WO2019114752A1 - 车辆及其制动控制方法和装置 - Google Patents
车辆及其制动控制方法和装置 Download PDFInfo
- Publication number
- WO2019114752A1 WO2019114752A1 PCT/CN2018/120594 CN2018120594W WO2019114752A1 WO 2019114752 A1 WO2019114752 A1 WO 2019114752A1 CN 2018120594 W CN2018120594 W CN 2018120594W WO 2019114752 A1 WO2019114752 A1 WO 2019114752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- cylinder pressure
- target
- threshold
- brake
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1761—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1764—Regulation during travel on surface with different coefficients of friction, e.g. between left and right sides, mu-split or between front and rear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
Definitions
- the present disclosure relates to the field of vehicle control technologies, and in particular, to a brake control method for a vehicle, a brake control device for a vehicle, and a vehicle.
- the anti-lock braking system of the automobile can prevent the wheel from slipping during braking and improve the directional stability during braking by controlling and adjusting the braking force of the wheel, thereby greatly improving the braking performance of the vehicle and improving the safety of the vehicle. .
- the yaw moment will be generated due to the uneven force of the tire during the braking process, which causes the side brake to occur when the vehicle is in emergency braking.
- the partiality causes serious yaw of the vehicle, which increases the driver's operational psychological burden. Therefore, maintaining the directional stability of the vehicle's emergency braking is critical to driving safety.
- the related art determines the above situation by identifying the road surface and takes corresponding measures when determining the above situation.
- the road surface recognition function is not recognized at the initial stage of the road surface adhesion coefficient that the left and right wheels are in contact with, the above-mentioned corresponding measures have insufficient effect on the yaw moment, and the lateral stability during vehicle braking is poor.
- the driver often does not respond promptly to the sudden driving situation, and cannot effectively take the steering wheel to adjust the direction of the vehicle in time.
- the present disclosure aims to solve at least one of the technical problems in the above technology to some extent.
- the first object of the present disclosure is to provide a brake control method for a vehicle that can ensure the braking performance and the anti-locking effect of the vehicle, and can further improve the lateral stability of the vehicle when braking.
- a second object of the present disclosure is to propose a brake control device for a vehicle.
- a third object of the present disclosure is to propose a vehicle.
- a first aspect of the present disclosure provides a brake control method for a vehicle, the method comprising the steps of: determining a slip ratio of a target wheel when the vehicle enters a braking state; When the slip ratio of the target wheel is greater than the first slip ratio threshold or less than the second slip ratio threshold, acquiring the brake master cylinder pressure of the vehicle, and determining whether the brake master cylinder pressure is greater than the first time in real time.
- a pressure threshold wherein the second slip ratio threshold is less than the first slip ratio threshold; if the brake master cylinder pressure is greater than the first pressure threshold, the brake master cylinder pressure continues to be greater than The time of the first pressure threshold is counted; when the first preset time is not reached, the brake wheel cylinder pressure of the target wheel is controlled according to the first brake force difference threshold; After the first preset time, the wheel-cylinder pressure of the target wheel is controlled according to a second braking force difference threshold, wherein the first braking force difference threshold is smaller than the second braking force difference threshold.
- the brake control method of the vehicle when the vehicle enters the braking state, by determining the slip ratio of the target wheel, if the slip ratio of the target wheel is too large or too small, the brake master When the cylinder pressure is large, the timing is counted, and when the timing time does not reach the first preset time, the brake wheel cylinder pressure of the target wheel is controlled according to the smaller brake force difference threshold, and the first preset is reached at the timing time. After the time, the wheel-cylinder pressure of the target wheel is controlled according to the larger brake force difference threshold, thereby controlling the wheel-cylinder pressure by controlling the wheel-cylinder pressure when the slip rate of the target wheel is too large or too small.
- Pressure control can improve the limiting effect on the yaw moment, and can give the driver a certain reaction time in the event of a sudden change in the road surface, thereby further improving the lateral stability of the vehicle during braking. Sex.
- a second aspect of the present disclosure provides a brake control apparatus for a vehicle, the apparatus comprising: a first determination module for slipping a target wheel when the vehicle enters a braking state And determining, the obtaining module is configured to acquire a brake master of the vehicle when the first determining module determines that the slip ratio of the target wheel is greater than a first slip ratio threshold or less than a second slip ratio threshold a cylinder pressure, wherein the second slip ratio threshold is less than the first slip ratio threshold; the second judging module is configured to determine in real time whether the brake master cylinder pressure is greater than a first pressure threshold; When the second determining module determines that the brake master cylinder pressure is greater than the first pressure threshold, time for the brake master cylinder pressure to continue to be greater than the first pressure threshold; the control module uses When the first preset time is not reached, the brake wheel cylinder pressure of the target wheel is controlled according to the first brake force difference threshold, and after the chronograph time reaches the first preset time, according to Two braking force difference
- the slip ratio of the target wheel is determined by the first determination module, and if the slip ratio of the target wheel is too large or too small, The timing module performs timing when the second judging module judges that the brake master cylinder pressure is large, and the control module applies the brake wheel cylinder pressure of the target wheel according to the smaller braking force difference threshold value when the timing time does not reach the first preset time.
- the brake wheel cylinder pressure of the target wheel is controlled according to the larger brake force difference threshold, thereby causing the slip ratio at the target wheel to be too large or too
- the hourly control of the wheel-cylinder pressure can keep the slip rate of the wheel within a certain range, thereby ensuring the braking performance and anti-locking effect of the vehicle, by making the brake smaller in the first preset time.
- the braking force difference threshold controls the wheel-cylinder pressure of the target wheel, which can improve the limiting effect on the yaw moment and can give the driver a certain reaction when there is a sudden change in the road surface. Therefore, it is possible to further improve the lateral stability when the vehicle is braked.
- a third aspect of the present disclosure provides a vehicle including a brake control device for a vehicle proposed by the third aspect of the present disclosure.
- the braking performance and the anti-locking effect are better, and the lateral stability at the time of braking is higher.
- FIG. 1 is a schematic structural view of a vehicle according to an embodiment of the present disclosure
- FIG. 2 is a flowchart of a brake control method of a vehicle according to an embodiment of the present disclosure
- FIG. 3 is a flow chart of a brake control method for a vehicle according to an embodiment of the present disclosure
- FIG. 4 is a block schematic diagram of a brake control device for a vehicle according to an embodiment of the present disclosure
- FIG. 5 is a block schematic diagram of a vehicle in accordance with an embodiment of the present disclosure.
- the vehicle of the embodiment of the present disclosure is an ABS (Antilock Brake System) hydraulic brake vehicle including a brake master cylinder and a wheel cylinder disposed corresponding to each wheel.
- the brake master cylinder is connected with the brake wheel cylinder corresponding to each wheel, and the left front wheel 1fl, the right front wheel 1fr, the left rear wheel 1rl and the right rear wheel 1rr of the vehicle are respectively provided with brakes.
- the valve bodies 2fl, 2fr, 2rl and 2rr of the wheel cylinders are also connected to the valve body controllers 3fl, 3fr, 3rl and 3rr, respectively, and each valve body controller is associated with the ECU (Electronic Control Unit, electronic) of the vehicle.
- the control unit is connected.
- the valve body controller can control the corresponding valve body to adjust the pressure of each of the wheel cylinders to apply a braking force to each of the wheels, respectively.
- the brake control method of the following vehicle can be performed by the ECU.
- FIG. 2 is a flow chart of a brake control method of a vehicle according to an embodiment of the present disclosure.
- a brake control method for a vehicle includes the following steps:
- brake control can be performed on each wheel of the vehicle, ie each wheel of the vehicle is a target wheel.
- one of the two coaxial wheels of the vehicle can be controlled, that is, one of each of the two coaxial wheels is used as the target wheel.
- the control effect of braking control for each wheel is optimal.
- the vehicle may further include wheel speed sensors 4fl, 4fr, 4rl, and 4rr provided for each wheel to detect the left front wheel 1fl, the right front wheel 1fr, and the left, respectively.
- slip ratio (vehicle speed - wheel speed) / vehicle speed * 100 %, you can get the slip rate of the target wheel.
- the first slip ratio threshold and the second slip ratio threshold may be preset to be used as the upper and lower thresholds of the slip ratio control, respectively, when the slip ratio of the target wheel is greater than the first slip ratio threshold or less than the second slip
- the shift rate threshold that is, when the slip rate of the target wheel is too high or too low, performs a subsequent control flow to control the slip rate of the target wheel within the upper and lower thresholds.
- the vehicle may include a master cylinder pressure sensor disposed corresponding to the master cylinder to detect hydraulic pressure within the brake master cylinder, ie, brake master cylinder pressure.
- the acquisition and judgment of the brake master cylinder pressure are performed in real time, when the brake master cylinder pressure continues to be greater than the first pressure threshold, the timing is accumulated, and when the brake master cylinder pressure is less than or equal to the first pressure threshold, The timing is cleared.
- the brake wheel cylinder pressure of the target wheel is controlled according to the second brake force difference threshold, wherein the first brake force difference threshold is smaller than the second brake force difference threshold.
- the brake wheel cylinder pressure of the target wheel can be directly controlled according to the first brake force difference threshold.
