WO2019114699A1 - 封装结构、基板和显示面板 - Google Patents

封装结构、基板和显示面板 Download PDF

Info

Publication number
WO2019114699A1
WO2019114699A1 PCT/CN2018/120315 CN2018120315W WO2019114699A1 WO 2019114699 A1 WO2019114699 A1 WO 2019114699A1 CN 2018120315 W CN2018120315 W CN 2018120315W WO 2019114699 A1 WO2019114699 A1 WO 2019114699A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
encapsulation layer
encapsulation
transition
Prior art date
Application number
PCT/CN2018/120315
Other languages
English (en)
French (fr)
Inventor
乔梓
蒋志亮
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18889031.3A priority Critical patent/EP3726600A4/en
Priority to JP2019546826A priority patent/JP7290570B2/ja
Priority to US16/476,402 priority patent/US10680204B2/en
Publication of WO2019114699A1 publication Critical patent/WO2019114699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • At least one embodiment of the present disclosure is directed to a package structure, a substrate, and a display panel.
  • OLED Organic Light-Emitting Diode
  • an encapsulation layer is provided in the OLED electronic display product, so that the internal components are not damaged by the infiltration of moisture, oxygen, etc., but the bonding strength of the current encapsulation layer is limited, and it is easy to fall off, affecting the encapsulation layer.
  • the packaging effect reduces the yield of OLED electronic display products.
  • At least one embodiment of the present disclosure provides a substrate including a substrate and a package structure on the substrate, the package structure including an encapsulation layer and a transition layer, the package layer including a plurality of layers disposed on the substrate in sequence An encapsulation layer and a second encapsulation layer, the first encapsulation layer is located on the first main surface of the second encapsulation layer, and the transition layer and the first encapsulation layer are juxtaposed on the first main surface
  • the first major surface includes a first region in contact with the first encapsulation layer and a second region in contact with the transition layer, the second region being located at an edge of the first major surface, and
  • the bonding strength between the transition layer and the second encapsulation layer is greater than the bonding strength between the first encapsulation layer and the second encapsulation layer.
  • an orthographic projection of the transition layer on a face of the substrate is outside an orthographic projection of the first encapsulation layer on a face of the substrate.
  • the preparation materials of the second encapsulation layer and the transition layer both include an organic material.
  • the shape of the orthographic projection of the second region on the surface of the substrate is a closed loop, and the orthographic projection of the first region on the surface of the substrate Located within the orthographic projection of the second region on the face of the substrate.
  • a surface of the transition layer that is in contact with the first major surface is provided with at least one relief structure.
  • the relief structure is arranged in a plurality of layers in a direction from an edge of the first major surface to a center of the first major surface.
  • the cross-sectional shape of the uneven structure includes one or a combination of an arc shape, a rectangular shape, a positive trapezoidal shape, and an inverted trapezoidal shape in a direction perpendicular to a surface of the substrate. .
  • the substrate provided by at least one embodiment of the present disclosure further includes: a dielectric layer disposed on a side of the transition layer away from the second encapsulation layer, the dielectric layer and the transition layer having a bonding strength greater than The bonding strength of the dielectric layer to the first encapsulation layer.
  • the preparation material of the dielectric layer includes an organic material
  • the dielectric layer is a buffer layer, a gate insulating layer, an interlayer dielectric layer, and a passivation in the substrate.
  • a layer, a flat layer, and a pixel defining layer is a buffer layer, and the dielectric layer is a buffer layer, and the dielectric layer is a buffer layer, a gate insulating layer, an interlayer dielectric layer, and a passivation in the substrate.
  • the transition layer is configured to be one of a gate insulating layer, an interlayer dielectric layer, a passivation layer, a flat layer, and a pixel defining layer in the substrate or Group contract level and the same material settings.
  • the ratio of the thickness of the transition layer to the thickness of the second encapsulation layer in the second region is 1/6 to 1/3.
  • the substrate provided by at least one embodiment of the present disclosure further includes: a third encapsulation layer disposed on a side of the second encapsulation layer away from the first main surface, the first encapsulation layer and the third
  • the preparation material of the encapsulation layer includes an inorganic material.
  • an orthographic projection of the second encapsulation layer on a surface on which the substrate is located and an orthographic projection of the transition layer on a surface on which the substrate is located are located in the first
  • the three encapsulation layers are within the orthographic projection of the face on which the substrate is located.
  • the substrate provided by at least one embodiment of the present disclosure further includes: a barrier dam on a side of the transition layer away from the first encapsulation layer; wherein an orthographic projection of the barrier dam on a surface of the substrate Located within an orthographic projection of the third encapsulation layer on a surface of the substrate, at least a portion of the barrier dam is disposed in the same layer and in the same material as the transition layer.
  • At least one embodiment of the present disclosure provides a display panel including the substrate in any of the foregoing embodiments.
  • At least one embodiment of the present disclosure provides a package structure including an encapsulation layer and a transition layer, the encapsulation layer including a first encapsulation layer and a second encapsulation layer stacked on each other, the first encapsulation layer being located at the first a first main surface of the second encapsulation layer, the transition layer and the first encapsulation layer being juxtaposed on the first main surface, the first main surface comprising a first contact with the first encapsulation layer a region and a second region in contact with the transition layer, the second region being located at an edge of the first major surface, and a bonding strength between the transition layer and the second encapsulation layer is greater than the first region The bonding strength between the encapsulation layer and the second encapsulation layer.
  • an orthographic projection of the transition layer on the first major surface is outside an orthographic projection of the first encapsulation layer on the first major surface .
  • the materials of the second encapsulation layer and the transition layer both comprise an organic material.
  • an orthographic projection of the second region on the first major surface is a closed loop, and the first region is on a surface of the substrate.
  • An orthographic projection is located within the orthographic projection of the second region on the first major surface.
  • a surface of the transition layer that is in contact with the first major surface is provided with at least one relief structure.
  • FIG. 1 is a plan view of a substrate according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of the substrate of Figure 1 taken along M-N;
  • 3A is a cross-sectional view of another substrate according to an embodiment of the present disclosure.
  • 3B is a cross-sectional view of another substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of another substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of another substrate according to an embodiment of the present disclosure.
  • 6A-6D are process diagrams of a method of fabricating a substrate according to an embodiment of the present disclosure.
  • 10-package structure 100-first encapsulation layer; 200-second encapsulation layer; 210-first main surface; 211-first region; 212-second region; 300-third encapsulation layer; 400-transition layer; 410-convex structure; 500-substrate; 600-dielectric layer; 700-blocking dam; 1000-substrate.
  • At least one embodiment of the present disclosure provides a substrate including a substrate and a package structure on the substrate.
  • the package structure includes an encapsulation layer and a transition layer
  • the encapsulation layer includes a first encapsulation layer and a second encapsulation layer which are sequentially stacked on the substrate
  • the first encapsulation layer is located on the first main surface of the second encapsulation layer
  • the transition layer is The first encapsulation layer is juxtaposed on the first main surface
  • the first main surface includes a first region in contact with the first encapsulation layer and a second region in contact with the transition layer
  • the second region is located at an edge of the first main surface
  • the bonding strength between the transition layer and the second encapsulation layer is greater than the bonding strength between the first encapsulation layer and the second encapsulation layer.
  • the transition layer can enhance the adhesion of the edge portion of the second encapsulation layer, prevent the second encapsulation layer from separating from the substrate, thereby improving
  • FIG. 1 is a plan view of a substrate according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of the substrate shown in FIG. 1 taken along M-N.
  • a substrate as shown in FIGS. 1 and 2, that includes a substrate 500 and a package structure 10 disposed on the substrate 500.
  • the package structure 10 includes an encapsulation layer and a transition layer 400.
  • the encapsulation layer includes a first encapsulation layer 100 and a second encapsulation layer 200 disposed on the substrate 500 in sequence.
  • the first encapsulation layer 100 is located at the first main layer of the second encapsulation layer 200.
  • the transition layer 400 is disposed side by side with the first encapsulation layer 100 on the first main surface 210, and the first main surface 210 includes the first encapsulation layer 100.
  • the first region 211 in contact with the second region 212 in contact with the transition layer 400, the second region 212 is located at the edge of the first main surface 210, and the bonding strength between the transition layer 400 and the second encapsulation layer 200 is greater than that of the first package The bonding strength between the layer 100 and the second encapsulation layer 200.
  • the material of the first encapsulation layer 100 may be an inorganic material such as silicon nitride, silicon oxide, silicon oxynitride or other suitable materials.
  • the denseness of the inorganic material is high, and it is possible to prevent water, oxygen, or the like from intruding into the inside of the substrate 1000.
  • the preparation material of the second encapsulation layer 200 may be an organic material such as a polymer resin (for example, polyimide, polyacrylate, polyacrylate polyurethane, polyurea, or polyarylate).
  • the second encapsulation layer 200 has a function of flattening, relieving stress, and the like; in addition, a material such as a desiccant may be disposed in the second encapsulation layer 200, and substances such as water, oxygen, and the like intruding inside may be absorbed to further protect components in the substrate 1000. .
