JP7475136B2 - TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE - Google Patents

TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE Download PDF

Info

Publication number
JP7475136B2
JP7475136B2 JP2019236728A JP2019236728A JP7475136B2 JP 7475136 B2 JP7475136 B2 JP 7475136B2 JP 2019236728 A JP2019236728 A JP 2019236728A JP 2019236728 A JP2019236728 A JP 2019236728A JP 7475136 B2 JP7475136 B2 JP 7475136B2
Authority
JP
Japan
Prior art keywords
temperature measurement
tire
measurement probe
insertion hole
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019236728A
Other languages
Japanese (ja)
Other versions
JP2021104615A (en
Inventor
康喜 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2019236728A priority Critical patent/JP7475136B2/en
Publication of JP2021104615A publication Critical patent/JP2021104615A/en
Application granted granted Critical
Publication of JP7475136B2 publication Critical patent/JP7475136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型に関する。 The present invention relates to a tire molding mold for vulcanizing an unvulcanized raw tire having a pair of bead portions, sidewall portions extending radially outward from each of the bead portions, and a tread portion that is connected to the radially outer ends of each of the sidewall portions to form a tread surface.

ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。 When manufacturing pneumatic tires, which are rubber products, the vulcanization process is the most time-consuming process, and efforts to shorten the vulcanization process are currently being made. On the other hand, if the rubber part is not sufficiently vulcanized during the vulcanization process, air generated by the vulcanization reaction of the rubber will remain in the vulcanized rubber, and this remaining air may cause tire failure at the product stage. Therefore, at normal tire production sites, the time required for the vulcanization process is set by adding a surplus time that takes into account all the variations in the vulcanization process, taking into account the fact that the temperature of the raw unvulcanized tires, the temperature inside the mold, and the ambient temperature, for example, vary due to seasonal factors.

しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。 However, setting a leeway time is not desirable from the perspective of improving tire productivity, and it is desirable to determine the end time of vulcanization for each tire and carry out the vulcanization process efficiently.

下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。 The following Patent Document 1 describes a real-time vulcanization control method for a vulcanized sample, in which the impedance of the vulcanized sample is measured while the vulcanization process is in progress, and the optimal vulcanization stop time is determined to be the point at which the rate of increase in the polymer resistance value Rp of the vulcanized sample suddenly slows down. However, this method requires that the impedance of the vulcanized sample be measured by sandwiching the vulcanized sample between two electrodes, and since tires are usually laminated composite materials, it is difficult to apply this method to tires during tire vulcanization.

特開2003-211459号公報JP 2003-211459 A

本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能であり、かつ温度測定プローブの耐久性に優れたタイヤ成型用金型および該タイヤ成型用金型を使用した空気入りタイヤの製造方法を提供することにある。 The present invention was made in consideration of the above-mentioned circumstances, and its purpose is to provide a tire molding mold that can accurately measure the temperature of a pneumatic tire during vulcanization in order to reliably determine the end point of the vulcanization process for each tire, and that has a temperature measurement probe with excellent durability, as well as a method for manufacturing pneumatic tires using the tire molding mold.

上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントの少なくとも一つは、温度測定プローブの外周面側端を固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により外周面側端が固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、前記温度測定プローブ挿入穴の内周面側側面と前記温度測定プローブ表面とが螺合可能に形成されていることを特徴とするタイヤ成型用金型に関する。 The above objective can be achieved by the present invention as described below. That is, the present invention relates to a tire molding die for vulcanizing an unvulcanized raw tire having a pair of bead portions, sidewall portions extending radially outward from each of the bead portions, and a tread portion that is connected to the radially outer ends of each of the sidewall portions to form a tread surface, the tire molding die having at least a tread mold portion that can be pressed against the tread portion, the tread mold portion being divided in the circumferential direction and having a plurality of segments that can move in the radial direction of the raw tire, at least one of the segments having a fixing means for fixing the outer peripheral end of a temperature measurement probe, a temperature measurement probe insertion hole extending from the fixing means toward the inner peripheral side, and a temperature measurement probe whose outer peripheral end is fixed by the fixing means, which extends inside the temperature measurement probe insertion hole toward the inner peripheral side, and whose inner peripheral end exceeds the inner peripheral end of the temperature measurement probe insertion hole and is attached in a position that allows it to be embedded in the shoulder portion of the tread portion, and the inner peripheral side surface of the temperature measurement probe insertion hole and the temperature measurement probe surface are formed so that they can be screwed together.