- controlling the wheel-cylinder pressure of the target wheel according to the first braking force difference threshold includes: acquiring the current target wheel The wheel cylinder pressure and the wheel-cylinder pressure of the coaxial wheel of the target wheel; the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel is calculated, Obtaining a braking force difference; determining whether the braking force difference is greater than a first braking force difference threshold; if the braking force difference is less than or equal to the first braking force difference threshold, increasing a wheel-cylinder pressure of the target wheel; if the braking force difference is greater than a braking force difference threshold, further determining whether the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is greater than the coaxial wheel of the target wheel The wheel-cylinder pressure maintains the wheel-cylinder pressure of the
- controlling the wheel-cylinder pressure of the target wheel according to the second braking force difference threshold includes: acquiring the current target wheel The wheel cylinder pressure and the wheel-cylinder pressure of the coaxial wheel of the target wheel; the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel is calculated, Obtaining a braking force difference; determining whether the braking force difference is greater than a second braking force difference threshold; if the braking force difference is less than or equal to the second braking force difference threshold, increasing a wheel-cylinder pressure of the target wheel; if the braking force difference is greater than The second braking force difference threshold further determines whether the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is greater than the coaxial wheel of the target wheel The wheel-cylinder pressure maintains the wheel-cylinder pressure of the target
- controlling the wheel-cylinder pressure of the target wheel according to the first brake-force difference threshold includes: acquiring the current target wheel The wheel cylinder pressure and the wheel-cylinder pressure of the coaxial wheel of the target wheel; the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel is calculated, Obtaining a braking force difference; determining whether the braking force difference is greater than a first braking force difference threshold; if the braking force difference is less than or equal to the first braking force difference threshold, reducing a wheel-cylinder pressure of the target wheel; if the braking force difference is greater than a braking force difference threshold, further determining whether the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is less than the coaxial wheel of the target wheel The wheel-cylinder pressure reduces the wheel-cylinder pressure of
- controlling the wheel-cylinder pressure of the target wheel according to the second braking force difference threshold includes: acquiring the current target wheel The wheel cylinder pressure and the wheel-cylinder pressure of the coaxial wheel of the target wheel; the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel is calculated, Obtaining a braking force difference; determining whether the braking force difference is greater than a second braking force difference threshold; if the braking force difference is less than or equal to the second braking force difference threshold, reducing a wheel-cylinder pressure of the target wheel; if the braking force difference is greater than The second braking force difference threshold further determines whether the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is smaller than the coaxial wheel of the target wheel The wheel-cylinder pressure reduces the wheel-cylinder pressure of the
- the vehicle may further include wheel cylinder pressure sensors 5fl, 5fr, 5rl and 5rr provided for each wheel cylinder to detect the left front wheel 1fl, the right front wheel 1fr, and the left rear wheel 1rl, respectively.
- the hydraulic pressure in the brake wheel cylinder of the right rear wheel 1rr that is, the brake wheel cylinder pressure.
- the embodiment of the present disclosure is inconvenient to carry out specific The conversion of the braking force directly characterizes the braking force of the wheel with the wheel cylinder pressure.
- the brake wheel cylinder pressure difference between the two coaxial wheels may be determined according to the first brake force difference threshold.
- the brake wheel cylinder pressure difference between the two coaxial wheels may be determined to be excessive according to the second brake force difference threshold.
- the brake wheel cylinder pressure difference between the two coaxial wheels is small, and generally does not reach the second brake force difference threshold. Therefore, when the brake master cylinder pressure is small, Whether the brake wheel cylinder pressure difference between the two coaxial wheels is excessively large is directly determined according to the first brake force difference threshold.
- the brake wheel cylinder pressure difference between the two coaxial wheels is too large, and the brake wheel cylinder pressure of the target wheel is greater than that of the coaxial wheel.
- the brake wheel cylinder pressure of the target wheel is maintained to suppress the pressure of the wheel cylinder of the target wheel to continue to increase, thereby preventing the braking force difference between the two coaxial wheels from increasing;
- the wheel-cylinder pressure difference between the wheels is too small, the wheel-cylinder pressure of the target wheel is increased to appropriately increase the slip ratio of the target wheel; and the wheel-cylinder between the two coaxial wheels
- the braking wheel pressure of the target wheel is increased to reduce the braking force of the two coaxial wheels. Poor, and appropriately increase the slip rate of the target wheel.
- the pressure difference between the brake wheel cylinders between the two coaxial wheels is too large, and the brake wheel pressure of the target wheel is greater than that of the coaxial wheel.
- the brake wheel pressure of the target wheel is reduced to reduce the braking force difference between the two coaxial wheels; and the brake wheel cylinder pressure difference between the two coaxial wheels is too small.
- Cylinder pressure to prevent an increase in the pressure difference between the brake wheel cylinders between the two coaxial wheels.
- the brake wheel-cylinder pressure of the coaxial wheel is greatly reduced, and The braking force difference between the two coaxial wheels can be reduced.
- the brake wheel cylinder pressure of the target wheel While the brake wheel cylinder pressure of the target wheel is currently maintained, and the slip ratio of the target wheel is greater than the second slip ratio threshold and less than the first slip ratio threshold, the brake wheel cylinder pressure of the target wheel may continue to be maintained.
- the brake wheel cylinder pressure of the target wheel In the process of not maintaining the brake wheel cylinder pressure of the target wheel, if the slip ratio of the target wheel reaches a better state than the third slip ratio threshold, the brake wheel cylinder pressure of the target wheel is maintained; During the process of maintaining the brake wheel cylinder pressure of the target wheel, if the slip ratio of the target wheel is between the second slip ratio threshold and the first slip ratio threshold, but is not too small, the target wheel system is maintained. Dynamic wheel cylinder pressure.
- the brake control method of the vehicle according to the embodiment of the present disclosure is applicable to various operating conditions, and particularly in the case where the left and right wheel adhesion coefficients of the vehicle are different, the above-described advantages can be more significantly exerted.
- the brake control method of the vehicle includes the following steps:
- step S101 Determine whether the vehicle is braking. If yes, step S102 is performed; if not, the ECU ends the current control cycle and executes the next control cycle.
- step S102 Determine whether the brake wheel cylinder pressure of the target rear wheel is currently being maintained. If no, step S103 is performed; if yes, step S105 is performed.
- step S103 Determine whether the slip ratio S of the target rear wheel is greater than A. If yes, step S104 is performed; if not, the ECU ends the current control period and executes the next control period.
- step S105 Determine whether the slip ratio S of the target rear wheel is greater than B. If yes, go to step S116; if no, go to step S106.
- step S107 Determine whether the brake master cylinder pressure CHP is greater than E. If yes, go to step S108; if no, go to step S109.
- step S109 the timing is cleared. After this step, step S111 is performed.
- T is the optimum time for calibration based on the requirement of determining whether the brake wheel cylinder pressure difference between the two wheels is too large. If yes, go to step S112; if no, go to step S111.
- step S111 determining whether the brake wheel cylinder pressure difference ⁇ P of the two rear wheels is greater than K. If yes, go to step S113; if no, go to step S114.
- step S112 determining whether the wheel-cylinder pressure difference ⁇ P of the two rear wheels is greater than D.
- K ⁇ D K is a determination threshold value according to whether the brake wheel cylinder pressure difference between the two wheels is too large, and the calibration brake force difference threshold value, that is, the first brake force difference threshold value of the above embodiment, D is the second brake force difference threshold of the above embodiment. If yes, go to step S113; if no, go to step S114.
- step S113 Determine whether the target rear wheel is an outer wheel. Wherein, when the brake wheel cylinder pressure of the target rear wheel is greater than the brake wheel cylinder pressure of the other rear wheel, and the difference between the two is greater than a predetermined value, the target rear wheel may be determined to be the outer wheel. If yes, step S115 is performed; if no, step S114 is performed.
- step S116 determining whether the brake master cylinder pressure CHP is greater than E. If yes, step S117 is performed; if no, step S118 is performed.
- step S118 the timing is cleared. After this step, step S121 is performed.
- step S119 determining whether the timing time t reaches T. If yes, go to step S120; if no, go to step S121.
- step S120 Determine whether the brake wheel cylinder pressure difference ⁇ P of the two rear wheels is greater than D. If yes, step S122 is performed; if no, step S123 is performed.
- step S121 determining whether the brake wheel cylinder pressure difference ⁇ P of the two rear wheels is greater than K. If yes, step S122 is performed; if no, step S123 is performed.
- step S122 Determine whether the target rear wheel is an inner wheel. Wherein, when the brake wheel cylinder pressure of the target rear wheel is less than the brake wheel cylinder pressure of the other rear wheel, and the difference between the two is greater than a predetermined value, the target rear wheel can be judged to be the inner wheel. If yes, step S124 is performed; if no, step S123 is performed.
- the target rear wheel Since the slip ratio of the target rear wheel is greater than B, the target rear wheel tends to lock up, so it is not appropriate to increase the brake wheel cylinder pressure of the target rear wheel.
- the brake wheel of the target rear wheel can only be reduced according to the actual judgment result. Cylinder pressure.
- the brake wheel cylinder pressure of the other rear wheel is also It should be reduced accordingly.
- the reduction of the wheel-cylinder pressure of the other rear wheel is greater than the reduction of the wheel-cylinder pressure of the target rear wheel, so that the brake wheels of the two rear wheels can be reduced. Cylinder pressure difference.
