WO2019116419A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019116419A1
WO2019116419A1 PCT/JP2017/044320 JP2017044320W WO2019116419A1 WO 2019116419 A1 WO2019116419 A1 WO 2019116419A1 JP 2017044320 W JP2017044320 W JP 2017044320W WO 2019116419 A1 WO2019116419 A1 WO 2019116419A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
power conversion
command value
value
Prior art date
Application number
PCT/JP2017/044320
Other languages
English (en)
French (fr)
Inventor
義徳 鶴間
紀子 川上
由紀久 飯島
鈴木 健太郎
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201780097626.0A priority Critical patent/CN111656639B/zh
Priority to PCT/JP2017/044320 priority patent/WO2019116419A1/ja
Priority to US16/771,064 priority patent/US11451166B2/en
Priority to JP2019559426A priority patent/JP7028257B2/ja
Priority to EP17934523.6A priority patent/EP3726686A4/en
Publication of WO2019116419A1 publication Critical patent/WO2019116419A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency

Definitions

  • the present invention relates to a power converter.
  • a power conversion device provided with a virtual power generation device model unit in which a generator is modeled.
  • a power conversion device includes an inverter circuit that converts direct current and alternating current, and a control device that controls the inverter circuit.
  • the virtual power generation device model unit is incorporated in the control device.
  • the control device can generate a control signal of the inverter circuit so that the output power of the inverter circuit behaves in the same manner as the generator.
  • the virtual power generation device model unit can simulate a phenomenon unique to the generator such as an inertial force which is insufficient in normal inverter control. According to the virtual power generation device model unit, effects such as grid frequency and grid voltage stabilization can be obtained.
  • a real generator comprises a generator, an AVR, a prime mover and a governor
  • the above-mentioned conventional virtual generator model part also includes a generator model, an AVR model, a prime mover model and a governor model.
  • the above-mentioned prior art devises treatment of the amount of fuel supplied between the governor model and the prime mover model.
  • an electric power system including a power conversion device performs grid-connected operation by being connected to a common output wire with a generator other than the electric power system. At this time, it is not preferable that the frequency of the AC power output from the generator and the output AC power frequency of the power conversion device be too far apart.
  • the power system including the power conversion device to start the self-sustaining operation when the generator has dropped out during the grid-connected operation. At this time, it is preferable that switching between grid-connected operation and self-sustaining operation be performed smoothly in control.
  • a DC power supply is connected to the input end of the power converter, and a storage battery may be used as the DC power supply.
  • a storage battery may be used as the DC power supply.
  • This application is made to solve the problems as described above, and its first object is to provide a power conversion device capable of appropriately controlling the output AC power frequency of the power conversion circuit. It is.
  • the second object of this application is to provide an improved power converter so that switching between grid-connected operation and self-sustaining operation can be performed seamlessly.
  • the third object of the present application is to provide a power converter capable of effectively utilizing finite storage battery power.
  • a fourth object of the present application is to provide a power conversion device provided with a virtual power generation device model configured to be able to charge a storage battery as needed.
  • the first power converter pertaining to the present invention is A power conversion circuit interposed between a DC power supply and an output wire, and converting AC power from the DC power supply to output AC power to the output wire;
  • a control device that outputs a pulse width modulation signal used for switching control of the power conversion circuit to the power conversion circuit; Equipped with The controller is Virtual power generator model part, A control signal generator, Equipped with The virtual power generator model unit
  • a prime mover model unit configured to simulate a prime mover having a rotation axis, and configured to generate a model angular velocity representing a virtual rotation velocity of the rotation axis;
  • An AVR model unit configured to simulate an automatic voltage regulator and configured to calculate a field equivalent value that is a value corresponding to a field current or a field voltage;
  • An angular velocity difference acquisition unit configured to calculate an angular velocity difference that is a difference between an angular frequency of an output voltage of the power conversion circuit and the model angular velocity;
  • Power generation configured to generate a current command value for simul
  • the second power converter pertaining to the present application is A power conversion circuit interposed between a DC power supply and an output wire, and converting AC power from the DC power supply to output AC power to the output wire;
  • a control device that outputs a pulse width modulation signal used for switching control of the power conversion circuit to the power conversion circuit; Equipped with The controller is A virtual power generator model unit configured to output a current command value;
  • a control signal generator configured to generate the pulse width modulation signal based on the current command value and an output current value of the power conversion circuit; Equipped with The virtual power generator model unit
  • a prime mover model unit configured to simulate a prime mover having a rotation axis, and configured to generate a model angular velocity representing a virtual rotation velocity of the rotation axis;
  • An AVR model unit configured to simulate an automatic voltage regulator and configured to calculate a field equivalent value that is a value corresponding to a field current or a field voltage;
  • Power generation configured to generate a current command value for simulating a generator driven by the motor based
  • the third power converter pertaining to the present invention is A power conversion circuit interposed between a DC power supply and an output wire, and converting AC power from the DC power supply to output AC power to the output wire;
  • a control device that outputs a pulse width modulation signal used for switching control of the power conversion circuit to the power conversion circuit; Equipped with The controller is A virtual power generator model unit configured to output a current command value;
  • a control signal generator configured to generate the pulse width modulation signal based on the current command value and an output current value of the power conversion circuit; Equipped with An external generator is connected to the output wire,
  • the virtual power generator model unit A prime mover model unit configured to simulate a prime mover having a rotation axis, and configured to generate a model angular velocity representing a virtual rotation velocity of the rotation axis;
  • An AVR model unit configured to simulate an automatic voltage regulator and configured to calculate a field equivalent value that is a value corresponding to a field current or a field voltage; Power generation configured to generate a current command value for simulating
  • the generated floating command value generation unit A governor configured to simulate a governor that adjusts the virtual rotation speed of the rotation shaft, and configured to calculate an index value serving as an index of drive energy supplied to the motor based on the floating command value.
  • Model part, Equipped with The governor model unit does not output active power when the supplied power supplied from the external generator to the output wire according to the floating command value is a predetermined steady value, and the external power generation is not performed.
  • the indicator value is calculated such that the power conversion circuit continues to output a current reduction amount with respect to the steady state value when the supplied power of the output wire is reduced below the steady state value due to the output decrease of the machine.
  • the fourth power converter pertaining to the present application is A power conversion circuit interposed between a DC power supply and an output wire, and converting AC power from the DC power supply to output AC power to the output wire;
  • a control signal generator configured to generate the pulse width modulation signal based on the current command value and an output current value of the power conversion circuit; Equipped with The virtual power generator model unit
  • a prime mover model unit configured to simulate a prime mover having a rotation axis, and configured to output a model angular velocity representing a virtual rotation speed of the rotation axis;
  • An AVR model unit configured to simulate an automatic voltage regulator and calculate a field equivalent value that is a value corresponding to a field current or a field voltage; For simulating a generator driven by the motor based on the output voltage of the power conversion circuit, the field equivalent
  • the angular velocity difference acquired by the angular velocity difference acquisition unit can be included in the generation processing of the current command value.
  • the frequency of the alternating current power output from the power conversion circuit can be accurately adjusted while taking into consideration the relationship with the frequency of the grid power on the side of the output wire.
  • the second power converter According to the second power converter, the following effects can be obtained.
  • the electric power system including the electric power converter and the electric power system including the generator are operated in a grid connection mode, the electric power system including the electric power converter becomes an independent operation when the electric power system is disconnected from the interconnection operation.
  • the integral gain reduces the stability of the feedback control during the self-sustaining operation, even if the feedback control using the integral gain functions properly during the grid-connected operation.
  • the second power conversion device there is an advantage that switching between the grid-connected operation and the autonomous operation can be performed seamlessly and the autonomous operation can be stably performed because the integral gain is not included.
  • backup current control can be realized.
  • the power converter does not output a current when the external generator is in steady operation, and when the output power decreases due to the external generator dropping off, the power converter supplements the current for the shortage. It is to continue.
  • the electric power which a storage battery stores is limited, and when the power converter is connected with a storage battery, the active power which can be outputted is limited.
  • the above-described backup current control can effectively utilize finite storage battery power.
  • the fourth power converter it is possible to create a current flowing from the power converter circuit to the side of the DC power supply according to the current control signal.
  • This current can be used as a charging current of the storage battery when the storage battery is used as a direct current power source.
  • FIG. 1 is a system configuration diagram showing an entire structure including a power system provided with a power conversion device according to a first embodiment.
  • FIG. 1 is a circuit diagram showing a power system provided with a power conversion device according to a first embodiment.
  • FIG. 2 is a circuit block diagram of a control device included in the power conversion device according to the first embodiment.
  • FIG. 7 is a circuit block diagram of a control device provided in a power conversion device according to a modification of the first embodiment.
  • FIG. 7 is a circuit block diagram of a control device provided in a power conversion device according to a modification of the first embodiment.
  • FIG. 7 is a circuit diagram showing a power system provided with a power conversion device according to a second embodiment.
  • FIG. 1 is a system configuration diagram showing an entire structure including a power system provided with a power conversion device according to a first embodiment.
  • FIG. 1 is a circuit diagram showing a power system provided with a power conversion device according to a first embodiment.
  • FIG. 2 is
  • FIG. 7 is a circuit block diagram of a control device provided in the power conversion device according to a second embodiment.
  • FIG. 16 is a circuit block diagram of a control device provided in a power conversion device according to a modification of the second embodiment.
  • FIG. 16 is a circuit block diagram of a control device provided in a power conversion device according to a modification of the second embodiment.
  • FIG. 1 is a system configuration diagram showing an entire structure including a power system PS including the power conversion device PC according to the first embodiment.
  • a power system PS, a first external generator 9 a and a second external generator 9 b, and a load 11 are connected to the output wire 9.
  • the power system PS includes a power converter PC and a DC power supply 1.
  • the power conversion device PC includes a power conversion circuit 3 and a control device 12.
  • the power conversion device PC is also connected to the host device 2 and is configured to be able to receive the charge / discharge current control signal I bat * from the host device 2.
  • the first external generator 9a and the second external generator 9b are known alternators and construct an electric power system.
  • the specific specifications of the first external generator 9a and the second external generator 9b are not limited, but may be, for example, a synchronous generator or an induction generator, and the power source is a steam turbine or the like. It is also good.
  • FIG. 2 is a circuit diagram showing a power system PS including the power conversion device PC according to the first embodiment.
  • the power conversion circuit 3 is interposed between the DC power supply 1 and the output wire 9, and converts the DC power from the DC power supply 1 to output AC power to the output wire 9.
  • the power conversion circuit 3 is an inverter circuit including a plurality of semiconductor switching elements.
  • the semiconductor switching element is an IGBT or a MOSFET.
  • the control device 12 outputs a pulse width modulation signal S PWM used for switching control of the power conversion circuit 3 to the power conversion circuit 3.
  • the pulse width modulation signal SPWM is a gate pulse signal applied to the gate of the semiconductor switching element.
  • a DC power supply 1 is connected to the input end of the power conversion device PC. In the first embodiment, storage battery 1 a is provided as DC power supply 1.
  • the output end of the power conversion device PC is connected to the output wire 9 via the output wire 10 and the output side transformer 8.
  • the output wiring 10 is provided with an instrument current transformer 4, an output reactor 5, a filter capacitor 7 and an instrument transformer 6.
  • the instrumental current transformer 4 functions as a current sensor.
  • the instrumental current transformer 4 measures the output currents iu, iv, iw of the power conversion circuit 3 and transmits the measured current values to the control device 12.
  • the instrument transformer 6 functions as a voltage sensor.
  • the instrument transformer 6 measures the output voltages vuv, vvw, vwu of the power conversion circuit 3, and transmits the measured voltage values to the control device 12.
  • FIG. 3 is a circuit block diagram of the control device 12 included in the power conversion device PC according to the first embodiment.
  • the control device 12 includes a virtual power generation device model unit 13 and a control signal generation unit 20.
  • the virtual power generator model unit 13 implements a virtual synchronous generator (VSG).
  • VSG virtual synchronous generator
  • the “virtual synchronous generator” is a model for giving the same characteristics as the synchronous generator to the power system PS which is a distributed power supply of inverter connection.
  • the virtual power generation device model unit 13 feedbacks the active power Pg output from the power conversion circuit 3, the output voltages vuv, vvw, vwu of the power conversion circuit 3, and the reactive power Qg output from the power conversion circuit 3. Has been entered.
  • the virtual power generator model unit 13 generates an active current command value Iq * and a reactive current command value Id * based on these input parameters.
  • the active current command value Iq * and the reactive current command value Id * may be collectively described as “current command values Id * , Iq * ”.
  • the virtual power generation device model unit 13 transmits the generated active component current command value Iq * and reactive component current command value Id * to the control signal generator 20.
  • Control signal generation unit 20 generates pulse width modulation signal S PWM based on active current command value Iq * and reactive current command value Id *, and output current values iu, iv, iw of power conversion circuit 3. Do.
  • the virtual power generator model unit 13 includes a generator model unit 30, a prime mover model unit 60, an AVR model unit 70, and a governor model unit 80.
  • the prime mover model unit 60 simulates a prime mover having a rotating shaft rotated by a steam turbine or the like.
