WO2023092402A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023092402A1
WO2023092402A1 PCT/CN2021/133237 CN2021133237W WO2023092402A1 WO 2023092402 A1 WO2023092402 A1 WO 2023092402A1 CN 2021133237 W CN2021133237 W CN 2021133237W WO 2023092402 A1 WO2023092402 A1 WO 2023092402A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
barrier
blocking
panel according
dam
Prior art date
Application number
PCT/CN2021/133237
Other languages
English (en)
French (fr)
Other versions
WO2023092402A9 (zh
Inventor
董向丹
王蓉
都蒙蒙
袁长龙
何帆
田东辉
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180003587.XA priority Critical patent/CN116602072A/zh
Priority to PCT/CN2021/133237 priority patent/WO2023092402A1/zh
Publication of WO2023092402A1 publication Critical patent/WO2023092402A1/zh
Publication of WO2023092402A9 publication Critical patent/WO2023092402A9/zh

Links

Images

Definitions

  • At least one embodiment of the present disclosure relates to a display panel and a display device.
  • Organic Light Emitting Diode (OLED, Organic Light Emitting Diode) display device is an organic electroluminescent display device, which has the advantages of simple preparation process, low cost, high luminous efficiency, easy formation of flexible structure, self-luminescence, all-solid-state and high contrast, etc. Advantages, therefore, the display technology utilizing organic light emitting diodes has become an important display technology.
  • a hydrophobic barrier wall or a raised barrier wall is usually set between two inorganic packaging layers, so that water and oxygen cannot penetrate into the display device internal.
  • At least one embodiment of the present disclosure provides a display panel.
  • the edge of the electrode structure included in the first signal line away from the display area is arranged to have a stepped shape, and the covering part is used to cover the electrode structure away from the display area.
  • the edge of the screen thereby prolonging the path for water and vapor to enter the display area, so as to improve the reliability of the display panel.
  • At least one embodiment of the present disclosure provides a display panel, which includes: a display area; a peripheral area surrounding the display area; a base substrate; a first signal line located on the base substrate, including a The electrode structure in the peripheral area, the edge of the electrode structure away from the display area has a stepped shape; the covering part covers the edge of the electrode structure away from the display area.
  • the first signal line further includes a conductive part located in the peripheral area and provided on the base substrate, and the conductive part and the electrode structure Electrically connected in the peripheral region, the conductive part is closer to the base substrate than the electrode structure.
  • the covering portion has a stepped shape.
  • At least part of the covering part has an integrated structure.
  • At least part of the covering portion extends in the same or substantially the same direction as the edge of the electrode structure away from the display area.
  • the electrode structure has a first side close to the display area and a second side far away from the display area, and the middle part of the second side faces the The first side is recessed to form a middle gap.
  • the second side has a stepped structure.
  • the direction from the first side to the second side is the first direction
  • the direction intersecting the first direction is the second direction.
  • the width of the electrode structure in the first direction gradually decreases along the second direction; on the second side of the middle gap, the electrode structure is in the first direction
  • the width of the direction becomes gradually larger along the second direction.
  • the stepped shape includes a first protruding structure and a first concave structure that are connected to each other and arranged adjacent to each other.
  • the second side has Z-shaped steps on both sides of the middle gap.
  • the size of the middle gap in the second direction increases sequentially.
  • the display panel provided by at least one embodiment of the present disclosure further includes a second signal line, and the second signal line is at least partially disposed in the middle gap.
  • the second signal line is configured to transmit a power signal of a pixel driving circuit.
  • the first signal line further includes an electrode connection part located in the peripheral area and between the conductive part and the electrode structure, and the electrode connection part The portion is in contact with the conductive portion, and is in contact with the electrode structure.
  • the orthographic projection of the electrode connection part on the base substrate overlaps with the orthographic projection of the electrode structure on the base substrate.
  • the orthographic projection of the electrode structure on the base substrate is located within the orthographic projection of the electrode connection part on the base substrate.
  • the orthographic projection of the edge of the electrode connection part on the base substrate and the orthographic projection of the covering part on the base substrate are at least partially overlap.
  • the display panel is an organic light emitting diode display panel
  • the organic light emitting diode display panel includes a thin film transistor and an organic light emitting diode
  • the thin film transistor includes a source and drain layer
  • the organic light emitting diode includes a first electrode
  • a connection structure is provided between the source and drain layer and the first electrode, wherein the first electrode and the connection structure are connected to the source and drain layer Electrically connected
  • the electrode structure is provided on the same layer as the anode of the first electrode
  • the conductive part is provided on the same layer as the source-drain layer
  • the electrode connection part is provided on the same layer as the connection structure.