- the brake control method of the vehicle when the vehicle enters the braking state, by determining the slip ratio of the target wheel, if the slip ratio of the target wheel is too large or too small, Then, when the brake master cylinder pressure is large, the timing is counted, and when the timing time does not reach the first preset time, the brake wheel cylinder pressure of the target wheel is controlled according to the smaller brake force difference threshold, and the timing time is After the first preset time is reached, the brake wheel cylinder pressure of the target wheel is controlled according to a larger brake force difference threshold, thereby braking the wheel cylinder by the slip ratio of the target wheel being too large or too small.
- the pressure is controlled to keep the slip ratio of the wheel within a certain range, so as to ensure the braking performance and the anti-locking effect of the vehicle, by aiming the target wheel with a smaller braking force difference threshold in the first preset time.
- the control of the wheel-cylinder pressure can improve the limiting effect on the yaw moment, and can give the driver a certain reaction time in the event of a sudden change in the road surface, thereby further improving the vehicle braking. Lateral stability.
- the present disclosure also proposes a non-transitory computer readable storage medium.
- the non-transitory computer readable storage medium of the embodiment of the present disclosure has a computer program stored thereon, and when executed by the processor, the brake control method of the vehicle proposed in the above embodiment of the present disclosure can be implemented.
- the braking performance and the anti-locking effect of the vehicle can be ensured, and the lateral stability at the time of braking of the vehicle can be further improved.
- the present disclosure also proposes a brake control device for a vehicle.
- the brake control device for a vehicle includes a first determination module 10 , an acquisition module 20 , a second determination module 30 , a timing module 40 , and a control module 50 .
- the first determining module 10 is configured to determine a slip ratio of the target wheel when the vehicle enters a braking state; and the obtaining module 20 is configured to determine, when the first determining module 10, that the slip ratio of the target wheel is greater than the first slip
- the rate threshold is less than the second slip ratio threshold
- the brake master cylinder pressure of the vehicle is acquired, wherein the second slip ratio threshold is less than the first slip ratio threshold; and the second determination module 30 is configured to determine the brake master cylinder in real time.
- the timing module 40 is configured to time the time when the brake master cylinder pressure is continuously greater than the first pressure threshold when the second judgment module 30 determines that the brake master cylinder pressure is greater than the first pressure threshold;
- the module 50 is configured to control the wheel-cylinder pressure of the target wheel according to the first braking force difference threshold when the timing time does not reach the first preset time, and after the first preset time is reached, according to the second
- the brake dynamics threshold controls the brake wheel cylinder pressure of the target wheel, wherein the first brake force difference threshold is less than the second brake force difference threshold.
- the control module 50 can directly control the brake wheel cylinder pressure of the target wheel according to the first brake force difference threshold.
- brake control can be performed on each wheel of the vehicle, ie each wheel of the vehicle is a target wheel.
- one of the two coaxial wheels of the vehicle can be controlled, that is, one of each of the two coaxial wheels is used as the target wheel.
- the control effect of braking control for each wheel is optimal.
- the vehicle may further include wheel speed sensors 4fl, 4fr, 4rl, and 4rr provided for each wheel to detect the left front wheel 1fl, the right front wheel 1fr, and the left, respectively.
- the first determining module 10 may acquire the wheel speed detected by each wheel speed sensor, and obtain the slip ratio of the target wheel according to the wheel speed of the target wheel.
- the first slip ratio threshold and the second slip ratio threshold may be preset to be used as the upper and lower thresholds of the slip ratio control, respectively, when the slip ratio of the target wheel is greater than the first When the slip ratio threshold is less than the second slip ratio threshold, that is, when the slip ratio of the target wheel is too high or too low, the slip ratio of the target wheel is controlled within the upper and lower threshold values by the control of the brake control device.
- the vehicle may include a master cylinder pressure sensor disposed corresponding to the brake master cylinder, and the acquisition module 20 acquires hydraulic pressure within the brake master cylinder, that is, brake master cylinder pressure, through the master cylinder pressure sensor.
- the obtaining module 20 obtains the brake master cylinder pressure and the second determining module 30 determines the brake master cylinder pressure in real time.
- the timing module 40 If the timer counts up, and when the brake master cylinder pressure is less than or equal to the first pressure threshold, the timing module 40 times out.
- the control module 50 may be specifically configured to: acquire the brake wheel cylinder pressure of the current target wheel and The wheel-cylinder pressure of the coaxial wheel of the target wheel; calculating the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel to obtain a braking force difference; Determining whether the braking force difference is greater than the first braking force difference threshold; if the braking force difference is less than or equal to the first braking force difference threshold, increasing the wheel-cylinder pressure of the target wheel; if the braking force difference is greater than the first braking force difference threshold, Further determining whether the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel, then Maintaining the wheel-cylinder pressure of the target
- the control module 50 is further configured to: acquire the brake wheel cylinder pressure of the current target wheel and The wheel-cylinder pressure of the coaxial wheel of the target wheel; calculating the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel to obtain a braking force difference; Determining whether the braking force difference is greater than a second braking force difference threshold; if the braking force difference is less than or equal to the second braking force difference threshold, increasing the wheel-cylinder pressure of the target wheel; if the braking force difference is greater than the second braking force difference threshold, Further determining whether the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is greater than the wheel-cylinder pressure of the coaxial wheel of the target wheel, then Maintaining the wheel-cylinder pressure of the target
- the control module 50 may be specifically configured to: acquire the brake wheel cylinder pressure of the current target wheel and The wheel-cylinder pressure of the coaxial wheel of the target wheel; calculating the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel to obtain a braking force difference; Determining whether the braking force difference is greater than the first braking force difference threshold; if the braking force difference is less than or equal to the first braking force difference threshold, reducing the wheel-cylinder pressure of the target wheel; if the braking force difference is greater than the first braking force difference threshold, Further determining whether the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel, then Reduce the wheel-cylinder pressure of the target
- the control module 50 is further configured to: acquire the brake wheel cylinder pressure of the current target wheel and The wheel-cylinder pressure of the coaxial wheel of the target wheel; calculating the absolute value of the difference between the wheel-cylinder pressure of the target wheel and the wheel-cylinder pressure of the coaxial wheel of the target wheel to obtain a braking force difference; Determining whether the braking force difference is greater than a second braking force difference threshold; if the braking force difference is less than or equal to the second braking force difference threshold, reducing the wheel-cylinder pressure of the target wheel; if the braking force difference is greater than the second braking force difference threshold, Further determining whether the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel; if the wheel-cylinder pressure of the target wheel is less than the wheel-cylinder pressure of the coaxial wheel of the target wheel, then Reduce the wheel-cylinder pressure of the target
- the vehicle may further include wheel cylinder pressure sensors 5fl, 5fr, 5rl and 5rr provided for each wheel cylinder, and the control module 50 may respectively pass the wheel cylinder pressure sensors 5fl, 5fr, 5rl and 5rr respectively.
- the hydraulic pressure in the wheel cylinders of the left front wheel 1fl, the right front wheel 1fr, the left rear wheel 1rl, and the right rear wheel 1rr is obtained, that is, the wheel cylinder pressure.
- the embodiment of the present disclosure is inconvenient to carry out specific The conversion of the braking force directly characterizes the braking force of the wheel with the wheel cylinder pressure.
- the brake wheel cylinder pressure difference between the two coaxial wheels may be determined according to the first brake force difference threshold value; After the chronograph time reaches the first preset time, the brake wheel cylinder pressure difference between the two coaxial wheels may be determined to be excessive according to the second brake force difference threshold.
- the brake wheel cylinder pressure difference between the two coaxial wheels is small, and generally does not reach the second brake force difference threshold. Therefore, when the brake master cylinder pressure is small, Whether the brake wheel cylinder pressure difference between the two coaxial wheels is excessively large is directly determined according to the first brake force difference threshold.
- the brake wheel cylinder pressure difference between the two coaxial wheels is too large, and the brake wheel cylinder pressure of the target wheel is greater than that of the coaxial wheel.
- the brake wheel cylinder pressure of the target wheel is maintained to suppress the pressure of the wheel cylinder of the target wheel to continue to increase, thereby preventing the braking force difference between the two coaxial wheels from increasing;
- the wheel-cylinder pressure difference between the wheels is too small, the wheel-cylinder pressure of the target wheel is increased to appropriately increase the slip ratio of the target wheel; and the wheel-cylinder between the two coaxial wheels
- the braking wheel pressure of the target wheel is increased to reduce the braking force of the two coaxial wheels. Poor, and appropriately increase the slip rate of the target wheel.
- the pressure difference between the brake wheel cylinders between the two coaxial wheels is too large, and the brake wheel pressure of the target wheel is greater than that of the coaxial wheel.
- the brake wheel pressure of the target wheel is reduced to reduce the braking force difference between the two coaxial wheels; and the brake wheel cylinder pressure difference between the two coaxial wheels is too small.
- Cylinder pressure to prevent an increase in the pressure difference between the brake wheel cylinders between the two coaxial wheels.
- the brake wheel-cylinder pressure of the coaxial wheel is greatly reduced, and The braking force difference between the two coaxial wheels can be reduced.
