WO2019116491A1 - 無線通信システムおよび無線通信方法 - Google Patents

無線通信システムおよび無線通信方法 Download PDF

Info

Publication number
WO2019116491A1
WO2019116491A1 PCT/JP2017/044888 JP2017044888W WO2019116491A1 WO 2019116491 A1 WO2019116491 A1 WO 2019116491A1 JP 2017044888 W JP2017044888 W JP 2017044888W WO 2019116491 A1 WO2019116491 A1 WO 2019116491A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
base stations
wireless communication
station
central control
Prior art date
Application number
PCT/JP2017/044888
Other languages
English (en)
French (fr)
Inventor
雅之 竹川
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2019559487A priority Critical patent/JPWO2019116491A1/ja
Priority to PCT/JP2017/044888 priority patent/WO2019116491A1/ja
Publication of WO2019116491A1 publication Critical patent/WO2019116491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to a wireless communication system and wireless communication method for performing wireless communication using site diversity transmission, and more particularly to a transmission site selection method.
  • the progress of the information-oriented society in recent years is extremely remarkable, and in addition to wired communication, wireless communication is often used as a communication method in many information communication devices and services.
  • the radio wave propagation path is represented by Space Time Coding (STC) and Multi-Input Multi-Output (MIMO) transmission method.
  • STC Space Time Coding
  • MIMO Multi-Input Multi-Output
  • Site diversity is a type of space diversity scheme with coordinated multipoint transmission.
  • transmitters for example, base stations of a cellular system
  • sites configuring a wireless area
  • receiver for example, from the plurality of sites
  • the same information is sent to the mobile station of the cellular system.
  • diversity gain can be obtained by utilizing the difference in propagation path characteristics between the respective transmitting antennas and receiving antennas.
  • Patent Document 1 discloses an invention related to site diversity.
  • radio waves carrying the same information data are emitted from transmitters installed at a plurality of places (sites) configuring a wireless area, and a space diversity gain is obtained in the receiver.
  • the propagation path condition between the mobile station and the base station changes momentarily due to fluctuations in propagation characteristics such as fading, shadowing or distance attenuation. For this reason, the base station that was optimal at a certain point in time does not necessarily continue to be optimal thereafter. For example, even a base station that has a small propagation loss between mobile stations at a certain time may increase the propagation loss due to shadowing at the actual transmission time. In addition, even if the base station has a large propagation loss with the mobile station at a certain time, the propagation loss may be reduced if it is not shielded at the actual transmission time. In such a situation, if a time lag occurs between the time when the base station used for site diversity transmission is selected and the time when radio waves are actually emitted from the base station, the base station is not necessarily appropriate. Radio waves will be emitted from
  • radio waves addressed to the same mobile station from all the base stations constituting the system.
  • radio waves are also emitted from a base station that does not contribute to diversity gain because the distance is very long, spatial resource reuse can not be performed, and a reduction in system transmission capacity can be avoided. Absent.
  • the movement route is limited to the track, so movement can be predicted, but it may be walking, car or unmanned air vehicle etc. The prediction is difficult when there is no restriction on the movement path.
  • the present invention has been made in view of the above-described conventional circumstances, and in a radio communication system using site diversity transmission, radio communication is performed by suppressing a decrease in diversity gain even in a situation where propagation path conditions change. Aims to make it possible to do.
  • a wireless communication system is configured as follows. That is, in a wireless communication system in which the same data is transmitted to a mobile station from two or more base stations of a plurality of base stations installed in different places, network centralized control communicably connected to the plurality of base stations The network central control apparatus selects one or more base stations based on propagation path conditions between each base station and the mobile station, and a distance between each base station and the mobile station. It is characterized in that another one or more base stations are selected based on which one or more selected base stations transmit data to the mobile station.
  • the base station estimates the propagation path state between the base station and the mobile station based on the received signal from the mobile station, and the estimated path state is subjected to the network centralized control It may be configured to notify the device. Further, the mobile station notifies the network central control device of position information of the local station via the base station, and the network central control device is based on the position information of the mobile station notified from the mobile station. Alternatively, the distance between each base station and the mobile station may be calculated.
  • the mobile station further includes an operation management system that manages the operation status of the mobile station, the mobile station notifies the operation management system of its own location information via a base station, and the operation management system registers in advance
  • the operation status of the mobile station may be managed based on the moving route of the mobile station and the position information notified from the mobile station.
  • the present invention in a wireless communication system using site diversity transmission, it is possible to perform wireless communication while suppressing a decrease in diversity gain even in a situation where propagation path conditions change, and wireless communication with higher reliability can be achieved. Can be provided.
  • FIG. 1 is a diagram showing an example of the entire configuration of a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system 1 according to the present embodiment is a wireless communication system using site diversity.
  • the wireless communication system 1 includes an MS (Mobile Station) 20 which is a wireless communication terminal, BSs (Base Stations) 10 to 14 which are base stations to which these wireless communication terminals connect, and a network concentration. It comprises the control device 30 and the operation management system 40.
  • wireless communication terminal (MS20) the radio
  • a mobile equipped with an autonomous moving means is also referred to as an autonomous mobile.
  • the radio communication between the BSs 10 to 14 and the MS 20 is performed by a time division duplex system using the same frequency for uplink communication and downlink communication.
  • the network central control unit 30 manages the line aggregation function 31 that mediates communication between the BSs 10 to 14 and the operation management system 40, and manages which of the BSs 10 to 14 the MS 20 optimally communicates with. And a base station position management function 33 which holds in advance the geographical position information of the BSs 10 to 14 determined when the BSs 10 to 14 are installed.
  • the operation management system 40 has a function of managing the operation status of the autonomously moving body based on the position information of the autonomously moving body and the moving route set in advance.
  • BSs 10 to 14 each have an antenna 101 for transmitting and receiving radio waves, a data transmission unit 102 for transmitting and receiving data, a main control unit 103 for controlling the entire own station, an external line and an external device. And a terminal 105 for connecting to an external line or an external device.
  • the data transmission unit 102 includes an RF unit 111, a baseband (BB) signal processing unit 112, and a MAC processing unit 113.
  • the RF unit 111 performs processing such as frequency conversion from a baseband to a radio frequency band, frequency conversion from a radio frequency band to a baseband, and signal amplification.
  • the BB signal processing unit 112 includes a transmission BB unit 121 and a reception BB unit 122.
  • the transmission BB unit 121 includes a channel coding unit 131 that performs channel coding processing, and a modulation unit 132 that performs modulation processing.
  • the reception BB unit 122 includes a demodulation unit 141 that performs demodulation processing, a channel decoding unit 142 that performs channel decoding processing, and a propagation loss estimation unit 143 that performs propagation loss estimation.
  • the MAC processing unit 113 performs processing such as control of the frequency used by the own station and data transmission / reception timing, addition of the own station identifier to the communication packet, error detection of the received packet, and recognition of a wireless device of data transmission source. .