  • the material of the electrode connection part and the conductive part are the same, and the materials of the electrode connection part and the electrode structure are different.
  • the display panel provided in at least one embodiment of the present disclosure further includes a plurality of barrier structures, the material of the plurality of barrier structures includes an organic insulating material, and at least part of the plurality of barrier structures forms the cladding portion, At least two of the stepped structures are covered by different barrier structures.
  • a plurality of the blocking structures are located in the peripheral area, arranged in sequence along the direction from the peripheral area to the display area, and each of the blocking structures Structures are arranged around the display area.
  • the blocking structure includes a blocking portion and a blocking dam, wherein the blocking portion and the blocking dam are sequentially arranged along the first direction, and from close to From one side of the base substrate to a side away from the base substrate, the thickness of the barrier part is smaller than the thickness of the barrier dam.
  • the blocking part, the first part of the blocking dam, and the covering part are arranged in the same layer and have an integrated structure.
  • the blocking portion includes a first blocking portion, a second blocking portion, and a third blocking portion sequentially arranged along the first direction
  • the blocking dam includes A first barrier dam and a second barrier dam are sequentially arranged along the first direction.
  • the first distance D1 between the first blocking portion and the second blocking portion is substantially equal to the second blocking portion.
  • the second distance D2 between the third blocking portion and the third blocking portion is smaller than the third distance D3 between the third blocking portion and the first blocking dam, the first blocking dam and the second blocking dam.
  • the part of the covering part between the first blocking part and the second blocking part has a first step; A portion between the second blocking portion and the third blocking portion has a second step; and a portion of the covering portion between the third blocking portion and the first blocking dam has a third step.
  • the width of the first step is equal to or approximately equal to the width of the second step, and is equal to or approximately equal to the width of the first step.
  • the first blocking portion, the second blocking portion and the The thicknesses of the third barrier parts are equal and have a first thickness, the first barrier dam has a second thickness, the second barrier dam has a third thickness, and the first thickness, the second thickness and the third thickness increases sequentially.
  • the first blocking portion, the second blocking portion, the third blocking portion, the first blocking dam, and the second blocking dam are all includes a first organic layer, and the first organic layer included in the first barrier portion, the second barrier portion, the third barrier portion, the first barrier dam, and the second barrier dam is the same layer setting; the first barrier dam and the second barrier dam further include a second organic layer disposed on the side of the first organic layer close to the base substrate, and the first barrier dam and the The second organic layer included in the second barrier dam is disposed in the same layer; the second barrier dam further includes a third organic layer disposed on a side of the second organic layer close to the base substrate.
  • the display panel provided in at least one embodiment of the present disclosure further includes an encapsulation layer disposed on the side of the barrier portion and the barrier dam away from the base substrate, and the encapsulation layer is on the base substrate The orthographic projection of at least part of the orthographic projection of the first signal line, the blocking portion and the blocking dam on the base substrate.
  • the display panel provided in at least one embodiment of the present disclosure further includes a passivation layer located between the electrode connection part and the conductive part, wherein the encapsulation layer, the electrode structure, the electrode connection part And the conductive part is in contact with the passivation layer.
  • the first signal line is configured to transmit a cathode signal
  • the electrode structure is electrically connected to a cathode of an organic light emitting diode.
  • At least one embodiment of the present disclosure further provides a display device, which includes the display panel in any one of the above embodiments.
  • FIG. 1 is a schematic plan view of a display panel
  • FIG. 2 is a schematic plan view of a display panel provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of an enlarged area of A in FIG. 2;
  • Fig. 4 is a schematic diagram of a cross-sectional structure along the MN line in Fig. 3;
  • FIG. 5 is a schematic plan view of the enlarged elliptical dotted line region C in FIG. 2;
  • FIG. 6 is a schematic plan view of a barrier structure provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view of an electrode structure provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view of another electrode structure provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic cross-sectional structure diagram along the B-B' line in Fig. 2;
  • FIG. 10 is a schematic top view of a display panel provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic cross-sectional structure diagram along line AB in Fig. 10;
  • Fig. 12 is a schematic cross-sectional structural diagram along CD line in Fig. 10.