- the brake control device of the vehicle may further include a third determining module, and the third determining module is configured to determine the control before the first determining module 10 determines the slip ratio of the target wheel. Whether the module 50 currently maintains the wheel-cylinder pressure of the target wheel. Wherein, if the third determining module determines that the wheel-cylinder pressure of the target wheel is not currently maintained, the first determining module 10 further determines whether the slip ratio of the target wheel is greater than the third slip ratio threshold. The control module 50 maintains the wheel-cylinder pressure of the target wheel when the first determining module 10 determines that the slip ratio of the target wheel is greater than the third slip ratio threshold, wherein the third slip ratio threshold is greater than the second slip ratio threshold. And less than the first slip ratio threshold.
- control module 50 may Continue to maintain the wheel cylinder pressure of the target wheel.
- the brake wheel cylinder pressure of the target wheel In the process of not maintaining the brake wheel cylinder pressure of the target wheel, if the slip ratio of the target wheel reaches a better state than the third slip ratio threshold, the brake wheel cylinder pressure of the target wheel is maintained; During the process of maintaining the brake wheel cylinder pressure of the target wheel, if the slip ratio of the target wheel is between the second slip ratio threshold and the first slip ratio threshold, but is not too small, the target wheel system is maintained. Dynamic wheel cylinder pressure.
- the brake control method of the vehicle according to the embodiment of the present disclosure is applicable to various operating conditions, and particularly in the case where the left and right wheel adhesion coefficients of the vehicle are different, the above-described advantages can be more significantly exerted.
- the brake wheel cylinder pressure of the target wheel is controlled according to the larger brake force difference threshold, thereby causing the slip ratio at the target wheel to be too large or too
- the hourly control of the wheel-cylinder pressure can keep the slip rate of the wheel within a certain range, thereby ensuring the braking performance and anti-locking effect of the vehicle, by making the brake smaller in the first preset time.
- the braking force difference threshold controls the wheel-cylinder pressure of the target wheel, which can improve the limiting effect on the yaw moment and can give the driver a certain reaction when there is a sudden change in the road surface. Lateral stability during braking, the vehicle can be further improved.
- the present disclosure also proposes a vehicle.
- the vehicle 1000 of the embodiment of the present disclosure includes the brake control device 100 of the vehicle according to the above-mentioned embodiments of the present disclosure.
- the brake control device 100 of the vehicle for the specific implementation manner, refer to the foregoing embodiment, in order to avoid redundancy, no longer Narration.
- the braking performance and the anti-locking effect are better, and the lateral stability at the time of braking is higher.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
- the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
- the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Regulating Braking Force (AREA)
Abstract
一种车辆的制动控制方法,包括:在车辆进入制动状态时,对目标车轮的滑移率进行判断(S1);当目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取车辆的制动主缸压力,并实时判断其是否大于第一压力阈值(S2),其中,第二滑移率阈值小于第一滑移率阈值;如果制动主缸压力大于第一压力阈值,则对制动主缸压力持续大于第一压力阈值的时间进行计时(S3);在计时时间未达到第一预设时间时,根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制(S4);在计时时间达到第一预设时间后,根据第二制动力差阈值对目标车轮的制动轮缸压力进行控制(S5),其中,第一制动力差阈值小于第二制动力差阈值。还涉及车辆的制动控制系统及车辆。
Description
相关申请的交叉引用
本申请基于申请号为201711332637.0,申请日为2017年12月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本公开涉及车辆控制技术领域,特别涉及一种车辆的制动控制方法、一种车辆的制动控制装置和一种车辆。
随着汽车行驶速度的不断提高和道路行车密度的增大,对于汽车行驶安全性也提出了越来越高的要求。汽车防抱死制动系统能够通过控制和调节车轮的制动力,防止车轮在制动时的滑转,提高制动时的方向稳定性,从而大大改善汽车的制动性能,提高汽车的安全性。
当汽车在左右车轮轮胎特性不同或左右车轮所接触的路面附着系数不同时,该情况下的制动过程中因轮胎受力不均会产生横摆力矩,导致汽车紧急制动时常发生侧滑跑偏,造成车辆出现严重的横摆,增加了驾驶员的操作心理负担。因此,保持汽车紧急制动的方向稳定性对于行车安全至关重要。
目前,为解决上述问题,相关技术中通过识别路面以确定上述情况并在确定出上述情况时采取相应措施。然而,在左右车轮所接触的路面附着系数不同的初期,路面识别功能识别不出时,上述相应措施对横摆力矩的限制效果不够,车辆制动时的侧向稳定性较差。并且,在左右车轮所接触的路面附着系数不同的初期,对于突变的行驶情况,驾驶员往往反应不够及时,不能及时采取打方向盘调整车辆方向等有效应对。
公开内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本公开的第一个目的在于提出一种车辆的制动控制方法,能够保证车辆的制动性能和防抱死效果,并能够进一步提高车辆制动时的侧向稳定性。
本公开的第二个目的在于提出一种车辆的制动控制装置。
本公开的第三个目的在于提出一种车辆。
为达到上述目的,本公开第一方面实施例提出了一种车辆的制动控制方法,该方法包括以下步骤:在所述车辆进入制动状态时,对目标车轮的滑移率进行判断;当所述目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取所述车辆的制动主缸压力,并实时判断所述制动主缸压力是否大于第一压力阈值,其中,所述第二滑移率阈值小于所述第一滑移率阈值;如果所述制动主缸压力大于所述第一压力阈值,则对所述制动主缸压力持续大于所述第一压力阈值的时间进行计时;在计时时间未达到第一预设时间时,根据第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制;在计时时间达到所述第一预设时间后,根据第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,其中,所述第一制动力差阈值小于所述第二制动力差阈值。
根据本公开实施例的车辆的制动控制方法,在车辆进入制动状态时,通过对目标车轮的滑移率进行判断,如果目标车轮的滑移率过大或过小,则在制动主缸压力较大时进行计时,并在计时时间未达到第一预设时间时,根据较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,以及在计时时间达到第一预设时间后,根据较大的制动力差阈值对目标车轮的制动轮缸压力进行控制,由此,通过在目标车轮的滑移率过大或过小时对其制动轮缸压力进行控制,能够使车轮的滑移率保持在一定范围内,从而能够保证车辆的制动性能和防抱死效果,通过在第一预设时间内以较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,能提高对横摆力矩的限制效果,并能够在出现路面突变状况时给驾驶员一定的反应时间,从而能够进一步提高车辆制动时的侧向稳定性。