  • the main control unit 103 can be configured by, for example, a processor, a data storage area defined on a memory, and software. Also, the processing in the BB signal processing unit 112 and the MAC processing unit 113 is performed, for example, by the processor of the main control unit 103 reading out a program stored in a data storage device such as a hard disk or a flash memory onto memory and executing it. It is possible to realize.
  • the MS 20 has an antenna 201 for transmitting and receiving radio waves, a data transmission unit 202 for transmitting and receiving data, a main control unit 203 for controlling the entire own station, an external line and an external device. And a terminal 205 for connecting to an external line or an external device, and a Global Navigation Satellite System (GNSS) receiver 206 for acquiring position information of the own station.
  • GNSS Global Navigation Satellite System
  • the data transmission unit 202 includes an RF unit 211, a baseband (BB) signal processing unit 212, and a MAC processing unit 213.
  • the RF unit 211 performs processing such as frequency conversion from a baseband to a radio frequency band, frequency conversion from a radio frequency band to a baseband, and signal amplification.
  • the BB signal processing unit 212 includes a transmission BB unit 221 and a reception BB unit 222.
  • the transmission BB unit 221 includes a channel coding unit 231 that performs channel coding processing, and a modulation unit 232 that performs modulation processing.
  • the reception BB unit 222 includes a demodulation unit 241 that performs demodulation processing, and a channel decoding unit 242 that performs channel decoding processing.
  • the MAC processing unit 213 performs processing such as control of the frequency channel and data transmission / reception timing used by the own station, addition of the own station identifier to the packet, error detection of the received packet, and recognition of a wireless device
  • the main control unit 203 can be configured by, for example, a processor, a data storage area defined on a memory, and software. Also, the processing in the BB signal processing unit 212 and the MAC processing unit 213 is performed, for example, by the processor of the main control unit 203 reading out a program stored in a data storage device such as a hard disk or flash memory onto memory and executing it. It is possible to realize.
  • Example of transmission base station selection at site diversity transmission Hereinafter, an example of a procedure for selecting a base station (transmission BS) to be used for site diversity transmission when the BSs 10 to 14 and the MS 20 perform wireless communication will be described.
  • the MS 20 When transmitting the uplink signal to the BSs 10 to 14, the MS 20 adds MS position information notified from the GNSS receiver 206 to the uplink communication data, and transmits the uplink communication data through the data transmission unit 202.
  • the BSs 10 to 14 receive the uplink signal transmitted from the MS 20 and decode them by the BB signal processing unit 112. At this time, the propagation loss estimation unit 143 estimates the propagation loss between MS and BS based on the received signal from the MS 20. After that, when no error is detected in the received packet in the MAC processing unit 113, BSs 10 to 14 cause the network centralized control device 30 to determine the propagation loss between MS and BS estimated by the propagation loss estimation unit 143. Transfer the information and the local identifier together with the received packet. The network central control device 30 transfers the MS position information to the operation management system 40.
  • -Position information of BS 10 to 14 held in advance-Position information of MS 20-Propagation loss between BS 10-MS 20-Propagation loss between BS 11-MS 20-Propagation loss between BS 12-MS 20-Propagation loss between BS 13-MS 20
  • the network centralized control device 30 uses the transmission BS management function 32 to select the optimum transmission BS for site diversity transmission using the collected information. Specifically, first, the distance between each BS and the MS is calculated based on the position information of the BSs 10 to 14 and the position information of the MS 20. As a result, the following table can be created for the distance between each BS and MS and the propagation loss between each BS and MS. In this configuration example, the propagation loss takes a large value although the distance is short because the space between BS 13 and MS 20 is out of sight due to the influence of a shield (for example, a building) as shown in FIG. There is.
  • a shield for example, a building
  • the propagation loss between the BS 14 and the MS 20 is larger, and is attenuated to the extent that packets can not be received.
  • the network central control apparatus 30 selects two stations, that is, the BS 11 and the BS 12 in ascending order of propagation loss, and selects one station, ie, the BS 13 in ascending order of distance from the remaining BSs.
  • the network central control device 30 instructs the BS 11, BS 12 and BS 13 selected as the transmitting BS in the above procedure to transmit the same data to the MS 20 respectively.
  • the MS 20 moves and the positional relationship as shown in FIG. 6 is obtained.
  • the propagation loss is 100 dB or more in any case, and the reception quality is degraded.
  • the propagation loss of BS11 and BS12 is increased, the propagation loss of BS13 is decreased, and the reception quality is improved. Can be expected.
  • the wireless communication system of the present example is mounted on a mobile body provided with a plurality of base stations (10 to 14) installed at different places, and an autonomous moving means such as an unmanned aerial vehicle or an autonomous driving vehicle.
  • the mobile station (20) is configured to perform wireless communication using site diversity transmission in which the same data is transmitted from two or more base stations to the mobile station.
  • the wireless communication system further includes a network central control device (30) having a function of selecting a base station to perform site diversity transmission, and an operation management system (40) for managing the operation of an autonomous mobile unit.
  • Each base station estimates the propagation loss between itself and the mobile station from the transmission signal from the mobile station, and notifies the estimated propagation loss to the network central control unit.
  • the mobile station notifies the network central control device and the operation management system of the position of the mobile station via the base station. Then, the first reference (the propagation loss between the mobile station and the base station) and the second reference (the mobile station and the base) are used as a reference when the network central control apparatus selects a base station that transmits data to the mobile station. Use geographical distance between stations) in combination.
  • the propagation loss between each base station and the mobile station is not necessarily essential.
  • the value may be calculated at each base station and used as a first reference instead of the propagation loss.
  • the number of base stations selected according to the first criterion and the number of base stations selected according to the second criterion may each be any number of one or more.
  • the base station is selected based on the propagation loss between each base station and the mobile station and the current position of the mobile station, but the network central control device 30 and the operation management system 40 cooperate with each other.
  • the base station may be selected based on the estimation result of the position of the mobile station after a predetermined time.
  • the operation management system 40 estimates the position of the mobile station after a predetermined time based on the previously registered mobile route information and the current position of the mobile station, and the network central control device 30 The base station closer to the estimated position may be selected preferentially.
  • the predetermined time is not determined from the movement route information and the current time without using the current position of the mobile station.
  • the position of the mobile station after time may be estimated.
  • the operation management system 40 or the network central control device 30
  • the position of the mobile station may be estimated.
  • the present invention can be used in a wireless communication system that performs wireless communication using site diversity transmission.
  • BS base station
  • MS mobile station
  • network central control device 40 operation management system 101: antenna, 102: data transmission unit, 103: main control unit, 104: interface unit, 105: terminal, 111: RF unit, 112: BS signal processing unit, 113: MAC processing unit, 121: transmission BB unit, 122 : Reception BB unit, 131: Channel coding unit, 132: Modulation unit, 141: Demodulation unit, 142: Channel decoding unit, 143: Propagation loss estimation unit, 201: antenna, 202: data transmission unit, 203: main control unit, 204: interface unit, 205: terminal, 206: GNSS receiver, 211: RF unit, 212: BB signal processing unit, 213: MAC processing unit, 221 : Transmission BB unit, 222: Reception BB unit, 231: Channel coding unit, 232: Modulation unit, 241: Demodulation unit, 242: Channel decoding unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