  • FIG. 13 is a disassembled view of a display panel provided by an embodiment of the present disclosure.
  • a flexible display panel usually includes a plurality of pixel units arranged in an array in the display area of the base substrate, a power supply line (generally referred to as a VDD line) for providing a positive power supply signal for each pixel unit, and a A power trace (for example, a VSS trace) that provides a negative power supply signal to the cathode layer in the display panel.
  • a VDD line a power supply line for providing a positive power supply signal for each pixel unit
  • a power trace for example, a VSS trace
  • VDD routing and VSS routing enter the packaging area from the side of the driving chip for example, when entering the area near the pixel unit side of the blocking structure from the binding area, that is, the power supply line of the blocking structure passes through.
  • the power supply line of the blocking structure passes through.
  • LRU display uniformity and long-range uniformity
  • VSS wiring the power supply wiring
  • the cathode of the organic light emitting diode device for providing the cathode layer in the display panel with a negative power supply signal
  • adding a transition structure such as adding a conductive metal structure
  • adding a transition structure can improve the overlapping effect of the cathode and the cathode power line, but the edge of the conductive metal structure is prone to electrochemical corrosion during the process. , so that the edge of the conductive metal structure is prone to blackening, so the edge of the conductive metal structure must be protected by an organic material to prevent the edge of the conductive metal structure from being corroded.
  • adding the barrier structure can make the printing ink have a certain leveling buffer before reaching the outermost barrier structure of the display panel, thereby further preventing the printing ink from crossing the outermost barrier structure of the display panel, so as to improve the packaging effect of the display panel.
  • FIG. 1 is a schematic plan view of a display panel.
  • the conductive metal 01 since the boundary of the conductive metal 01 must be covered with an organic material to prevent electrochemical corrosion at the boundary of the conductive metal 01, the conductive metal 01 The boundary is protected, and the film layer of the barrier structure 02 includes organic materials, so the conductive metal 01 can be designed along the edge of the barrier structure 02 at the edge of the lower frame of the display panel, but this design does not consider avoiding the long-term The phenomenon of poor reliability dark spots, once water and vapor accumulate in the barrier structure, water and vapor will enter the display along the boundary of the conductive metal 01 from the barrier structure to the cut-off position of the power line 03 that provides the negative power supply signal One side of the area 04, that is, in Fig.
  • the boundary of the conductive metal 01 can be designed to have a stepped shape to prolong the path of water and vapor intrusion.
  • the material of the blocking structure 02 is an organic material
  • the blocking structure 02 can be formed along the conductive metal 01
  • the stepped edge of the conductive metal 01 is also designed to be stepped, so as to protect the stepped edge of the conductive metal 01 from electrochemical corrosion, and because the stepped edge of the conductive metal 01 has obvious corners, it can play a role Block the action of water and vapor, so as to prolong the path of water and vapor intruding into the display area, avoid dark spots, and improve the reliability of the display panel.
  • the organic layer includes a two-layer stacked structure.
  • the inventors of the present disclosure also noticed that the thickness of the barrier structure 02 on the side close to the display area 04 can be reduced, and the thickness of the barrier structure 02 on the side away from the display area 04 can be reduced.
  • the thickness of 02 remains the thickness of the conventional barrier structure, and because the thickness of the barrier structure 02 is different, the thickness of the barrier structure 02 on the side closest to the display area 04 is smaller than the thickness of the barrier structure 02 on the side farthest from the display area 04, so that Thinning the thickness of the organic layer through which water and vapor pass can reduce the risk of water and vapor accumulation in the organic layer.
  • the inventors of the present disclosure have also noticed that the width of the water and vapor channel organic layer can be narrowed to facilitate blocking water and vapor.
  • the currently designed barrier structure 02 has a width of 40 ⁇ m, and the barrier structure only serves as a buffer
  • the function of printing ink leveling that is, the auxiliary printing ink is leveled before reaching the real blocking structure, so, except for the blocking structure located on the side farthest from the display area, the width of the blocking structure located on the side close to the display area can be Reduction, for example, the width of the barrier structure near the display area can be designed to be less than 40 ⁇ m, such as 30 ⁇ m, or even smaller, as long as the organic layer included in the barrier structure can cover the boundary of the anode metal 01 in the process.