为达到上述目的,本公开第二方面实施例提出了一种车辆的制动控制装置,该装置包括:第一判断模块,用于在所述车辆进入制动状态时,对目标车轮的滑移率进行判断;获取模块,用于当所述第一判断模块判断所述目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取所述车辆的制动主缸压力,其中,所述第二滑移率阈值小于所述第一滑移率阈值;第二判断模块,用于实时判断所述制动主缸压力是否大于第一压力阈值;计时模块,用于在所述第二判断模块判断所述制动主缸压力大于所述第一压力阈值时,对所述制动主缸压力持续大于所述第一压力阈值的时间进行计时;控制模块,用于在计时时间未达到第一预设时间时,根据第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制,并在计时时间达到所述第一预设时间后,根据第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,其中,所述第一制动力差阈值小于所述第二制动力差阈值。
根据本公开实施例的车辆的制动控制装置,在车辆进入制动状态时,通过第一判断模块对目标车轮的滑移率进行判断,如果目标车轮的滑移率过大或过小,则计时模块在第二判断模块判断制动主缸压力较大时进行计时,控制模块在计时时间未达到第一预设时间时, 根据较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,并在计时时间达到第一预设时间后,根据较大的制动力差阈值对目标车轮的制动轮缸压力进行控制,由此,通过在目标车轮的滑移率过大或过小时对其制动轮缸压力进行控制,能够使车轮的滑移率保持在一定范围内,从而能够保证车辆的制动性能和防抱死效果,通过在第一预设时间内以较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,能提高对横摆力矩的限制效果,并能够在出现路面突变状况时给驾驶员一定的反应时间,从而能够进一步提高车辆制动时的侧向稳定性。
为达到上述目的,本公开第三方面实施例提出了一种车辆,其包括本公开第三方面实施例提出的车辆的制动控制装置。
根据本公开实施例的车辆,制动性能和防抱死效果较好,制动时的侧向稳定性较高。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过对本公开的实践了解到。
图1为根据本公开一个实施例的车辆的结构示意图;
图2为根据本公开实施例的车辆的制动控制方法的流程图;
图3为根据本公开一个具体实施例的车辆的制动控制方法的流程图;
图4为根据本公开实施例的车辆的制动控制装置的方框示意图;
图5为根据本公开实施例的车辆的方框示意图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例的车辆及其制动控制方法和装置。
本公开实施例的车辆为ABS(Antilock Brake System,制动防抱死系统)液压制动车辆,其包括制动主缸和对应每个车轮设置的制动轮缸。如图1所示,制动主缸和对应每个车轮设置的制动轮缸相连,车辆的左前轮1fl、右前轮1fr、左后轮1rl和右后轮1rr处分别对应设置制动轮缸的阀体2fl、2fr、2rl和2rr,每个阀体还分别与阀体控制器3fl、3fr、3rl和3rr相连,每个阀体控制器均与车辆的ECU(Electronic Control Unit,电子控制单元)相连。在ECU的发出制动控制指令时,阀体控制器可对对应的阀体进行控制以调节每个制动轮缸的压力,从而分别为每个车轮施加制动力。下述车辆的制动控制方法可以ECU 为主体执行。
图2为根据本公开实施例的车辆的制动控制方法的流程图。
如图2所示,本公开实施例的车辆的制动控制方法,包括以下步骤:
S1,在车辆进入制动状态时,对目标车轮的滑移率进行判断。
在本公开的一个实施例中,可对车辆的每个车轮进行制动控制,即车辆的每个车轮均为目标车轮。或者,可对车辆同轴两个车轮中择一地进行控制,即将每两个同轴车轮中的任一车轮作为目标车轮。其中,对每个车轮进行制动控制的控制效果最优。
在本公开的一个实施例中,如图1所示,车辆还可包括对应每个车轮设置的轮速传感器4fl、4fr、4rl和4rr,以分别检测左前轮1fl、右前轮1fr、左后轮1rl和右后轮1rr的轮速。在ECU判断车辆进入制动状态后,可获取每个轮速传感器所检测的轮速,并获取当前车速,根据滑移率的计算公式:滑移率=(车速-轮速)/车速*100%,可以得到目标车轮的滑移率。
S2,当目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取车辆的制动主缸压力,并实时判断制动主缸压力是否大于第一压力阈值,其中,第二滑移率阈值小于第一滑移率阈值。
可预先设定第一滑移率阈值和第二滑移率阈值,以分别作为滑移率控制的上下门限值,当目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值,即目标车轮的滑移率过高或过低时,执行后续控制流程,以便将目标车轮的滑移率控制在上下门限值之内。
在本公开的一个实施例中,车辆可包括对应制动主缸设置的主缸压力传感器,以检测制动主缸内的液压压力,即制动主缸压力。
S3,如果制动主缸压力大于第一压力阈值,则对制动主缸压力持续大于第一压力阈值的时间进行计时。
其中,对于制动主缸压力的获取和判断均是实时进行的,当制动主缸压力持续大于第一压力阈值时,计时累加,而当制动主缸压力小于等于第一压力阈值时,计时清零。
S4,在计时时间未达到第一预设时间时,根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制。
S5,在计时时间达到第一预设时间后,根据第二制动力差阈值对目标车轮的制动轮缸压力进行控制,其中,第一制动力差阈值小于第二制动力差阈值。
而当目标车轮的滑移率小于第二滑移率阈值时,可直接根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制。
在本公开的一个实施例中,当目标车轮的滑移率小于第二滑移率阈值时,根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制包括:获取当前目标车轮的制动轮缸压力 和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第一制动力差阈值;如果制动力差小于等于第一制动力差阈值,则增大目标车轮的制动轮缸压力;如果制动力差大于第一制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否大于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于目标车轮的同轴车轮的制动轮缸压力,则保持目标车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于等于目标车轮的同轴车轮的制动轮缸压力,则增大目标车轮的制动轮缸压力。
在本公开的一个实施例中,当目标车轮的滑移率小于第二滑移率阈值时,根据第二制动力差阈值对目标车轮的制动轮缸压力进行控制包括:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第二制动力差阈值;如果制动力差小于等于第二制动力差阈值,则增大目标车轮的制动轮缸压力;如果制动力差大于第二制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否大于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于目标车轮的同轴车轮的制动轮缸压力,则保持目标车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于等于目标车轮的同轴车轮的制动轮缸压力,则增大目标车轮的制动轮缸压力。
在本公开的一个实施例中,当目标车轮的滑移率大于第一滑移率阈值时,根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制包括:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第一制动力差阈值;如果制动力差小于等于第一制动力差阈值,则减小目标车轮的制动轮缸压力;如果制动力差大于第一制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否小于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力,并减小目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于等于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力。
在本公开的一个实施例中,当目标车轮的滑移率大于第一滑移率阈值时,根据第二制动力差阈值对目标车轮的制动轮缸压力进行控制包括:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第二制动力差阈值;如果制动力差小于等于第二制动力差阈值,则减小目标车轮的制动轮缸压力;如果制动力差大于第二制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否小 于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力,并减小目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于等于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力。
其中,如图1所示,车辆还可包括对应每个制动轮缸设置的轮缸压力传感器5fl、5fr、5rl和5rr,以分别检测左前轮1fl、右前轮1fr、左后轮1rl和右后轮1rr的制动轮缸内的液压压力,即制动轮缸压力。需要说明的是,制动轮缸压力与车轮的制动力之间存在对应关系,而二者的具体关系式还受液压制动系统一些参数的影响,因此,本公开的实施例中不便进行具体制动力的换算,直接以制动轮缸压力表征车轮的制动力。
具体地,如果制动主缸压力较大,则当计时时间未达到第一预设时间时,可根据第一制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大;当计时时间达到第一预设时间后,可根据第二制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大。
而如果制动主缸压力较小,则同轴两个车轮之间的制动轮缸压力差较小,一般不会达到第二制动力差阈值,因此,可在制动主缸压力较小时直接根据第一制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大。
如果目标车轮的滑移率过小,制动性能不足,则在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力大于其同轴车轮的制动轮缸压力时,通过保持目标车轮的制动轮缸压力,以抑制目标车轮的制动轮缸压力继续增大,防止同轴两个车轮的制动力差增大;并且在同轴两个车轮之间的制动轮缸压力差过小时,通过增大目标车轮的制动轮缸压力,以适当增大目标车轮的滑移率;以及在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力小于其同轴车轮的制动轮缸压力时,通过增大目标车轮的制动轮缸压力,以减小同轴两个车轮的制动力差,并适当增大目标车轮的滑移率。
如果目标车轮的滑移率过大,趋于抱死,则在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力大于其同轴车轮的制动轮缸压力时,通过减小目标车轮的制动轮缸压力,以减小同轴两个车轮的制动力差;并且在同轴两个车轮之间的制动轮缸压力差过小时,通过减小目标车轮的制动轮缸压力,以适当减小目标车轮的滑移率;以及在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力小于其同轴车轮的制动轮缸压力时,通过减小目标车轮的制动轮缸压力,以适当减小目标车轮的滑移率,并通过对应减小其同轴车轮的制动轮缸压力,以防止同轴两个车轮之间的制动轮缸压力差增大。优选地,通过以不同幅度减小目标车轮的制动轮缸压力,即较小幅度减小目标车轮的制动轮缸压力,较大幅度减小其同轴车轮的制动轮缸压力,还可减小同轴两个车轮的制动力差。