  • the bonding force between the organic material and the inorganic material is weak and easy to separate.
  • the first encapsulation layer 100 covers all of the first main surface 210 of the second encapsulation layer 200.
  • the stress is usually concentrated.
  • the material mismatch between the first encapsulation layer 100 and the second encapsulation layer 200 may cause a stress difference therebetween, such that the first encapsulation layer 100 And the second encapsulation layer 200 is easily separated at the edges.
  • the thickness of the second encapsulation layer 200 prepared by the organic material is generally greater than the thickness of the first encapsulation layer 100 prepared by the inorganic material structure, thus further increasing the gap between the first encapsulation layer 100 and the second encapsulation layer 200.
  • the difference in stress increases the risk of the second encapsulation layer 200 separating from the substrate 1000.
  • the preparation material of the transition layer 400 may include an organic material such as a polymer resin (for example, polyimide, polyacrylate, polyacrylate polyurethane, polyurea, or polyarylate).
  • a polymer resin for example, polyimide, polyacrylate, polyacrylate polyurethane, polyurea, or polyarylate.
  • the transition layer 400 is disposed at an edge of the second encapsulation layer 200 (eg, in the second region 212), and the bonding force between the transition layer 400 and the second encapsulation layer 200 is strong, so that the edge portion of the second encapsulation layer 200 can be firmly adhered
  • the first encapsulation layer 100 can still block the intrusion of water, oxygen, etc. into the substrate 1000, and does not affect the package yield of the substrate 1000.
  • a spatial rectangular coordinate system is established with reference to the substrate 500 in the substrate to explain the positions of the respective components in the substrate 1000.
  • the directions of the X-axis and the Y-axis are parallel to the direction in which the substrate 1000 is located (for example, the surface on which the substrate 500 is located), and the Z-axis is a direction perpendicular to the plane in which the substrate 500 is located.
  • the orthographic projection of the transition layer on the face of the substrate is outside the orthographic projection of the first encapsulation layer on the face of the substrate.
  • the orthographic projection of the transition layer 400 on the surface of the substrate 1000 is outside the orthographic projection of the first encapsulation layer 100 on the surface of the substrate 1000.
  • the first encapsulation layer 100 The transition layer 400 is disposed side by side on the main surface 210 of the second encapsulation layer 200 with no overlap therebetween, and thus, the first encapsulation layer 100 does not affect the bonding between the second encapsulation layer 200 and the transition layer 400.
  • the first encapsulation layer 100 and the transition layer 400 are juxtaposed on the first main surface 210 of the second encapsulation layer 200.
  • the preparation materials of the second encapsulation layer and the transition layer may all include an organic material.
  • the preparation materials of the second encapsulation layer 200 and the transition layer 400 all include an organic material, and the bonding strength between the organic materials is high, so that the second encapsulation layer 200 and the transition layer 400 are The combination is firm.
  • the influencing factors of the bonding strength (binding force) may include intermolecular forces, and the intermolecular forces between materials of the same type are large, and the types may be organic and inorganic.
  • the intermolecular forces between organic and organic materials are generally greater than the intermolecular forces between organic and inorganic materials.
  • the bonding strength between the inorganic film layer and the inorganic film layer, the bonding strength between the organic film layer and the organic film layer is generally larger than the bonding strength between the organic film layer and the inorganic film layer.
  • the distribution of the transition layer on the first major surface of the second encapsulation layer is not limited as long as the provision of the transition layer can reduce the risk of the second encapsulation layer separating from the substrate.
  • the transition layer (or the second region) may be disposed in plurality and spaced apart at the edges of the first major surface.
  • the second region may be a closed loop in a direction parallel to the face of the substrate, the first region being located within the second region. Illustratively, as shown in FIGS.
  • the second region 212 is closed and located at the edge of the first major surface 210, the first region 211 is located within the second region 212, and the edge region of the second encapsulation layer 200 All of the layers can be combined with the transition layer 400.
  • the adhesion of the edge regions of the second encapsulation layer 200 on the substrate 1000 can be further improved, and the package yield of the substrate 1000 can be improved.
  • the surface of the transition layer that is in contact with the first major surface is provided with at least one relief structure.
  • FIG. 3A is a cross-sectional view of another substrate 1000 according to an embodiment of the present disclosure
  • FIG. 3B is a cross-sectional view of another substrate 1000 according to an embodiment of the present disclosure.
  • the surface of the transition layer 400 that is in contact with the second region 212 may be provided with at least one relief structure 410 (the portion of the transition layer 400 that is located within the dashed box).
  • the uneven structure 410 can increase the contact area between the transition layer 400 and the second encapsulation layer 200, and thus, the bonding force between the two can be increased.
  • the arrangement of the relief structure on the transition layer is not limited as long as the arrangement of the relief structure can increase the contact area between the transition layer and the second encapsulation layer.
  • the relief structure in the direction from the edge of the first major surface to the center of the first major surface, is arranged in multiple layers.
  • the uneven structure 410 may be plural and arranged in a plurality of layers in the direction from the edge of the second encapsulation layer 200 to the center of the second encapsulation layer 200.
  • the contact area between the edge portion of the second encapsulation layer 200 and the transition layer 400 can be further increased, and the bonding force between the two can be increased to prevent the second encapsulation layer 200 from being separated from the substrate 1000.
  • the planar shape of the relief structure is not limited.
  • the relief structure in the substrate provided by at least one embodiment of the present disclosure, the relief structure may be a closed loop.
  • the first encapsulation layer is located within the closed annular relief structure.
  • the plurality of uneven structures may be concentric annular arrangements.
  • the uneven structure in the substrate provided by at least one embodiment of the present disclosure, the uneven structure may be a non-closed ring shape or a line segment shape or the like.
  • the substrate provided by at least one embodiment of the present disclosure, a plurality of concave and convex structures are provided, and the uneven structures may be distributed in a dot matrix on the surface of the transition layer.
  • the cross-sectional shape of the lattice-arranged concave-convex structure may include at least one of a circle, a triangle, a rectangle, a polygon, and the like.
  • the cross-sectional shape of the uneven structure is not limited.
  • the cross-sectional shape of the uneven structure may include one or a combination of an arc shape, a rectangular shape, a positive trapezoidal shape, and an inverted trapezoidal shape in a direction perpendicular to a plane in which the substrate is located.
  • the cross-sectional shape of the relief structure 410 is a positive trapezoid in the direction of the Z-axis.
  • the cross-sectional shape of the uneven structure 410 is an inverted trapezoid in the direction of the Z-axis.
  • the manner in which the relief structure 410 is formed is not limited.
  • the material forming the relief structure 410 may be a photoresist, and the relief structure may be formed by a photolithographic patterning process through a mask.
  • the mask pattern in the mask may correspond to the position of the two sides of the relief structure 410.
  • the edge region of the mask pattern for example, the region corresponding to the two side edges of the trapezoidal concave-convex structure 410
  • light for exposure may cause interference or scattering, resulting in uneven structure.
  • the photoresist material in the region where the two sides of the 410 are located is unevenly exposed, and after etching, the two sides of the uneven structure 410 are usually beveled.
  • the bevel is usually a curved surface.
  • the cross-sectional shape of the uneven structure 410 is an inverted trapezoid.
  • the interface between the second encapsulation layer 200 and the transition layer 400 is separated by an external force, and the width of the end of the relief structure 410 away from the substrate 500 is greater than the width of the end of the relief structure 410 adjacent to the substrate 500.
  • the uneven structure 410 is made difficult to separate from the second encapsulation layer 200, and thus, the transition layer 400 can provide a pulling force to the second encapsulation layer 200, preventing the second encapsulation layer 200 from being separated from the substrate 1000.
  • the substrate may further include a dielectric layer disposed on a side of the transition layer away from the second encapsulation layer, the bonding strength of the dielectric layer and the transition layer being greater than the combination of the dielectric layer and the first encapsulation layer strength.
  • a dielectric layer 600 is disposed between the substrate 500 and the transition layer 400. The bonding force between the dielectric layer 600 and the transition layer 400 is strong, and a transition between the transition layer 400 and the substrate 500 can be prevented to prevent the transition layer 400 from being separated from the substrate 1000.
  • the material for preparing the dielectric layer may include an organic material such as an epoxy resin, polyimide, polyamide, acrylic, or other suitable material.
  • the preparation materials of the dielectric layer and the transition layer all comprise an organic material, and the bonding force between the two is strong.
  • the transition layer is tightly bonded to the dielectric layer to be fixed on the substrate, so that the second encapsulation layer can be firmly fixed on the substrate. On the substrate.
  • the dielectric layer can be disposed as a structural layer in the substrate.
  • the dielectric layer in the case where the substrate in the embodiment of the present disclosure is a display substrate (for example, an OLED display substrate), the dielectric layer may be disposed as a buffer layer, a gate insulating layer, an interlayer dielectric layer, a passivation layer, and a flat layer in the substrate. And one of the pixels defining layers. In this way, the preparation process of the substrate can be simplified, and the thin and light design of the substrate can be facilitated.