  • the prime mover model unit 60 generates a model angular velocity ⁇ e that represents the virtual rotation velocity of the rotation axis.
  • the motor model unit 60 includes an adder / subtractor 61, a division block 62, and an inertia simulation block 63.
  • the adder / subtractor 61 subtracts the active power Pg from the drive energy index value Pdr output from the governor model unit 80.
  • the division block 62 outputs a torque equivalent value by dividing the output of the adder / subtractor 61 by the model angular velocity ⁇ e .
  • the inertia simulation block 63 receives the torque equivalent value from the division block 62, and calculates the model angular velocity ⁇ e by simulating the inertia of the rotation axis using the virtual inertia Js.
  • the governor model unit 80 is a model of a governor that performs speed control for the motor simulated by the motor model unit 60.
  • the governor model unit 80 calculates a drive energy index value Pdr based on a floating command value ⁇ flo described later.
  • the drive energy index value Pdr is a value having a dimension of power, and is an index of drive energy supplied to the motor simulated by the motor model unit 60. More specifically, the drive energy index value Pdr corresponds to the amount of fuel supplied to the engine when the motor model unit 60 simulates the engine.
  • the governor model unit 80 includes a governor model adder / subtractor 81 and an automatic speed controller 82.
  • the governor model adder / subtractor 81 calculates the difference between the input value from the adder / subtractor 92 at the front stage of the governor model unit 80 and the model angular velocity ⁇ e .
  • the automatic speed controller 82 receives the output of the governor model adder / subtractor 81 and outputs a drive energy index value Pdr by performing feedback by proportional integral control, that is, PI control.
  • the automatic speed regulator 82 is also referred to as "ASR 82".
  • the AVR model unit 70 simulates an automatic voltage regulator that controls the field voltage of the generator model unit 30.
  • AVR model unit 70 calculates field equivalent value Ife corresponding to the field current, and transmits field equivalent value Ife to generator model unit 30.
  • the field equivalent value Ife is not limited to the field current, and may be calculated as a value corresponding to the field voltage.
  • the AVR model unit 70 includes a droop block 71, a first predetermined value block 72, a pre-stage adder / subtractor 73, a post-stage adder / subtractor 74, a proportional integral control block 75, and a second predetermined value block 76. And an adder 77.
  • the droop block 71 outputs a value obtained by performing a predetermined operation on the reactive power Qg according to the droop gain.
  • the first predetermined value block 72 outputs a first predetermined value set in advance.
  • the pre-stage adder-subtractor 73 outputs the difference between the output value of the droop block 71 and the first predetermined value of the first predetermined value block 72.
  • the post-stage adder / subtractor 74 outputs the difference between the output value of the pre-stage adder / subtractor 73 and the system voltage amplitude V PLL .
  • the grid voltage amplitude V PLL is a value obtained by the phase synchronization circuit 111 of the angular velocity difference acquisition unit 110 described later.
  • Proportional-integral control block 75 receives the output of post-stage adder / subtractor 74 and performs proportional-integral control.
  • the second predetermined value block 76 outputs a second predetermined value set in advance.
  • the adder 77 adds the output value of the proportional integral control block 75 and the second predetermined value of the second predetermined value block 76.
  • the output value of the adder 77 is the field equivalent value Ife. In the first embodiment, the first predetermined value and the second predetermined value are set to 1.0.
  • the generator model unit 30 is configured to simulate a generator driven by a motor.
  • the generator model unit 30 has an effective component based on the field equivalent value Ife, the angular velocity difference ⁇ ex acquired by the angular velocity difference acquisition unit 110 described later, and the output voltages vuv, vvw, vwu of the power conversion circuit 3.
  • a current command value Iq * and a reactive current command value Id * are generated.
  • the generator model unit 30 includes a proportional block 31, an integration block 32, a d-axis conversion unit 33, a q-axis conversion unit 34, a first multiplication block 35, and a second multiplication block 36.
  • a first synchronous reactance unit 37, an adder / subtractor 38, and a second synchronous reactance unit 39 are examples of the generator model unit 30.
  • Proportional block 31 receives the field equivalent value Ife from the AVR model unit 70, and performs an operation using a predetermined coefficient set in advance to the field equivalent value Ife, to be a value equivalent to the internal induced voltage.
  • the internal induced voltage equivalent value Efe is output.
  • the integration block 32 receives the angular velocity difference ⁇ ex acquired by the angular velocity difference acquisition unit 110 described later, and outputs the model phase ⁇ e by integrating the angular velocity difference ⁇ ex .
  • the d-axis conversion unit 33 converts the model phase ⁇ e from the integration block 32 into the d-axis to calculate the first coefficient of the dimensionless amount for distributing the internal induced voltage to the d-axis.
  • the q-axis conversion unit 34 converts the model phase ⁇ e from the integration block 32 into the q-axis to calculate the second coefficient of the dimensionless amount for distributing the internal induced voltage to the q-axis.
  • the first multiplication block 35 multiplies the first coefficient output from the d-axis conversion unit 33 by the internal induced voltage equivalent value Efe.
  • the second multiplication block 36 multiplies the second coefficient output from the q-axis conversion unit 34 by the internal induced voltage equivalent value Efe.
  • the first synchronous reactance unit 37 calculates the reactive current command value Id * by converting the output value of the first multiplication block 35 from a voltage value to a current value.
  • the adder-subtractor 38 calculates the difference between the output value of the second multiplication block 36 and the system voltage amplitude V PLL .
  • the second synchronous reactance unit 39 converts the output value of the adder / subtractor 38 from a voltage value to a current value to calculate an effective current command value Iq * .
  • Control signal generation unit 20 generates pulse width modulation signal S PWM based on active current command value Iq * and reactive current command value Id * and output current values iu, iv, iw of power conversion circuit 3. . More specifically, the control device 12 includes a dq conversion block 90 which performs dq conversion of the output current values iu, iv, iw of the power conversion circuit 3. The control signal generation unit 20 generates a pulse width modulation signal based on the active current command value Iq * and the reactive current command value Id *, and the output value of the dq conversion block 90.
  • control signal generation unit 20 includes an ineffective addition / subtraction unit 21, an effective addition / subtraction unit 22, a first non-interference term block 23, a second non-interference term block 24, and an ineffective automatic current regulator.
  • 120a active part automatic current controller 120b, counter voltage block 122, feed forward adder / subtractor 25, ineffective part adder 26, active part adder 27, dq inverse conversion block 28, pulse width modulation signal And a generation block 29.
  • the ineffective addition / subtraction unit 21 obtains the difference between the ineffective current command value Id * and the d-axis output value of the dq conversion block 90.
  • the active addition / subtraction unit 22 obtains the difference between the active current command value Iq * and the q-axis output value of the dq conversion block 90.
  • the first non-interference term block 23 receives the reactive current command value Id * .
  • the active component current command value Iq * is input to the second non-interference term block 24.
  • the first non-interference term block 23 and the second non-interference term block 24 calculate non-interference terms for feedforwarding the voltage of the orthogonal component when current control is performed on the dq axis.
  • the ineffective component automatic current regulator 120 a is a control block configured to perform a first proportional control using a predetermined proportional coefficient set in advance on the output value of the ineffective addition / subtraction unit 21.
  • the active component automatic current regulator 120 b is a control block configured to perform a second proportional control using a predetermined proportional coefficient set in advance on the output value of the active component adder / subtractor 22.
  • the counter voltage block 122 outputs a counter voltage corresponding value Vrate determined to correspond to the counter voltage. In the first embodiment, the counter voltage equivalent value Vrate is set as a fixed value in order to make the transition from the interconnection operation to the autonomous operation seamlessly.
  • the feedforward adder / subtractor 25 calculates the difference between the counter voltage equivalent value Vrate and the non-interference term output from the second non-interference term block 24.
  • the ineffective addition adder 26 adds the output of the ineffective automatic current regulator 120 a and the output of the feed forward adder / subtractor 25.
  • the active minute adder 27 adds the output of the automatic current automatic regulator 120 b and the output of the feed forward adder / subtractor 25.
  • the grid voltage angular frequency ⁇ PLL is input to the dq inverse conversion block 28.
  • the dq inverse conversion block 28 performs dq inverse conversion on the output value of the invalid addition adder 26 and the output value of the effective addition adder 27.
  • the pulse width modulation signal generation block 29 generates a pulse width modulation signal S PWM from the output signal of the dq inverse conversion block 28.
  • control device 12 includes angular velocity difference acquisition unit 110, floating command value generation unit 130, and charge / discharge control unit 140. Further, in the first embodiment, the control signal generating unit 20 in the control device 12 incorporates the reactive current automatic regulator 120 a and the active current automatic regulator 120 b.
  • the reactive component automatic current regulator 120a is also referred to as “reactive component current control ACR 120a”.
  • the active component automatic current regulator 120b is also referred to as “active component current control ACR 120b”.
  • the power system PS including the power conversion device PC performs grid connection operation by being connected to the output wire 9 common to the first external generator 9a and the second external generator 9b. At this time, it is not preferable that the frequency of the AC power output from the first external generator 9a and the second external generator 9b and the output AC power frequency of the power conversion device PC be too far apart. From such a viewpoint, it is preferable to appropriately control the output AC power frequency of the power conversion circuit 3. Therefore, in the first embodiment, the angular velocity difference acquisition unit 110 calculates the angular velocity difference ⁇ ex .
  • the angular velocity difference ⁇ ex is a difference obtained by subtracting the system voltage angular frequency ⁇ PLL from the model angular velocity ⁇ e .
  • the angular velocity difference ⁇ ex of the angular velocity difference acquisition unit 110 can be included in the process of generating the active component current command value Iq * and the reactive component current command value Id * .
  • the frequency of the AC power output from the power conversion circuit 3 can be accurately adjusted while taking into consideration the relationship with the frequency of the grid power on the side of the output wire 9.
  • the angular velocity difference acquisition unit 110 includes a phase synchronization circuit 111 and an angular velocity adder / subtractor 112.
  • the grid voltages vuv, vvw, vwu are input to the phase synchronization circuit 111.
  • the phase synchronization circuit 111 outputs a system voltage amplitude V PLL when converted to the rotational coordinate system and a system voltage angular frequency ⁇ PLL when converted to the rotational coordinate system.
  • the angular velocity adder / subtractor 112 calculates an angular velocity difference ⁇ ex .
  • the angular velocity difference ⁇ ex is a difference between the system voltage angular frequency ⁇ PLL and the model angular velocity ⁇ e of the motor model unit 60.
  • the angular velocity difference ⁇ ex is input to the integration block 32 of the generator model unit 30.
  • the grid voltage angular frequency ⁇ PLL is input to the dq conversion block 90 and the dq inverse conversion block 28, respectively.
  • the control signal generation unit 20 incorporates the reactive current control ACR 120 a and the active current control ACR 120 b.
  • the reactive current control ACR 120 a and the active current control ACR 120 b perform feedback control that does not include an integral gain.
  • the reactive current control ACR 120 a and the active current control ACR 120 b are pulse width modulation signals of the difference between the output current values iu, iv, iw of the power conversion circuit 3 and the active current command value Iq * and the reactive current command value Id *. Output to S PWM .
  • the feedback control includes P control which is proportional control, PI control which is proportional integral control, PD control which is proportional derivative control, and PID control which is proportional integral derivative control.
  • the integral control is included in the feedback control, the stability of the feedback control is reduced by the integral gain during the independent operation even if the feedback control functions properly during the grid connection operation.
  • the inventor found out. More specifically, when the first external generator 9a and the second external generator 9b are stopped during the independent operation of the power conversion device PC, only the output power of the power conversion device PC is the output wire. Supply to 9 Therefore, during self-sustaining operation, the output power of the power conversion device PC itself is directly fed back to the power conversion device PC as feedback detection values such as the active power Pg and the reactive power Qg.
  • the power conversion device PC acts as a constant voltage source based on the control of the AVR.
  • the output current of the power converter PC is determined by the load. If the AVR for controlling the output voltage of the power conversion device PC at a constant level and the ACR for controlling the output current at a constant level exist in the same control system, and if the ACR includes an integral gain, the ACR Causes interference with the AVR. If this interference occurs, stable control can not be performed.
  • the reactive current control ACR 120a and the active current control ACR 120b are configured only by P control, and the integral gain is not included. Therefore, since common feedback control may be performed between grid-connected operation and self-sustaining operation, there is an advantage that switching between grid-connected operation and self-sustaining operation can be performed seamlessly.
  • the DC power supply 1 is connected to the input end of the power conversion device PC, and the storage battery 1 a is used as the DC power supply 1.
  • the storage battery 1a is used for the DC power supply 1, the amount of power of the DC power supply 1 is limited. It is preferable to effectively utilize the power of the limited storage battery 1a.
  • power conversion device PC further includes floating command value generation unit 130.
  • the floating command value generation unit 130 adjusts the load of the motor model unit 60 based on the preset no-load angular velocity command value ⁇ NL and the model angular velocity ⁇ e .
  • power supply conversion circuit 3 is effective when the supplied power supplied from first external generator 9a and second external generator 9b to output wire 9 is a predetermined steady value. Do not output power.
  • the floating command value generation unit 130 when the power supplied from the output wire 9 is lower than the steady value due to the output decrease of the first external generator 9a and the second external generator 9b, it is supplied to the output wire 9.
  • the power conversion circuit 3 keeps replenishing the amount of current decrease.
  • the floating command value generation unit 130 includes a no-load command value block 131, an adder / subtractor 132, a first-order lag block 133, and an adder 134.
  • the no-load command value block 131 outputs a no-load angular velocity command value ⁇ NL which is a preset no-load angular velocity command value.
  • ⁇ NL 1.05 [PU] is set.
  • the adder-subtractor 132 calculates the difference between the no-load angular velocity command value ⁇ NL and the model angular velocity ⁇ e .
  • the first-order lag block 133 outputs a value obtained by performing first-order lag processing according to a predetermined time constant set in advance to the difference value calculated by the adder / subtractor 132.
  • the adder 134 outputs a value obtained by adding the output of the first-order lag block 133 and the no-load angular velocity command value ⁇ NL as the floating command value ⁇ flo .
  • the difference between the no-load angular velocity command value ⁇ NL and the model angular velocity ⁇ e is added to the no-load angular velocity command value ⁇ NL in a temporally delayed manner via the first-order delay block 133.