上記タイヤ成型用金型において、前記温度測定プローブ挿入穴の内周面側側面に形成された雌ネジ部と前記温度測定プローブ表面に形成された雄ネジ部とが螺合可能に形成されていることが好ましい。 In the tire molding mold, it is preferable that the female thread formed on the inner peripheral side of the temperature measurement probe insertion hole and the male thread formed on the surface of the temperature measurement probe are formed so as to be able to be screwed together.

上記タイヤ成型用金型において、前記雌ネジ部が、前記温度測定プローブ挿入穴の内周面側端から深さ方向にL1の範囲に形成されており、前記温度測定プローブ挿入穴の内周面側端から外周面側端までの前記温度測定プローブ挿入穴の深さLに対し、0.02≦L1/L≦0.05であることが好ましい。 In the tire molding die, the female thread portion is formed in a range of L1 in the depth direction from the inner peripheral end of the temperature measurement probe insertion hole, and it is preferable that the depth L of the temperature measurement probe insertion hole from the inner peripheral end to the outer peripheral end of the temperature measurement probe insertion hole is 0.02≦L1/L≦0.05.

上記タイヤ成型用金型において、前記温度測定プローブ挿入穴の内周面側端での内径D1よりも外周面側端での内径D2が大きいことが好ましい。 In the tire molding mold, it is preferable that the inner diameter D2 at the outer peripheral end of the temperature measurement probe insertion hole is larger than the inner diameter D1 at the inner peripheral end.

上記タイヤ成型用金型において、前記温度測定プローブの外径が1~10mmであることが好ましい。 In the tire molding mold, it is preferable that the temperature measurement probe has an outer diameter of 1 to 10 mm.

上記タイヤ成型用金型において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。 In the tire molding mold described above, it is preferable that the temperature measurement probe is a platinum resistance thermometer.

また、本発明は、前記いずれかに記載のタイヤ成型用金型内で加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法に関する。 The present invention also relates to a method for manufacturing a pneumatic tire, which includes a vulcanization step of vulcanizing the tire in any one of the tire molds described above, characterized in that the vulcanization step includes a step of measuring the temperature of a shoulder portion included in a tread portion of an unvulcanized raw tire having a pair of bead portions, sidewall portions extending radially outward from each of the bead portions, and a tread portion that is connected to the radially outer ends of each of the sidewall portions to form a tread surface, by embedding a temperature measurement probe in the shoulder portion.

本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、セグメントの少なくとも1つに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。 The tire molding mold according to the present invention is a so-called "segmental mold" in which at least the tread mold portion is divided in the circumferential direction, and at least one of the segments is equipped with the above-mentioned specific temperature measurement probe. This makes it possible to accurately measure the temperature of the pneumatic tire during vulcanization, particularly the temperature of the shoulder portion of the tread portion, where vulcanization of the tire is most difficult to progress.

本発明に係るタイヤ成型用金型では、生タイヤのトレッド部のショルダー部に、温度測定プローブが押し込まれつつ埋設される。一般的には、ショルダー部を構成するゴム部が未加硫状態であっても、ゴム中に温度測定プローブが押し込まれる際、温度測定プローブには大きな負荷が掛かり、場合によっては温度測定プローブが湾曲してしまう虞がある。しかしながら、本発明に係るタイヤ成型用金型では、温度測定プローブ挿入穴の内周面側側面と温度測定プローブ表面とが螺合可能に形成されている。これにより、固定手段のみによって温度測定プローブの外周面側端を固定する構成に比して、温度測定プローブがより安定的に保持されるため、温度測定プローブの湾曲などの変形を防止し、温度測定プローブの耐久性を向上することができる。 In the tire molding die according to the present invention, a temperature measurement probe is embedded in the shoulder portion of the tread portion of a raw tire while being pushed into it. Generally, even if the rubber portion constituting the shoulder portion is in an unvulcanized state, a large load is applied to the temperature measurement probe when it is pushed into the rubber, and in some cases, the temperature measurement probe may bend. However, in the tire molding die according to the present invention, the inner peripheral side surface of the temperature measurement probe insertion hole and the surface of the temperature measurement probe are formed so that they can be screwed together. This allows the temperature measurement probe to be held more stably than a configuration in which the outer peripheral end of the temperature measurement probe is fixed only by a fixing means, preventing deformation such as bending of the temperature measurement probe and improving the durability of the temperature measurement probe.