  • the transition layer can be disposed in the same layer as the structural layer in the substrate and in the same material.
  • the substrate in the embodiment of the present disclosure is a display substrate (for example, an OLED display substrate)
  • the transition layer may be configured as a gate insulating layer, an interlayer dielectric layer, a passivation layer, a flat layer, and a pixel in the substrate.
  • the substrate in the embodiment of the present disclosure is a display substrate (for example, an OLED display substrate)
  • the transition layer may be configured as a gate insulating layer, an interlayer dielectric layer, a passivation layer, a flat layer, and a pixel in the substrate.
  • the substrate may further include a third encapsulation layer disposed on a side of the second encapsulation layer away from the first main surface, the first encapsulation layer and the third encapsulation layer
  • Preparation materials include inorganic materials.
  • the third encapsulation layer 300 is disposed on the second encapsulation layer 200, and the preparation material of the third encapsulation layer 300 includes an inorganic material such as silicon nitride, silicon oxide, silicon oxynitride or other suitable materials.
  • the material or the like has high density of the inorganic material, and can prevent water, oxygen, and the like from intruding into the inside of the substrate 1000.
  • the orthographic projection of the second encapsulation layer on the surface of the substrate and the orthographic projection of the transition layer on the surface of the substrate are all within the orthographic projection of the third encapsulation layer on the surface of the substrate.
  • the third encapsulation layer 300 completely covers the second encapsulation layer 200 and the transition layer 400, so that external water, oxygen, and the like can be prevented from passing through the transition layer 400 or the transition layer 400 and other structures (for example, The interface between the two encapsulation layers 200 or the dielectric layers 600) intrudes into the interior of the substrate 1000.
  • the substrate may further include a barrier dam located on a side of the transition layer away from the first encapsulation layer, and an orthographic projection of the barrier dam on the surface of the substrate is located at the third encapsulation layer Within the orthographic projection of the surface on which the substrate is located, at least a portion of the barrier dam is disposed in the same layer as the transition layer and is of the same material.
  • the edge region of the substrate 1000 may be provided with a barrier dam 700 (a portion of the substrate 1000 in FIG. 4 located within the virtual frame), and the barrier dam 700 is located at the transition layer 400.
  • a side away from the first encapsulation layer 100, and the orthographic projection of the barrier dam 700 on the face of the substrate 1000 is located within the orthographic projection of the third encapsulation layer 300 on the face of the substrate 1000.
  • the third encapsulation layer 300 can cover the barrier dam 700.
  • the path of water, oxygen, or the like invading the inside of the substrate 1000 can be increased, and the encapsulation effect of the substrate 1000 can be improved.
  • the barrier dam 700 may be provided as an annular closed structure, or a plurality of layers may be provided from the inside to the outside at the edge of the substrate 1000 to enhance the packaging effect of the substrate 1000.
  • the barrier dam 700 may be disposed in the same layer and in the same material as the structural layer in the substrate 1000.
  • at least a portion of the barrier dam 700 is disposed in the same layer as the transition layer 400 and is of the same material.
  • the barrier dam 700 may be configured as a gate insulating layer, an interlayer dielectric layer, and a passivation layer in the substrate 1000.
  • the material layer portion for forming the transition layer 400 may be extended to the design region of the barrier dam 700, the portion of the material layer overlapping the second encapsulation layer 200 being the transition layer 400, and The portion of the layer of material that is located in the design region of the barrier dam 700 serves as at least a portion of the structure of the barrier dam 700.
  • the transition layer 400 may also be disposed in the same layer as a certain structural layer in the barrier dam 700 and provided in the same material or integrally formed, thus further simplifying the substrate 1000.
  • Preparation process exemplary, a portion of the gate insulating layer, the interlayer dielectric layer, and the passivation layer in the substrate 1000 located at the edge of the substrate 1000 is disposed as the barrier dam 700, and correspondingly, the interlayer dielectric layer in the substrate 1000 is located at the edge of the substrate 1000.
  • Another part can also be set to the transition layer 400 in synchronization. As such, the fabrication process of the substrate 1000 can be further simplified, and the design difficulty of the edge portion of the substrate 1000 can be reduced.
  • the difference in thickness between the second encapsulation layer and, for example, the transition layer may be appropriately reduced, that is, the stress difference between the second encapsulation layer and the transition layer may be reduced to prevent the second encapsulation layer from being on the substrate. Separation.
  • the ratio of the thickness of the transition layer to the thickness of the second encapsulation layer may be 1/6 to 1/3, for example, further 1/5, 1/4. Wait.
  • FIG. 5 is a cross-sectional view of another substrate according to an embodiment of the present disclosure.
  • the thickness of the second encapsulation layer 200 in the second region 212 is smaller than the thickness of the second encapsulation layer 200 in the first region 211.
  • the thicknesses of the first encapsulation layer, the second encapsulation layer, the third encapsulation layer, the transition layer, and the like are not limited.
  • the thickness of the first encapsulation layer 100 may be 0.8 to 1.5 micrometers in the direction of the Z-axis; the thickness of the third encapsulation layer 300 may be 0.8 to 1.5 micrometers; the second encapsulation layer 200 is located
  • the thickness in the first region 211 is 10 to 12 ⁇ m.
  • the transition layer 400 can have a thickness of 0.8 to 3 microns.
  • the thickness of the transition layer 400 is not limited and may be set according to the thickness of the portion of the second encapsulation layer 200 located in the second region 212.
  • the thickness of the second encapsulation layer 200 in the second region 212 is 3-6 micrometers, and the thickness of the transition layer 400 may be set to about 1 to 2 micrometers.
  • the substrate in the display panel may be a flexible display substrate for application in the field of flexible display.
  • the touch substrate may be disposed on the display substrate to enable the display panel to obtain a touch display function.
  • the display panel can be applied to any product or component having a display function such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook computer, a navigator, or the like.
  • At least one embodiment of the present disclosure provides a method of fabricating a substrate, comprising: forming a first encapsulation layer, a transition layer, and a second encapsulation layer on a substrate, respectively; wherein the first encapsulation layer and the transition layer are formed on the substrate and the second package Between the layers and both are in contact with the first main surface of the second encapsulation layer facing the substrate, the first main surface comprising a first region in contact with the first encapsulation layer and a second region in contact with the transition layer, the second region being located An edge of a major surface, and a bonding strength between the transition layer and the second encapsulation layer is greater than a bonding strength between the first encapsulation layer and the second encapsulation layer.
  • the transition layer can improve the adhesion of the edge portion of the second encapsulation layer, prevent the second encapsulation layer from separating from the substrate, and improve the substrate encapsulation yield.
  • the preparation materials of the second encapsulation layer and the transition layer both include an organic material.
  • the preparation materials of the second encapsulation layer and the transition layer all include an organic material, and the bonding strength between the organic materials is high, so that the bonding between the second encapsulation layer and the transition layer is firm.
  • the orthographic projection of the transition layer on the face of the substrate is outside the orthographic projection of the first encapsulation layer on the face of the substrate.
  • the first encapsulation layer does not affect the bond between the second encapsulation layer and the transition layer.
  • forming the transition layer includes patterning a surface of the transition layer in contact with the second region to form at least one relief structure.
  • the uneven structure can increase the contact area between the transition layer and the second encapsulation layer, and thus, the bonding force between the two can be increased.
  • the preparation method provided by at least one embodiment of the present disclosure further includes: depositing a thin film of an inorganic material on a side of the second encapsulation layer away from the substrate to form a third encapsulation layer; wherein the second encapsulation layer is positive on the surface of the substrate.
  • the orthographic projections of the projection and transition layers on the face of the substrate are all within the orthographic projection of the third encapsulation layer on the face of the substrate.
  • the preparation material of the third encapsulation layer includes an inorganic material, and has high compactness, and can prevent water, oxygen, and the like from intruding into the interior of the substrate.
  • the specific structure of the substrate obtained by the above-mentioned preparation method can be referred to the related content in the foregoing embodiment (for the embodiment of the substrate), and the embodiments of the present disclosure are not described herein.
  • FIGS. 6A-6D are process diagrams of a method of fabricating a substrate according to an embodiment of the present disclosure. Next, a process of preparing a substrate will be described by taking a substrate as shown in FIG. 4 as an example, and in the embodiment shown in FIGS. 6A to 6D.
  • a substrate 500 is provided, and a film including an organic material is deposited on the substrate 500, and then the film is subjected to a patterning process to form the transition layer 400.
  • the substrate 500 may be formed with a structure such as a dielectric layer 600 and a barrier dam 700.
  • the dielectric layer 600 and the barrier dam 700 may be disposed as a structural layer in the substrate 1000.
  • the dielectric layer 600 and the barrier dam 700 For the preparation process, reference may be made to the conventional process mode, and the embodiments of the present disclosure are not described herein.
  • the transition layer 400 and one of the barrier dams 700 may be integrally formed.