  • the virtual power generation system model unit 13 includes a droop block 91 and an adder / subtractor 92.
  • the droop block 91 outputs a value obtained by performing a predetermined calculation on the active power Pg input in a feedback manner in accordance with a preset droop gain.
  • the adder-subtracter 92 calculates the difference between the output value of the droop block 91 and the floating command value ⁇ flo .
  • the adder / subtractor 92 is provided at the front stage of the governor model unit 80. The difference calculated by the adder / subtractor 92 is transmitted to a governor model adder / subtractor 81 inside the governor model unit 80.
  • the no-load angular velocity command value ⁇ NL and the droop gain of the droop block 91 are set as a set of values so as to satisfy a certain relationship.
  • floating command value generation unit 130 will be described by dividing it into time-series steps for convenience of explanation.
  • first external generator 9a and the second external generator 9b normally generate electric power, and the output wire 9 is supplied with electric power as scheduled.
  • the power conversion device PC does not output a current, and the active power Pg is zero.
  • the prime mover model unit 60 is in a no-load state, and the model angular velocity ⁇ e matches the no-load angular velocity command value ⁇ NL .
  • the power conversion device PC starts to output current in response to the decrease in the output current in the second step. Specifically, although the power converter PC is connected with the output wire 9 at a constant output voltage although the current is not output in the steady state, the power converter PC responds to the decrease in the output current in the second step. Start output of current.
  • the value of the active power Pg increases with an increase in the output current of the power conversion device PC, so the active power Pg input to the motor model unit 60 increases.
  • the model angular velocity ⁇ e of the prime mover model unit 60 is reduced by treating the load of the prime mover model unit 60 to be substantially increased due to the increase of the active power Pg.
  • the decrease of the model angular velocity ⁇ e is transmitted to the floating command value generation unit 130.
  • model angular velocity ⁇ e is initially 1.05 the same as the no-load angular velocity command value ⁇ NL, and the model angular velocity ⁇ e decreases to 1.00 due to the fifth step It is assumed that That is, it is assumed that the model angular velocity ⁇ e is minus 0.05.
  • the output of the adder / subtractor 132 changes stepwise from 0 to ⁇ 0.05 due to the decrease of the model angular velocity ⁇ e .
  • the step-like decrease is smoothed in the time direction by the first-order delay block 133 performing the first-order delay process. That is, the output of the first-order lag block 133 gradually decreases from 0 to minus 0.05.
  • the adder 134 adds the output of the first-order lag block 133 to the no-load angular velocity command value ⁇ NL .
  • the output of the adder 134 that is, the floating command value ⁇ flo gradually decreases from 1.05 to 1.00 in accordance with a predetermined time constant.
  • the floating command value generation unit 130 and the governor model unit 80 operate in cooperation as follows.
  • floating command value ⁇ flo gradually falls from 1.05
  • the input value of governor model adder / subtractor 81 also falls gently from the value at no load. Since the first-order lag element produces a gradual decrease, the floating command value ⁇ flo is larger than the current model angular velocity ⁇ e immediately after the sixth step. That is, immediately after the sixth step, even if the current model angular velocity ⁇ e is 1.00, the floating command value ⁇ flo is reduced only from 1.05 to, for example, 1.04.
  • the difference between the floating command value ⁇ flo and the model angular velocity ⁇ e is plus 0.04, and a value corresponding to this difference is input to the governor model adder / subtractor 81.
  • the governor model adder / subtractor 81 transmits a positive value corresponding to this difference to the ASR 82.
  • the ASR 82 calculates an output value having a power dimension in accordance with the plus input value from the governor model adder / subtractor 81.
  • the ASR 82 exerts a speed adjustment function to increase the model angular velocity ⁇ e so as to compensate for the decrease in the model angular velocity ⁇ e of the generator model unit 30.
  • the motor model unit 60 calculates the latest model angular velocity ⁇ e by performing a series of predetermined arithmetic processing by the adder / subtractor 61, the division block 62, and the inertia simulation block 63 based on the output value input from the ASR 82. .
  • the latest model angular velocity ⁇ e is fed back to the floating command value generation unit 130 again.
  • a point in time when the floating command value ⁇ flo and the model angular velocity ⁇ e coincide with each other arrives.
  • the output of the governor model adder / subtractor 81 becomes zero.
  • control device 12 Since the input value of the ASR 82 becomes zero when the output of the governor model adder / subtractor 81 becomes zero, it can be considered for the ASR 82 that the speed adjustment of the motor model unit 60 is completed. Then, the internal control process of control device 12 is in a steady state with power conversion device PC still outputting the current for the shortfall, whereby power conversion device PC compensates for the current shortage caused by the second step. It can hold the output current.
  • “backup current control” can be realized.
  • the power conversion device PC when the first external generator 9a and the second external generator 9b are in steady operation, the power conversion device PC does not output current, and the first external generator 9a and the second external generator 9b When the output power decreases due to dropout or the like, the power conversion device PC compensates for the insufficient current.
  • the electric power which the storage battery 1a stores is limited, and when the power conversion device PC is connected to the storage battery 1a, the active power that can be output is limited.
  • the backup current control the limited power of the storage battery 1a can be effectively used.
  • the virtual power generation device model unit 13 is preferably constructed so as to be able to charge the storage battery 1a as necessary. Therefore, in the first embodiment, virtual power generation device model unit 13 is configured to receive charge / discharge current control signal I bat * . In the first embodiment, virtual power generation device model unit 13 operates charge / discharge control unit 140 when charge / discharge current control signal I bat * is received. The charge / discharge control unit 140 corrects the active component current command value Iq * generated by the generator model unit 30. A negative current value is added to the active current command value Iq * as the charge / discharge current control signal I bat * .
  • the charge / discharge control unit 140 includes a multiplication block 141, a charge / discharge power adder / subtractor 142, and a charge / discharge current adder 143.
  • the multiplication block 141 multiplies the system voltage amplitude V PLL by the charge / discharge current control signal I bat * of the charge / discharge control unit 140 described later to calculate charge / discharge power.
  • the charge / discharge power adder / subtractor 142 subtracts the charge / discharge power from the multiplication block 141 from the active power Pg.
  • the charge / discharge current adder 143 is interposed between the generator model unit 30 and the control signal generation unit 20.
  • the charge / discharge current adder 143 adds the charge / discharge current control signal I bat * to the effective current command value Iq * .
  • the correction by the charge / discharge current adder 143 corrects the active component current command value Iq * to a negative value so that the current flows backward from the output wire 9 through the power conversion circuit 3. It is.
  • the charge and discharge control unit 140 transmits the corrected effective current command value Iq * to the control signal generation unit 20.
  • the current flowing from the power conversion circuit 3 to the DC power supply 1 can be generated according to the charge / discharge current control signal I bat * . This current can be used as a charging current for "charging" the storage battery 1a.
  • the active power Pg input to the motor model unit 60 can be kept constant. Therefore, even if the charge / discharge control unit 140 operates, the influence on the motor model unit 60 is canceled, and the model angular velocity ⁇ e remains constant. As a result, the charging current to the storage battery 1a can be generated while maintaining the motor model unit 60 in a steady operation. Incidentally, adding a positive current value to active current command value Iq * by the charge and discharge current control signal I bat *, contrary to the above operation, also be carried out to "discharge" to release the power battery 1a is stored it can.
  • the power conversion apparatus PC includes the “angular velocity difference acquisition unit 110”, “ineffective current control ACR 120 a and effective current control ACR 120 b”, “floating command value generation”
  • the unit 130 ′ ′ and the charge and discharge control unit 140 may be omitted.
  • the first modified example corresponds to the "first power converter” in the "means for solving the problems” described above.
  • the power conversion device PC includes the “reactive current control ACR 120 a and the active current control ACR 120 b”, “angular velocity difference acquisition unit 110”, “floating command value generation unit 130 And “charge / discharge control unit 140” may be omitted.
  • the second modified example corresponds to the "second power converter” in the "means for solving the problems" described above. Even if any one or any two of the “angular velocity difference acquisition unit 110”, the “floating command value generation unit 130”, and the “charge / discharge control unit 140” are combined with the second modification. good.
  • the further modification of the first modification described above and the further modification of the second modification described here may have the same circuit structure.
  • the power conversion device PC includes the "floating command value generation unit 130", and the "angular velocity difference acquisition unit 110", the "reactive current control ACR 120a and the active current control ACR 120b". And the charge / discharge control unit 140 may be omitted.
  • the third modified example corresponds to the "third power conversion device” in the "means for solving the problems" described above. With respect to the third modification, any one or any two of the "angular velocity difference acquisition unit 110", the “reactive current control ACR 120a and the active current control ACR 120b” and the “charge / discharge control unit 140" It may be combined.
  • the circuit structure may be the same as the further modification of the first modification and the further modification of the second modification described above and the further modification of the third modification described here. .
  • FIG. 4 is a circuit block diagram of control device 12 included in a power conversion device PC according to a modification of the first embodiment.
  • FIG. 4 shows the third modification described above.
  • the modification shown in FIG. 4 is obtained by removing the angular velocity difference acquisition unit 110, the reactive current control ACR 120a, the active current control ACR 120b, and the charge / discharge control unit 140 from the control device 12 of FIG.
  • PID control ACRs 220a, 220b including integral gains are provided.
  • the counter voltage block 122 is abbreviate
  • the grid voltage amplitude V PLL of the grid voltage block 222 is provided to the feed forward adder / subtractor 25.
  • each component of the angular velocity difference acquisition unit 110 is omitted, the phase synchronization circuit 111 is left. However, the phase synchronization circuit 111 does not output the system voltage angular frequency ⁇ PLL but outputs only the system voltage amplitude V PLL .
  • the PID control ACRs 220a, 220b may be transformed into PI control ACRs that implement PI feedback control including integral gain.
  • the power conversion device PC includes the “charge / discharge control unit 140”, “angular velocity difference acquisition unit 110”, “reactive current control ACR 120 a and active current control ACR 120 b”. And “the floating command value generation unit 130” may be omitted.
  • the fourth modified example corresponds to the "fourth power converter” in the "means for solving the problems" described above. With respect to the fourth modification, any one or any two of the “angular velocity difference acquisition unit 110”, the “effective current control ACR 120 a and the active current control ACR 120 b”, and the “floating command value generation unit 130”. One may be combined. Note that, depending on the method of combination, there may be the same circuit structure as the further modification of each of the first to third modifications described above and the further modification of the fourth modification described here.
  • FIG. 5 is a circuit block diagram of control device 12 included in a power conversion device PC according to a modification of the first embodiment.
  • FIG. 5 shows the fourth modification described above.
  • the variation shown in FIG. 5 is obtained by removing the angular velocity difference acquisition unit 110, the reactive current control ACR 120a, the active current control ACR 120b, and the floating command value generation unit 130 from the control device 12 of FIG. Although each component of the floating command value generation unit 130 is omitted, the no load command value block 131 is left. However, the no-load angular velocity command value ⁇ NL of the no-load command value block 131 is directly input to the adder / subtractor 92.
  • FIG. 6 is a circuit diagram showing a power system PS2 including the power conversion device PC2 according to the second embodiment.
  • the DC power supply 1 includes a solar cell 1b instead of the storage battery 1a.
  • FIG. 7 is a circuit block diagram of the control device 212 included in the power conversion device PC2 according to the second embodiment.
  • the control device 212 shown in FIG. 7 is obtained by removing the floating command value generation unit 130 and the charge / discharge control unit 140 from the control device 12 of FIG. 3. Since there is no floating command value generation unit 130, the power conversion device PC2 outputs active power to the output wire 9 in a steady operation state. That is, the power conversion device PC2 acts as a generator in the same manner as the first external generator 9a and the second external generator 9b. Since the solar battery 1b is used instead of the storage battery 1a, continuous power generation by sunlight is possible. Therefore, the power conversion device PC2 can simulate not one of the backup power supplies but one generator that outputs current in steady operation.
  • FIG. 8 is a circuit block diagram of control device 212 included in power conversion device PC2 according to the modification of the second embodiment.
  • the reactive current control ACR 120a and the active current control ACR 120b are removed from the control device 212 of FIG. 7, and PI control ACRs 220a and 220b including integral gains are provided instead of them. .
  • the counter voltage block 122 is abbreviate
  • the grid voltage amplitude V PLL of the grid voltage block 222 is provided to the feed forward adder / subtractor 25.
  • the PID control ACRs 220a, 220b may be transformed into PI control ACRs that implement PI feedback control including integral gain.
  • FIG. 9 is a circuit block diagram of control device 212 included in power conversion device PC2 according to the modification of the second embodiment.
  • the modification shown in FIG. 9 is obtained by removing the angular velocity difference acquisition unit 110 from the control device 212 of FIG. 7.
  • a fuel cell may be provided as another DC power generation device replacing solar cell 1b.
  • a wind power generation system that outputs DC power may be provided as another DC power generation device replacing the solar cell 1 b.
  • the wind power generation system includes a blade receiving a wind, a power transmission shaft for transmitting the rotation of the blade, a generator connected to the power transmission shaft, and power conversion for converting AC power generated by the generator into DC power. And an apparatus.
  • the control operation performed by the power conversion device PC according to the first embodiment described above and the power conversion device PC2 according to the second embodiment may be provided as a power conversion method. Even when the method is implemented as a power conversion method, as described in the modifications of the first and second embodiments, “angular velocity difference acquisition unit 110”, “reactive current control ACR 120 a and active current control ACR 120 b”, “floating” Control operations executed in command value generation unit 130 ′ ′ and “charge / discharge control unit 140” may be used alone as a power conversion method, or as a power conversion method by combining two or more of these control operations. You may use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電力変換装置は、電力変換回路と、制御装置と、を備える。制御装置は、仮想発電装置モデル部と、制御信号生成部と、を備える。仮想発電装置モデル部は、原動機の回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、電力変換回路の出力電圧の角周波数とモデル角速度との差分である角速度差を算出するように構築された角速度差取得部と、界磁相当値と、角速度差と、電力変換回路の出力電圧と、に基づいて、原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、を備える。制御信号生成部は、電流指令値と電力変換回路の出力電流値とに基づいてパルス幅変調信号を生成するように構築されている。

