the initial temperature rise pattern in the tire at the early stage of vulcanization, the temperature-sensitive part damages the product tire. There is no fear, and the heat history inside the tire can be well estimated. Therefore, each green tire can be individually vulcanized in the optimum and shortest vulcanization time, and the productivity can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】感温部の設置場所を示す概略図である。FIG. 1 is a schematic view showing an installation place of a temperature sensing unit.

【図2】ショルダー最厚部におけると加硫反応速度との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the vulcanization reaction rate and the thickest part of the shoulder.

【図3】ショルダー最厚部における昇温曲線を示すグラ
フである。
FIG. 3 is a graph showing a temperature rise curve in the thickest part of the shoulder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29L 30:00 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B29L 30:00 4F

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】モールドに充填したグリーンタイヤの表面
部のゴムが流動してモールド内面に沿った形状に変形す
る流動期間がほぼ終了した時点で、モールド内面に突出
自在に設けた感温部をグリーンタイヤに予め定めた深さ
だけ挿し込むステップ、ゴムの加硫反応が開始して流動
性を失う直前まで変化するタイヤの内部温度を測定する
ステップ、予め定められた温度に達した時点で感温部を
モールド内面まで後退するステップ、上記温度測定で求
めた初期昇温曲線を、予め設定してあった標準昇温曲線
で演算した初期昇温部分と比較照会して昇温曲線算出式
によって加硫終了に至るまでの昇温状態を推定するステ
ップ、この推定された昇温曲線から加硫時間の経過と加
硫度の関係を計算して所要加硫時間を定めるステップ、
及び所要加硫時間に達すれば加硫終了ステップに移行す
る信号を発するステップを包含することを特徴とするタ
イヤの加硫制御方法。
1. A temperature-sensing portion provided on the inner surface of a mold so as to project freely when the flow period during which the rubber on the surface portion of the green tire filled in the mold flows and is deformed into a shape along the inner surface of the mold. Inserting the tire to a predetermined depth in the green tire, measuring the internal temperature of the tire that changes until just before the rubber vulcanization reaction starts and loses fluidity, feel at the time of reaching the predetermined temperature The step of retracting the warm part to the inner surface of the mold, the initial temperature rising curve obtained by the temperature measurement is compared with the initial temperature rising part calculated by the preset standard temperature rising curve, and the temperature rising curve calculation formula is used. A step of estimating the temperature rising state until the end of vulcanization, a step of determining a required vulcanization time by calculating the relationship between the progress of vulcanization time and the degree of vulcanization from the estimated temperature rising curve,
And a method of controlling vulcanization of a tire, which includes a step of issuing a signal for shifting to a vulcanization ending step when a required vulcanization time is reached.
JP33043991A 1991-12-13 1991-12-13 Control method of vulcanization of tire Withdrawn JPH05162137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33043991A JPH05162137A (en) 1991-12-13 1991-12-13 Control method of vulcanization of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33043991A JPH05162137A (en) 1991-12-13 1991-12-13 Control method of vulcanization of tire

Publications (1)

Publication Number Publication Date
JPH05162137A true JPH05162137A (en) 1993-06-29

Family

ID=18232631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33043991A Withdrawn JPH05162137A (en) 1991-12-13 1991-12-13 Control method of vulcanization of tire

Country Status (1)

Country Link
JP (1) JPH05162137A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315659A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Tire and temperature management method of tire
JP2006341471A (en) * 2005-06-08 2006-12-21 Bridgestone Corp Vulcanization system and vulcanization control method
JP2007098756A (en) * 2005-10-04 2007-04-19 Bridgestone Corp Method and system for control of vulcanization
KR101133224B1 (en) * 2009-12-21 2012-05-03 한국타이어 주식회사 System for measuring vulcanization temperature
US20140163906A1 (en) * 2012-12-06 2014-06-12 Sumitomo Rubber Industries, Ltd. Method for estimating vulcanization degree of rubber compound
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2018118450A (en) * 2017-01-26 2018-08-02 横浜ゴム株式会社 Tire vulcanization system and tire vulcanization method
WO2019116778A1 (en) * 2017-12-15 2019-06-20 Toyo Tire株式会社 Tire molding die and pneumatic tire manufacturing method
JP2019107791A (en) * 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
CN115524359A (en) * 2022-11-25 2022-12-27 广东粤港澳大湾区黄埔材料研究院 Method for quantitatively shortening vulcanization time of rubber product and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315659A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Tire and temperature management method of tire
JP2006341471A (en) * 2005-06-08 2006-12-21 Bridgestone Corp Vulcanization system and vulcanization control method
JP2007098756A (en) * 2005-10-04 2007-04-19 Bridgestone Corp Method and system for control of vulcanization
KR101133224B1 (en) * 2009-12-21 2012-05-03 한국타이어 주식회사 System for measuring vulcanization temperature
US20140163906A1 (en) * 2012-12-06 2014-06-12 Sumitomo Rubber Industries, Ltd. Method for estimating vulcanization degree of rubber compound
JP2016203553A (en) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 Pneumatic tire production method and pneumatic tire
JP2018118450A (en) * 2017-01-26 2018-08-02 横浜ゴム株式会社 Tire vulcanization system and tire vulcanization method
WO2019116778A1 (en) * 2017-12-15 2019-06-20 Toyo Tire株式会社 Tire molding die and pneumatic tire manufacturing method
JP2019107791A (en) * 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
CN115524359A (en) * 2022-11-25 2022-12-27 广东粤港澳大湾区黄埔材料研究院 Method for quantitatively shortening vulcanization time of rubber product and application thereof
CN115524359B (en) * 2022-11-25 2023-03-10 广东粤港澳大湾区黄埔材料研究院 Method for quantitatively shortening vulcanization time of rubber product and application thereof

Similar Documents

Publication Publication Date Title
US3718721A (en) Method for controlling the state of cure of curable articles
US4344142A (en) Direct digital control of rubber molding presses
JPH05162137A (en) Control method of vulcanization of tire
US5055245A (en) Method of measuring temperature within cured article and method of controlling tire vulcanization
JP4730823B2 (en) Vulcanization control method and control system
CN110364228A (en) A kind of tyre stock formula vulcanizing system design method and system
US5486319A (en) Tire cure control system and method
JP2001062837A (en) Method for vulcanizing tire
JPS5962131A (en) Control on vulcanization of tire
JP4730887B2 (en) Vulcanization system and vulcanization control method
US6478991B1 (en) Method for vulcanizing a tire by predetermining its degree of vulcanization
CN101808790B (en) Cure time adjustment for a rubber article
US8163210B2 (en) Method of vulcanising pneumatic tyres and apparatus therefor
JP6759663B2 (en) Manufacturing method of side reinforced run-flat tire
EP4076920B1 (en) Vulcanisation process and apparatus for tyres
JPH08174554A (en) Tire vulcanizing mold apparatus
WO2017183422A1 (en) Tire vulcanizing method
JP2006027115A (en) Tire vulcanizing method
JP7469628B2 (en) Manufacturing method and manufacturing device for pneumatic tire
US2677854A (en) Curing bag with drainer
JPH0473683B2 (en)
JP7321040B2 (en) Method for manufacturing pneumatic tires
JP7488453B2 (en) Manufacturing method and manufacturing device for pneumatic tire
JP7381749B2 (en) Injection molding machine control device and program
US20200156337A1 (en) Temperature sensor, and method for producing pneumatic tire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311