  • the barrier dam 700 may be formed synchronously in the same patterning process.
  • the material for preparing the substrate 500 is not limited.
  • the preparation material of the substrate 500 may be a glass substrate 1000, a quartz substrate 1000 or a resin-based material, and the resin-based materials include, for example, polyimide, polycarbonate, polyacrylate, polyetherimide, polyethersulfone, poly One or more of ethylene terephthalate and polyethylene naphthalate.
  • the patterning process can be a photolithographic patterning process.
  • the photolithography patterning process may include: coating a photoresist film on the structural layer to be patterned, and coating the photoresist film by spin coating, blade coating or roll coating; Masking the photoresist layer, developing the exposed photoresist layer to obtain a photoresist pattern; then etching the structural layer using the photoresist pattern as a mask; finally stripping the remaining photoresist to form The desired pattern structure.
  • a thin film of inorganic material is deposited on the substrate 500 to form the first encapsulation layer 100.
  • the first encapsulation layer may be formed first and then the transition layer may be formed.
  • the preferentially formed one of the first encapsulation layer and the transition layer may be selected according to an actual process, and embodiments of the present disclosure are not described herein.
  • the surface of the transition layer 400 is patterned to form at least one relief structure 410 on the surface of the transition layer 400 remote from the substrate 500.
  • the concave-convex structure 410 reference may be made to related content in the foregoing embodiment (for the embodiment of the substrate 1000), and details are not described herein.
  • a thin film of an organic material is deposited on the substrate 500 and patterned to form a second encapsulation layer 200. It should be noted that, in the process of preparing the second encapsulation layer 200, a portion of the edge region of the second encapsulation layer 200 may be etched to thin the portion of the second encapsulation layer 200 that overlaps, for example, the transition layer 400. thickness.
  • a thin film of inorganic material is deposited on a side of the second encapsulation layer 200 away from the substrate 500 to form a third encapsulation layer 300; wherein the second encapsulation layer 200 has an orthographic projection and a transition layer on the surface of the substrate 1000.
  • the orthographic projection of the 400 on the face of the substrate 1000 is located within the orthographic projection of the third encapsulation layer 300 on the face of the substrate 1000.
  • At least one embodiment of the present disclosure provides a package structure including an encapsulation layer and a transition layer including a first encapsulation layer and a second encapsulation layer stacked on each other.
  • the first encapsulation layer is located on the first main surface of the second encapsulation layer, and the transition layer and the first encapsulation layer are juxtaposed on the first main surface.
  • the first major surface includes a first region in contact with the first encapsulation layer and a second region in contact with the transition layer, the second region being located at an edge of the first major surface, and a bonding strength between the transition layer and the second encapsulation layer is greater than The bonding strength between the first encapsulation layer and the second encapsulation layer.
  • the transition layer can enhance the adhesion of the edge portion of the second encapsulation layer, prevent the second encapsulation layer from separating from the substrate, thereby improving the encapsulation yield of the substrate.
  • the structure of the package structure can be described in the foregoing embodiments (for example, the substrate in FIG. 2), and details are not described herein.
  • At least one embodiment of the present disclosure provides a package structure, a substrate, and a display panel, and may have at least one of the following effects:
  • a transition layer is disposed at an edge of the second encapsulation layer, and a bonding strength between the transition layer and the second encapsulation layer is greater than between the first encapsulation layer and the second encapsulation layer
  • the bonding strength can improve the adhesion of the edge portion of the second encapsulation layer, prevent the second encapsulation layer from separating from the substrate, and improve the substrate encapsulation yield.
  • the surface of the transition layer that is in contact with the second region of the second encapsulation layer is provided with at least one concavo-convex structure to increase the contact area between the transition layer and the second encapsulation layer. Can increase the bonding between the two.