Description

電力変換装置
 本発明は、電力変換装置に関するものである。
 従来、例えば日本特許第5408889号公報に開示されているように、発電機がモデル化された仮想発電装置モデル部を備えた電力変換装置が知られている。一般に、電力変換装置は、直流と交流とを変換するインバータ回路と、このインバータ回路を制御する制御装置とを含んでいる。仮想発電装置モデル部は、制御装置に内蔵されている。仮想発電装置モデル部が設けられることで、インバータ回路の出力電力が発電機と同様のふるまいをするように、制御装置がインバータ回路の制御信号を生成することができる。
日本特許第5408889号公報
 仮想発電装置モデル部は、通常のインバータ制御では不足してしまう慣性力などの発電機特有の現象を模擬することができる。仮想発電装置モデル部によれば、系統周波数および系統電圧安定化などの効果が得られる。現実の発電機が発電機、AVR、原動機およびガバナを備えるのと同様に、上記従来の仮想発電装置モデル部も発電機モデル、AVRモデル、原動機モデルおよびガバナモデルを含んでいる。上記従来の技術は、このガバナモデルと原動機モデルとの間で伝達される燃料供給量の処理を工夫したものである。
 しかしながら、発電機をモデル化するに当たっては、実用上、他にも多数の改善項目が残されている。まず一つの項目を説明すると、電力変換装置を含む電力システムは、電力システム以外の発電機と共通の出力電線に接続されることで、系統連系運転を行う。このとき、発電機が出力する交流電力の周波数と、電力変換装置の出力交流電力周波数とが乖離しすぎることは好ましくない。
 他の一つの項目を説明すると、系統連系運転中に発電機で脱落が発生した場合、電力変換装置を含む電力システムが自立運転を開始する必要がある。このとき、制御上で系統連系運転と自立運転との切換が円滑に行われることが好ましい。
 更に他の一つの項目を説明すると、電力変換装置の入力端には直流電源が接続され、この直流電源として蓄電池が使用されることがある。直流発電装置である太陽電池あるいは燃料電池などと異なり、蓄電池を使用する場合には蓄電池の電力量が有限であるという特有の事情がある。
 上記の各項目に対して、上記従来の技術では適切な対策が施されていない。そこで、本願発明者は、上記従来の技術では配慮されていなかった各種項目について鋭意研究し、実用性を飛躍的に向上させるための改善を施した新規な電力変換装置を見出すに至った。
 この出願は、上述のような課題を解決するためになされたものであり、その第一の目的は、電力変換回路の出力交流電力周波数を適切に制御することができる電力変換装置を提供することである。
 この出願の第二の目的は、系統連系運転と自立運転との切換がシームレスに行われるように改善された電力変換装置を提供することである。
 この出願の第三の目的は、有限な蓄電池電力を有効活用することができる電力変換装置を提供することである。
 この出願の第四の目的は、必要に応じて蓄電池を充電できるように構築された仮想発電装置モデルを備える電力変換装置を提供することである。
 本願にかかる第一の電力変換装置は、
 直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
 前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
 を備え、
 前記制御装置は、
 仮想発電装置モデル部と、
 制御信号生成部と、
 を備え、
 前記仮想発電装置モデル部は、
 回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
 自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
 前記電力変換回路の出力電圧の角周波数と前記モデル角速度との差分である角速度差を算出するように構築された角速度差取得部と、
 前記界磁相当値と、前記角速度差と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
 を備え、
 前記制御信号生成部は、前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築されたものである。
 本願にかかる第二の電力変換装置は、
 直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
 前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
 を備え、
 前記制御装置は、
 電流指令値を出力するように構築された仮想発電装置モデル部と、
 前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
 を備え、
 前記仮想発電装置モデル部は、
 回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
 自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
 前記モデル角速度と、前記界磁相当値と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
 を備え、
 前記制御信号生成部は、積分ゲインを含まないフィードバック制御により、前記電力変換回路の出力電流値と前記電流指令値との差分を前記パルス幅変調信号にフィードバックするように構築されたものである。
 本願にかかる第三の電力変換装置は、
 直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
 前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
 を備え、
 前記制御装置は、
 電流指令値を出力するように構築された仮想発電装置モデル部と、
 前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
 を備え、
 前記出力電線に、外部発電機が接続され、
 前記仮想発電装置モデル部は、
 回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
 自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
 前記モデル角速度と、前記界磁相当値と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
 予め設定された無負荷角速度指令値と前記モデル角速度との差分が前記無負荷角速度指令値に時間的に遅れて算入されるように生成された指令値であるフローティング指令値を出力するように構築されたフローティング指令値生成部と、
 前記回転軸の前記仮想回転速度を調節するガバナを模擬するように構築され、前記フローティング指令値に基づいて前記原動機に供給される駆動エネルギの指標となる指標値を算出するように構築されたガバナモデル部と、
 を備え、
 前記ガバナモデル部は、前記フローティング指令値に従って、前記外部発電機から前記出力電線に供給される供給電力が予め定めた定常値であるときには前記電力変換回路が有効電力を出力せず、前記外部発電機の出力低下により前記出力電線の前記供給電力が前記定常値よりも低下したときに前記定常値に対する電流低下分を前記電力変換回路が出力し続けるように前記指標値を算出する。
 本願にかかる第四の電力変換装置は、
 直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
 前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
 を備え、
 前記制御装置は、
 電流指令値を出力するように構築された仮想発電装置モデル部と、
 前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
 を備え、
 前記仮想発電装置モデル部は、
 回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を出力するように構築された原動機モデル部と、
 自動電圧調節器を模擬し、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
 前記電力変換回路の出力電圧と、前記AVRモデル部の前記界磁相当値と、前記電力変換回路の出力電圧の角周波数とに基づいて、前記原動機によって駆動される発電機を模擬するための前記電流指令値を生成するように構築された発電機モデル部と、
 を備え、
 前記仮想発電装置モデル部は、電流制御信号を受信するように構築され、
 前記仮想発電装置モデル部は、前記電流制御信号を受信した場合に、前記発電機モデル部で生成された前記電流指令値を補正することで、前記出力電線から前記電力変換回路を介して前記直流電源の側へ電流が逆流するように補正された前記電流指令値を、前記制御信号生成部へと伝達するように構築されたものである。
 上記第一の電力変換装置によれば、電流指令値の生成処理に、角速度差取得部で取得した角速度差を算入することができる。これにより、出力電線の側における系統電力の周波数との関係を考慮に入れつつ、電力変換回路が出力する交流電力の周波数を精度よく調節することができる。
 上記第二の電力変換装置によれば、次の効果が得られる。電力変換装置を含む電力システムと発電機を含む電力系統とが系統連系運転されているときに、電力系統が連系運転から脱落すると、電力変換装置を含む電力システム単独の自立運転となることがある。系統連系運転中には積分ゲインを用いたフィードバック制御が好適に機能していても、自立運転中には積分ゲインがフィードバック制御の安定性を低下させることが見出された。上記第二の電力変換装置によれば、積分ゲインが含まれないことで、系統連系運転と自立運転との切換がシームレスに行わ、なおかつ自立運転を安定に行うことができるという利点がある。
 上記第三の電力変換装置によれば、バックアップ電流制御を実現することができる。バックアップ電流制御は、外部発電機が定常動作しているときには電力変換装置は電流を出力せず、外部発電機が脱落などにより出力電力低下を起こしたときには電力変換装置が不足分の電流を補充し続ける、というものである。蓄電池が蓄える電力は有限であり、電力変換装置が蓄電池と接続されている場合には出力可能な有効電力に限りがある。上記のバックアップ電流制御により、有限な蓄電池電力を有効活用することができる。
 上記第四の電力変換装置によれば、電流制御信号に応じて、電力変換回路から直流電源の側へと流れる電流を作り出すことができる。この電流は、直流電源として蓄電池を用いた場合における蓄電池の充電電流として利用することができる。
実施の形態1にかかる電力変換装置を備えた電力システムを含む全体構造を示すシステム構成図である。 実施の形態1にかかる電力変換装置を備えた電力システムを示す回路図である。 実施の形態1にかかる電力変換装置が備える制御装置の回路ブロック図である。 実施の形態1の変形例にかかる電力変換装置が備える制御装置の回路ブロック図である。 実施の形態1の変形例にかかる電力変換装置が備える制御装置の回路ブロック図である。 実施の形態2にかかる電力変換装置を備えた電力システムを示す回路図である。 実施の形態2にかかる電力変換装置が備える制御装置の回路ブロック図である。 実施の形態2の変形例にかかる電力変換装置が備える制御装置の回路ブロック図である。 実施の形態2の変形例にかかる電力変換装置が備える制御装置の回路ブロック図である。
実施の形態1.
[実施の形態1の装置の構成]
(全体構造)
 図1は、実施の形態1にかかる電力変換装置PCを備えた電力システムPSを含む全体構造を示すシステム構成図である。出力電線9に対して、電力システムPSと、第一外部発電機9aおよび第二外部発電機9bと、負荷11とが接続されている。電力システムPSは、電力変換装置PCと、直流電源1と、を含んでいる。
 実施の形態1にかかる電力変換装置PCは、電力変換回路3と、制御装置12と、を備えている。なお、電力変換装置PCは、上位装置2とも接続しており、上位装置2から充放電電流制御信号Ibat*を受信できるように構築されている。第一外部発電機9aおよび第二外部発電機9bは、公知の交流発電機であり、電力系統を構築している。第一外部発電機9aおよび第二外部発電機9bは、その具体的仕様は限定されないが、例えば、同期発電機あるいは誘導発電機などとされてもよく、その動力源は蒸気タービンなどであってもよい。