  • At least one embodiment of the present disclosure provides a display panel, the display panel includes: a display area and a peripheral area surrounding the display area, the display panel also includes a base substrate, a first signal line and a covering part, the first signal line including an electrode structure located in the peripheral area and located on the base substrate, the edge of the electrode structure away from the display area (active area, AA) has a stepped shape, and the coating part covers the edge of the electrode structure away from the display area, so that The edge of the electrode structure away from the display area is protected by the coating, which can reduce the risk of electrochemical corrosion at the edge of the electrode structure away from the display area, and can also extend the path of water and vapor intrusion into the display area to prevent water, vapor Access to the display area, thereby enhancing the reliability of the display panel.
  • FIG. 2 is a schematic plan view of a display panel provided by an embodiment of the present disclosure.
  • the display panel 10 includes: a display area 101 and a peripheral area 102 surrounding the display area 101.
  • the display panel 10 also includes a first signal line 103 and a cladding portion 104 on the substrate, the first signal line 103 includes an electrode structure 105 located in the peripheral area 102, and the edge of the electrode structure 105 away from the display area 101 has a stepped shape.
  • the stepped shape is shown as the elliptical dotted line C in FIG. 2.
  • the edge of the electrode structure 105 away from the display area 101 may be at least one of the edge of the lower frame, the edge of the left frame, the edge of the right frame and the edge of the upper frame shown in FIG.
  • the edge of the electrode structure 105 is set in a stepped shape only at the edge of the lower frame, the embodiment of the present disclosure is not limited thereto.
  • the edge of the electrode structure 105 is set in a stepped shape in at least one of the edge of the , the edge of the right side frame and the edge of the upper side frame.
  • the display panel 10 includes a plurality of pixel units (not shown in the figure), and the area where the orthographic projection of the plurality of pixel units on the base substrate is located corresponds to the display area of the display panel.
  • the pixel unit in the middle it is easy to appear the phenomenon of poor dark spots.
  • the electrode structure 105 included in the first signal line 103 is electrically connected to the cathode of the OLED, and the first signal line 103 is configured to transmit a cathode signal.
  • FIG. 3 is an enlarged schematic plan view of the area A in FIG. 2.
  • each of the plurality of barrier structures 111 may be arranged around the display area 101 , and the materials of the plurality of barrier structures 111 include organic insulating materials.
  • each of the blocking structures 111 may be a ring structure surrounding a plurality of pixel units, which is used to prevent overflow of inkjet printed organic materials in the area surrounded by the blocking structures in the display panel.
  • the blocking structure 111 includes a plurality of blocking portions 111a and a plurality of blocking dams 111b arranged in sequence from a side close to the display area to a side away from the display area.
  • the width of each blocking portion 111a is smaller than the width of each blocking dam 111b.
  • the plurality of blocking portions 111a include a first blocking portion 111a1, a second blocking portion 111a2, and a third blocking portion 111a3 arranged in sequence from a side close to the display area to a side away from the display area
  • the plurality of barrier dams 111b include a first barrier dam 111b1 and a second barrier dam 111b2 arranged in sequence from a side close to the display area to a side away from the display area.
  • the widths of the first blocking portion 111a1, the second blocking portion 111a2 and the third blocking portion 111a3 are equal, and the first blocking dam 111b1 and the third blocking portion 111a3 are equal in width.
  • the width of the second blocking dam 111b2 is equal, but the width of each of the plurality of blocking portions 111a is smaller than the width of each of the plurality of blocking dams 111b.
  • the width of each blocking portion 111a refers to the width of each blocking portion
  • the width of each barrier dam 111b refers to the length of each barrier dam 111b along the MN line.
  • the first barrier part 111a1 and the second barrier part 111a1 are equal to the second distance D2 between the second blocking portion 111a2 and the third blocking portion 111a3, and is smaller than the third distance D3 between the third blocking portion 111a3 and the first blocking dam 111b1,
  • the side is leveled and cannot overflow from the side away from the display area. Therefore, in order to prevent inkjet printed organic materials from overflowing from the side away from the display area, the farther away from the display area, the distance between adjacent barrier structures The smaller, that is, the greater the density of the barrier structure, the lower the risk of the inkjet printed organic material overflowing from the side away from the display area. Therefore, the fourth distance D4 is set to be smaller than the first distance D1 and the second distance D2. And the third distance D3 can prevent the inkjet printed organic material from overflowing from the side away from the display area.