  • a dielectric layer is disposed on a side of the transition layer away from the second encapsulation layer, and a bonding force between the dielectric layer and the transition layer is strong, and the transition layer and the substrate may be A transitional action is provided to prevent the transition layer from separating from the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种封装结构、基板和显示面板。该封装结构(10)包括封装层和过渡层(400),该封装层包括彼此层叠设置的第一封装层(100)和第二封装层(200),第一封装层(100)位于第二封装层(200)的第一主表面(210)上,过渡层(400)与第一封装层(100)并列设置于第一主表面(210)上,第一主表面(210)包括与第一封装层(100)接触的第一区域(211)和与过渡层(400)接触的第二区域(212),第二区域(212)位于第一主表面(210)的边缘,并且过渡层(400)和第二封装层(200)之间的结合强度大于第一封装层(100)和第二封装层(200)之间的结合强度。该过渡层可以提升第二封装层的边缘部分的附着力,防止第二封装层分离,提升封装良率。

Description

封装结构、基板和显示面板
本申请要求于2017年12月15日递交的中国专利申请第201711353503.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种封装结构、基板和显示面板。
背景技术
有机发光二极管(OLED,Organic Light-Emitting Diode)是一种有机薄膜电致发光器件,其因具有制备工艺简单、成本低、功耗小、亮度高、视角宽、对比度高及可实现柔性显示等优点,而受到人们极大的关注。
在实际工艺中,会在OLED电子显示产品中设置封装层,以免内部的部件受到渗透进来的水汽和氧气等的影响而受到损坏,但是当前的封装层的结合强度有限,容易脱落,影响封装层的封装效果,降低OLED电子显示产品的良率。
发明内容
本公开至少一个实施例提供一种基板,该基板包括基底以及位于所述基底上的封装结构,所述封装结构包括封装层和过渡层,该封装层包括依次层叠设置在所述基底上的第一封装层和第二封装层,所述第一封装层位于所述第二封装层的第一主表面上,所述过渡层与所述第一封装层并列设置于所述第一主表面上,所述第一主表面包括与所述第一封装层接触的第一区域和与所述过渡层接触的第二区域,所述第二区域位于所述第一主表面的边缘,并且所述过渡层和所述第二封装层之间的结合强度大于所述第一封装层和所述第二封装层之间的结合强度。
例如,在本公开至少一个实施例提供的基板中,所述过渡层在所述基板所在面上的正投影位于所述第一封装层在所述基板所在面上的正投影之外。
例如,在本公开至少一个实施例提供的基板中,所述第二封装层和所述过渡层的制备材料都包括有机材料。
例如,在本公开至少一个实施例提供的基板中,所述第二区域在所述基板所在面上的正投影的形状为闭合环形,所述第一区域在所述基板所在面上的正投影位于所述第二区域在所述基板所在面上的正投影之内。
例如,在本公开至少一个实施例提供的基板中,所述过渡层的与所述第一主表面接触的表面设置有至少一个凹凸结构。
例如,在本公开至少一个实施例提供的基板中,在从所述第一主表面的边缘至所述第一主表面的中心的方向上,所述凹凸结构呈多层排布。
例如,在本公开至少一个实施例提供的基板中,在垂直于所述基板所在面的方向上,所述凹凸结构的截面形状包括弧形、矩形、正梯形和倒梯形中的一种或组合。
例如,本公开至少一个实施例提供的基板还包括:设置于所述过渡层的远离所述第二封装层的一侧的介质层,所述介质层与所述过渡层的结合强度大于所述介质层与所述第一封装层的结合强度。
例如,在本公开至少一个实施例提供的基板中,所述介质层的制备材料包括有机材料,并且所述介质层为所述基板中的缓冲层、栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种。
例如,在本公开至少一个实施例提供的基板中,所述过渡层配置为与所述基板中的栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种或组合同层且同材料设置。
例如,在本公开至少一个实施例提供的基板中,在所述第二区域中,所述过渡层的厚度与所述第二封装层的厚度的比值为1/6~1/3。
例如,本公开至少一个实施例提供的基板还包括:第三封装层,设置在所述第二封装层的远离所述第一主表面的一侧,所述第一封装层和所述第三封装层的制备材料包括无机材料。
例如,在本公开至少一个实施例提供的基板中,所述第二封装层在所述基板所在面上的正投影和所述过渡层在所述基板所在面上的正投影都位于所述第三封装层在所述基板所在面上的正投影之内。
例如,本公开至少一个实施例提供的基板还包括:阻挡坝,位于所述过渡层的远离所述第一封装层的一侧;其中,所述阻挡坝在所述基板所在 面上的正投影位于所述第三封装层在所述基板所在面上的正投影之内,所述阻挡坝的至少部分与所述过渡层同层且同材料设置。
本公开至少一个实施例提供一种显示面板,包括前述任一实施例中的基板。
本公开至少一个实施例提供一种封装结构,该封装结构包括封装层和过渡层,该封装层包括彼此层叠设置的第一封装层和第二封装层,所述第一封装层位于所述第二封装层的第一主表面上,所述过渡层与所述第一封装层并列设置于所述第一主表面上,所述第一主表面包括与所述第一封装层接触的第一区域和与所述过渡层接触的第二区域,所述第二区域位于所述第一主表面的边缘,并且所述过渡层和所述第二封装层之间的结合强度大于所述第一封装层和所述第二封装层之间的结合强度。
例如,在本公开至少一个实施例提供的封装结构中,所述过渡层在所述第一主表面上的正投影位于所述第一封装层在所述第一主表面上的正投影之外。
例如,在本公开至少一个实施例提供的封装结构中,所述第二封装层和所述过渡层的材料都包括有机材料。
例如,在本公开至少一个实施例提供的封装结构中,所述第二区域在所述第一主表面上的正投影的形状为闭合环形,所述第一区域在所述基板所在面上的正投影位于所述第二区域在所述第一主表面上的正投影之内。
例如,在本公开至少一个实施例提供的封装结构中,所述过渡层的与所述第一主表面接触的表面设置有至少一个凹凸结构。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的基板的平面图;
图2为图1所示基板沿M-N的截面图;
图3A为本公开一个实施例提供的另一种基板的截面图;
图3B为本公开一个实施例提供的另一种基板的截面图;
图4为本公开一个实施例提供的另一种基板的截面图;
图5为本公开一个实施例提供的另一种基板的截面图;以及
图6A~图6D为本公开一个实施例提供的一种基板的制备方法的过程图。
附图标记:
10-封装结构;100-第一封装层;200-第二封装层;210-第一主表面;211-第一区域;212-第二区域;300-第三封装层;400-过渡层;410-凹凸结构;500-基底;600-介质层;700-阻挡坝;1000-基板。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一个实施例提供一种基板,该基板包括基底以及位于基底上的封装结构。该封装结构包括封装层和过渡层,该封装层包括依次层叠设置在基底上的第一封装层和第二封装层,第一封装层位于第二封装层的第一主表面上,过渡层与第一封装层并列设置于第一主表面上,第一主表面包括与第一封装层接触的第一区域和与过渡层接触的第二区域,第二区域位于第一主表面的边缘,并且过渡层和第二封装层之间的结合强度大于第一封装层和第二封装层之间的结合强度。该过渡层可以提升第二封装层的边缘部分的附着力,防止第二封装层从基板上分离,从而提升基板的封 装良率。
下面,结合附图对根据本公开至少一个实施例中的封装结构、基板和显示面板进行说明。
图1为本公开一个实施例提供的基板的平面图,图2为图1所示基板沿M-N的截面图。
例如,本公开至少一个实施例提供一种基板,如图1和图2所示,该基板1000包括基底500和设置在基底500上的封装结构10。封装结构10包括封装层和过渡层400,该封装层包括依次层叠设置在基底500上的第一封装层100和第二封装层200,第一封装层100位于第二封装层200的第一主表面210(例如第二封装层200的面向基底500的主表面)上,过渡层400与第一封装层100并列设置于第一主表面210上,第一主表面210包括与第一封装层100接触的第一区域211和与过渡层400接触的第二区域212,第二区域212位于第一主表面210的边缘,并且过渡层400和第二封装层200之间的结合强度大于第一封装层100和第二封装层200之间的结合强度。
例如,在本公开至少一个实施例中,第一封装层100的制备材料可以为无机材料,例如氮化硅、氧化硅、氮氧化硅或其他合适的材料。无机材料的致密性高,可以防止水、氧等侵入基板1000的内部。例如,第二封装层200的制备材料可以为有机材料例如高分子树脂(例如聚酰亚胺、聚丙烯酸酯、聚丙烯酸酯聚氨酯、聚脲或者聚芳香酯类)等。第二封装层200具有平坦化、缓和应力等的作用;此外,第二封装层200中还可以设置干燥剂等材料,可以吸收侵入内部的水、氧等物质,以进一步保护基板1000中的部件。
通常,有机材料和无机材料之间的结合力较弱,容易分离。若不设置过渡层400,第一封装层100覆盖第二封装层200的第一主表面210的全部,在实际应用过程中,在基板1000受到例如弯曲等外力影响的情况下,应力通常会集中在第一封装层100和第二封装层200的边缘区域,因第一封装层100和第二封装层200的材料不匹配会使得二者之间存在应力差异,如此,使得第一封装层100和第二封装层200容易在边缘处分离。此外,有机材料制备的第二封装层200的厚度通常要大于由无机材料构制备的第一封装层100的厚度,如此,会进一步加大第一封装层100和第二封装层 200之间的应力差异,增加第二封装层200从基板1000上分离的风险。
例如,在本公开至少一个实施例中,过渡层400的制备材料可以包括有机材料例如高分子树脂(例如聚酰亚胺、聚丙烯酸酯、聚丙烯酸酯聚氨酯、聚脲或者聚芳香酯类)等。过渡层400设置于第二封装层200的边缘(例如第二区域212中),过渡层400和第二封装层200之间的结合力强,可以使得第二封装层200的边缘部分牢固地附着在基板1000上,而且第一封装层100仍可以起到阻隔水、氧等侵入基板1000内部的作用,不会影响基板1000的封装良率。
下面,如图1和图2所示,以基板中的基底500为参考,建立空间直角坐标系,以对基板1000中的各部件的位置进行说明。在该空间直角坐标系中,X轴和Y轴的方向为平行于基板1000所在面(例如基底500所在面)的方向,Z轴为垂直于基底500所在面的方向。
例如,在本公开至少一个实施例提供的基板中,过渡层在基板所在面上的正投影位于第一封装层在基板所在面上的正投影之外。示例性的,如图1和图2所示,过渡层400在基板1000所在面上的正投影位于第一封装层100在基板1000所在面上的正投影之外,如此,第一封装层100和过渡层400并列设置在第二封装层200的主表面210上且二者之间没有重叠,如此,第一封装层100不会影响第二封装层200和过渡层400之间的结合。
例如,在本公开至少一个实施例提供的基板中,第一封装层100和过渡层400并列设置在第二封装层200的第一主表面210上。例如,进一步地,第一封装层100和过渡层400之间没有间隔,即,第一封装层100和过渡层400彼此接触。