 なお、実施の形態の説明および図面において、いくつかの符号「Id」「Iq」「Ibat*」に「*」を付している。このアスタリスクは、制御系の中で、指令値または目標値に相当するパラメータであることを表すためにつける記号である。このアスタリスクを代替する方法として、「Reference」の意味である「ref」を添え字に加えることで、特定のパラメータが指令値または目標値であることを明示してもよい。つまり、Id、Iq、Ibat*を、それぞれIdref、Iqref、Ibatrefと記しても同じ意味となる。
 図2は、実施の形態1にかかる電力変換装置PCを備えた電力システムPSを示す回路図である。電力変換回路3は、直流電源1と出力電線9との間に介在し、直流電源1からの直流電力を変換することで、出力電線9へと交流電力を出力する。電力変換回路3は、複数の半導体スイッチング素子を含むインバータ回路である。半導体スイッチング素子は、IGBT或いはMOSFETなどである。
 制御装置12は、電力変換回路3のスイッチング制御に用いるパルス幅変調信号SPWMを電力変換回路3に出力する。パルス幅変調信号SPWMは、半導体スイッチング素子のゲートに印加されるゲートパルス信号である。電力変換装置PCの入力端には、直流電源1が接続されている。実施の形態1では、直流電源1として蓄電池1aが設けられている。
 電力変換装置PCの出力端は、出力配線10および出力側変圧器8を介して、出力電線9に接続している。出力配線10には、計器用変流器4、出力リアクトル5、フィルタコンデンサ7および計器用変圧器6が設けられている。計器用変流器4は、電流センサとして機能する。計器用変流器4は、電力変換回路3の出力電流iu,iv,iwを計測し、計測した電流値を制御装置12へ伝達する。計器用変圧器6は、電圧センサとして機能する。計器用変圧器6は、電力変換回路3の出力電圧vuv、vvw、vwuを計測し、計測した電圧値を制御装置12へ伝達する。なお、電力変換回路3の出力電圧と出力電線9の系統電圧は、出力側変圧器8があることで大きさが異なるものの互いに相関を持っており、周波数が共通している。実施の形態1の説明では、説明の簡略化のため、出力電圧と系統電圧に共通の符号vuv、vvw、vwuを付することがある。
(制御装置の構成)
 図3は、実施の形態1にかかる電力変換装置PCが備える制御装置12の回路ブロック図である。制御装置12は、仮想発電装置モデル部13と、制御信号生成部20と、を備えている。仮想発電装置モデル部13は、仮想同期発電機(Virtual Synchronous Generator:VSG)を実現する。「仮想同期発電機」は、インバータ連系の分散電源である電力システムPSに、同期発電機と同じ特性を持たせるためのモデルである。
 仮想発電装置モデル部13には、電力変換回路3が出力した有効電力Pgと、電力変換回路3の出力電圧vuv、vvw、vwuと、電力変換回路3が出力した無効電力Qgと、がフィードバック的に入力されている。仮想発電装置モデル部13は、これらの入力パラメータに基づいて有効分電流指令値Iqと無効分電流指令値Idを生成する。以下、説明の簡略化のために、有効分電流指令値Iqと無効分電流指令値Idとをまとめて「電流指令値Id、Iq」と記載することもある。仮想発電装置モデル部13は、生成された有効分電流指令値Iqおよび無効分電流指令値Idを制御信号生成部20に伝達する。制御信号生成部20は、有効分電流指令値Iqおよび無効分電流指令値Idと、電力変換回路3の出力電流値iu,iv,iwとに基づいて、パルス幅変調信号SPWMを生成する。
 仮想発電装置モデル部13は、発電機モデル部30と、原動機モデル部60と、AVRモデル部70と、ガバナモデル部80と、を備えている。
 原動機モデル部60は、蒸気タービン等で回転される回転軸を持つ原動機を模擬している。原動機モデル部60は、この回転軸の仮想回転速度を表すモデル角速度ωを生成する。原動機モデル部60は、より具体的には、加減算器61と、除算ブロック62と、慣性模擬ブロック63と、を含んでいる。
 加減算器61は、ガバナモデル部80が出力する駆動エネルギ指標値Pdrから有効電力Pgを減算する。除算ブロック62は、加減算器61の出力をモデル角速度ωで除算することでトルク相当値を出力する。慣性模擬ブロック63は、除算ブロック62からトルク相当値を受け取り、仮想イナーシャJsを用いて回転軸の慣性を模擬することによりモデル角速度ωを算出する。
 ガバナモデル部80は、原動機モデル部60で模擬される原動機に対する調速を行うガバナをモデル化したものである。ガバナモデル部80は、後述するフローティング指令値ωfloに基づいて、駆動エネルギ指標値Pdrを算出する。駆動エネルギ指標値Pdrは、電力の次元を有する値であり、原動機モデル部60が模擬する原動機に供給される駆動エネルギの指標である。より具体的には、駆動エネルギ指標値Pdrは、原動機モデル部60がエンジンを模擬している場合には、このエンジンに与えられる燃料供給量に相当している。
 ガバナモデル部80は、より具体的には、ガバナモデル加減算器81と、自動速度調節器82と、を含んでいる。ガバナモデル加減算器81は、ガバナモデル部80の前段の加減算器92からの入力値とモデル角速度ωとの差分を演算する。自動速度調節器82は、ガバナモデル加減算器81の出力を受け、比例積分制御つまりPI制御によるフィードバックを行うことで、駆動エネルギ指標値Pdrを出力する。自動速度調節器82を「ASR82」とも称す。
 AVRモデル部70は、発電機モデル部30の界磁電圧を制御する自動電圧調節器を模擬している。実施の形態1では、AVRモデル部70は、界磁電流に相当する界磁相当値Ifeを算出し、この界磁相当値Ifeを発電機モデル部30へと伝達する。界磁相当値Ifeは、界磁電流に限らず、界磁電圧に相当する値として算出されても良い。AVRモデル部70は、より具体的には、ドループブロック71と、第一所定値ブロック72と、前段加減算器73と、後段加減算器74と、比例積分制御ブロック75と、第二所定値ブロック76と、加算器77と、を含んでいる。
 ドループブロック71は、ドループゲインに応じて無効電力Qgに所定の演算が施された値を出力する。第一所定値ブロック72は、予め設定された第一所定値を出力する。前段加減算器73は、ドループブロック71の出力値と第一所定値ブロック72の第一所定値との差分を出力する。後段加減算器74は、前段加減算器73の出力値と系統電圧振幅VPLLとの差分を出力する。系統電圧振幅VPLLは、後述する角速度差取得部110の位相同期回路111で得られる値である。
 比例積分制御ブロック75は、後段加減算器74の出力を受けて比例積分制御を行う。第二所定値ブロック76は、予め設定された第二所定値を出力する。加算器77は、比例積分制御ブロック75の出力値と第二所定値ブロック76の第二所定値とを加算する。加算器77の出力値が、界磁相当値Ifeである。実施の形態1では、第一所定値及び第二所定値が、1.0に設定されている。
 発電機モデル部30は、原動機によって駆動される発電機を模擬するように構築されている。発電機モデル部30は、界磁相当値Ifeと、後述する角速度差取得部110で取得された角速度差ωexと、電力変換回路3の出力電圧vuv、vvw、vwuと、に基づいて有効分電流指令値Iqおよび無効分電流指令値Idを生成する。発電機モデル部30は、より具体的には、比例ブロック31と、積分ブロック32と、d軸変換部33と、q軸変換部34と、第一乗算ブロック35と、第二乗算ブロック36と、第一同期リアクタンス部37と、加減算器38と、第二同期リアクタンス部39と、を備えている。
 比例ブロック31は、AVRモデル部70からの界磁相当値Ifeを受けてこの界磁相当値Ifeに予め設定された所定係数を用いた演算を施すことで、内部誘起電圧に相当する値である内部誘起電圧相当値Efeを出力する。積分ブロック32は、後述する角速度差取得部110で取得される角速度差ωexを受け、角速度差ωexに積分を施すことでモデル位相δeを出力する。
 d軸変換部33は、積分ブロック32からのモデル位相δeをd軸に変換することで、内部誘起電圧をd軸に分配するための無次元量の第一係数を算出する。q軸変換部34は、積分ブロック32からのモデル位相δeをq軸に変換することで、内部誘起電圧をq軸に分配するための無次元量の第二係数を算出する。第一乗算ブロック35は、d軸変換部33が出力した第一係数と内部誘起電圧相当値Efeとを乗算する。第二乗算ブロック36は、q軸変換部34が出力した第二係数と内部誘起電圧相当値Efeとを乗算する。
 第一同期リアクタンス部37は、第一乗算ブロック35の出力値を電圧値から電流値に変換することで無効分電流指令値Idを算出する。加減算器38は、第二乗算ブロック36の出力値と系統電圧振幅VPLLとの差分を算出する。第二同期リアクタンス部39は、加減算器38の出力値を電圧値から電流値に変換することで有効分電流指令値Iqを算出する。
 制御信号生成部20は、有効分電流指令値Iqおよび無効分電流指令値Idと電力変換回路3の出力電流値iu,iv,iwとに基づいて、パルス幅変調信号SPWMを生成する。より具体的には、制御装置12は、電力変換回路3の出力電流値iu,iv,iwをdq変換するdq変換ブロック90を備えている。制御信号生成部20は、有効分電流指令値Iqおよび無効分電流指令値Idと、dq変換ブロック90の出力値と、に基づいてパルス幅変調信号を生成している。
 制御信号生成部20は、具体的には、無効分加減算器21と、有効分加減算器22と、第一非干渉項ブロック23と、第二非干渉項ブロック24と、無効分自動電流調節器120aと、有効分自動電流調節器120bと、カウンタ電圧ブロック122と、フィードフォワード加減算器25と、無効分加算器26と、有効分加算器27と、dq逆変換ブロック28と、パルス幅変調信号生成ブロック29と、を含んでいる。
 無効分加減算器21は、無効分電流指令値Idとdq変換ブロック90のd軸出力値との差分を求める。有効分加減算器22は、有効分電流指令値Iqとdq変換ブロック90のq軸出力値との差分を求める。第一非干渉項ブロック23には、無効分電流指令値Idが入力される。第二非干渉項ブロック24には、有効分電流指令値Iqが入力される。第一非干渉項ブロック23および第二非干渉項ブロック24は、dq軸上で電流制御する際に直行する成分の電圧をフィードフォワードするための非干渉項を演算する。
 無効分自動電流調節器120aは、無効分加減算器21の出力値に対して、予め設定された所定比例係数を用いた第一の比例制御を施すように構築された制御ブロックである。有効分自動電流調節器120bは、有効分加減算器22の出力値に対して、予め設定された所定比例係数を用いた第二の比例制御を施すように構築された制御ブロックである。カウンタ電圧ブロック122は、カウンタ電圧に相当するように定めたカウンタ電圧相当値Vrateを出力する。実施の形態1では、連系運転から自立運転への移行をシームレスに行うために、カウンタ電圧相当値Vrateが固定値として定められている。
 フィードフォワード加減算器25は、カウンタ電圧相当値Vrateと第二非干渉項ブロック24の出力する非干渉項との差分を算出する。無効分加算器26は、無効分自動電流調節器120aの出力とフィードフォワード加減算器25の出力とを加算する。有効分加算器27は、有効分自動電流調節器120bの出力とフィードフォワード加減算器25の出力とを加算する。dq逆変換ブロック28には、系統電圧角周波数ωPLLが入力される。dq逆変換ブロック28は、無効分加算器26の出力値と有効分加算器27の出力値とに対してdq逆変換を施す。パルス幅変調信号生成ブロック29は、dq逆変換ブロック28の出力信号から、パルス幅変調信号SPWMを生成する。
 実施の形態1では、制御装置12が、角速度差取得部110と、フローティング指令値生成部130と、充放電制御部140と、を備えている。また、実施の形態1では、制御装置12における制御信号生成部20に、無効分自動電流調節器120aおよび有効分自動電流調節器120bが内蔵されている。無効分自動電流調節器120aを、「無効分電流制御ACR120a」とも称する。有効分自動電流調節器120bを、「有効分電流制御ACR120b」とも称する。
(角速度差取得部)
 電力変換装置PCを含む電力システムPSは、第一外部発電機9aおよび第二外部発電機9bと共通の出力電線9に接続されることで、系統連系運転を行う。このとき、第一外部発電機9aおよび第二外部発電機9bが出力する交流電力の周波数と、電力変換装置PCの出力交流電力周波数とが乖離しすぎることは好ましくない。このような観点から電力変換回路3の出力交流電力周波数を適切に制御することが好ましい。そこで、実施の形態1では、角速度差取得部110が、角速度差ωexを算出する。
 角速度差ωexは、モデル角速度ωから系統電圧角周波数ωPLLを減算することにより得られた差分である。角速度差取得部110によれば、有効分電流指令値Iqおよび無効分電流指令値Idの生成処理に角速度差取得部110の角速度差ωexを算入することができる。これにより、出力電線9の側における系統電力の周波数との関係を考慮に入れつつ、電力変換回路3が出力する交流電力の周波数を、精度よく調節することができる。