  • the covering portion 104 covers all or Partial covering, that is, at least two step structures included in the step shape of the edge of the electrode structure 105 are covered by different barrier structures 111 to prevent electrochemical corrosion of the step shape of the edge of the electrode structure 105 .
  • FIG. 4 is a schematic diagram of a cross-sectional structure along the MN line in FIG. 3 , as shown in FIG. 4 , from the side close to the base substrate 107 to the side away from the base substrate 107, the thickness of each blocking portion 111a is less than The thickness of each barrier dam 111b, in FIG.
  • the thickness of the first barrier portion 111a1, the second barrier portion 111a2 and the third barrier portion 111a3 are equal and have a first thickness, and the first thickness is smaller than the first barrier dam 111b1 has a second thickness, the second thickness of the first barrier dam 111b1 is smaller than the third thickness of the second barrier dam 111b2, that is, the farther away from the display area, the greater the thickness of the barrier structure, and the inkjet printed organic material is far away from The risk of overflow is lower on one side of the display area.
  • each blocking portion or each blocking dam refers to the side of each blocking portion or each blocking dam away from the substrate substrate to the side of the corresponding blocking portion or blocking dam close to the substrate substrate the vertical distance.
  • the thickness of each of the plurality of barrier structures 111 may be 1 ⁇ m ⁇ 3 ⁇ m, and the width may be 10 ⁇ m ⁇ 40 ⁇ m.
  • the barrier portion 111 a has a thickness of 1 ⁇ m ⁇ 2 ⁇ m and a width of 10 ⁇ m ⁇ 30 ⁇ m;
  • the barrier dam 111 b has a thickness of 2 ⁇ m ⁇ 3 ⁇ m and a width of 30 ⁇ m ⁇ 40 ⁇ m.
  • each blocking portion 111a and each blocking dam 111b in the plurality of blocking structures 111 can be set according to actual needs, so as to prevent ink from splashing onto the The area other than the outermost blocking structure 111 is sufficient.
  • the blocking structure 111 may also include more blocking dams to further prevent the overflow of organic materials, which is not limited in this embodiment of the present disclosure.
  • the first barrier part 111a1, the second barrier part 111a2, the third barrier part 111a3, the first barrier dam 111b1 and the second barrier dam 111b2 all include the first organic layer 011, and the first barrier part 111a1, the second barrier part 111a2, the third barrier part 111a3, the first organic layer 011 included in the first barrier dam 111b1 and the second barrier dam 111b2 are arranged in the same layer; the first barrier dam 111b1 and the second barrier dam 111b2 also include The second organic layer 012 disposed on the side of the first organic layer 011 close to the base substrate 107, and the second organic layer 012 included in the first barrier dam 111b1 and the second barrier dam 111b2 are disposed in the same layer; the second barrier dam 111b2 It also includes a third organic layer 013 disposed on the side of the second organic layer 012 close to the base substrate 107 .
  • the first organic layer 011 included in the first barrier part 111a1 , the second barrier part 111a2 , the third barrier part 111a3 , the first barrier dam 111b1 and the second barrier dam 111b2 is formed in the same process step.
  • the second organic layer 012 included in the first barrier dam 111b1 and the second barrier dam 111b2 is formed in the same process step.
  • the first blocking portion 111a1, the second blocking portion 111a2, the third blocking portion 111a3, the first blocking dam 111b1 and the second blocking dam 111b2 are ring structures surrounding a plurality of pixel units in the display area, and are used to block the display panel.
  • the first barrier dam 111b1 includes a first organic layer 011 and a second organic layer 012 sequentially stacked on the substrate, and the edge portion of the electrode structure 105 corresponding to the first barrier dam 111b1 is covered by the first organic layer 011 .
  • the first organic layer 011 may be a pixel definition layer (PDL).
  • the material of the first organic layer 011 may include: organic materials such as resin, for example, polyimide resin, which is not limited in the embodiments of the present disclosure.
  • the first organic layer 011 can be formed by screen printing, spin coating, inkjet printing and film casting.
  • the material of the second organic layer 012 and the third organic layer 013 may also be an organic material such as polyimide resin, which is not limited in the embodiments of the present disclosure.
  • FIG. 5 is an enlarged schematic plan view of the oval dotted line region C in FIG.
  • the edge has a stepped shape
  • the covering portion 104 also has a stepped shape
  • the covering portion 104 covers the edge of the electrode structure 105 away from the display region 101 .