本発明において製造可能なタイヤの一例を示すタイヤ子午線断面図FIG. 1 is a tire meridian cross-section showing an example of a tire that can be manufactured according to the present invention. 本発明のタイヤ成型用金型を概念的に示す断面図FIG. 1 is a cross-sectional view conceptually showing a tire molding die of the present invention. 本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図FIG. 2 is a cross-sectional view conceptually showing a state in which a temperature measuring probe is embedded in a shoulder portion of a segment constituting a tread mold portion of a mold of the present invention.

本発明の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。 The embodiment of the present invention will be described with reference to the drawings. The raw tire 9 shown in FIG. 1 is a pneumatic tire having a pair of bead portions 1, sidewall portions 2 extending radially outward from each of the bead portions 1, and a tread portion 3 that is connected to the radially outer ends of each of the sidewall portions 2 to form a tread surface. An annular bead core 1a is arranged in the bead portion 1.

カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。 The carcass layer 4 extends from the tread portion 3 through the sidewall portion 2 to the bead portion 1, and its end is folded back via the bead core 1a. The carcass layer 4 is composed of at least one carcass ply. The carcass ply is formed by covering the carcass cords, which extend at an angle of approximately 90° to the tire circumferential direction, with topping rubber.

ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。 The belt layer 5 is bonded to the outside of the carcass layer 4 in the tread portion 3 and is covered from the outside by the tread rubber 6. The belt layer 5 is composed of multiple belt plies (two in this embodiment). Each belt ply is formed by covering a belt cord that extends at an angle to the tire circumferential direction with a topping rubber, and the belt cords are layered so that they cross each other in opposite directions between the plies.

トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成してもよい。 The tread rubber 6 may be constructed of only one layer, or may have a so-called cap-base structure, which has a base tread on the inside in the tire radial direction and a cap tread located on the outer periphery of the base tread.

図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。 The raw tire 9 shown in Figure 1 is an unvulcanized raw tire, which is shaped into the shape of a product tire in the vulcanization process described below (see Figure 2), and various tread patterns are formed on the tread surface.

生タイヤ9の加硫成形では、本発明に係るタイヤ成型用金型(以下、単に「金型」ともいう)が使用される。図2に本発明のタイヤ成型用金型を概念的に表した断面図を示す。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。 A tire molding die (hereinafter, simply referred to as a "die") according to the present invention is used in the vulcanization molding of a raw tire 9. Figure 2 shows a cross-sectional view conceptually illustrating the tire molding die of the present invention. A raw tire 9 is set in this die 10 in an unvulcanized state, and the vulcanization process is carried out by applying heat and pressure to the raw tire 9 inside the die 10.

金型10は、生タイヤ9のトレッド部3に圧接可能なトレッド型部11を少なくとも備える。本実施形態では、金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個のセグメントに分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。 The mold 10 includes at least a tread mold portion 11 that can be pressed against the tread portion 3 of the raw tire 9. In this embodiment, the mold 10 includes the tread mold portion 11 that contacts the tread surface of the raw tire 9, a lower mold portion 12 that contacts the tire outer surface facing downward, and an upper mold portion 13 that contacts the tire outer surface facing upward. These are configured to be freely displaceable between a mold closed state and a mold open state by an opening/closing mechanism (not shown) installed around them, and the structure of such an opening/closing mechanism is well known. The tread mold portion 11 is further divided into a plurality of segments in the circumferential direction, and is movable in the radial direction of the raw tire 9 placed in the mold 10. In addition, the mold 10 is provided with a platen plate (not shown) having a heat source such as an electric heater or a steam jacket, which heats each mold portion.

金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。 At the center of the mold 10, a central mechanism 14 is provided coaxially with the tire, and a tread mold section 11, a lower mold section 12, and an upper mold section 13 are installed around it. The central mechanism 14 has a rubber bag-shaped bladder 15 and a center post 16 that extends in the axial direction of the tire, and the center post 16 is provided with an upper clamp 17 and a lower clamp 18 that grip the ends of the bladder 15.