 実施の形態1にかかる角速度差取得部110は、位相同期回路111と、角速度加減算器112と、を含んでいる。位相同期回路111には、系統電圧vuv、vvw、vwuが入力される。位相同期回路111は、回転座標系に変換した際の系統電圧振幅VPLLと、回転座標系に変換した際の系統電圧角周波数ωPLLと、を出力する。角速度加減算器112は、角速度差ωexを算出する。角速度差ωexは、系統電圧角周波数ωPLLと原動機モデル部60のモデル角速度ωとの差分である。角速度差ωexは、発電機モデル部30の積分ブロック32に入力される。系統電圧角周波数ωPLLは、dq変換ブロック90と、dq逆変換ブロック28と、にそれぞれ入力される。
(無効分電流制御ACRおよび有効分電流制御ACR)
 系統連系運転中に第一外部発電機9aおよび第二外部発電機9bで脱落が発生した場合、電力変換装置PCを含む電力システムPSが自立運転を開始する必要がある。このとき、制御上で系統連系運転と自立運転との切換が円滑に行われることが好ましい。系統連系運転と自立運転との切換がシームレスに行われるように改善されることが好ましい。そこで、実施の形態1では、制御信号生成部20が、無効分電流制御ACR120aおよび有効分電流制御ACR120bを内蔵している。無効分電流制御ACR120aおよび有効分電流制御ACR120bは、積分ゲインを含まないフィードバック制御を行うものである。無効分電流制御ACR120aおよび有効分電流制御ACR120bは、電力変換回路3の出力電流値iu,iv,iwと有効分電流指令値Iqおよび無効分電流指令値Idとの差分をパルス幅変調信号SPWMに出力する。
 無効分電流制御ACR120aおよび有効分電流制御ACR120bによれば、次の効果が得られる。電力変換装置PCを含む電力システムPSと発電機を含む電力系統とが系統連系運転されているときに、電力系統が連系運転から脱落すると、電力変換装置PCを含む電力システムPS単独の自立運転となることがある。フィードバック制御には、比例制御であるP制御、比例積分制御であるPI制御、比例微分制御であるPD制御、および比例積分微分制御であるPID制御がある。
 ここで、フィードバック制御に積分ゲインが含まれると、系統連系運転中にはフィードバック制御が好適に機能していても、自立運転中には積分ゲインによりフィードバック制御の安定性が低下することを本願発明者は見出した。この点をより具体的に説明すると、電力変換装置PCの自立運転中に第一外部発電機9aおよび第二外部発電機9bが停止しているとき、電力変換装置PCの出力電力のみが出力電線9へと供給される。従って、自立運転中には、電力変換装置PC自身の出力電力が、そのまま有効電力Pgおよび無効電力Qgなどのフィードバック検出値となって、再び電力変換装置PCへとフィードバックされる。
 自立運転を行う場合、電力変換装置PCはAVRの制御に基づき定電圧源としてふるまう。電力変換装置PCの出力電流は、負荷によって決定される。電力変換装置PCの出力電圧を一定に制御しようとするAVRと、出力電流を一定に制御しようとするACRとが同一制御系内に存在し、なおかつACRに積分ゲインが含まれる場合には、ACRがAVRと干渉を起こしてしまう。この干渉が起きると、安定に制御を行うことができない。この点、実施の形態1では、無効分電流制御ACR120aおよび有効分電流制御ACR120bがP制御のみで構成されており、積分ゲインは含まれない。従って、系統連系運転と自立運転とで共通のフィードバック制御を行ってもよいので、系統連系運転と自立運転との切換がシームレスに行われるという利点がある。
(フローティング指令値生成部)
 実施の形態1では、電力変換装置PCの入力端に直流電源1が接続され、この直流電源1として蓄電池1aが使用されている。直流発電装置である太陽電池あるいは燃料電池などと異なり、直流電源1に蓄電池1aを使用する場合には直流電源1の電力量が有限であるという特有の事情がある。有限な蓄電池1aの電力を有効活用することが好ましい。
 そこで、実施の形態1では、電力変換装置PCが、フローティング指令値生成部130をさらに備える。フローティング指令値生成部130は、予め設定された無負荷角速度指令値ωNLとモデル角速度ωとに基づいて原動機モデル部60の負荷を調節する。
 フローティング指令値生成部130を設けることで、第一外部発電機9aおよび第二外部発電機9bから出力電線9に供給される供給電力が予め定めた定常値であるときには、電力変換回路3は有効電力を出力しない。フローティング指令値生成部130を設けることで、第一外部発電機9aおよび第二外部発電機9bの出力低下により出力電線9の供給電力が定常値よりも低下したときに、出力電線9へ供給される電流の低下分を電力変換回路3が補充し続ける。
 実施の形態1にかかるフローティング指令値生成部130は、無負荷指令値ブロック131と、加減算器132と、一次遅れブロック133と、加算器134と、を含んでいる。無負荷指令値ブロック131は、予め設定された無負荷時の角速度指令値である無負荷角速度指令値ωNLを出力する。実施の形態1ではωNL=1.05[PU]と設定されている。加減算器132は、無負荷角速度指令値ωNLとモデル角速度ωとの差分を演算する。モデル角速度ωが無負荷角速度指令値ωNLと同じ又はこれよりも低い値を取るので、加減算器132の出力する差分はゼロあるいはマイナス値となる。一次遅れブロック133は、加減算器132が演算した差分値に予め設定された所定時定数に従って一次遅れ処理を施した値を出力する。加算器134は、一次遅れブロック133の出力と無負荷角速度指令値ωNLとを加算した値をフローティング指令値ωfloとして出力する。これにより、無負荷角速度指令値ωNLとモデル角速度ωとの差分が、一次遅れブロック133を経由することで、無負荷角速度指令値ωNLへと時間的に遅れて算入される。
 実施の形態1にかかる仮想発電装置モデル部13は、ドループブロック91と、加減算器92と、を備えている。ドループブロック91は、フィードバック的に入力された有効電力Pgに対して、予め設定されたドループゲインに応じて所定の演算を施した値を出力する。加減算器92は、ドループブロック91の出力値とフローティング指令値ωfloとの差分を演算する。加減算器92は、ガバナモデル部80の前段に設けられている。加減算器92で演算された差分が、ガバナモデル部80の内部のガバナモデル加減算器81に伝達される。なお、無負荷角速度指令値ωNLとドループブロック91のドループゲインとは、一定の関係性を満たすように一組の値として設定されている。
 フローティング指令値生成部130の動作を、説明の便宜上、時系列のステップに分けて説明する。まず、第一ステップとして、第一外部発電機9aおよび第二外部発電機9bが正常に発電しており、出力電線9に予定通りの電力が供給されているものとする。このとき、電力変換装置PCは電流を出力しておらず、有効電力Pgはゼロとなっているものとする。また、原動機モデル部60は無負荷状態であり、モデル角速度ωは無負荷角速度指令値ωNLと一致しているものとする。
 第二ステップにおいて、第一外部発電機9aおよび第二外部発電機9bに異常が発生することで、第一外部発電機9aおよび第二外部発電機9bの出力電流が低下する。第三ステップにおいて、第二ステップにおける出力電流低下に応答して電力変換装置PCが電流を出力し始める。具体的には、定常時には電流を出力していないものの電力変換装置PCが出力電線9と一定の出力電圧で接続しているので、第二ステップの出力電流低下に応答して電力変換装置PCが電流の出力を開始する。
 第四ステップでは、電力変換装置PCの出力電流増大に伴って有効電力Pgの値が増加するので、原動機モデル部60へ入力される有効電力Pgが増加する。第五ステップでは、有効電力Pgの増加により実質的には原動機モデル部60の負荷が増大したものとして取り扱われることで、原動機モデル部60のモデル角速度ωが低下する。第六ステップでは、モデル角速度ωの低下が、フローティング指令値生成部130へと伝達される。ここでは、説明の便宜上、モデル角速度ωが当初は無負荷角速度指令値ωNLと同じ1.05であったものとし、第五ステップに起因してモデル角速度ωが1.00へと低下したものと仮定する。つまり、モデル角速度ωがマイナス0.05されたものと仮定する。
 第七ステップでは、モデル角速度ωの低下により、加減算器132の出力が0からマイナス0.05へ向かってステップ状に変化する。加減算器132の出力がステップ状の低下を示したとしても、一次遅れブロック133が一次遅れ処理を施すことでこのステップ状の低下が時間方向に平滑化される。つまり一次遅れブロック133の出力は、0からマイナス0.05へと緩やかに低下する。加算器134が一次遅れブロック133の出力を無負荷角速度指令値ωNLに加算する。加算器134の出力つまりフローティング指令値ωfloは、1.05から1.00へ向かって所定時定数に従って緩やかに低下する。
 上記第一ステップ~第七ステップが進行する中で、フローティング指令値生成部130およびガバナモデル部80は、下記のように協調して動作する。フローティング指令値ωfloが1.05から緩やかに低下するのに応じて、ガバナモデル加減算器81の入力値も無負荷時の値から緩やかに低下する。一次遅れ要素により緩やかな低下を作り出しているので、第六ステップの直後は、フローティング指令値ωfloは現在のモデル角速度ωよりも大きい。つまり、第六ステップの直後は、現在のモデル角速度ωが1.00であっても、フローティング指令値ωfloが1.05から例えば1.04までしか低下していない。このとき、フローティング指令値ωfloとモデル角速度ωとの差分はプラス0.04であり、この差分に応じた値がガバナモデル加減算器81に入力される。ガバナモデル加減算器81は、この差分に応じたプラスの値を、ASR82へと伝達する。ASR82は、ガバナモデル加減算器81からのプラス入力値に応じて、電力の次元を持つ出力値を算出する。ASR82は、この時点では、発電機モデル部30のモデル角速度ωが低下したことを補償するように、モデル角速度ωを増大させるような速度調節機能を発揮する。
 原動機モデル部60は、ASR82から入力された出力値に基づいて、加減算器61、除算ブロック62、および慣性模擬ブロック63による一連の所定演算処理を行うことで、最新のモデル角速度ωを算出する。最新のモデル角速度ωは、再びフローティング指令値生成部130へとフィードバックされる。これらの制御が繰り返し行われると、やがて、フローティング指令値ωfloとモデル角速度ωとが互いに一致する時点が到来する。この時点が到来すると、ガバナモデル加減算器81の出力は、ゼロとなる。
 ガバナモデル加減算器81の出力がゼロとなると、ASR82の入力値が零となるので、ASR82にとっては原動機モデル部60の速度調節が完了したものとみなすことができる。そうすると電力変換装置PCが不足分の電流を出力したままの状態で制御装置12の内部制御処理が定常状態となり、これにより電力変換装置PCは上記第二ステップに起因した電流不足分を補うための出力電流を保持することができる。
 以上説明したフローティング指令値生成部130によれば、「バックアップ電流制御」を実現することができる。バックアップ電流制御は、第一外部発電機9aおよび第二外部発電機9bが定常動作しているときには電力変換装置PCは電流を出力せず、第一外部発電機9aおよび第二外部発電機9bが脱落などにより出力電力低下を起こしたときには電力変換装置PCが不足分の電流を補充する、というものである。蓄電池1aが蓄える電力は有限であり、電力変換装置PCが蓄電池1aと接続されている場合には出力可能な有効電力に限りがある。上記のバックアップ電流制御により、蓄電池1aの有限な電力を有効活用することができる。
(充放電制御部)
 蓄電池1aの電力が低下したときのために、仮想発電装置モデル部13は、必要に応じて蓄電池1aを充電できるように構築されることが好ましい。そこで、実施の形態1では、仮想発電装置モデル部13が、充放電電流制御信号Ibat*を受信するように構築されている。実施の形態1では、仮想発電装置モデル部13が、充放電電流制御信号Ibat*を受信した場合に充放電制御部140を作動させる。充放電制御部140は、発電機モデル部30で生成された有効分電流指令値Iqに補正を施す。充放電電流制御信号Ibat*としてマイナス電流値を有効分電流指令値Iqに加算する。