  • Each blocking portion 111a, the first part of the blocking dam 111b (i.e. the first blocking dam 111b1) and the covering portion 104 are arranged on the same layer, and the covering portion 104 has an integrated structure, and the second blocking dam 111b2 and the covering portion 104 does not have a portion disposed on the same layer, that is, the cladding portion 104 does not extend to the area corresponding to the second barrier dam 111b2.
  • the extending direction of at least part of the covering portion 104 is the same or substantially the same as the extending direction of the edge of the electrode structure 105 away from the display area.
  • the adjacent blocking parts 111a are connected by the covering part 104, the blocking part 111a and the first blocking dam 111b1 are connected by the covering part 104, or the covering part 104, the first blocking part 111a1, the second The second blocking portion 111a2, the third blocking portion 111a3 and the first blocking dam 111b1 are integrally structured.
  • the covering portion 104 has a first step 121 between the first blocking portion 111a1 and the second blocking portion 111a2, and the covering portion 104 has a step between the second blocking portion 111a2 and the third blocking portion.
  • the part between 111a3 has a second step 122
  • the part of the covering part 104 between the third blocking part 111a3 and the first blocking dam 111b1 has a third step 123, the first step 121, the second step 122 and the first step 122
  • the whole connected by three steps 123 forms a step shape.
  • the electrode structure 105 has a first side a close to the display area and a second side b away from the display area, and the direction from the first side a to the second side b is the first direction, that is, The direction parallel to the y-axis, the direction intersecting the first direction is the second direction, that is, the direction parallel to the x-axis, the intersection of the first direction and the second direction may be perpendicular or approximately perpendicular, or may be The angle between the first direction and the second direction is an intersection of 0 degrees to 30 degrees.
  • the width of the first step 121 is equal to or approximately equal to the width of the second step 122, and is equal to or approximately equal to the width of the third step 123, that is, the first step 121, the second step 122 and the third step 123 Equal width design; or the width of the first step 121 is smaller than the width of the second step 122 , and the width of the second step 122 is smaller than the width of the third step 123 .
  • the width a1 of the first step 121 is smaller than the width a2 of the second step 122
  • the width a2 of the second step 122 is smaller than the width a3 of the third step 123 as an example.
  • “approximately” in the embodiments of the present disclosure refers to an error range that can allow fluctuations within 10%. If the width is “approximately” equal, the difference between the two widths may not exceed 10%.
  • the first direction and the second direction are "approximately perpendicular" and the angle between the first direction and the second direction may be 85 degrees to 95 degrees. fluctuate within a range.
  • the material of the coating part 104 is an organic material, so that the edge of the electrode structure 105 will not be electrochemically corroded and blackened, and the step shape of the coating part 104 can also extend the path of water and steam intrusion. , making it difficult for water and vapor to enter the display area, thereby reducing the reliability of the display panel.
  • this concave-convex structure makes the circulation of water and steam not smooth, which will form a blocking effect and can prolong the path of water and steam intrusion, thus effectively reducing the flow of water and steam. External substances are blocked. Therefore, this structure effectively prolongs the intrusion path of water and steam, has a good sealing effect, and plays a better role in protecting the display panel.
  • the shape, size and density of the concave-convex structure in the step shape can be consistent, or the closer to the display area, the greater the density between the various concave-convex structures, that is, the density of the concave-convex structure on the side near the display area is greater than that on the side far away from the display area.
  • the density of the concave-convex structure on one side is such that when water or steam invades, the closer to the inside of the display panel, the harder it is for water or steam to intrude, and finally the display area of the display panel is effectively protected.
  • the covering part 104 and the barrier structure 111 have a plurality of concave-convex structures correspondingly, and may include rectangular groove structures, and the distance between each rectangular groove structure may be the same, so that when the etching process is performed, the process Simple, convenient and easy to operate.
  • the concave-convex structure may have arc-shaped edges, and the whole of the covering part 104 and the blocking structure 111 may also include a circular groove structure or a serrated groove structure.
  • the groove structure is the same as the rectangular groove structure in the embodiment of the present disclosure when it is set.
  • the shapes of the various concave-convex structures may be the same or different, and are selected according to specific products so as to optimize the packaging effect of the display panel.
  • a photolithography process combined with a half-tone mask is used to pattern the electrode structure thin film formed in the entire layer.