中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。 A medium supply passage 21 for supplying the heating medium into the bladder 15 extends vertically in the central mechanism 14, and an outlet 22 is formed at the upper end of the medium supply passage 21. A supply pipe 24 is connected to the medium supply passage 21, through which the heating medium supplied from the heating medium supply source 23 and the pressurized medium supplied from the pressurized medium supply source 26 flow. The heating medium is supplied in response to the opening and closing operation of the valve 25, and the pressurized medium is supplied in response to the opening and closing operation of the valve 28.

また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。 The central mechanism 14 also has a medium discharge passage 31 extending vertically for discharging the high-temperature, high-pressure fluid that is a mixture of the heating medium and the pressurized medium in the bladder 15, and a recovery port 32 is formed at the upper end of the medium discharge passage 31. A discharge pipe 34 through which the high-temperature, high-pressure fluid flows is connected to the medium discharge passage 31, and a blow valve 33 for opening and closing the discharge pipe 34 is provided on the discharge pipe 34. The pump 35 may use a method of forced circulation of the high-temperature, high-pressure fluid so that the high-temperature, high-pressure fluid passing through the medium discharge passage 31 is resupplied to the inside of the bladder 15 via the medium supply passage 21.

以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部3Sに温度測定プローブ44を埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6~12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6~12の範囲内で奇数であることがより好ましい。 The segment 41 constituting the tread mold portion 11 of the mold 10 of the present invention will be described below. FIG. 3 is a cross-sectional view conceptually showing a state in which a temperature measurement probe 44 is embedded in a shoulder portion 3S of a segment constituting the tread mold portion of the mold of the present invention. In FIG. 3, the "inner peripheral surface side" means the side closer to the raw tire 9 when the raw tire 9 is set in the mold 10. The segment 41 is one of the tread mold portion 11 divided into, for example, 6 to 12 in the circumferential direction, and each of the segments can be pressed against the tread portion 3 of the raw tire 9 by moving in the radial direction of the raw tire 9. It is more preferable that the number of divisions of the segment 41 is an odd number within the range of 6 to 12.

セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって延びる温度測定プローブ挿入穴43と、固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端Iを超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。 At least one of the segments 41 includes a fixing means 42 for fixing a temperature measurement probe 44, a temperature measurement probe insertion hole 43 extending from the fixing means 42 toward the inner circumferential surface side, and a temperature measurement probe 44 fixed by the fixing means 42, extending through the temperature measurement probe insertion hole 43 toward the inner circumferential surface side, and attached in a position such that the inner circumferential surface side end exceeds the inner circumferential surface side end I of the temperature measurement probe insertion hole 43 and can be embedded in the shoulder portion 3S of the tread portion 3. Such a temperature measurement probe 44 may be attached to one of the multiple segments 41, may be attached to multiple segments 41, or may be attached to all of the segments 41.

温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さを調製可能となるように設計可能である。 The fixing means 42 for fixing the temperature measurement probe 44 can be designed so that the protruding height of the temperature measurement probe 44 from the temperature measurement probe hole 43 can be adjusted, for example, by configuring the outer peripheral surface side with a double nut or the like and the inner peripheral surface side with a screw structure.

固定手段42の内周面側には、温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。 A temperature measurement probe insertion hole 43 is formed on the inner peripheral surface side of the fixing means 42. As described later, the temperature measurement probe insertion hole 43 is preferably arranged in the radial direction of the raw tire 9. The inner peripheral surface side of the temperature measurement probe insertion hole 43 is open, and the temperature measurement probe 44 is designed to protrude into the cavity of the mold 10 and be embedded in the shoulder portion 3S of the tread portion 3.

温度測定プローブ44は、外周面側の端部が固定手段42により固定され、温度測定プローブ挿入穴43内を内周面側に向かって延び、内周面側端が温度測定プローブ挿入穴43の内周面側端Iを超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の配設方向としては後述のとおり、生タイヤ9の径方向とすることが好ましい。また、温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。 The temperature measurement probe 44 is attached in a position in which its outer peripheral end is fixed by a fixing means 42, extends through the temperature measurement probe insertion hole 43 toward the inner peripheral end, and its inner peripheral end passes beyond the inner peripheral end I of the temperature measurement probe insertion hole 43 so that it can be embedded in the shoulder portion 3S of the tread portion 3. As described below, the temperature measurement probe 44 is preferably disposed in the radial direction of the raw tire 9. The cross-sectional shape of the temperature measurement probe 44 is not particularly limited, but is preferably circular.