 充放電制御部140は、具体的には、乗算ブロック141と、充放電電力加減算器142と、充放電電流加算器143と、を含んでいる。乗算ブロック141は、系統電圧振幅VPLLと後述する充放電制御部140の充放電電流制御信号Ibat*とを乗算して充放電電力を算出する。充放電電力加減算器142は、乗算ブロック141からの充放電電力を有効電力Pgから差し引く。充放電電流加算器143は、発電機モデル部30と制御信号生成部20との間に介在している。充放電電流加算器143は、充放電電流制御信号Ibat*を有効分電流指令値Iqに加算する。
 実施の形態1においては、充放電電流加算器143による補正は、出力電線9から電力変換回路3を介して電流が逆流するように、有効分電流指令値Iqを負の値に補正するものである。充放電制御部140は、補正された有効分電流指令値Iqを制御信号生成部20へと伝達する。充放電制御部140によれば、充放電電流制御信号Ibat*に応じて、電力変換回路3から直流電源1の側へと流れる電流を作り出すことができる。この電流は、蓄電池1aの「充電」を行うための充電電流として利用することができる。
 さらに、実施の形態1では、充放電電力加減算器142によって充放電電力が有効電力Pgから差し引かれるので、原動機モデル部60に入力される有効電力Pgを一定に保つことができる。従って、充放電制御部140が作動しても、原動機モデル部60に対しての影響はキャンセルされており、モデル角速度ωは一定のままとされる。その結果、原動機モデル部60を定常動作に維持したままで、蓄電池1aへの充電電流を作り出すことができる。なお、充放電電流制御信号Ibat*によってプラス電流値を有効分電流指令値Iqに加算すると、上記の動作とは逆に、蓄電池1aが蓄えた電力を放出する「放電」を行うこともできる。
[実施の形態1の変形例]
 一つの電力変換装置PCに、上述した「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」、「フローティング指令値生成部130」、および「充放電制御部140」が全て搭載されていなくともよい。基本的な変形例として、第一変形例~第四変形例を述べる。まず、第一変形例として、実施の形態1にかかる電力変換装置PCにおいて、「角速度差取得部110」が備えられ、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」、「フローティング指令値生成部130」、および「充放電制御部140」が省略されてもよい。この第一変形例は、上述した「課題を解決するための手段」における「第一の電力変換装置」に相当している。第一変形例に対して、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」、「フローティング指令値生成部130」、および「充放電制御部140」のうち、任意の一つ或いは任意の二つが組み合わされても良い。
 第二変形例として、実施の形態1にかかる電力変換装置PCにおいて、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」が備えられ、「角速度差取得部110」、「フローティング指令値生成部130」、および「充放電制御部140」が省略されてもよい。この第二変形例は、上述した「課題を解決するための手段」における「第二の電力変換装置」に相当している。この第二変形例に対して、「角速度差取得部110」、「フローティング指令値生成部130」、および「充放電制御部140」のうち、任意の一つ或いは任意の二つが組み合わされても良い。なお、組み合わせの仕方次第では、上述した第一変形例の更なる変形と、ここで述べる第二変形例の更なる変形とが同じ回路構造になることもある。
 第三変形例として、実施の形態1にかかる電力変換装置PCにおいて、「フローティング指令値生成部130」が備えられ、「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」および「充放電制御部140」が省略されてもよい。この第三変形例は、上述した「課題を解決するための手段」における「第三の電力変換装置」に相当している。この第三変形例に対して、「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」および「充放電制御部140」のうち、任意の一つ或いは任意の二つが組み合わされても良い。なお、組み合わせの仕方次第では、上述した第一変形例の更なる変形および第二変形例の更なる変形と、ここで述べる第三変形例の更なる変形とが同じ回路構造になることもある。
 図4は、実施の形態1の変形例にかかる電力変換装置PCが備える制御装置12の回路ブロック図である。図4は、上記の第三変形例を示す。図4に示す変形例は、図3の制御装置12から、角速度差取得部110、無効分電流制御ACR120a、有効分電流制御ACR120b、および充放電制御部140を取り除いたものである。無効分電流制御ACR120aおよび有効分電流制御ACR120bの代わりに、積分ゲインを含むPID制御ACR220a、220bが設けられている。
 また、図4に示す制御装置12では、図3の制御装置12からカウンタ電圧ブロック122が省略され、その代わりに系統電圧ブロック222が設けられている。系統電圧ブロック222の系統電圧振幅VPLLが、フィードフォワード加減算器25に与えられている。角速度差取得部110の各構成要素が省略されているが、位相同期回路111は残されている。ただし位相同期回路111は系統電圧角周波数ωPLLを出力せず、系統電圧振幅VPLLのみを出力している。PID制御ACR220a、220bは、積分ゲインを含むPIフィードバック制御を実施するPI制御ACRに変形されてもよい。
 第四変形例として、実施の形態1にかかる電力変換装置PCにおいて、「充放電制御部140」が備えられ、「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」および「フローティング指令値生成部130」が省略されてもよい。この第四変形例は、上述した「課題を解決するための手段」における「第四の電力変換装置」に相当している。この第四変形例に対して、「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」および「フローティング指令値生成部130」のうち、任意の一つ或いは任意の二つが組み合わされても良い。なお、組み合わせの仕方次第では、上述した第一変形例~第三変形例それぞれの更なる変形と、ここで述べる第四変形例の更なる変形とが同じ回路構造になることもある。
 図5は、実施の形態1の変形例にかかる電力変換装置PCが備える制御装置12の回路ブロック図である。図5は、上記の第四変形例を示す。図5に示す変形例は、図3の制御装置12から、角速度差取得部110、無効分電流制御ACR120a、有効分電流制御ACR120bおよびフローティング指令値生成部130を取り除いたものである。フローティング指令値生成部130の各構成要素が省略されているが、無負荷指令値ブロック131が残されている。ただし、無負荷指令値ブロック131の無負荷角速度指令値ωNLが直接に加減算器92へと入力されている。
実施の形態2.
 以下の説明では、実施の形態1と実施の形態2とで同一または相当する構成については同一の符号を付して説明を行う。実施の形態2では、実施の形態1との相違点を中心に説明し、共通事項は説明を簡略化ないしは省略する。図6は、実施の形態2にかかる電力変換装置PC2を備えた電力システムPS2を示す回路図である。実施の形態2では、直流電源1が、蓄電池1aに代えて太陽電池1bを備えている。
 図7は、実施の形態2にかかる電力変換装置PC2が備える制御装置212の回路ブロック図である。図7に示す制御装置212は、図3の制御装置12から、フローティング指令値生成部130および充放電制御部140を取り除いたものである。フローティング指令値生成部130が無いので、電力変換装置PC2は定常運転状態で出力電線9に有効電力を出力する。つまり、電力変換装置PC2が、第一外部発電機9aおよび第二外部発電機9bと同様に発電機としてふるまう。蓄電池1aに代えて太陽電池1bが用いられているので、太陽光による継続的な発電が可能である。従って、電力変換装置PC2は、バックアップ電源ではなく、定常運転で電流を出力する一つの発電機を模擬することができる。
 図8は、実施の形態2の変形例にかかる電力変換装置PC2が備える制御装置212の回路ブロック図である。図8に示す変形例は、図7の制御装置212から、無効分電流制御ACR120aおよび有効分電流制御ACR120bを取り除くとともに、これらに代えて積分ゲインを含むPI制御ACR220a、220bを設けたものである。実施の形態1における図4の変形例とも類似している。また、カウンタ電圧ブロック122が省略され、系統電圧ブロック222が設けられている。系統電圧ブロック222の系統電圧振幅VPLLが、フィードフォワード加減算器25に与えられている。PID制御ACR220a、220bは、積分ゲインを含むPIフィードバック制御を実施するPI制御ACRに変形されてもよい。
 図9は、実施の形態2の変形例にかかる電力変換装置PC2が備える制御装置212の回路ブロック図である。図9に示す変形例は、図7の制御装置212から、角速度差取得部110を取り除いたものである。
 太陽電池1bに代えて、他の直流発電装置が設けられていても良い。太陽電池1bに代わる他の直流発電装置として、燃料電池が設けられても良い。太陽電池1bに代わる他の直流発電装置として、直流電力を出力する風力発電システムが設けられても良い。この風力発電システムは、風を受けるブレードと、ブレードの回転を伝達する動力伝達軸と、動力伝達軸に接続された発電機と、発電機で発電された交流電力を直流電力に変換する電力変換装置と、を備えている。
 以上説明した実施の形態1にかかる電力変換装置PCおよび実施の形態2にかかる電力変換装置PC2が実行する制御動作は、電力変換方法として提供されてもよい。電力変換方法として実施される場合にも、実施の形態1、2の変形例で述べたように、「角速度差取得部110」、「無効分電流制御ACR120aおよび有効分電流制御ACR120b」、「フローティング指令値生成部130」、および「充放電制御部140」において実行される制御動作それぞれを単独で電力変換方法として用いてもよく、あるいはこれらの制御動作の二つ以上を組み合わせて電力変換方法として用いてもよい。
PS、PS2 電力システム、PC、PC2 電力変換装置、1 直流電源、1a 蓄電池、1b 太陽電池、2 上位装置、3 電力変換回路、4 計器用変流器、5 出力リアクトル、6 計器用変圧器、7 フィルタコンデンサ、8 出力側変圧器、9 出力電線、9a 第一外部発電機、9b 第二外部発電機、10 出力配線、11 負荷、12、212 制御装置、13 仮想発電装置モデル部、20 制御信号生成部、21 無効分加減算器、22 有効分加減算器、23 第一非干渉項ブロック、24 第二非干渉項ブロック、25 フィードフォワード加減算器、26 無効分加算器、27 有効分加算器、28 dq逆変換ブロック、29 パルス幅変調信号生成ブロック、30 発電機モデル部、31 比例ブロック、32 積分ブロック、33 d軸変換部、34 q軸変換部、35 第一乗算ブロック、36 第二乗算ブロック、37 第一同期リアクタンス部、38 加減算器、39 第二同期リアクタンス部、60 原動機モデル部、61 加減算器、62 除算ブロック、63 慣性模擬ブロック、70 AVRモデル部、71 ドループブロック、72 第一所定値ブロック、73 前段加減算器、74 後段加減算器、75 比例積分制御ブロック、76 第二所定値ブロック、77 加算器、80 ガバナモデル部、81 ガバナモデル加減算器、82 自動速度調節器(ASR)、90 dq変換ブロック、91 ドループブロック、92 加減算器、110 角速度差取得部、111 位相同期回路、112 角速度加減算器、120a 無効分自動電流調節器(無効分電流制御ACR)、120b 有効分自動電流調節器(有効分電流制御ACR)、122 カウンタ電圧ブロック、130 フローティング指令値生成部、131 無負荷指令値ブロック、132 加減算器、133 一次遅れブロック、134 加算器、140 充放電制御部、141 乗算ブロック、142 充放電電力加減算器、143 充放電電流加算器、222 系統電圧ブロック、Efe 内部誘起電圧相当値、Ibat* 充放電電流制御信号、Id 電流指令値(無効分電流指令値)、Ife 界磁相当値、Iq 電流指令値(有効分電流指令値)、Js 仮想イナーシャ、Pdr 駆動エネルギ指標値、P 有効電力、Q 無効電力、SPWM パルス幅変調信号、VPLL 系統電圧振幅、Vrate カウンタ電圧相当値、vuv、vvw、vwu 出力電圧(系統電圧)、δe モデル位相、ω モデル角速度、ωex 角速度差、ωflo フローティング指令値、ωNL 無負荷角速度指令値、ωPLL 系統電圧角周波数