另外,在本公开的一个实施例中,在对目标车轮的滑移率进行判断之前,还可判断当前是否保持目标车轮的制动轮缸压力。如果当前未保持目标车轮的制动轮缸压力,则进一步判断目标车轮的滑移率是否大于第三滑移率阈值;如果目标车轮的滑移率大于第三滑移率阈值,则保持目标车轮的制动轮缸压力,其中,第三滑移率阈值大于第二滑移率阈值且小于第一滑移率阈值。
而在当前保持目标车轮的制动轮缸压力,并且目标车轮的滑移率大于第二滑移率阈值且小于第一滑移率阈值时,可继续保持目标车轮的制动轮缸压力。
在未保持目标车轮的制动轮缸压力的过程中,如果目标车轮的滑移率达到了大于第三滑移率阈值的较佳状态,则保持目标车轮的制动轮缸压力即可;在保持目标车轮的制动轮缸压力的过程中,如果目标车轮的滑移率处于第二滑移率阈值和第一滑移率阈值之间,不过大也不过小,则继续保持目标车轮的制动轮缸压力。
由此,不仅能够尽可能地减小同轴两个车轮之间制动力差,限制车辆左右车轮之间的横摆力矩,还能够将滑移率调整至最优滑移率之内,提高制动控制效果。
本公开实施例的车辆的制动控制方法适用于各种工况,尤其在车辆的左右车轮附着系数不同的工况下,能够更显著地发挥出其上述优点。
下面结合具体实施例进一步说明本公开的车辆的制动控制方法。
在本公开的一个具体实施例中,以目标车轮为任一后轮为例,如图3所示,车辆的制动控制方法包括以下步骤:
S101,判断车辆是否在制动。如果是,则执行步骤S102;如果否,则ECU结束当前控制周期,并执行下一个控制周期。
S102,判断当前是否在保持目标后轮的制动轮缸压力。如果否,则执行步骤S103;如果是,则执行步骤S105。
S103,判断目标后轮的滑移率S是否大于A。如果是,则执行步骤S104;如果否,则ECU结束当前控制周期,并执行下一个控制周期。
S104,保持目标后轮的制动轮缸压力。在该步骤后进入下一个控制周期。
S105,判断目标后轮的滑移率S是否大于B。如果是,则执行步骤S116;如果否,则执行步骤S106。
S106,判断目标后轮的滑移率S是否小于C。其中,B>A>C,A、B、C分别对应上述实施例的第三滑移率阈值、第一滑移率阈值和第二滑移率阈值。应当理解,车轮的滑移率在一定范围,例如10%~30%内防抱死控制效果较好。因此,可依据该范围设定A、B、C的具体数值。其中,B、C分别为较好控制效果所对应的上下门限值,当车轮的滑移率大于B时,车轮区域抱死状态,当车轮的滑移率小于C时,车轮的制动性能不足。如果是,则执 行步骤S107;如果否,则执行步骤S104。
S107,判断制动主缸压力CHP是否大于E。如果是,则执行步骤S108;如果否,则执行步骤S109。
S108,计时。
S109,计时清零。该步骤后执行步骤S111。
S110,判断计时时间t是否达到T。T是根据同轴两个车轮之间的制动轮缸压力差是否过大的判断阈值的要求,而标定的最优时间。如果是,则执行步骤S112;如果否,则执行步骤S111。
S111,判断两个后轮的制动轮缸压力差△P是否大于K。如果是,则执行步骤S113;如果否,则执行步骤S114。
S112,判断两个后轮的制动轮缸压力差△P是否大于D。K<D,K是根据同轴两个车轮之间的制动轮缸压力差是否过大的判断阈值的要求,而标定的制动力差阈值,即上述实施例的第一制动力差阈值,D为上述实施例的第二制动力差阈值。如果是,则执行步骤S113;如果否,则执行步骤S114。
S113,判断目标后轮是否为外车轮。其中,当目标后轮的制动轮缸压力大于另一后轮的制动轮缸压力,并且二者相差大于一预设值时,可判断目标后轮为外车轮。如果是,则执行步骤S115;如果否,则执行步骤S114。
S114,增大目标后轮的制动轮缸压力。
S115,保持目标后轮的制动轮缸压力。由于目标后轮的滑移率小于C,制动性能不足,因此不宜再减小目标后轮的制动轮缸压力,仅可根据实际判断结果增大或保持目标后轮的制动轮缸压力。
S116,判断制动主缸压力CHP是否大于E。如果是,则执行步骤S117;如果否,则执行步骤S118。
S117,计时。
S118,计时清零。该步骤后执行步骤S121。
S119,判断计时时间t是否达到T。如果是,则执行步骤S120;如果否,则执行步骤S121。
S120,判断两个后轮的制动轮缸压力差△P是否大于D。如果是,则执行步骤S122;如果否,则执行步骤S123。
S121,判断两个后轮的制动轮缸压力差△P是否大于K。如果是,则执行步骤S122;如果否,则执行步骤S123。
S122,判断目标后轮是否为内车轮。其中,当目标后轮的制动轮缸压力小于另一后轮 的制动轮缸压力,并且二者相差大于一预设值时,可判断目标后轮为内车轮。如果是,则执行步骤S124;如果否,则执行步骤S123。
S123,减小目标后轮的制动轮缸压力。
S124,减小两个后轮的制动轮缸压力。由于目标后轮的滑移率大于B,目标后轮趋于抱死状态,因此不宜再增大目标后轮的制动轮缸压力,仅可根据实际判断结果减小目标后轮的制动轮缸压力。而在目标后轮为内车轮,即制动轮缸压力小于另一后轮时,为避免两个后轮的制动轮缸压力差进一步增大,另一后轮的制动轮缸压力也应随之减小,优选地,另一后轮的制动轮缸压力的减小幅度大于目标后轮的制动轮缸压力的减小幅度,从而能够减小两个后轮的制动轮缸压力差。
在步骤S114、S115、S123和S124之后,可进入下一个控制周期。
综上所述,根据本公开实施例的车辆的制动控制方法,在车辆进入制动状态时,通过对目标车轮的滑移率进行判断,如果目标车轮的滑移率过大或过小,则在制动主缸压力较大时进行计时,并在计时时间未达到第一预设时间时,根据较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,以及在计时时间达到第一预设时间后,根据较大的制动力差阈值对目标车轮的制动轮缸压力进行控制,由此,通过在目标车轮的滑移率过大或过小时对其制动轮缸压力进行控制,能够使车轮的滑移率保持在一定范围内,从而能够保证车辆的制动性能和防抱死效果,通过在第一预设时间内以较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,能提高对横摆力矩的限制效果,并能够在出现路面突变状况时给驾驶员一定的反应时间,从而能够进一步提高车辆制动时的侧向稳定性。
对应上述实施例,本公开还提出一种非临时性计算机可读存储介质。
本公开实施例的非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可实现本公开上述实施例提出的车辆的制动控制方法。
根据本公开实施例的非临时性计算机可读存储介质,通过执行其存储的计算机程序,能够保证车辆的制动性能和防抱死效果,并能够进一步提高车辆制动时的侧向稳定性。
对应上述实施例,本公开还提出一种车辆的制动控制装置。
如图4所示,本公开实施例的车辆的制动控制装置,包括第一判断模块10、获取模块20、第二判断模块30、计时模块40和控制模块50。
其中,第一判断模块10用于在车辆进入制动状态时,对目标车轮的滑移率进行判断;获取模块20用于当第一判断模块10判断目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取车辆的制动主缸压力,其中,第二滑移率阈值小于第一滑移率阈值;第二判断模块30用于实时判断制动主缸压力是否大于第一压力阈值;计时模块40用于在第二判断模块30判断制动主缸压力大于第一压力阈值时,对制动主缸压力持续大于第一压 力阈值的时间进行计时;控制模块50用于在计时时间未达到第一预设时间时,根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制,并在计时时间达到第一预设时间后,根据第二制动力差阈值对目标车轮的制动轮缸压力进行控制,其中,第一制动力差阈值小于第二制动力差阈值。
控制模块50在第二判断模块30判断制动主缸压力小于等于第一压力阈值时,可直接根据第一制动力差阈值对目标车轮的制动轮缸压力进行控制。
在本公开的一个实施例中,可对车辆的每个车轮进行制动控制,即车辆的每个车轮均为目标车轮。或者,可对车辆同轴两个车轮中择一地进行控制,即将每两个同轴车轮中的任一车轮作为目标车轮。其中,对每个车轮进行制动控制的控制效果最优。
在本公开的一个实施例中,如图1所示,车辆还可包括对应每个车轮设置的轮速传感器4fl、4fr、4rl和4rr,以分别检测左前轮1fl、右前轮1fr、左后轮1rl和右后轮1rr的轮速。在判断车辆进入制动状态后,第一判断模块10可获取每个轮速传感器所检测的轮速,并根据目标车轮的轮速得到目标车轮的滑移率。
在本公开的一个实施例中,可预先设定第一滑移率阈值和第二滑移率阈值,以分别作为滑移率控制的上下门限值,当目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值,即目标车轮的滑移率过高或过低时,通过制动控制装置的控制将目标车轮的滑移率控制在上下门限值之内。
在本公开的一个实施例中,车辆可包括对应制动主缸设置的主缸压力传感器,获取模块20通过主缸压力传感器获取制动主缸内的液压压力,即制动主缸压力。
其中,获取模块20对于制动主缸压力的获取、第二判断模块30对于制动主缸压力的判断均是实时进行的,当制动主缸压力持续大于第一压力阈值时,计时模块40如计时器计时累加,而当制动主缸压力小于等于第一压力阈值时,计时模块40计时清零。
在本公开的一个实施例中,当第一判断模块10判断目标车轮的滑移率小于第二滑移率阈值时,控制模块50可具体用于:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第一制动力差阈值;如果制动力差小于等于第一制动力差阈值,则增大目标车轮的制动轮缸压力;如果制动力差大于第一制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否大于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于目标车轮的同轴车轮的制动轮缸压力,则保持目标车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于等于目标车轮的同轴车轮的制动轮缸压力,则增大目标车轮的制动轮缸压力。
在本公开的一个实施例中,当第一判断模块10判断目标车轮的滑移率小于第二滑移率 阈值时,控制模块50具体还用于:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第二制动力差阈值;如果制动力差小于等于第二制动力差阈值,则增大目标车轮的制动轮缸压力;如果制动力差大于第二制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否大于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于目标车轮的同轴车轮的制动轮缸压力,则保持目标车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于等于目标车轮的同轴车轮的制动轮缸压力,则增大目标车轮的制动轮缸压力。
在本公开的一个实施例中,当第一判断模块10判断目标车轮的滑移率大于第一滑移率阈值时,控制模块50可具体用于:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第一制动力差阈值;如果制动力差小于等于第一制动力差阈值,则减小目标车轮的制动轮缸压力;如果制动力差大于第一制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否小于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力,并减小目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于等于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力。