前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブ44への負荷軽減を考慮した場合、セグメント41が径方向に移動する際の進行方向と、温度測定プローブ44の径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。 As described above, since the segment 41 moves in the radial direction of the raw tire 9, it is preferable to set the temperature measurement probe 44 in the radial direction of the raw tire 9, since this minimizes the load when the temperature measurement probe 44 is embedded in the shoulder portion 3S. When considering the reduction of the load on the temperature measurement probe 44, it is preferable that the deviation between the traveling direction of the segment 41 when moving in the radial direction and the radial installation direction of the temperature measurement probe 44 be 3° or less, and more preferably 1° or less.

図3に記載のとおり、本実施形態では温度測定プローブ挿入穴43の内周面側側面には雌ネジ部が形成され、温度測定プローブ44表面には雄ネジ部が形成され、温度測定プローブ挿入穴43の内周面側側面と温度測定プローブ44表面とは螺合可能に形成されている。かかる構成によれば、温度測定プローブ44が温度測定プローブ挿入穴43内で安定的に保持されるため、温度測定プローブ44の湾曲などの変形を防止し、温度測定プローブ44の耐久性を向上することができる。 As shown in FIG. 3, in this embodiment, a female thread is formed on the inner peripheral side of the temperature measurement probe insertion hole 43, and a male thread is formed on the surface of the temperature measurement probe 44, so that the inner peripheral side of the temperature measurement probe insertion hole 43 and the surface of the temperature measurement probe 44 can be screwed together. With this configuration, the temperature measurement probe 44 is stably held within the temperature measurement probe insertion hole 43, preventing deformation such as bending of the temperature measurement probe 44 and improving the durability of the temperature measurement probe 44.

温度測定プローブ挿入穴43の内周面側側面に形成された雌ネジ部は、温度測定プローブ挿入穴43の内周面側側面のいずれの場所に形成されてもよいが、温度測定プローブ挿入穴43の内周面側端Iから外周面側に向かって形成されることが好ましい。また、雌ネジ部は、温度測定プローブ挿入穴43の内周面側端Iから深さ方向にL1の範囲に形成されており、温度測定プローブ挿入穴43の内周面側端Iから外周面側端Oまでの温度測定プローブ挿入穴43の深さLに対し、0.02≦L1/L≦0.05であることが好ましい。かかる構成によれば、温度測定プローブ44が温度測定プローブ挿入穴43内でより安定的に保持されるため、温度測定プローブ44の湾曲などの変形をより確実に防止し、温度測定プローブ44の耐久性をさらに向上することができる。L1の長さは温度測定プローブ44の長さに応じて任意に設計可能であるが、例えば5mm以上であることが好ましい。 The female screw portion formed on the inner peripheral surface side of the temperature measurement probe insertion hole 43 may be formed anywhere on the inner peripheral surface side of the temperature measurement probe insertion hole 43, but is preferably formed from the inner peripheral surface end I of the temperature measurement probe insertion hole 43 toward the outer peripheral surface side. In addition, the female screw portion is formed in a range of L1 in the depth direction from the inner peripheral surface end I of the temperature measurement probe insertion hole 43, and it is preferable that the depth L of the temperature measurement probe insertion hole 43 from the inner peripheral surface end I to the outer peripheral surface end O of the temperature measurement probe insertion hole 43 is 0.02≦L1/L≦0.05. With this configuration, the temperature measurement probe 44 is more stably held in the temperature measurement probe insertion hole 43, so that deformation such as bending of the temperature measurement probe 44 can be more reliably prevented, and the durability of the temperature measurement probe 44 can be further improved. The length of L1 can be designed arbitrarily according to the length of the temperature measurement probe 44, but it is preferable that it is 5 mm or more, for example.