  • the covering part 104 has an integral structure
  • the edge of the covering part 104 shown in Figure 5 is a stepped shape, and the stepped shape is connected in turn by a plurality of "Z" shaped steps, so that The covering portion 104 has an integral structure.
  • the shape of the "Z"-shaped step can be a standard "Z” shape or a substantially “Z"-shaped step.
  • FIG. 6 is a schematic plan view of a barrier structure provided by an embodiment of the present disclosure.
  • Each can be disposed around the display area 101 , and materials of the plurality of barrier structures 111 include organic insulating materials.
  • each of the blocking structures 111 may be a ring structure surrounding a plurality of pixel units, and is used to prevent the overflow of the inkjet printed organic material in the area surrounded by the blocking structures in the display panel.
  • the blocking structure 111 includes a plurality of blocking portions 111a and a plurality of blocking dams 111b arranged sequentially from a side close to the display area to a side away from the display area.
  • the width of each blocking portion 111a is smaller than the width of each blocking dam 111b.
  • the plurality of blocking portions 111a include a first blocking portion 111a1, a second blocking portion 111a2, and a third blocking portion 111a3 arranged in sequence from a side close to the display area to a side away from the display area
  • the plurality of barrier dams 111b include a first barrier dam 111b1 and a second barrier dam 111b2 arranged in sequence from a side close to the display area to a side away from the display area.
  • the widths of the first blocking portion 111a1, the second blocking portion 111a2 and the third blocking portion 111a3 are equal, and the first blocking dam 111b1 and the third blocking portion 111a3 are equal in width.
  • the widths of the second barrier dams 111b2 are equal, but the width of each of the plurality of barrier parts 111a is smaller than the width of each of the plurality of barrier dams 111b.
  • FIG. 7 is a schematic plan view of an electrode structure provided by an embodiment of the present disclosure. As shown in FIG. 7 , the entire electrode structure 105 has a first side a close to the display area and a second side far away from the display area. b, the middle portion of the second side b is recessed toward the first side a to form a middle gap 108 .
  • the second side b has a stepped shape, that is, has a stepped structure, and the stepped structure is distributed on both sides of the middle gap 108 .
  • the stepped structure is symmetrical about the center line of the middle gap 108, that is, it is symmetrical about the axis, so that the patterning process of the electrode structure 105 can be conveniently performed, and the patterning process becomes finer, but embodiments of the present disclosure are not limited to this.
  • the width of the electrode structure 105 in the first direction decreases gradually along the second direction b.
  • the width of the electrode structure 105 in the first direction gradually increases along the second direction b, thus forming a middle gap concave toward the first side a.
  • the stepped structure of the electrode structure 105 includes a stepped structure with a first protruding structure 1051 and a first concave structure 1052 that are connected to each other and arranged adjacent to each other.
  • the adjacent first protruding structures 1051 and the first concave structure 1052 form a stepped structure.
  • the second side b has Z-shaped steps on both sides of the middle gap 108.
  • the step structures on both sides of the middle gap 108 may also be asymmetrical.
  • the first side of the middle gap 108 is a Z-shaped step
  • the second side of the middle gap 108 is a stepped structure formed by a convex structure with an arc-shaped edge and a concave structure with an arc-shaped edge, that is, the second
  • the protrusion of a protrusion structure 1051 may not have a sharp right angle, but a smooth arc edge.
  • the size of the middle notch 108 in the second direction increases sequentially, that is, the width of the middle notch 108 along the first direction becomes larger and larger, so that on the second side On b, there are electrode structures 105 only at both ends of the second side b.
  • the display panel 10 further includes a second signal line 109 at least partially disposed in the middle gap 108 .
  • the first signal line 103 may be connected to a first pin of a COF (not shown in the figure) to provide a first voltage signal to the COF.
  • the second signal line 109 can be connected to the second pin of the COF, the first pin and the second pin are insulated, and the second signal line 109 is configured to provide a second voltage signal to the COF, the first voltage The signal is different from the second voltage signal.
  • the second signal line 109 is configured to transmit the power signal of the pixel driving circuit.
  • the second signal line 109 is electrically connected to the transistors in the pixel units in the display panel. For example, it may be electrically connected to the source or drain of the transistor in the pixel unit.
  • the second signal line 109 can be used to provide a positive power supply signal for the transistors in the pixel unit, therefore, the second signal line 109 can also be called a VDD power supply line or a VDD wiring.
  • FIG. 8 is a schematic plan view of another electrode structure provided by an embodiment of the present disclosure.