伝搬路状態が変動する状況においてもダイバーシチ利得の低下を抑えて無線通信を行うことを可能にする。 異なる場所に設置された複数の基地局10~14のうちの2以上の基地局から同一のデータを移動局20に送信する無線通信方法において、複数の基地局10~14と通信可能に接続されたネットワーク集中制御装置30が、各基地局と移動局の間の伝搬路状態に基づいて1以上の基地局を選択すると共に、各基地局と移動局の間の距離とに基づいて別の1以上の基地局を選択し、ネットワーク集中制御装置30により選択された2以上の基地局が、移動局20に対して同一のデータを送信する。

Description

無線通信システムおよび無線通信方法
 本発明は、サイトダイバーシチ送信を用いて無線通信を行う無線通信システム及び無線通信方法に関し、特に、送信サイトの選択方法に関する。
 近年の情報化社会の進展は実に目覚しく、多くの情報通信機器やサービスにおける通信方法として、有線通信のほかに、無線通信が利用されることも多くなっている。これに伴い、周波数利用効率向上のため、時空間符号化(Space Time Coding:STC)や多入力多出力(Multi-Input Multi-Output:MIMO)伝送方式に代表されるような、電波伝搬路の有する情報伝送容量を引き出す空間信号処理技術が実用化されており、また、さらなる高度化が求められている。
 ここで、空間信号処理技術の一種として、サイトダイバーシチ送信技術がある。サイトダイバーシチは、多地点協調送信による空間ダイバーシチ方式の一種である。サイトダイバーシチでは、無線エリアを構成する複数の場所(サイト)に設置された送信機(例えば、セルラーシステムの基地局)に同一のデータを配信し、これら複数のサイトから一台の受信機(例えば、セルラーシステムの移動局)に向けて同一の情報を送信する。これにより、それぞれの送信アンテナと受信アンテナとの間の伝搬路特性の違いを利用して、ダイバーシチ利得を得ることができる。特許文献1には、サイトダイバーシチに関連する発明が開示されている。
特開2008-11498号公報
 上述の通り、サイトダイバーシチ技術では、無線エリアを構成する複数の場所(サイト)に設置された送信機から同一の情報データを乗せた電波を発射し、受信機において空間ダイバーシチ利得を得ている。本方式においては、ある時刻においてある受信機宛てのデータ送信に使用される送信機を、事前に決定しておく必要がある。すなわち、事前に何らかの基準により適切な送信機を選択しておく必要があるということである。例えば、時分割複信システムであれば、移動局側から電波を送信し、全ての基地局においてその電波を受信することで、各基地局と移動局の間の伝搬路状態(振幅及び位相)を推定することが可能である。そこで、この伝搬路状態に基づいて、伝搬ロスの小さな基地局を送信に使用するよう選択することができる。
 しかしながら、移動体通信においては、フェージング、シャドウイングまたは距離減衰などの伝搬特性の変動により、移動局と基地局との間の伝搬路状態は時々刻々と変化する。このため、必ずしもある時点で最適であった基地局が、その後も最適であり続けるとは限らない。例えば、ある時刻において移動局の間で伝搬ロスが小さかった基地局であっても、実際の送信時刻ではシャドウイングによる伝搬ロス増大が発生しうる。また、ある時刻において移動局との間で伝搬ロスが大きかった基地局であっても、実際の送信時刻で遮蔽されなくなった場合には伝搬ロスが減少しうる。このような状況において、サイトダイバーシチ送信に使用される基地局が選択された時刻と、実際に基地局から電波が発射される時刻との間にタイムラグが発生すると、必ずしも適切とは言えない基地局から電波が発射されてしまうことになる。
 この問題の対策として、システムを構成する全ての基地局から同一の移動局宛ての電波を発射することも可能である。しかしながら、距離が非常に遠いなどの理由でダイバーシチ利得に寄与しない基地局からも電波を発射することになるため、空間的なリソース再利用を行うことができず、システム伝送容量の低下は避けられない。また、例えば移動局が列車に搭載されているような場合であれば、移動経路が線路上に限定されるため、移動を予測することができるが、徒歩、自動車または無人飛行体などのように、移動経路に制約がない場合には予測が困難である。
 本発明は、上記のような従来の事情に鑑みて為されたものであり、サイトダイバーシチ送信を利用する無線通信システムにおいて、伝搬路状態が変動する状況においてもダイバーシチ利得の低下を抑えて無線通信を行うことを可能にすることを目的とする。
 上記の目的を達成するために、本発明では無線通信システムを以下のように構成した。すなわち、異なる場所に設置された複数の基地局のうちの2以上の基地局から同一のデータを移動局に送信する無線通信システムにおいて、前記複数の基地局と通信可能に接続されたネットワーク集中制御装置を備え、前記ネットワーク集中制御装置は、各基地局と前記移動局の間の伝搬路状態に基づいて1以上の基地局を選択すると共に、各基地局と前記移動局の間の距離とに基づいて別の1以上の基地局を選択し、これら選択された2以上の基地局から前記移動局に対するデータを送信させることを特徴とする。