本実施形態では、温度測定プローブ挿入穴43の内周面側端Iでの内径D1よりも外周面側端Oでの内径D2が大きく設計されている。かかる構成よれば、外周面側において、温度測定プローブ44と温度測定プローブ穴43との間の隙間部分をより大きく確保できるため、温度測定プローブ44によってトレッド部3のショルダー部3S内の温度を測定する際、金型10からの温度測定プローブ44への輻射熱伝導をより少なくすることが可能となり、トレッド部3のショルダー部3S内の温度をより正確に測定することができる。温度測定プローブ挿入穴43において、内径がD1よりも大きくなる部分の深さ方向長さをL2としたとき、L2/L≦0.9であることが好ましい。 In this embodiment, the temperature measurement probe insertion hole 43 is designed to have an inner diameter D2 at the outer peripheral end O larger than the inner diameter D1 at the inner peripheral end I. With this configuration, a larger gap can be secured between the temperature measurement probe 44 and the temperature measurement probe hole 43 on the outer peripheral side. This makes it possible to reduce the radiant heat conduction from the mold 10 to the temperature measurement probe 44 when measuring the temperature in the shoulder portion 3S of the tread portion 3 with the temperature measurement probe 44, and thus makes it possible to more accurately measure the temperature in the shoulder portion 3S of the tread portion 3. When the depth direction length of the portion of the temperature measurement probe insertion hole 43 where the inner diameter is larger than D1 is L2, it is preferable that L2/L≦0.9.

温度測定プローブ44の外径は、温度測定プローブ挿入穴43の内周面側端での内径D1と等しく設計してもよいし、温度測定プローブ挿入穴43の内周面側側面と温度測定プローブ44表面とが螺合可能となる範囲内で小さく設計してもよい。温度測定プローブ44の外径としては、例えば1~10mm程度が好ましい。 The outer diameter of the temperature measurement probe 44 may be designed to be equal to the inner diameter D1 at the inner circumferential end of the temperature measurement probe insertion hole 43, or may be designed to be smaller within a range in which the inner circumferential side surface of the temperature measurement probe insertion hole 43 and the surface of the temperature measurement probe 44 can be screwed together. The outer diameter of the temperature measurement probe 44 is preferably, for example, about 1 to 10 mm.

本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。 In the present invention, a resistance thermometer that utilizes the property that the electrical resistance of a metal changes with temperature can be used as the temperature measurement probe used when measuring the vulcanization temperature. Examples of such metals include platinum, nickel, and copper, but in the present invention, a platinum resistance thermometer, which has a large change in resistance value (sensitivity) with respect to temperature changes and is therefore very sensitive to temperature changes, is particularly suitable for use.

次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。 Next, we will explain in detail the vulcanization process in the manufacturing method of the pneumatic tire of the present invention.

まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブ44をトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブ44が生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブ44により、加硫工程時には生タイヤ9の温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取ればよい。 First, as shown in FIG. 2, a raw tire 9 is set in a mold 10, and the raw tire 9 is shaped to the inner shape of the mold 10 by an inflated bladder 15. As a result, the raw tire 9 is held by the bladder 15 and assigned to each of the tread mold portion 11, the lower mold portion 12, and the upper mold portion 13. At this point, a temperature measurement probe is embedded in the slowest vulcanization part of the raw tire 9. The slowest vulcanization part means the part where the vulcanization of the tire is most difficult to progress, and usually means the shoulder part of the tread portion 3. In particular, among the shoulder parts, it is preferable to set the position where the thickness of the tread portion 3 is maximum, measured along the normal line of the inner surface of the tread portion 3 after vulcanization, as the slowest vulcanization part. In any case, in the present invention, a temperature measurement probe is embedded in the slowest vulcanization part of the raw tire 9 in order to measure the vulcanization temperature in the slowest vulcanization part. As a method of embedding, for example, the temperature measurement probe 44 may be arranged at a position corresponding to the shoulder portion of the tread mold portion 11, and when the tread mold portion 11 moves in the radial direction of the raw tire 9 to assign the raw tire 9, the temperature measurement probe 44 may be designed to be embedded while being pressed into the raw tire 9. The temperature measurement probe 44 embedded in the raw tire 9 in this way measures the temperature of the raw tire 9 during the vulcanization process, and when the tire is removed from the mold 10 including the tread mold portion 11 at the end of the vulcanization process, the temperature measurement probe may be simultaneously removed from the slowest vulcanization portion.