在本公开的一个实施例中,当第一判断模块10判断目标车轮的滑移率大于第一滑移率阈值时,控制模块50具体还用于:获取当前目标车轮的制动轮缸压力和目标车轮的同轴车轮的制动轮缸压力;计算目标车轮的制动轮缸压力与目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断制动力差是否大于第二制动力差阈值;如果制动力差小于等于第二制动力差阈值,则减小目标车轮的制动轮缸压力;如果制动力差大于第二制动力差阈值,则进一步判断目标车轮的制动轮缸压力是否小于目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力小于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力,并减小目标车轮的同轴车轮的制动轮缸压力;如果目标车轮的制动轮缸压力大于等于目标车轮的同轴车轮的制动轮缸压力,则减小目标车轮的制动轮缸压力。
其中,如图1所示,车辆还可包括对应每个制动轮缸设置的轮缸压力传感器5fl、5fr、5rl和5rr,控制模块50可通过轮缸压力传感器5fl、5fr、5rl和5rr分别获取左前轮1fl、右前轮1fr、左后轮1rl和右后轮1rr的制动轮缸内的液压压力,即制动轮缸压力。需要说明的是,制动轮缸压力与车轮的制动力之间存在对应关系,而二者的具体关系式还受液 压制动系统一些参数的影响,因此,本公开的实施例中不便进行具体制动力的换算,直接以制动轮缸压力表征车轮的制动力。
如果制动主缸压力较大,则当计时时间未达到第一预设时间时,可根据第一制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大;当计时时间达到第一预设时间后,可根据第二制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大。
而如果制动主缸压力较小,则同轴两个车轮之间的制动轮缸压力差较小,一般不会达到第二制动力差阈值,因此,可在制动主缸压力较小时直接根据第一制动力差阈值判断同轴两个车轮之间的制动轮缸压力差是否过大。
如果目标车轮的滑移率过小,制动性能不足,则在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力大于其同轴车轮的制动轮缸压力时,通过保持目标车轮的制动轮缸压力,以抑制目标车轮的制动轮缸压力继续增大,防止同轴两个车轮的制动力差增大;并且在同轴两个车轮之间的制动轮缸压力差过小时,通过增大目标车轮的制动轮缸压力,以适当增大目标车轮的滑移率;以及在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力小于其同轴车轮的制动轮缸压力时,通过增大目标车轮的制动轮缸压力,以减小同轴两个车轮的制动力差,并适当增大目标车轮的滑移率。
如果目标车轮的滑移率过大,趋于抱死,则在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力大于其同轴车轮的制动轮缸压力时,通过减小目标车轮的制动轮缸压力,以减小同轴两个车轮的制动力差;并且在同轴两个车轮之间的制动轮缸压力差过小时,通过减小目标车轮的制动轮缸压力,以适当减小目标车轮的滑移率;以及在同轴两个车轮之间的制动轮缸压力差过大、且目标车轮的制动轮缸压力小于其同轴车轮的制动轮缸压力时,通过减小目标车轮的制动轮缸压力,以适当减小目标车轮的滑移率,并通过对应减小其同轴车轮的制动轮缸压力,以防止同轴两个车轮之间的制动轮缸压力差增大。优选地,通过以不同幅度减小目标车轮的制动轮缸压力,即较小幅度减小目标车轮的制动轮缸压力,较大幅度减小其同轴车轮的制动轮缸压力,还可减小同轴两个车轮的制动力差。
另外,在本公开的一个实施例中,车辆的制动控制装置还可包括第三判断模块,第三判断模块用于在第一判断模块10对目标车轮的滑移率进行判断之前,判断控制模块50当前是否保持目标车轮的制动轮缸压力。其中,如果第三判断模块判断当前未保持目标车轮的制动轮缸压力,则第一判断模块10进一步判断目标车轮的滑移率是否大于第三滑移率阈值。控制模块50在第一判断模块10判断目标车轮的滑移率大于第三滑移率阈值时,保持目标车轮的制动轮缸压力,其中,第三滑移率阈值大于第二滑移率阈值且小于第一滑移率阈值。
而在控制模块50当前保持目标车轮的制动轮缸压力,并且第一判断模块10判断目标车轮的滑移率大于第二滑移率阈值且小于第一滑移率阈值时,控制模块50可继续保持目标车轮的制动轮缸压力。
在未保持目标车轮的制动轮缸压力的过程中,如果目标车轮的滑移率达到了大于第三滑移率阈值的较佳状态,则保持目标车轮的制动轮缸压力即可;在保持目标车轮的制动轮缸压力的过程中,如果目标车轮的滑移率处于第二滑移率阈值和第一滑移率阈值之间,不过大也不过小,则继续保持目标车轮的制动轮缸压力。
由此,不仅能够尽可能地减小同轴两个车轮之间制动力差,限制车辆左右车轮之间的横摆力矩,还能够将滑移率调整至最优滑移率之内,提高制动控制效果。
本公开实施例的车辆的制动控制方法适用于各种工况,尤其在车辆的左右车轮附着系数不同的工况下,能够更显著地发挥出其上述优点。
根据本公开实施例的车辆的制动控制装置,在车辆进入制动状态时,通过第一判断模块对目标车轮的滑移率进行判断,如果目标车轮的滑移率过大或过小,则计时模块在第二判断模块判断制动主缸压力较大时进行计时,控制模块在计时时间未达到第一预设时间时,根据较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,并在计时时间达到第一预设时间后,根据较大的制动力差阈值对目标车轮的制动轮缸压力进行控制,由此,通过在目标车轮的滑移率过大或过小时对其制动轮缸压力进行控制,能够使车轮的滑移率保持在一定范围内,从而能够保证车辆的制动性能和防抱死效果,通过在第一预设时间内以较小的制动力差阈值对目标车轮的制动轮缸压力进行控制,能提高对横摆力矩的限制效果,并能够在出现路面突变状况时给驾驶员一定的反应时间,从而能够进一步提高车辆制动时的侧向稳定性。
对应上述实施例,本公开还提出一种车辆。
如图5所示,本公开实施例的车辆1000,包括本公开上述实施例提出的车辆的制动控制装置100,其具体的实施方式可参照上述实施例,为避免冗余,在此不再赘述。
根据本公开实施例的车辆,制动性能和防抱死效果较好,制动时的侧向稳定性较高。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要 性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (13)
- 一种车辆的制动控制方法,其特征在于,包括以下步骤:在所述车辆进入制动状态时,对目标车轮的滑移率进行判断;当所述目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取所述车辆的制动主缸压力,并实时判断所述制动主缸压力是否大于第一压力阈值,其中,所述第二滑移率阈值小于所述第一滑移率阈值;如果所述制动主缸压力大于所述第一压力阈值,则对所述制动主缸压力持续大于所述第一压力阈值的时间进行计时;在计时时间未达到第一预设时间时,根据第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制;在计时时间达到所述第一预设时间后,根据第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,其中,所述第一制动力差阈值小于所述第二制动力差阈值。
- 根据权利要求1所述的车辆的制动控制方法,其特征在于,当所述制动主缸压力小于等于所述第一压力阈值时,直接根据所述第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制。
- 根据权利要求1或2所述的车辆的制动控制方法,其特征在于,当所述目标车轮的滑移率小于所述第二滑移率阈值时,根据第一制动力差阈值/第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,包括:获取当前所述目标车轮的制动轮缸压力和所述目标车轮的同轴车轮的制动轮缸压力;计算所述目标车轮的制动轮缸压力与所述目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断所述制动力差是否大于所述第一制动力差阈值/第二制动力差阈值;如果所述制动力差小于等于所述第一制动力差阈值/第二制动力差阈值,则增大所述目标车轮的制动轮缸压力;如果所述制动力差大于所述第一制动力差阈值/第二制动力差阈值,则进一步判断所述目标车轮的制动轮缸压力是否大于所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力大于所述目标车轮的同轴车轮的制动轮缸压力,则保持所述目标车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力小于等于所述目标车轮的同轴车轮的制动轮缸压力,则增大所述目标车轮的制动轮缸压力。
- 根据权利要求1或2所述的车辆的制动控制方法,其特征在于,当所述目标车轮的 滑移率大于所述第一滑移率阈值时,根据第一制动力差阈值/第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,包括:获取当前所述目标车轮的制动轮缸压力和所述目标车轮的同轴车轮的制动轮缸压力;计算所述目标车轮的制动轮缸压力与所述目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断所述制动力差是否大于所述第一制动力差阈值/第二制动力差阈值;如果所述制动力差小于等于所述第一制动力差阈值/第二制动力差阈值,则减小所述目标车轮的制动轮缸压力;如果所述制动力差大于所述第一制动力差阈值/第二制动力差阈值,则进一步判断所述目标车轮的制动轮缸压力是否小于所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力小于所述目标车轮的同轴车轮的制动轮缸压力,则减小所述目标车轮的制动轮缸压力,并减小所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力大于等于所述目标车轮的同轴车轮的制动轮缸压力,则减小所述目标车轮的制动轮缸压力。
- 根据权利要求3或4所述的车辆的制动控制方法,其特征在于,在对目标车轮的滑移率进行判断之前,还包括:判断当前是否保持所述目标车轮的制动轮缸压力;如果当前未保持所述目标车轮的制动轮缸压力,则进一步判断所述目标车轮的滑移率是否大于第三滑移率阈值,其中,所述第三滑移率阈值大于所述第二滑移率阈值且小于所述第一滑移率阈值;如果所述目标车轮的滑移率大于所述第三滑移率阈值,则保持所述目标车轮的制动轮缸压力。
- 根据权利要求1-5中任意一项所述的车辆的制动控制方法,其特征在于,当所述目标车轮的滑移率大于所述第二滑移率阈值且小于所述第一滑移率阈值时,继续保持所述目标车轮的制动轮缸压力。
- 一种车辆的制动控制装置,其特征在于,包括:第一判断模块,用于在所述车辆进入制动状态时,对目标车轮的滑移率进行判断;获取模块,用于当所述第一判断模块判断所述目标车轮的滑移率大于第一滑移率阈值或小于第二滑移率阈值时,获取所述车辆的制动主缸压力,其中,所述第二滑移率阈值小于所述第一滑移率阈值;第二判断模块,用于实时判断所述制动主缸压力是否大于第一压力阈值;计时模块,用于在所述第二判断模块判断所述制动主缸压力大于所述第一压力阈值时, 对所述制动主缸压力持续大于所述第一压力阈值的时间进行计时;控制模块,用于在计时时间未达到第一预设时间时,根据第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制,并在计时时间达到所述第一预设时间后,根据第二制动力差阈值对所述目标车轮的制动轮缸压力进行控制,其中,所述第一制动力差阈值小于所述第二制动力差阈值。
- 根据权利要求7所述的车辆的制动控制装置,其特征在于,所述控制模块在所述第二判断模块判断所述制动主缸压力小于等于所述第一压力阈值时,直接根据所述第一制动力差阈值对所述目标车轮的制动轮缸压力进行控制。