 このような構成によれば、ある時刻において伝搬ロス基準で最適として選択された送信機が実際の送信時刻でシャドウイング等の影響により不適切となることがあっても、別の基準(地理的基準)で選択された送信機によりカバーされる確率が上昇する。これにより、伝搬路状態が変動する状況においてもダイバーシチ利得の低下を抑えることが可能となる。
 ここで、一構成例として、前記基地局は、前記移動局からの受信信号に基づいて自局と前記移動局との間の伝搬路状態を推定し、推定した伝搬路状態を前記ネットワーク集中制御装置に通知する構成としてもよい。
 また、前記移動局は、前記ネットワーク集中制御装置に対して自局の位置情報を基地局経由で通知し、前記ネットワーク集中制御装置は、前記移動局から通知された前記移動局の位置情報に基づいて、各基地局と前記移動局の間の距離を算出する構成としてもよい。
 また、前記移動局の運航状況を管理する運航管理システムを備え、前記移動局は、前記運航管理システムに対して自局の位置情報を基地局経由で通知し、前記運航管理システムは、予め登録された前記移動局の移動ルートと、前記移動局から通知された位置情報とに基づいて、前記移動局の運航状況を管理する構成としてもよい。
 本発明によれば、サイトダイバーシチ送信を利用する無線通信システムにおいて、伝搬路状態が変動する状況においてもダイバーシチ利得の低下を抑えて無線通信を行うことが可能となり、より信頼性の高い無線通信を提供することができる。
本発明の一実施形態に係る無線通信システムの全体構成の一例を示す図である。 図1の無線通信システムにおけるネットワーク集中制御装置の構成例を示す図である。 図1の無線通信システムにおけるBSの構成例を示す図である。 図1の無線通信システムにおけるMSの構成例を示す図である。 時間の経過に伴う伝搬ロスの変化について説明する図である。 時間の経過に伴う伝搬ロスの変化について説明する図である。
 (無線通信システムの概要)
 図1は、本発明の一実施形態に係る無線通信システムの全体構成の一例を示す図である。本実施形態に係る無線通信システム1は、サイトダイバーシチを利用する無線通信システムである。
 図1に示されるように、無線通信システム1は、無線通信端末であるMS(Mobile Station)20と、これら無線通信端末が接続する基地局であるBS(Base Station)10~14と、ネットワーク集中制御装置30と、運航管理システム40とを含んで構成される。無線通信端末(MS20)としては、例えば、無人航空機や自律運転車両などの自律的移動手段を備えた移動体に設置される無線機子局や携帯電話等が挙げられる。自律的移動手段を備えた移動体は自律的移動体とも称される。BS10~14とMS20との間の無線通信は、上り通信と下り通信に同じ周波数を用いる時分割複信方式によって行われる。
 図2には、ネットワーク集中制御部30の構成例を示してある。ネットワーク集中制御部30は、BS10~14と運航管理システム40との間の通信を媒介する回線集約機能31と、MS20がBS10~14のうちのどのBSと通信することが最適であるかを管理する送信BS管理機能32と、BS10~14を設置した際に決定されるBS10~14の地理的な位置情報を予め保持する基地局位置管理機能33とを備える。
 運航管理システム40は、自律的移動体の位置情報や事前に設定された移動ルートに基づき、自律的移動体の運航状況を管理する機能を備える。
 以下、図3を参照しながら、BS10~14の構成について説明する。
 図3に示すように、BS10~14は、電波の送受信を行うアンテナ101と、データの送受信を行うデータ伝送部102と、自局全体の制御を行う主制御部103と、外部回線や外部装置とのインターフェースとなるインターフェース部104と、外部回線や外部装置と接続するための端子105とを備える。
 データ伝送部102は、RF部111と、ベースバンド(BB)信号処理部112と、MAC処理部113とを備える。
 RF部111は、ベースバンドから無線周波数帯への周波数変換および無線周波数帯からベースバンドへの周波数変換や、信号増幅等の処理を行う。
 BB信号処理部112は、送信BB部121と、受信BB部122とを備える。
 送信BB部121は、チャネル符号化処理を行うチャネル符号化部131と、変調処理を行う変調部132とを備える。
 受信BB部122は、復調処理を行う復調部141と、チャネル復号化処理を行うチャネル復号部142と、伝搬ロス推定を行う伝搬ロス推定部143とを備える。
 MAC処理部113は、自局が使用する周波数やデータ送受信タイミングの制御、通信パケットへの自局識別子の付加、受信したパケットの誤り検出、およびデータ送信元の無線装置の認識などの処理を行う。
 主制御部103は、例えば、プロセッサと、メモリ上に定義されたデータ記憶領域と、ソフトウェアとで構成することが可能である。また、BB信号処理部112、MAC処理部113における処理は、例えば、主制御部103のプロセッサがハードディスクやフラッシュメモリ等のデータ記憶装置に記憶されているプログラムをメモリ上に読み出して実行することにより実現することが可能である。