Claims (7)

  1.  直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
     前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
     を備え、
     前記制御装置は、
     仮想発電装置モデル部と、
     制御信号生成部と、
     を備え、
     前記仮想発電装置モデル部は、
     回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
     自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
     前記電力変換回路の出力電圧の角周波数と前記モデル角速度との差分である角速度差を算出するように構築された角速度差取得部と、
     前記界磁相当値と、前記角速度差と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
     を備え、
     前記制御信号生成部は、前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された電力変換装置。
  2.  前記制御信号生成部は、積分ゲインを含まないフィードバック制御により、前記電力変換回路の出力電流値と前記電流指令値との差分を前記パルス幅変調信号へとフィードバックするように構築された請求項1に記載の電力変換装置。
  3.  前記出力電線に、外部発電機が接続され、
     予め設定された無負荷角速度指令値と前記モデル角速度との差分が前記無負荷角速度指令値に時間的に遅れて算入されるように生成された指令値であるフローティング指令値を出力するように構築されたフローティング指令値生成部と、
     前記回転軸の前記仮想回転速度を調節するガバナを模擬するように構築され、前記フローティング指令値に基づいて前記原動機に供給される駆動エネルギの指標となる指標値を算出するように構築されたガバナモデル部と、
     をさらに備え、
     前記ガバナモデル部は、前記フローティング指令値に従って、前記外部発電機から前記出力電線に供給される供給電力が予め定めた定常値であるときには前記電力変換回路が有効電力を出力せず、前記外部発電機の出力低下により前記出力電線の前記供給電力が前記定常値よりも低下したときに前記定常値に対する電流低下分を前記電力変換回路が出力し続けるように前記指標値を算出する請求項1または2に記載の電力変換装置。
  4.  前記仮想発電装置モデル部は、電流制御信号を受信するように構築され、
     前記仮想発電装置モデル部は、前記電流制御信号を受信した場合に、前記発電機モデル部で生成された前記電流指令値を補正することで、前記出力電線から前記電力変換回路を介して前記直流電源の側へ電流が逆流するように補正された前記電流指令値を前記制御信号生成部へと伝達するように構築された請求項1~3のいずれか1項に記載の電力変換装置。
  5.  直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
     前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
     を備え、
     前記制御装置は、
     電流指令値を出力するように構築された仮想発電装置モデル部と、
     前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
     を備え、
     前記仮想発電装置モデル部は、
     回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
     自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
     前記モデル角速度と、前記界磁相当値と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
     を備え、
     前記制御信号生成部は、積分ゲインを含まないフィードバック制御により、前記電力変換回路の出力電流値と前記電流指令値との差分を前記パルス幅変調信号にフィードバックするように構築された電力変換装置。
  6.  直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
     前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
     を備え、
     前記制御装置は、
     電流指令値を出力するように構築された仮想発電装置モデル部と、
     前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
     を備え、
     前記出力電線に、外部発電機が接続され、
     前記仮想発電装置モデル部は、
     回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を生成するように構築された原動機モデル部と、
     自動電圧調節器を模擬するように構築され、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
     前記モデル角速度と、前記界磁相当値と、前記電力変換回路の出力電圧と、に基づいて、前記原動機によって駆動される発電機を模擬するための電流指令値を生成するように構築された発電機モデル部と、
     予め設定された無負荷角速度指令値と前記モデル角速度との差分が前記無負荷角速度指令値に時間的に遅れて算入されるように生成された指令値であるフローティング指令値を出力するように構築されたフローティング指令値生成部と、
     前記回転軸の前記仮想回転速度を調節するガバナを模擬するように構築され、前記フローティング指令値に基づいて前記原動機に供給される駆動エネルギの指標となる指標値を算出するように構築されたガバナモデル部と、
     を備え、
     前記ガバナモデル部は、前記フローティング指令値に従って、前記外部発電機から前記出力電線に供給される供給電力が予め定めた定常値であるときには前記電力変換回路が有効電力を出力せず、前記外部発電機の出力低下により前記出力電線の前記供給電力が前記定常値よりも低下したときに前記定常値に対する電流低下分を前記電力変換回路が出力し続けるように前記指標値を算出する電力変換装置。
  7.  直流電源と出力電線との間に介在し、前記直流電源からの直流電力を変換することで、前記出力電線へと交流電力を出力する電力変換回路と、
     前記電力変換回路のスイッチング制御に用いるパルス幅変調信号を前記電力変換回路に出力する制御装置と、
     を備え、
     前記制御装置は、
     電流指令値を出力するように構築された仮想発電装置モデル部と、
     前記電流指令値と前記電力変換回路の出力電流値とに基づいて前記パルス幅変調信号を生成するように構築された制御信号生成部と、
     を備え、
     前記仮想発電装置モデル部は、
     回転軸を持つ原動機を模擬するように構築され、前記回転軸の仮想回転速度を表すモデル角速度を出力するように構築された原動機モデル部と、
     自動電圧調節器を模擬し、界磁電流または界磁電圧に相当する値である界磁相当値を算出するように構築されたAVRモデル部と、
     前記電力変換回路の出力電圧と、前記AVRモデル部の前記界磁相当値と、前記電力変換回路の出力電圧の角周波数とに基づいて、前記原動機によって駆動される発電機を模擬するための前記電流指令値を生成するように構築された発電機モデル部と、
     を備え、
     前記仮想発電装置モデル部は、電流制御信号を受信するように構築され、
     前記仮想発電装置モデル部は、前記電流制御信号を受信した場合に、前記発電機モデル部で生成された前記電流指令値を補正することで、前記出力電線から前記電力変換回路を介して前記直流電源の側へ電流が逆流するように補正された前記電流指令値を、前記制御信号生成部へと伝達するように構築された電力変換装置。
PCT/JP2017/044320 2017-12-11 2017-12-11 電力変換装置 WO2019116419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780097626.0A CN111656639B (zh) 2017-12-11 2017-12-11 电力变换装置
PCT/JP2017/044320 WO2019116419A1 (ja) 2017-12-11 2017-12-11 電力変換装置
US16/771,064 US11451166B2 (en) 2017-12-11 2017-12-11 Power conversion device with virtual power generation model
JP2019559426A JP7028257B2 (ja) 2017-12-11 2017-12-11 電力変換装置
EP17934523.6A EP3726686A4 (en) 2017-12-11 2017-12-11 POWER CONVERSION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044320 WO2019116419A1 (ja) 2017-12-11 2017-12-11 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019116419A1 true WO2019116419A1 (ja) 2019-06-20

Family

ID=66820780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044320 WO2019116419A1 (ja) 2017-12-11 2017-12-11 電力変換装置

Country Status (5)

Country Link
US (1) US11451166B2 (ja)
EP (1) EP3726686A4 (ja)
JP (1) JP7028257B2 (ja)
CN (1) CN111656639B (ja)
WO (1) WO2019116419A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564850A (zh) * 2020-06-11 2020-08-21 王业勤 一种基于有界性pid控制的虚拟同步发电机型逆变器
WO2021024293A1 (ja) * 2019-08-02 2021-02-11 東芝三菱電機産業システム株式会社 発電システムおよびプラント制御装置
CN112464604A (zh) * 2021-01-28 2021-03-09 通号(长沙)轨道交通控制技术有限公司 一种多变流器集中并网系统高效仿真方法
JP7051033B1 (ja) * 2021-10-07 2022-04-08 三菱電機株式会社 電力変換装置及び制御装置
WO2022097269A1 (ja) * 2020-11-06 2022-05-12 三菱電機株式会社 電力変換装置
WO2022254580A1 (ja) * 2021-06-01 2022-12-08 三菱電機株式会社 電力系統安定化システム
WO2022269858A1 (ja) * 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
JP7392884B1 (ja) 2023-03-23 2023-12-06 富士電機株式会社 電力変換装置及び検出方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351620B2 (ja) * 2019-02-01 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 複数発電電源システムにおける指令生成装置および指令生成方法
EP3961903A4 (en) * 2019-04-25 2022-04-06 Mitsubishi Electric Corporation CONTROL DEVICE
JP6933306B2 (ja) * 2019-06-20 2021-09-08 東芝三菱電機産業システム株式会社 電力変換装置
US11973417B2 (en) * 2019-08-09 2024-04-30 Tokyo Electric Power Company Holdings, Incorporated System interconnection power conversion device
FR3101739A1 (fr) * 2019-10-02 2021-04-09 Schneider Electric Industries Sas Modification des valeurs de paramètres de la loi de commande d’un générateur
CN112865130B (zh) * 2020-12-15 2022-12-06 南方电网科学研究院有限责任公司 一种提升微电网暂态稳定性的控制方法、装置及终端设备
WO2022168283A1 (ja) * 2021-02-05 2022-08-11 三菱電機株式会社 電力制御システム
CN114567014B (zh) * 2022-04-29 2022-07-15 武汉大学 一种具有电压支撑功能的柔性切换开关及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548889B1 (ja) 1971-02-19 1979-04-19
JP2009225599A (ja) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2012100487A (ja) * 2010-11-04 2012-05-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力系統安定化装置
JP2015211617A (ja) * 2014-04-30 2015-11-24 川崎重工業株式会社 単相系統に接続される電力変換装置
WO2016063678A1 (ja) * 2014-10-20 2016-04-28 三菱電機株式会社 電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230276B2 (ja) * 2003-05-19 2009-02-25 本田技研工業株式会社 ブラシレスdcモータの制御装置
JP4680102B2 (ja) * 2006-03-07 2011-05-11 川崎重工業株式会社 電力変換装置
JP5956991B2 (ja) * 2011-07-08 2016-07-27 川崎重工業株式会社 複合発電システム向け電力変換装置
EP2839983B1 (en) * 2012-04-18 2020-11-25 Nissan Motor Co., Ltd. Electric-vehicle control device, and method for controlling electric vehicle
JP6006637B2 (ja) * 2012-12-27 2016-10-12 川崎重工業株式会社 電力変換制御装置
JP6084863B2 (ja) * 2013-02-28 2017-02-22 川崎重工業株式会社 系統連系する電力変換装置
JP6580565B2 (ja) * 2014-06-24 2019-09-25 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール 圧縮機駆動装置、これを備えた圧縮機及びこれらを備えた冷凍サイクル装置
CN106160605B (zh) * 2016-07-11 2019-06-21 中车大连机车车辆有限公司 柴油机变频起动方法及柴油发电机组、机车
CN109643959B (zh) * 2017-03-09 2020-11-06 三菱电机株式会社 电力变换装置以及逻辑电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548889B1 (ja) 1971-02-19 1979-04-19
JP2009225599A (ja) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd 電力変換装置
JP2012100487A (ja) * 2010-11-04 2012-05-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力系統安定化装置
JP2015211617A (ja) * 2014-04-30 2015-11-24 川崎重工業株式会社 単相系統に接続される電力変換装置
WO2016063678A1 (ja) * 2014-10-20 2016-04-28 三菱電機株式会社 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726686A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024293A1 (ja) * 2019-08-02 2021-02-11 東芝三菱電機産業システム株式会社 発電システムおよびプラント制御装置
JPWO2021024293A1 (ja) * 2019-08-02 2021-09-27 東芝三菱電機産業システム株式会社 発電システムおよびプラント制御装置
GB2596503A (en) * 2019-08-02 2022-01-05 Toshiba Mitsubishi Elec Ind Power generation system and plant control device
GB2596503B (en) * 2019-08-02 2023-06-14 Toshiba Mitsubishi Elec Ind Power generation system and plant control device
CN111564850A (zh) * 2020-06-11 2020-08-21 王业勤 一种基于有界性pid控制的虚拟同步发电机型逆变器
CN111564850B (zh) * 2020-06-11 2023-11-10 王业勤 一种基于有界性pid控制的虚拟同步发电机型逆变器
WO2022097269A1 (ja) * 2020-11-06 2022-05-12 三菱電機株式会社 電力変換装置
JP7483037B2 (ja) 2020-11-06 2024-05-14 三菱電機株式会社 電力変換装置
CN112464604A (zh) * 2021-01-28 2021-03-09 通号(长沙)轨道交通控制技术有限公司 一种多变流器集中并网系统高效仿真方法
WO2022254580A1 (ja) * 2021-06-01 2022-12-08 三菱電機株式会社 電力系統安定化システム
WO2022269858A1 (ja) * 2021-06-24 2022-12-29 三菱電機株式会社 電力変換装置
WO2023058196A1 (ja) * 2021-10-07 2023-04-13 三菱電機株式会社 電力変換装置及び制御装置
JP7051033B1 (ja) * 2021-10-07 2022-04-08 三菱電機株式会社 電力変換装置及び制御装置
JP7392884B1 (ja) 2023-03-23 2023-12-06 富士電機株式会社 電力変換装置及び検出方法

Also Published As

Publication number Publication date
JP7028257B2 (ja) 2022-03-02
CN111656639A (zh) 2020-09-11
EP3726686A4 (en) 2021-10-06
US20210194383A1 (en) 2021-06-24
US11451166B2 (en) 2022-09-20
JPWO2019116419A1 (ja) 2020-12-17
EP3726686A1 (en) 2020-10-21
CN111656639B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2019116419A1 (ja) 電力変換装置
CN110114951B (zh) 电源系统
JP6084863B2 (ja) 系統連系する電力変換装置
US8698461B2 (en) Direct power control with component separation
US8219256B2 (en) Bang-bang controller and control method for variable speed wind turbines during abnormal frequency conditions
JP5408889B2 (ja) 電力変換装置
JP5987846B2 (ja) ハイブリッド車両
CN105305491A (zh) 一种基于虚拟同步发电机的光伏电源控制策略
CN104638679A (zh) 一种采用自适应调节的虚拟同步发电机频率控制方法
KR20010052057A (ko) 가변 속도 풍력 터빈 발전기
KR20110009072A (ko) 풍력 발전 장치 및 그 제어 방법
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
JP5636412B2 (ja) 風力発電システム及びその励磁同期発電機の制御方法
JP2020502989A (ja) 風力タービン動取出の調節方法
KR101936083B1 (ko) 풍력 발전 시뮬레이터
WO2016038900A1 (ja) 移動体の推進システムの制御方法
US9344028B2 (en) Traction motor retarding flux reference
JP5326786B2 (ja) 電圧変換器制御装置
JP2017057787A (ja) 風力発電システム及び風力発電制御方法
JP2023012086A (ja) インバータ装置
JP2009077606A (ja) 発電機と電動機の関連制御装置
WO2023112222A1 (ja) 電力変換装置及び電力変換装置の制御方法
US20230406286A1 (en) Parallel variable speed generator control
CN113113936B (zh) 一种直流电站异步发电系统功率均衡控制方法
JP6802734B2 (ja) フライホイール用のモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559426

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017934523

Country of ref document: EP

Effective date: 20200713