例如,在本公开至少一个实施例提供的基板中,第二封装层和过渡层的制备材料可以都包括有机材料。示例性的,如图1和图2所示,第二封装层200和过渡层400的制备材料都包括有机材料,有机材料之间的结合强度高,使得第二封装层200和过渡层400之间结合牢固。结合强度(结合力)的影响因素可以包括分子间作用力,同类型的材料之间的分子间作用力较大,该类型可以为有机和无机之分。例如,有机材料和有机材料之间的分子间作用力、无机材料和无机材料之间的分子间作用力,通常大于有机材料和无机材料之间的分子间作用力。如此,无机膜层和无机膜层之间的结合强度、有机膜层和有机膜层之间的结合强度通常大于有机膜层和 无机膜层之间的结合强度。
在本公开至少一个实施例中,对过渡层在第二封装层的第一主表面上的分布不做限制,只要过渡层的设置可以降低第二封装层从基板上分离的风险即可。例如,在本公开一些实施例中,过渡层(或者第二区域)可以设置为多个,并且在第一主表面的边缘间隔排布。例如,在本公开另一些实施例中,在平行于基板所在面的方向上,第二区域可以为闭合环形,第一区域位于第二区域之内。示例性的,如图1和图2所示,第二区域212为闭合环形且位于第一主表面210的边缘,第一区域211位于第二区域212之内,第二封装层200的边缘区域可以全部与过渡层400结合,如此,可以进一步提高第二封装层200的边缘区域在基板1000上的附着力,提高基板1000的封装良率。
例如,在本公开至少一个实施例提供的基板中,过渡层的与第一主表面接触的表面设置有至少一个凹凸结构。图3A为本公开一个实施例提供的另一种基板1000的截面图,图3B为本公开一个实施例提供的另一种基板1000的截面图。例如图3A和图3B所示,过渡层400的与第二区域212接触的表面可以设置至少一个凹凸结构410(过渡层400的位于虚线框内的部分)。凹凸结构410可以增加过渡层400和第二封装层200之间的接触面积,如此,可以增加二者之间的结合力。
在本公开至少一个实施例中,对凹凸结构在过渡层上的排布不做限制,只要凹凸结构的设置可以增加过渡层和第二封装层之间的接触面积即可。例如,在从第一主表面的边缘至第一主表面的中心的方向上,凹凸结构呈多层排布。如图3A和3B所示,凹凸结构410可以为多个,并且在第二封装层200的边缘至第二封装层200的中心的方向上呈多层排布。如此,可以进一步增加第二封装层200的边缘部分和过渡层400的接触面积,可以增加二者之间的结合力,防止第二封装层200从基板1000上分离。
在本公开至少一个实施例中,对凹凸结构的平面形状不做限制。例如,在本公开至少一个实施例提供的基板中,凹凸结构可以为闭合环形。例如,第一封装层位于闭合环形的凹凸结构之内。例如,进一步地,在凹凸结构设置呈多层排布的情况下,多层凹凸结构可以为同心环形排布。例如,在本公开至少一个实施例提供的基板中,凹凸结构可以为非闭合的环形或者线段形等。例如,在本公开至少一个实施例提供的基板中,设置有多个凹 凸结构,凹凸结构可以以点阵式分布在过渡层的表面上。例如,在平行于基板所在面的方向上,点阵式排布的凹凸结构的截面形状可以包括圆形、三角形、矩形、多边形等中的至少一种。
在本公开至少一个实施例中,对凹凸结构的截面形状不做限制。例如,在本公开至少一个实施例提供的基板中,在垂直于基板所在面的方向上,凹凸结构的截面形状可以包括弧形、矩形、正梯形和倒梯形等中的一种或组合。例如,在本公开一些实施例中,如图3A所示,在Z轴的方向上,凹凸结构410的截面形状为正梯形。例如,在本公开另一些实施例中,如图3B所示,在Z轴的方向上,凹凸结构410的截面形状为倒梯形。
在本公开至少一个实施例中,对形成凹凸结构410的具体化方式不做限制。例如,形成凹凸结构410的材料可以为光刻胶,凹凸结构可以通过掩模板进行光刻构图工艺形成,例如,掩模板中的掩模图案可以对应于凹凸结构410的两个侧边所在的位置。但是,在曝光过程中,在掩模图案的边缘区域(例如对应于梯形的凹凸结构410的两个侧边所在的区域),用于进行曝光的光线会产生干涉或者散射等现象,导致凹凸结构410的两个侧边所在的区域的光阻材料曝光不均匀,刻蚀后,凹凸结构410的两个侧边通常为斜面。在实际工艺中,该斜面通常为弧形面。通过对光刻胶的性质(正性光刻胶或者负性光刻胶)及具体工艺进行选择,可以分别形成如图3A所示的正梯形的凹凸结构410或者如图3B所示的倒梯形的凹凸结构410,本公开的实施例在此不做赘述。
例如,在本公开至少一个实施例中,如图3B所示,凹凸结构410的截面形状为倒梯形。如此,不仅可以增加第二封装层200和过渡层400之间的接触面积,而且该形状的凹凸结构410嵌入第二封装层200中后,会进一步降低第二封装层200从基板上分离的风险。对于上述的基板1000,即使受到外力作用后,第二封装层200和过渡层400之间界面分离,凹凸结构410的远离基底500的一端的宽度大于凹凸结构410的靠近基底500的一端的宽度,使得凹凸结构410难以从第二封装层200中分离出来,如此,过渡层400可以向第二封装层200提供拉力,防止了第二封装层200从基板1000上分离。
例如,在本公开至少一个实施例中,基板还可以包括设置于过渡层的远离第二封装层的一侧的介质层,介质层与过渡层的结合强度大于介质层 与第一封装层的结合强度。例如,如图3B所示,介质层600设置在基底500和过渡层400之间。介质层600和过渡层400之间的结合力强,可以在过渡层400和基底500之间起到过渡作用,防止过渡层400从基板1000上分离。
例如,在本公开至少一个实施例中,介质层的制备材料可以包括有机材料例如环氧树脂、聚酰亚胺、聚酰胺、丙烯酸或其他合适的材料等。如此,介质层和过渡层的制备材料都包括有机材料,二者之间的结合力较强,过渡层通过与介质层紧密结合以固定在基板上,进而使得第二封装层可以牢固地固定在基板上。
例如,在本公开至少一个实施例中,介质层可以设置为基板中的结构层。示例性的,以本公开实施例中的基板为显示基板(例如OLED显示基板)为例,介质层可以设置为基板中的缓冲层、栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种。如此,可以简化基板的制备工艺,并且利于基板的轻薄化设计。
例如,在本公开至少一个实施例中,过渡层可以设置为与基板中的结构层同层且同材料设置。示例性的,以本公开实施例中的基板为显示基板(例如OLED显示基板)为例,过渡层可以配置为与基板中的栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种或组合同层且同材料设置。
例如,在本公开至少一个实施例中,基板还可以包括第三封装层,第三封装层设置在第二封装层的远离第一主表面的一侧,第一封装层和第三封装层的制备材料包括无机材料。示例性的,如图3B所示,第三封装层300设置在第二封装层200上,第三封装层300的制备材料包括无机材料例如氮化硅、氧化硅、氮氧化硅或其他合适的材料等,无机材料的致密性高,可以防止水、氧等侵入基板1000内部。
例如,在本公开至少一个实施例中,第二封装层在基板所在面上的正投影和过渡层在基板所在面上的正投影都位于第三封装层在基板所在面上的正投影之内。示例性的,如图3B所示,第三封装层300完全覆盖第二封装层200和过渡层400,如此,可以防止外界水、氧等通过过渡层400或者过渡层400和其他结构(例如第二封装层200或者介质层600)之间的界面侵入基板1000的内部。
例如,在本公开至少一个实施例中,基板还可以包括阻挡坝,该阻挡坝位于过渡层的远离第一封装层的一侧,阻挡坝在基板所在面上的正投影位于第三封装层在基板所在面上的正投影之内,阻挡坝的至少部分与过渡层同层且同材料设置。
图4为本公开一个实施例提供的另一种基板的截面图。例如,在本公开至少一个实施例中,如图4所示,基板1000的边缘区域可以设置有阻挡坝700(图4中基板1000的位于虚框内的部分),阻挡坝700位于过渡层400的远离第一封装层100的一侧,并且阻挡坝700在基板1000所在面上的正投影位于第三封装层300在基板1000所在面上的正投影之内。第三封装层300可以覆盖该阻挡坝700,如此,可以增加水、氧等侵入基板1000内部的路径,提高基板1000的封装效果。例如,阻挡坝700可以设置为环形闭合结构,也可以在基板1000的边缘由内向外设置多层,以提升基板1000的封装效果。
例如,如图4所示,阻挡坝700可以设置为与基板1000中的结构层同层且同材料设置。例如,如图4所示,阻挡坝700的至少部分与过渡层400同层且同材料设置。示例性的,以本公开实施例中的基板1000为显示基板1000(例如OLED显示基板1000)为例,阻挡坝700可以配置为与基板1000中的栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种或组合同层且同材料设置。并且在形成过渡层400的过程中,可以将用于形成过渡层400的材料层部分延伸至阻挡坝700的设计区域,该材料层的与第二封装层200重叠的部分为过渡层400,并且该材料层的位于阻挡坝700的设计区域的部分作为阻挡坝700的至少部分结构。如此,不需要增加基板1000的制备工艺,简化工艺,降低成本,并且有利于基板1000的轻薄化设计。
例如,在本公开至少一个实施例中,如图4所示,过渡层400也可以设置为与阻挡坝700中的某一结构层同层且同材料设置或者一体成型,如此,进一步简化基板1000的制备工艺。示例性的,基板1000中的栅绝缘层、层间介质层、钝化层的位于基板1000边缘的一部分设置为阻挡坝700,相应地,基板1000中的层间介质层的位于基板1000边缘的另一部分也可以同步设置为过渡层400。如此,可以进一步简化基板1000的制备工艺,而且降低基板1000的边缘部分的设计难度。
在本公开至少一个实施例中,可以适当地降低第二封装层和例如过渡层之间的厚度差异,即降低第二封装层和过渡层之间的应力差异,以免第二封装层从基板上分离。例如,在本公开至少一个实施例中,在第二区域中,过渡层的厚度与第二封装层的厚度的比值可以为1/6~1/3,例如进一步为1/5、1/4等。
图5为本公开一个实施例提供的另一种基板的截面图。例如图5所示,第二区域212中的第二封装层200的厚度小于第一区域211中的第二封装层200的厚度。
在本公开至少一个实施例中,对第一封装层、第二封装层、第三封装层和过渡层等的厚度不做限制。例如,如图5所示,在Z轴的方向上,第一封装层100的厚度可以为0.8~1.5微米;第三封装层300的厚度可以为0.8~1.5微米;第二封装层200的位于第一区域211中的厚度为10~12微米。例如,过渡层400的厚度可以为0.8~3微米。过渡层400的厚度不做限制,可以根据第二封装层200的位于第二区域212中的部分的厚度进行设置。示例性的,第二区域212中的第二封装层200的厚度为3~6微米,过渡层400的厚度可以设置为1~2微米左右。
本公开至少一个实施例提供一种显示面板,包括上述任一实施例中的基板。例如,显示面板中的基板可以为柔性的显示基板以应用于柔性显示领域。例如,在本公开至少一个实施例提供的显示面板中,可以在显示基板上设置触控基板以使得该显示面板获得触控显示功能。
例如,该显示面板可以应用于电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件中。
本公开至少一个实施例提供一种基板的制备方法,包括:在基底上分别形成第一封装层、过渡层和第二封装层;其中,第一封装层和过渡层形成于基底和第二封装层之间并且都与第二封装层的面向基底的第一主表面接触,第一主表面包括与第一封装层接触的第一区域和与过渡层接触的第二区域,第二区域位于第一主表面的边缘,并且过渡层和第二封装层之间的结合强度大于第一封装层和第二封装层之间的结合强度。在上述制备方法得到的基板中,过渡层可以提升第二封装层的边缘部分的附着力,防止第二封装层从基板上分离,提升基板封装良率。
例如,在本公开至少一个实施例提供的制备方法中,第二封装层和过渡层的制备材料都包括有机材料。第二封装层和过渡层的制备材料都包括有机材料,有机材料之间的结合强度高,使得第二封装层和过渡层之间结合牢固。