 (MS20の具体的構成)
 以下、図4を参照しながら、MS20の構成について説明する。
 図4に示されるように、MS20は、電波を送信及び受信するアンテナ201と、データの送受信を行うデータ伝送部202と、自局全体の制御を行う主制御部203と、外部回線や外部装置とのインターフェースとなるインターフェース部204と、外部回線や外部装置と接続するための端子205と、自局の位置情報を取得するGNSS(Global Navigation Satellite System)受信機206とを備える。
 データ伝送部202は、RF部211と、ベースバンド(BB)信号処理部212と、MAC処理部213とを備える。
 RF部211は、ベースバンドから無線周波数帯への周波数変換および無線周波数帯からベースバンドへの周波数変換や、信号増幅等の処理を行う。
 BB信号処理部212は、送信BB部221と、受信BB部222とを備える。
 送信BB部221は、チャネル符号化処理を行うチャネル符号化部231と、変調処理を行う変調部232とを備える。
 受信BB部222は、復調処理を行う復調部241と、チャネル復号化処理を行うチャネル復号部242とを備える。
 MAC処理部213は、自局が使用する周波数チャネルやデータ送受信タイミングの制御、パケットへの自局識別子の付加、受信したパケットの誤り検出、およびデータ送信元の無線装置の認識等の処理を行う。
 主制御部203は、例えば、プロセッサと、メモリ上に定義されたデータ記憶領域と、ソフトウェアとで構成することが可能である。また、BB信号処理部212、MAC処理部213における処理は、例えば、主制御部203のプロセッサがハードディスクやフラッシュメモリ等のデータ記憶装置に記憶されているプログラムをメモリ上に読み出して実行することにより実現することが可能である。
 (サイトダイバーシチ送信時の送信基地局選択の例)
 以下、BS10~14とMS20が無線通信を行う際に、サイトダイバーシチ送信に使用する基地局(送信BS)を選択する手順の例について説明する。
 MS20は、BS10~14に対してアップリンク信号を送信する際、GNSS受信機206から通知されるMS位置情報をアップリンク通信データに付加し、データ伝送部202を通じて送信する。
 BS10~14は、MS20から送信されたアップリンク信号を受信し、BB信号処理部112で復号する。このとき、伝搬ロス推定部143において、MS20からの受信信号に基づいて、MS-BS間の伝搬ロスを推定する。その後、BS10~14は、MAC処理部113において受信パケットに誤りが検出されなかった場合には、ネットワーク集中制御装置30に対して、伝搬ロス推定部143で推定されたMS-BS間の伝搬ロス情報および自局識別子を受信パケットとともに転送する。
 ネットワーク集中制御装置30は、運航管理システム40に対し、前記MS位置情報を転送する。
 本構成例において、BS10、BS11、BS12、BS13では受信パケットに誤りがなく、BS14では受信パケットに誤りが生じたとすると、ネットワーク集中制御装置30には以下の情報が集合する。
  ・予め保持されているBS10~14の位置情報
  ・MS20の位置情報
  ・BS10-MS20間の伝搬ロス
  ・BS11-MS20間の伝搬ロス
  ・BS12-MS20間の伝搬ロス
  ・BS13-MS20間の伝搬ロス
 ネットワーク集中制御装置30は、送信BS管理機能32により、前記集合した情報を用いてサイトダイバーシチ送信に最適な送信BSを選択する。具体的にはまず、BS10~14の位置情報およびMS20の位置情報に基づいて、各BSとMSとの距離を算出する。その結果、各BSとMSとの距離、および、各BSとMSとの伝搬ロスについて、以下のようなテーブルを作成できる。本構成例においては、BS13-MS20間は、図5に示したような遮蔽物(例えば、ビル)の影響により見通し外となるため、距離が近いにもかかわらず伝搬ロスは大きな値となっている。また、BS14-MS20間の伝搬ロスはさらに大きく、パケットが受信できない程度に減衰している。
  ・BS10-MS20間の距離=350m
  ・BS11-MS20間の距離=250m
  ・BS12-MS20間の距離=150m
  ・BS13-MS20間の距離=50m
  ・BS14-MS20間の距離=100m
  ・BS10-MS20間の伝搬ロス=83dB
  ・BS11-MS20間の伝搬ロス=80dB
  ・BS12-MS20間の伝搬ロス=75dB
  ・BS13-MS20間の伝搬ロス=100dB
  ・BS14-MS20間の伝搬ロス=パケットが受信できなかったため不明
 本構成例においては、サイトダイバーシチ送信に使用する送信BSを3局とし、伝搬ロス基準で2局を選択し、距離基準で更に1局を選択するものとする。この場合、ネットワーク集中制御装置30は、伝搬ロスが小さい順に2局、すなわちBS11およびBS12を選択し、残りのBSの中から距離が短い順に1局、すなわちBS13を選択する。
 次に、ネットワーク集中制御装置30は、上記手順にて送信BSとして選択されたBS11、BS12、BS13に指示を出して、それぞれ同じデータをMS20に対して送信させる。ここで、MS20が移動し、図6のような位置関係となったとする。そして、この場合における各BSとMS20間の伝搬ロスは、以下のようになったとする。