- 根据权利要求7或8所述的车辆的制动控制装置,其特征在于,当所述第一判断模块判断所述目标车轮的滑移率小于所述第二滑移率阈值时,所述控制模块用于:获取当前所述目标车轮的制动轮缸压力和所述目标车轮的同轴车轮的制动轮缸压力;计算所述目标车轮的制动轮缸压力与所述目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断所述制动力差是否大于所述第一制动力差阈值/第二制动力差阈值;如果所述制动力差小于等于所述第一制动力差阈值/第二制动力差阈值,则增大所述目标车轮的制动轮缸压力;如果所述制动力差大于所述第一制动力差阈值/第二制动力差阈值,则进一步判断所述目标车轮的制动轮缸压力是否大于所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力大于所述目标车轮的同轴车轮的制动轮缸压力,则保持所述目标车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力小于等于所述目标车轮的同轴车轮的制动轮缸压力,则增大所述目标车轮的制动轮缸压力。
- 根据权利要求7或8所述的车辆的制动控制装置,其特征在于,当所述第一判断模块判断所述目标车轮的滑移率大于所述第一滑移率阈值时,所述控制模块用于:获取当前所述目标车轮的制动轮缸压力和所述目标车轮的同轴车轮的制动轮缸压力;计算所述目标车轮的制动轮缸压力与所述目标车轮的同轴车轮的制动轮缸压力之间的差值的绝对值,以得到制动力差;判断所述制动力差是否大于所述第一制动力差阈值/第二制动力差阈值;如果所述制动力差小于等于所述第一制动力差阈值/第二制动力差阈值,则减小所述目标车轮的制动轮缸压力;如果所述制动力差大于所述第一制动力差阈值/第二制动力差阈值,则进一步判断所述目标车轮的制动轮缸压力是否小于所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力小于所述目标车轮的同轴车轮的制动轮缸压力,则减小所述目标车轮的制动轮缸压力,并减小所述目标车轮的同轴车轮的制动轮缸压力;如果所述目标车轮的制动轮缸压力大于等于所述目标车轮的同轴车轮的制动轮缸压力,则减小所述目标车轮的制动轮缸压力。
- 根据权利要求9或10所述的车辆的制动控制装置,其特征在于,还包括第三判断模块,用于在所述第一判断模块对目标车轮的滑移率进行判断之前,判断所述控制模块当前是否保持所述目标车轮的制动轮缸压力,其中,如果所述第三判断模块判断当前未保持所述目标车轮的制动轮缸压力,则所述第一判断模块进一步判断所述目标车轮的滑移率是否大于第三滑移率阈值,所述控制模块在所述第一判断模块判断所述目标车轮的滑移率大于所述第三滑移率阈值时,保持所述目标车轮的制动轮缸压力,其中,所述第三滑移率阈值大于所述第二滑移率阈值且小于所述第一滑移率阈值。
- 根据权利要求7-10中任意一项所述的车辆的制动控制装置,其特征在于,当所述第一判断模块判断所述目标车轮的滑移率大于所述第二滑移率阈值且小于所述第一滑移率阈值时,所述控制模块继续保持所述目标车轮的制动轮缸压力。
- 一种车辆,其特征在于,包括根据权利要求7-12中任一项所述的车辆的制动控制装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711332637.0 | 2017-12-13 | ||
CN201711332637.0A CN109910850B (zh) | 2017-12-13 | 2017-12-13 | 车辆及其制动控制方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019114752A1 true WO2019114752A1 (zh) | 2019-06-20 |
Family
ID=66820730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/120594 WO2019114752A1 (zh) | 2017-12-13 | 2018-12-12 | 车辆及其制动控制方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109910850B (zh) |
WO (1) | WO2019114752A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111137263B (zh) * | 2019-12-26 | 2022-11-18 | 的卢技术有限公司 | 一种车辆制动稳定控制方法及系统 |
CN111231917B (zh) * | 2020-02-26 | 2021-01-05 | 中国地质大学(北京) | 一种基于气压线控制动系统的整车制动压力调控方法 |
CN112629738A (zh) * | 2020-12-18 | 2021-04-09 | 舜泰汽车有限公司 | 一种无人车制动力标定系统 |
CN113135191B (zh) * | 2021-05-20 | 2022-11-18 | 北京理工大学 | 一种基于路面分类与机器学习的履带车辆滑移率估计方法 |
CN113858963B (zh) * | 2021-09-15 | 2023-04-07 | 东风柳州汽车有限公司 | 基于电动车辆的制动方法、系统、介质及车载终端 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070188017A1 (en) * | 2006-02-15 | 2007-08-16 | Hiroaki Niino | Brake control apparatus for vehicle |
CN101037107A (zh) * | 2006-03-13 | 2007-09-19 | 株式会社爱德克斯 | 用于车辆的制动控制装置 |
CN102490707A (zh) * | 2011-12-15 | 2012-06-13 | 奇瑞汽车股份有限公司 | 一种制动控制方法 |
CN103661334A (zh) * | 2013-12-20 | 2014-03-26 | 北京万得嘉瑞汽车技术有限公司 | 一种汽车电子制动力分配的控制方法 |
CN106218616A (zh) * | 2016-08-02 | 2016-12-14 | 北京英创汇智科技有限公司 | 一种无压力传感器的esc系统及其控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005082081A (ja) * | 2003-09-10 | 2005-03-31 | Advics:Kk | 車両用制動制御装置 |
CN102171078B (zh) * | 2008-12-26 | 2012-10-10 | 株式会社小松制作所 | 牵引控制装置 |
JP5857593B2 (ja) * | 2011-09-29 | 2016-02-10 | トヨタ自動車株式会社 | 車両の制動制御装置 |
JP5472350B2 (ja) * | 2012-03-16 | 2014-04-16 | トヨタ自動車株式会社 | 制動力制御装置 |
JP5978943B2 (ja) * | 2012-11-20 | 2016-08-24 | 日産自動車株式会社 | 制動制御装置 |
CN106314163A (zh) * | 2016-08-26 | 2017-01-11 | 北京长城华冠汽车科技股份有限公司 | 一种电动车的制动控制方法及装置 |
-
2017
- 2017-12-13 CN CN201711332637.0A patent/CN109910850B/zh active Active
-
2018
- 2018-12-12 WO PCT/CN2018/120594 patent/WO2019114752A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070188017A1 (en) * | 2006-02-15 | 2007-08-16 | Hiroaki Niino | Brake control apparatus for vehicle |
CN101037107A (zh) * | 2006-03-13 | 2007-09-19 | 株式会社爱德克斯 | 用于车辆的制动控制装置 |
CN102490707A (zh) * | 2011-12-15 | 2012-06-13 | 奇瑞汽车股份有限公司 | 一种制动控制方法 |
CN103661334A (zh) * | 2013-12-20 | 2014-03-26 | 北京万得嘉瑞汽车技术有限公司 | 一种汽车电子制动力分配的控制方法 |
CN106218616A (zh) * | 2016-08-02 | 2016-12-14 | 北京英创汇智科技有限公司 | 一种无压力传感器的esc系统及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109910850B (zh) | 2020-06-19 |
CN109910850A (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019114752A1 (zh) | 车辆及其制动控制方法和装置 | |
EP1604877A1 (en) | Vehicle turning motion control | |
JP2004530598A (ja) | 車両の走行安定性コントロールを修正する方法 | |
US8930111B2 (en) | Braking force control apparatus and braking force control method for vehicle | |
US8825334B2 (en) | Vehicle behavior control apparatus and vehicle behavior control method | |
US9694795B2 (en) | Method for determining the conditions of an underlying surface during unbraked or braked travel of a vehicle | |
US20090171531A1 (en) | Wheel attitude control method and wheel attitude control device | |
CN102656066A (zh) | 用于控制车辆的运行稳定性的方法和制动系统 | |
US20050065697A1 (en) | Vehicle motion control apparatus | |
JP4005669B2 (ja) | 制動力制御装置 | |
US20070080583A1 (en) | Vehicle and control method for changing control mode of driving and braking force based on change rate of wheel vertical load | |
JP2001310721A (ja) | 車両の制動力制御装置 | |
JP2004210046A (ja) | 車輌用アンチスキッド制御装置 | |
JP5447447B2 (ja) | 車両用制動力制御装置 | |
JP2002002473A (ja) | 車輌の制動力制御式挙動制御装置 | |
JP5180934B2 (ja) | 車両制動装置 | |
JP2005521585A (ja) | 自動車のブレーキシステムの機能不良を検知する方法及び装置 | |
CN114919551B (zh) | 制动控制方法、装置及车辆 | |
JP4729830B2 (ja) | 車輌用制御装置 | |
JP4600217B2 (ja) | 車両の制動制御装置 | |
JP3680928B2 (ja) | 路面の摩擦係数推定装置 | |
JP4706410B2 (ja) | 車速制御装置 | |
JP3729727B2 (ja) | 路面の摩擦係数推定装置 | |
JP4462045B2 (ja) | 車両運動制御装置 | |
CN106143454A (zh) | 用于运行具有防抱死制动系统的机动车辆制动系统的方法以及用于执行该方法的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18888382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18888382 Country of ref document: EP Kind code of ref document: A1 |