例如,在本公开至少一个实施例提供的制备方法中,过渡层在基板所在面上的正投影位于第一封装层在基板所在面上的正投影之外。如此,第一封装层不会影响第二封装层和过渡层之间的结合。
例如,在本公开至少一个实施例提供的制备方法中,形成过渡层包括:对过渡层的与第二区域接触的表面进行构图工艺以形成至少一个凹凸结构。凹凸结构可以增加过渡层和第二封装层之间的接触面积,如此,可以增加二者之间的结合力。
例如,本公开至少一个实施例提供的制备方法还包括:在第二封装层的远离基底的一侧沉积无机材料薄膜以形成第三封装层;其中,第二封装层在基板所在面上的正投影和过渡层在基板所在面上的正投影都位于第三封装层在基板所在面上的正投影之内。第三封装层的制备材料包括无机材料,致密性高,可以防止水、氧等侵入基板内部。
在本公开的实施例中,利用上述制备方法获得的基板的具体化结构可以参考前述实施例(关于基板的实施例)中的相关内容,本公开的实施例在此不做赘述。
图6A~图6D为本公开一个实施例提供的一种基板的制备方法的过程图。下面,以制备如图4所示的基板为例,在如图6A~图6D所示的实施例中,对基板的制备方法的过程进行说明。
如图6A所示,提供基底500,并且在基底500上沉积包括有机材料的薄膜,然后对该薄膜进行构图工艺以形成过渡层400。需要说明的是,该基底500可以形成有介质层600和阻挡坝700等结构,介质层600和阻挡坝700可以设置为基板1000中的结构层,在此情况下,介质层600和阻挡坝700的制备工艺可以参考常规工艺方式,本公开的实施例在此不做赘述。例如,如图4所示,过渡层400与阻挡坝700中的某一结构层可以一体成形,如此,在上述制备过渡层400的过程中,可以在同一构图工艺中同步形成该阻挡坝700的与过渡层400一体成形的结构层。
在本公开至少一个实施例中,对基底500的制备材料不做限制。例如, 基底500的制备材料可以是玻璃基板1000、石英基板1000或树脂类材料,树脂类材料例如包括聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜、聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯等中的一种或多种。
例如,在本公开至少一个实施例中,构图工艺可以为光刻构图工艺。例如,该光刻构图工艺可以包括:在需要被构图的结构层上涂覆光阻材料(photoresist)膜,光阻材料膜的涂覆可以采用旋涂、刮涂或者辊涂的方式;接着使用掩模板对光阻材料层进行曝光,对曝光的光阻材料层进行显影以得到光阻材料图案;然后使用光阻材料图案作为掩膜对结构层进行蚀刻;最后剥离剩余的光阻材料以形成需要的图案结构。
如图6B所示,在基底500上沉积无机材料薄膜以形成第一封装层100。
需要说明的是,在本公开至少一个实施例中,也可以先形成第一封装层然后再形成过渡层。第一封装层和过渡层的优先形成的一方可以根据实际工艺进行选择,本公开的实施例在此不做赘述。如图6C所示,对过渡层400的表面进行构图工艺以在过渡层400的远离基底500的表面形成至少一个凹凸结构410。该凹凸结构410的形状以及形成方法可以参考前述实施例(关于基板1000的实施例)中的相关内容,在此不做赘述。
如图6D所示,在基底500上沉积有机材料薄膜并对其进行构图工艺以形成第二封装层200。需要说明的是,在制备第二封装层200的过程中,可以对第二封装层200的边缘区域的部分进行刻蚀,以减薄第二封装层200的例如与过渡层400重叠的部分的厚度。
如图4所示,在第二封装层200的远离基底500的一侧沉积无机材料薄膜以形成第三封装层300;其中,第二封装层200在基板1000所在面上的正投影和过渡层400在基板1000所在面上的正投影都位于第三封装层300在基板1000所在面上的正投影之内。
本公开至少一个实施例提供一种封装结构,该封装结构包括封装层和过渡层,该封装层包括彼此层叠设置的第一封装层和第二封装层。第一封装层位于第二封装层的第一主表面上,过渡层与第一封装层并列设置于第一主表面上。第一主表面包括与第一封装层接触的第一区域和与过渡层接触的第二区域,第二区域位于第一主表面的边缘,并且过渡层和第二封装层之间的结合强度大于第一封装层和第二封装层之间的结合强度。该过渡层可以提升第二封装层的边缘部分的附着力,防止第二封装层从基板上分 离,从而提升基板的封装良率。该封装结构的结构可以前述实施例(例如图2中的基板)中的相关说明,在此不做赘述。
本公开至少一个实施例提供一种封装结构、基板和显示面板,并且可以具有以下至少一项有益效果:
(1)在本公开至少一个实施例提供的基板中,在第二封装层的边缘设置过渡层,过渡层和第二封装层之间的结合强度大于第一封装层和第二封装层之间的结合强度,可以提升第二封装层的边缘部分的附着力,防止第二封装层从基板上分离,提升基板封装良率。
(2)在本公开至少一个实施例提供的基板中,过渡层的与第二封装层的第二区域接触的表面设置有至少一个凹凸结构,增加过渡层和第二封装层之间的接触面积,可以增加二者之间的结合力。
(3)在本公开至少一个实施例提供的基板中,在过渡层的远离第二封装层的一侧设置有介质层,介质层和过渡层之间的结合力强,可以在过渡层和基底之间起到过渡作用,防止过渡层从基板上分离。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种基板,包括基底以及位于所述基底上的封装结构,所述封装结构包括:
    封装层,包括依次层叠设置在所述基底上的第一封装层和第二封装层,所述第一封装层位于所述第二封装层的第一主表面上;以及
    过渡层,与所述第一封装层并列设置于所述第一主表面上;
    其中,所述第一主表面包括与所述第一封装层接触的第一区域和与所述过渡层接触的第二区域,所述第二区域位于所述第一主表面的边缘,并且所述过渡层和所述第二封装层之间的结合强度大于所述第一封装层和所述第二封装层之间的结合强度。
  2. 根据权利要求1所述的基板,其中,
    所述过渡层在所述基板所在面上的正投影位于所述第一封装层在所述基板所在面上的正投影之外。
  3. 根据权利要求1或2所述的基板,其中,
    所述第二封装层和所述过渡层的材料都包括有机材料。
  4. 根据权利要求1-3中任一项所述的基板,其中,
    所述第二区域在所述基板所在面上的正投影的形状为闭合环形,所述第一区域在所述基板所在面上的正投影位于所述第二区域在所述基板所在面上的正投影之内。
  5. 根据权利要求1-4中任一项所述的基板,其中,
    所述过渡层的与所述第一主表面接触的表面设置有至少一个凹凸结构。
  6. 根据权利要求5所述的基板,其中,
    在从所述第一主表面的边缘至所述第一主表面的中心的方向上,所述凹凸结构呈多层排布。
  7. 根据权利要求5或6所述的基板,其中,
    在垂直于所述基板所在面的方向上,所述凹凸结构的截面形状包括弧形、矩形、正梯形和倒梯形中的一种或组合。
  8. 根据权利要求1-7中任一项所述的基板,还包括:
    设置于所述过渡层的远离所述第二封装层的一侧的介质层;
    其中,所述介质层与所述过渡层的结合强度大于所述介质层与所述第一封装层的结合强度。
  9. 根据权利要求8所述的基板,其中,
    所述介质层的制备材料包括有机材料,并且所述介质层为所述基板中的缓冲层、栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种。
  10. 根据权利要求1-8中任一项所述的基板,其中,
    所述过渡层配置为与所述基板中的栅绝缘层、层间介质层、钝化层、平坦层和像素界定层中的一种或组合同层且同材料设置。
  11. 根据权利要求1-10中任一项所述的基板,其中,
    在所述第二区域中,所述过渡层的厚度与所述第二封装层的厚度的比值为1/6~1/3。
  12. 根据权利要求1-11中任一项所述的基板,还包括:
    第三封装层,设置在所述第二封装层的远离所述第一主表面的一侧;
    其中,所述第一封装层和所述第三封装层的材料包括无机材料。
  13. 根据权利要求12所述的基板,其中,
    所述第二封装层在所述基板所在面上的正投影和所述过渡层在所述基板所在面上的正投影都位于所述第三封装层在所述基板所在面上的正投影之内。
  14. 根据权利要求12或13所述的基板,还包括:
    阻挡坝,位于所述过渡层的远离所述第一封装层的一侧;
    其中,所述阻挡坝在所述基板所在面上的正投影位于所述第三封装层在所述基板所在面上的正投影之内,所述阻挡坝的至少部分与所述过渡层同层且同材料设置。
  15. 一种显示面板,包括权利要求1-14中任一项所述的基板。
  16. 一种封装结构,包括:
    封装层,包括彼此层叠设置的第一封装层和第二封装层,所述第一封装层位于所述第二封装层的第一主表面上;以及
    过渡层,与所述第一封装层并列设置于所述第一主表面上;
    其中,所述第一主表面包括与所述第一封装层接触的第一区域和与所述过渡层接触的第二区域,所述第二区域位于所述第一主表面的边缘,并 且所述过渡层和所述第二封装层之间的结合强度大于所述第一封装层和所述第二封装层之间的结合强度。
  17. 根据权利要求16所述的封装结构,其中,
    所述过渡层在所述第一主表面上的正投影位于所述第一封装层在所述第一主表面上的正投影之外。
  18. 根据权利要求16或17所述的封装结构,其中,
    所述第二封装层和所述过渡层的材料都包括有机材料。
  19. 根据权利要求16-18中任一项所述的封装结构,其中,
    所述第二区域在所述第一主表面上的正投影的形状为闭合环形,所述第一区域在所述基板所在面上的正投影位于所述第二区域在所述第一主表面上的正投影之内。
  20. 根据权利要求16-19中任一项所述的封装结构,其中,
    所述过渡层的与所述第一主表面接触的表面设置有至少一个凹凸结构。
PCT/CN2018/120315 2017-12-15 2018-12-11 封装结构、基板和显示面板 WO2019114699A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18889031.3A EP3726600A4 (en) 2017-12-15 2018-12-11 PACKAGING STRUCTURE, SUBSTRATE AND DISPLAY BOARD
JP2019546826A JP7290570B2 (ja) 2017-12-15 2018-12-11 パッケージ構造、基板及び表示パネル
US16/476,402 US10680204B2 (en) 2017-12-15 2018-12-11 Encapsulation structure, substrate and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711353503.7A CN109935615B (zh) 2017-12-15 2017-12-15 基板及其制备方法、显示面板
CN201711353503.7 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019114699A1 true WO2019114699A1 (zh) 2019-06-20

Family

ID=66819959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120315 WO2019114699A1 (zh) 2017-12-15 2018-12-11 封装结构、基板和显示面板

Country Status (5)

Country Link