  ・BS10-MS20間の伝搬ロス=120dB
  ・BS11-MS20間の伝搬ロス=110dB
  ・BS12-MS20間の伝搬ロス=100dB
  ・BS13-MS20間の伝搬ロス=65dB
  ・BS14-MS20間の伝搬ロス=70dB
 このような場合、伝搬ロスだけを基準としてBS10、BS11、BS12を送信BSとして選択していると、いずれも伝搬ロスは100dB以上となり、受信品質が低下してしまう。一方、本実施形態では、BS11、BS12、BS13を送信BSとして選択していたので、BS11、BS12の伝搬ロスは大きくなったものの、BS13の伝搬ロスは小さくなっており、受信品質が向上することが期待できる。
 (まとめ)
 以上のように、本例の無線通信システムは、異なる場所に設置された複数の基地局(10~14)と、無人航空機や自律運転車両など自律的移動手段を備えた移動体に搭載される移動局(20)とを含んで構成され、2以上の基地局から同一のデータを移動局に対して送信するサイトダイバーシチ送信を利用して無線通信を行う。無線通信システムはさらに、サイトダイバーシチ送信を行う基地局を選択する機能を有するネットワーク集中制御装置(30)と、自律的移動体の運航を管理する運航管理システム(40)とを備える。各々の基地局は、移動局からの送信信号から自局と移動局との間の伝搬ロスを推定し、推定した伝搬ロスをネットワーク集中制御装置へ通知する。移動局は、自局の位置を基地局経由でネットワーク集中制御装置ならびに運航管理システムへ通知する。そして、ネットワーク集中制御装置が、移動局へデータを送信する基地局を選択する際の基準として、第一の基準(移動局と基地局間の伝搬ロス)及び第二の基準(移動局と基地局間の地理的距離)を組み合わせて使用する。
 したがって、サイトダイバーシチ送信を利用する無線通信システムにおいて、ある時刻において伝搬ロス基準で最適として選択された基地局が実際の送信時刻でシャドウイング等の影響により不適切となることがあっても、別の基準(地理的基準)で選択された基地局によりカバーされる確率が上昇するため、ダイバーシチ利得が減少する確率を低下させることが可能となり、より信頼性の高い無線通信を提供することができる。
 ここで、サイトダイバーシチ送信に使用する基地局を選択する際に、各基地局と移動局との間の伝搬ロスが必ずしも必須というわけではなく、伝搬路状態の優劣をつけることが可能な他の値を各基地局で算出し、伝搬ロスに代わる第一の基準として用いてもよい。
 また、第一の基準により選択する基地局の数、および第二の基準により選択する基地局の数は、それぞれ、1以上の任意の数とすることができる。
 なお、本発明を実施するための形態は、本構成例に限定されるものではない。本構成例とは異なる以下のような構成をとることも可能である。ただし、以下に述べる例にも限定されるものではない。
 本構成例では、各基地局と移動局との間の伝搬ロスおよび現在の移動局の位置に基づいて基地局を選択しているが、ネットワーク集中制御装置30と運航管理システム40とが連携し、所定時間後の移動局の位置の推定結果に基づいて基地局を選択してもよい。この場合は、一例として、運航管理システム40が、事前に登録された移動ルート情報と現在の移動局の位置とに基づいて所定時間後の移動局の位置を推定し、ネットワーク集中制御装置30が、推定された位置に近い基地局を優先して選択してもよい。なお、移動ルート情報に時間情報を付加してある場合(例えば、各地点の通過予定時間が含まれる場合)には、現在の移動局の位置を用いずに、移動ルート情報と現在時間から所定時間後の移動局の位置を推定してもよい。また別の例として、MSが今後もこれまでと同様の移動を続けるという前提の下で、運航管理システム40(またはネットワーク集中制御装置30)が、移動局の位置の推移状況から所定時間後の移動局の位置を推定してもよい。
 なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
 本発明は、サイトダイバーシチ送信を用いて無線通信を行う無線通信システムに利用することができる。
 10~14:BS(基地局)、 20:MS(移動局)、 30:ネットワーク集中制御装置、 40:運行管理システム、
 101:アンテナ、 102:データ伝送部、 103:主制御部、 104:インターフェース部、 105:端子、 111:RF部、 112:BS信号処理部、 113:MAC処理部、 121:送信BB部、 122:受信BB部、 131:チャネル符号化部、 132:変調部、 141:復調部、 142:チャネル復号部、 143:伝搬ロス推定部、
 201:アンテナ、 202:データ伝送部、 203:主制御部、 204:インターフェース部、 205:端子、 206:GNSS受信機、 211:RF部、 212:BB信号処理部、 213:MAC処理部、 221:送信BB部、 222:受信BB部、 231:チャネル符号化部、 232:変調部、 241:復調部、 242:チャネル復号部