続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。 Then, the raw tire 9 is vulcanized by heating the mold 10 to heat the tire 9 from the tire outer surface side, and by heating the tire 9 from the tire inner surface side by supplying a high-temperature heating medium to the bladder 15 in the mold 10. The mold 10 is preheated by the steam jacket or the like, and the external heating is performed by this. The internal heating is performed by supplying a heating medium into the bladder 15 through the medium supply path 21 after shaping the tire 9. After supplying the heating medium for a predetermined time, a pressurizing medium is subsequently supplied into the bladder 15 to pressurize the tire 9 at high pressure. For example, steam or high-temperature water is used as the heating medium, and for example, an inert gas such as nitrogen gas or steam is used as the pressurizing medium.

温度測定プローブ44により、加硫中の生タイヤの温度の時系列データを取得することができる。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。取得した時系列データを解析することにより、タイヤ毎に加硫工程の終了時点を確実に決定することができる。 The temperature measurement probe 44 can be used to obtain time series data on the temperature of the raw tire during vulcanization. To obtain such time series data, a high-precision digital data logger (temperature resolution of approximately 0.001°C, accuracy of approximately ±0.005°C, minimum acquisition interval of temperature value of 1 second) that is commonly available on the market can be used. By analyzing the obtained time series data, the end point of the vulcanization process can be reliably determined for each tire.

加硫工程終了後は、金型10を開放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。 After the vulcanization process is completed, the mold 10 is opened and the temperature measuring probe disposed in the mold 10 is removed from the vulcanized tire. As a result, the vulcanization end point can be determined for each tire, and pneumatic tires can be manufactured while shortening the vulcanization time.

本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the above-described embodiment, and various improvements and modifications are possible without departing from the spirit of the present invention.

Claims (5)

一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加硫するタイヤ成型用金型であって、
前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
前記セグメントの少なくとも一つは、温度測定プローブの外周面側端を固定する固定手段と、前記固定手段から内周面側に向かって延びる温度測定プローブ挿入穴と、前記固定手段により外周面側端が固定され、前記温度測定プローブ挿入穴内を内周面側に向かって延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
前記温度測定プローブ挿入穴の内周面側側面に形成された雌ネジ部と前記温度測定プローブ表面に形成された雄ネジ部とが螺合可能に形成されており、
前記雌ネジ部が、前記温度測定プローブ挿入穴の内周面側端から深さ方向にL1の範囲に形成されており、前記温度測定プローブ挿入穴の内周面側端から外周面側端までの前記温度測定プローブ挿入穴の深さLに対し、0.02≦L1/L≦0.05であることを特徴とするタイヤ成型用金型。
A tire molding mold for vulcanizing an unvulcanized raw tire including a pair of bead portions, sidewall portions extending radially outward from each of the bead portions, and a tread portion continuing to radially outer ends of each of the sidewall portions to form a tread surface,
The tire includes at least a tread mold portion that can be pressed against the tread portion,
the tread mold portion is divided in a circumferential direction and has a plurality of segments movable in a radial direction of the raw tire,
At least one of the segments includes a fixing means for fixing an outer peripheral surface side end of a temperature measurement probe, a temperature measurement probe insertion hole extending from the fixing means toward the inner peripheral surface side, and a temperature measurement probe whose outer peripheral surface side end is fixed by the fixing means, which extends through the temperature measurement probe insertion hole toward the inner peripheral surface side, and whose inner peripheral surface side end exceeds the inner peripheral surface side end of the temperature measurement probe insertion hole and is attached in a position such that it can be embedded in a shoulder portion of the tread portion,
a female screw portion formed on an inner peripheral surface side of the temperature measuring probe insertion hole and a male screw portion formed on a surface of the temperature measuring probe are formed so as to be able to be screwed together;
a tire molding mold characterized in that the female thread portion is formed within a range of L1 in the depth direction from the inner circumferential surface end of the temperature measurement probe insertion hole, and a depth L of the temperature measurement probe insertion hole from the inner circumferential surface end to the outer circumferential surface end of the temperature measurement probe insertion hole satisfies 0.02≦L1/L≦0.05.
前記温度測定プローブ挿入穴の内周面側端での内径D1よりも外周面側端での内径D2が大きい請求項1に記載のタイヤ成型用金型。 2. The tire molding mold according to claim 1 , wherein an inner diameter D2 of the temperature measuring probe insertion hole at an outer circumferential surface end is larger than an inner diameter D1 of the temperature measuring probe insertion hole at an inner circumferential surface end. 前記温度測定プローブの外径が1~10mmである請求項1または2に記載のタイヤ成型用金型。 3. The tire molding mold according to claim 1, wherein the temperature measuring probe has an outer diameter of 1 to 10 mm. 前記温度測定プローブが、プラチナ測温抵抗体である請求項1~のいずれかに記載のタイヤ成型用金型。 4. The tire molding mold according to claim 1 , wherein the temperature measuring probe is a platinum resistance temperature detector. 請求項1~のいずれかに記載のタイヤ成型用金型内で加硫する加硫工程を含む空気入りタイヤの製造方法であって、
前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法。
A method for producing a pneumatic tire, comprising a vulcanization step of vulcanizing in a tire mold according to any one of claims 1 to 4 ,
a shoulder portion of a tread portion of an unvulcanized raw tire having a pair of bead portions, sidewall portions extending radially outward from each of the bead portions, and a tread portion connected to radially outer ends of each of the sidewall portions to form a tread surface, by embedding a temperature measuring probe in the shoulder portion.
JP2019236728A 2019-12-26 2019-12-26 TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE Active JP7475136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236728A JP7475136B2 (en) 2019-12-26 2019-12-26 TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236728A JP7475136B2 (en) 2019-12-26 2019-12-26 TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE

Publications (2)

Publication Number Publication Date
JP2021104615A JP2021104615A (en) 2021-07-26
JP7475136B2 true JP7475136B2 (en) 2024-04-26

Family

ID=76918378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236728A Active JP7475136B2 (en) 2019-12-26 2019-12-26 TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE

Country Status (1)

Country Link
JP (1) JP7475136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429546B2 (en) * 2020-01-21 2024-02-08 Toyo Tire株式会社 Tire molding mold and pneumatic tire manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019107791A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
JP2019107790A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184211A (en) * 1984-10-01 1986-04-28 Sumitomo Rubber Ind Ltd Vulcanization of elastomer article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019107791A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire
JP2019107790A (en) 2017-12-15 2019-07-04 Toyo Tire株式会社 Die for tire molding and method for manufacturing pneumatic tire

Also Published As

Publication number Publication date
JP2021104615A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
JP6465734B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP7030500B2 (en) How to manufacture tire molding dies and pneumatic tires
JP7475136B2 (en) TIRE BUILDING MOLD AND METHOD FOR MANUFACTURING PNEUMATIC TIRE
US2962757A (en) Method of and apparatus for molding and vulcanizing a fabric reinforced rubber air spring bellows
JP4730887B2 (en) Vulcanization system and vulcanization control method
US9555590B2 (en) Pneumatic tire for heavy load, and method for producing the same
JP6912366B2 (en) How to make a pneumatic tire
CN102476462B (en) Measuring tire pressure in tire mold
JP6457880B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP7429546B2 (en) Tire molding mold and pneumatic tire manufacturing method
CN109263096A (en) Tyre vulcanization forming method
EP3842206A1 (en) Rubber temperature measuring device and method for manufacturing rubber product
JP7178242B2 (en) Temperature sensor and pneumatic tire manufacturing method
JP7550639B2 (en) Manufacturing method of pneumatic tire
JP2019107790A (en) Die for tire molding and method for manufacturing pneumatic tire
JP7553349B2 (en) Tire molding mold
JP6912365B2 (en) How to make a pneumatic tire
WO2019116778A1 (en) Tire molding die and pneumatic tire manufacturing method
JP7321040B2 (en) Method for manufacturing pneumatic tires
WO2019116757A1 (en) Pneumatic tire manufacturing method
JP6465735B2 (en) Pneumatic tire manufacturing method
JP6489920B2 (en) Pneumatic tire manufacturing method and pneumatic tire
JP2022101835A (en) Manufacturing method of pneumatic tire
JP2009208400A (en) Tire production method and production equipment
JP2023082968A (en) Temperature sensor, tire curing mold and pneumatic tire production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7475136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150