US (1) US10680204B2 (zh)
EP (1) EP3726600A4 (zh)
JP (1) JP7290570B2 (zh)
CN (2) CN109935615B (zh)
WO (1) WO2019114699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489026B2 (en) * 2019-06-27 2022-11-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, method of manufacturing display panel, and display apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065960B2 (en) 2017-09-13 2021-07-20 Corning Incorporated Curved vehicle displays
WO2019103469A1 (en) 2017-11-21 2019-05-31 Corning Precision Materials Co., Ltd. Aspheric mirror for head-up display system and methods for forming the same
CN110444681B (zh) * 2019-07-22 2020-12-08 武汉华星光电半导体显示技术有限公司 发光面板及显示设备
CN110611056B (zh) * 2019-09-23 2022-05-17 云谷(固安)科技有限公司 柔性显示基板及其制作方法
CN110911462B (zh) * 2019-11-27 2022-10-04 昆山国显光电有限公司 显示面板及显示装置
CN112563309A (zh) 2020-08-17 2021-03-26 京东方科技集团股份有限公司 显示面板
CN111969128B (zh) * 2020-08-28 2024-01-19 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118933A (zh) * 2015-09-02 2015-12-02 深圳市华星光电技术有限公司 薄膜封装方法及有机发光装置
CN105140417A (zh) * 2015-08-20 2015-12-09 京东方科技集团股份有限公司 一种有机发光二极管器件及制作方法和显示装置
CN105355647A (zh) * 2015-11-26 2016-02-24 上海天马有机发光显示技术有限公司 一种封装结构、显示装置及其制作方法
CN107359267A (zh) * 2017-06-02 2017-11-17 合肥市惠科精密模具有限公司 一种amoled防水封装结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG142140A1 (en) * 2003-06-27 2008-05-28 Semiconductor Energy Lab Display device and method of manufacturing thereof
JP4888532B2 (ja) * 2009-07-14 2012-02-29 カシオ計算機株式会社 保護板付き電子部材
CN104051357B (zh) 2013-03-15 2017-04-12 财团法人工业技术研究院 环境敏感电子装置以及其封装方法
KR20150011235A (ko) * 2013-07-22 2015-01-30 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그 제조 방법
KR102096054B1 (ko) * 2013-08-14 2020-04-02 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
KR102117612B1 (ko) * 2013-08-28 2020-06-02 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102126381B1 (ko) * 2013-10-14 2020-06-25 삼성디스플레이 주식회사 표시장치
KR20150043080A (ko) * 2013-10-14 2015-04-22 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102230485B1 (ko) * 2013-12-30 2021-03-23 삼성디스플레이 주식회사 표시패널 및 이의 제조방법
CN104538555A (zh) * 2014-12-02 2015-04-22 深圳市华星光电技术有限公司 Oled封装结构及oled封装方法
KR102396296B1 (ko) * 2015-03-06 2022-05-11 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
KR101763616B1 (ko) * 2015-07-29 2017-08-02 삼성디스플레이 주식회사 유기 발광 표시 장치
EP3324457A4 (en) * 2015-12-30 2019-04-10 Shenzhen Royole Technologies Co., Ltd. FLEXIBLE DISPLAY SHEET AND MANUFACTURING METHOD THEREFOR
KR102541448B1 (ko) 2016-03-08 2023-06-09 삼성디스플레이 주식회사 디스플레이 장치
KR102550693B1 (ko) * 2016-08-04 2023-07-04 삼성디스플레이 주식회사 플렉시블 디스플레이 장치 및 제조 방법
DE102016122901A1 (de) * 2016-11-28 2018-05-30 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
CN107104201B (zh) * 2017-05-25 2019-08-13 京东方科技集团股份有限公司 一种有机发光二极管显示面板封装结构及其制作方法、显示装置
WO2019214285A1 (zh) * 2018-05-11 2019-11-14 云谷(固安)科技有限公司 显示面板母板、显示面板及显示面板制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140417A (zh) * 2015-08-20 2015-12-09 京东方科技集团股份有限公司 一种有机发光二极管器件及制作方法和显示装置
CN105118933A (zh) * 2015-09-02 2015-12-02 深圳市华星光电技术有限公司 薄膜封装方法及有机发光装置
CN105355647A (zh) * 2015-11-26 2016-02-24 上海天马有机发光显示技术有限公司 一种封装结构、显示装置及其制作方法
CN107359267A (zh) * 2017-06-02 2017-11-17 合肥市惠科精密模具有限公司 一种amoled防水封装结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726600A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489026B2 (en) * 2019-06-27 2022-11-01 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, method of manufacturing display panel, and display apparatus

Also Published As

Publication number Publication date
JP7290570B2 (ja) 2023-06-13
EP3726600A4 (en) 2021-08-25
EP3726600A1 (en) 2020-10-21
CN109935615A (zh) 2019-06-25
CN112349762A (zh) 2021-02-09
US20200052245A1 (en) 2020-02-13
US10680204B2 (en) 2020-06-09
CN112349762B (zh) 2023-04-07
CN109935615B (zh) 2021-02-26
JP2021507273A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2019114699A1 (zh) 封装结构、基板和显示面板
EP3166149B1 (en) Preparation method for an amoled display panel
CN108091675B (zh) 显示基板及其制作方法
WO2020024705A1 (zh) 显示基板及其制备方法、显示面板
CN108962952B (zh) 一种显示面板及其制作方法、显示装置
US11569476B2 (en) Display substrate and display apparatus
CN108336118B (zh) 显示基板及其制造方法、显示装置
CN109801954B (zh) 阵列基板及其制造方法、显示面板及显示装置
US20200027936A1 (en) Display panel, manufacture method thereof and display device
WO2019041945A1 (zh) 显示基板及其制造方法、显示面板
US11563064B2 (en) Array substrate, display device, and method for fabricating an array substrate
KR102272883B1 (ko) 박막들을 캡슐화하는 방법 및 구조물, 디스플레이 디바이스
WO2021237867A1 (zh) 显示基板及其制造方法和显示装置
WO2020088218A1 (zh) 柔性显示面板及其封装方法和显示装置
KR20180036465A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2020024765A1 (zh) 显示面板及其制造方法、显示装置
WO2018196403A1 (zh) 阵列基板及其制作方法、显示装置
EP4053902A1 (en) Display panel, manufacturing method therefor, and display device
CN110581226B (zh) 柔性显示面板及其制备方法和柔性显示装置
CN111509140B (zh) 显示用基板及其制备方法、显示装置
KR102520691B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2023173459A1 (zh) 显示面板及显示装置
CN115148928A (zh) 一种显示基板、显示装置
US20230055419A1 (en) Display device
WO2023092402A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889031

Country of ref document: EP

Effective date: 20200715