Claims (8)

  1.  異なる場所に設置された複数の基地局のうちの2以上の基地局から同一のデータを移動局に送信する無線通信システムにおいて、
     前記複数の基地局と通信可能に接続されたネットワーク集中制御装置を備え、
     前記ネットワーク集中制御装置は、各基地局と前記移動局の間の伝搬路状態に基づいて1以上の基地局を選択すると共に、各基地局と前記移動局の間の距離とに基づいて別の1以上の基地局を選択し、これら選択された2以上の基地局から前記移動局に対するデータを送信させることを特徴とする無線通信システム。
  2.  請求項1に記載の無線通信システムにおいて、
     前記基地局は、前記移動局からの受信信号に基づいて自局と前記移動局との間の伝搬路状態を推定し、推定した伝搬路状態を前記ネットワーク集中制御装置に通知することを特徴とする無線通信システム。
  3.  請求項1に記載の無線通信システムにおいて、
     前記移動局は、前記ネットワーク集中制御装置に対して自局の位置情報を基地局経由で通知し、
     前記ネットワーク集中制御装置は、前記移動局から通知された前記移動局の位置情報に基づいて、各基地局と前記移動局の間の距離を算出することを特徴とする無線通信システム。
  4.  請求項1に記載の無線通信システムにおいて、
     前記移動局の運航状況を管理する運航管理システムを備え、
     前記移動局は、前記運航管理システムに対して自局の位置情報を基地局経由で通知し、
     前記運航管理システムは、予め登録された前記移動局の移動ルートと、前記移動局から通知された位置情報とに基づいて、前記移動局の運航状況を管理することを特徴とする無線通信システム。
  5.  異なる場所に設置された複数の基地局のうちの2以上の基地局から同一のデータを移動局に送信する無線通信方法において、
     前記複数の基地局と通信可能に接続されたネットワーク集中制御装置が、各基地局と前記移動局の間の伝搬路状態に基づいて1以上の基地局を選択すると共に、各基地局と前記移動局の間の距離とに基づいて別の1以上の基地局を選択し、
     前記ネットワーク集中制御装置により選択された2以上の基地局が、前記移動局に対して同一のデータを送信することを特徴とする無線通信方法。
  6.  請求項5に記載の無線通信方法において、
     前記基地局は、前記移動局からの受信信号に基づいて自局と前記移動局との間の伝搬路状態を推定し、推定した伝搬路状態を前記ネットワーク集中制御部に通知することを特徴とする無線通信方法。
  7.  請求項5に記載の無線通信方法において、
     前記移動局は、前記ネットワーク集中制御装置に対して自局の位置情報を基地局経由で通知し、
     前記ネットワーク集中制御装置は、前記移動局から通知された前記移動局の位置情報に基づいて、各基地局と前記移動局の間の距離を取得することを特徴とする無線通信方法。
  8.  請求項5に記載の無線通信方法において、
     前記移動局は、前記移動局の運航状況を管理する運航管理システムに対して自局の位置情報を基地局経由で通知し、
     前記運航管理システムは、予め登録された前記移動局の移動ルートと、前記移動局から通知された位置情報とに基づいて、前記移動局の運航状況を管理することを特徴とする無線通信方法。
PCT/JP2017/044888 2017-12-14 2017-12-14 無線通信システムおよび無線通信方法 WO2019116491A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019559487A JPWO2019116491A1 (ja) 2017-12-14 2017-12-14 無線通信システムおよび無線通信方法
PCT/JP2017/044888 WO2019116491A1 (ja) 2017-12-14 2017-12-14 無線通信システムおよび無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044888 WO2019116491A1 (ja) 2017-12-14 2017-12-14 無線通信システムおよび無線通信方法

Publications (1)

Publication Number Publication Date
WO2019116491A1 true WO2019116491A1 (ja) 2019-06-20

Family

ID=66820091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044888 WO2019116491A1 (ja) 2017-12-14 2017-12-14 無線通信システムおよび無線通信方法

Country Status (2)

Country Link
JP (1) JPWO2019116491A1 (ja)
WO (1) WO2019116491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166025A1 (ja) * 2020-02-17 2021-08-26 株式会社日立国際電気 無線通信システム、無線通信方法及び移動体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295962A (ja) * 2006-05-29 2006-10-26 Matsushita Electric Ind Co Ltd 無線システム及び無線通信方法
JP2009206735A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法
JP2013093796A (ja) * 2011-10-27 2013-05-16 Kyocera Corp 無線通信システムおよび通信制御方法
WO2014045402A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 無線通信装置、無線通信システムおよび無線通信方法
JP2017022459A (ja) * 2015-07-07 2017-01-26 日本電信電話株式会社 無線通信システムおよび無線通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295962A (ja) * 2006-05-29 2006-10-26 Matsushita Electric Ind Co Ltd 無線システム及び無線通信方法
JP2009206735A (ja) * 2008-02-27 2009-09-10 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法
JP2013093796A (ja) * 2011-10-27 2013-05-16 Kyocera Corp 無線通信システムおよび通信制御方法
WO2014045402A1 (ja) * 2012-09-21 2014-03-27 三菱電機株式会社 無線通信装置、無線通信システムおよび無線通信方法
JP2017022459A (ja) * 2015-07-07 2017-01-26 日本電信電話株式会社 無線通信システムおよび無線通信方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166025A1 (ja) * 2020-02-17 2021-08-26 株式会社日立国際電気 無線通信システム、無線通信方法及び移動体
JPWO2021166025A1 (ja) * 2020-02-17 2021-08-26
JP7121874B2 (ja) 2020-02-17 2022-08-18 株式会社日立国際電気 無線通信システム、無線通信方法及び移動体
US11653297B2 (en) 2020-02-17 2023-05-16 Hitachi Kokusai Electric Inc. Wireless communication system, wireless communication method, and mobile vehicle

Also Published As

Publication number Publication date
JPWO2019116491A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US20190281644A1 (en) Base station and transmitter and relay communication devices for cellular and d2d communication
US10862576B2 (en) Transmitter and relay communication devices for D2D communication
CN106470062B (zh) 一种数据传输方法及系统
US9750027B2 (en) Method and apparatus for beamforming in wireless communication system
JP5096576B2 (ja) ピア・ツー・ピア(p2p)ネットワークにおいて受信ビームフォーミング・ベクトルを選択し、ブロードキャストする技術
EP2756609B1 (en) Apparatus and method for beam selecting in beamformed wireless communication system
KR101588712B1 (ko) 셀 내부 단말간 협력에 기반한 셀간 간섭 제어 방법 및 장치
CN110800222A (zh) 利用rf中间单元的链路适应
US20130072243A1 (en) Method and apparatus for beam allocation in wireless communication system
US20100246476A1 (en) Method for driving smart antennas in a communication network
JP6634982B2 (ja) 端末装置、基地局、方法及び記録媒体
USRE46709E1 (en) Method and apparatus for providing location based service in wireless communication system
Tuan et al. On the performance of cooperative transmission schemes in industrial wireless sensor networks
KR20180008498A (ko) 풀 듀플렉스 액세스 포인트에 대한 향상된 스케줄링 절차
CN111684734A (zh) 用户设备波束成形
Nomikos et al. Uplink NOMA for UAV-aided maritime Internet-of-Things
US9788335B2 (en) Communication apparatus and communication control method
WO2019116491A1 (ja) 無線通信システムおよび無線通信方法
KR100911929B1 (ko) 랜덤액세스 방법 및 랜덤액세스 응답 방법
US11653297B2 (en) Wireless communication system, wireless communication method, and mobile vehicle
CN111512563B (zh) 用于朝向用户实体传送数据流的基站系统
US20230254195A1 (en) Base station, terminal apparatus, communication method and recording medium
Mohjazi et al. RIS-Assisted UAV Communications
JP2020031451A (ja) 端末装置、基地局、方法及び記録媒体
Abualhauja'a et al. RIS‐Assisted UAV Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934504

Country of ref document: EP

Kind code of ref document: A1