  • the entire electrode structure 105 has a first side a close to the display area and a second side Side b, the middle part of the second side b is recessed toward the first side a to form a middle gap 108 , and the gaps on both sides of the electrode structure 105 are recessed from the second side b to the first side a.
  • the second side b has a stepped shape, that is, has a stepped structure, and the stepped structure is distributed on both sides of the middle gap 108 .
  • the stepped structure is symmetrical about the center line of the middle gap 108, that is, it is symmetrical about the axis, so that the patterning process of the electrode structure 105 can be conveniently performed, and the patterning process becomes finer, but embodiments of the present disclosure are not limited to this.
  • the width of the electrode structure 105 in the first direction decreases first, then increases, then decreases, and then increases along the second direction b.
  • the width of the electrode structure 105 in the first direction decreases first along the second direction b, then increases, then decreases and then increases, thus forming a a Depressed multiple notches.
  • the stepped structure of the electrode structure 105 includes a stepped structure with a first protruding structure 1051 and a first concave structure 1052 that are connected to each other and arranged adjacent to each other.
  • the adjacent first protruding structures 1051 and the first concave structure 1052 form a stepped structure.
  • the second side b has Z-shaped steps on both sides of the middle gap 108.
  • the step structures on both sides of the middle gap 108 may also be asymmetrical.
  • the first side of the middle gap 108 is a Z-shaped step
  • the second side of the middle gap 108 is a stepped structure formed by a convex structure with an arc-shaped edge and a concave structure with an arc-shaped edge, that is, the second
  • the protrusion of a protrusion structure 1051 may not have a sharp right angle, but a smooth arc edge.
  • the display panel 10 further includes a second signal line 109 , and the second signal line 109 is at least partially disposed in the middle gap 108 .
  • the first signal line 103 may be connected to a first pin of a COF (not shown in the figure) to provide a first voltage signal to the COF.
  • the second signal line 109 can be connected to the second pin of the COF, the first pin and the second pin are insulated, and the second signal line 109 is configured to provide a second voltage signal to the COF, the first voltage The signal is different from the second voltage signal.
  • the second signal line 109 is configured to transmit the power signal of the pixel driving circuit.
  • the second signal line 109 is electrically connected to the transistors in the pixel units in the display panel. For example, it may be electrically connected to the source or drain of the transistor in the pixel unit.
  • the second signal line 109 can be used to provide a positive power supply signal for the transistors in the pixel unit, therefore, the second signal line 109 can also be called a VDD power supply line or a VDD wiring.
  • FIG. 9 is a schematic cross-sectional structure diagram along the BB' line in FIG. 2 , and as shown in FIG. 2 and FIG.
  • the conductive part 106, the conductive part 106 and the electrode structure 105 are electrically connected in the peripheral region 102, the conductive part 106 is closer to the base substrate 107 than the electrode structure 105, the material of the conductive part 106 and the electrode structure 105 can be the same, and can include Silver metal or a mixture of silver metal and indium zinc oxide can also be a single type of metal, such as silver, aluminum or titanium metal.
  • the first signal line 103 further includes an electrode connection portion 110 located in the peripheral region 102 and between the conductive portion 106 and the electrode structure 105, the electrode connection portion 110 is in contact with the conductive portion 106, and is in contact with the conductive portion 106.
  • the electrode structure 105 is in contact, and the electrode structure 105 and the conductive part 106 are electrically connected through the electrode connection part 110 .
  • the shape of the boundary of the electrode connection part 110 may be the same or substantially the same as the shape of the boundary of the electrode structure 105, and the shape of the boundary of the electrode connection part 110 may also be different from the shape of the boundary of the electrode structure 105.
  • the present disclosure The embodiments are not limited to this.
  • the orthographic projection of the electrode connection portion 110 on the base substrate 107 overlaps the orthographic projection of the electrode structure 105 on the substrate substrate 107, so that the electrode connection portion 110 and the electrode structure 105 are at least partially lap.
  • the orthographic projection of the electrode structure 105 on the base substrate 107 is located within the orthographic projection of the electrode connection part 110 on the base substrate 107, so that the electrode connection part 110 can connect the electrode structure 105 and The conductive portion 106 is sufficiently connected.
  • the orthographic projection of the edge of the electrode connection portion 110 on the base substrate 107 and the orthographic projection of the covering portion 104 on the base substrate 107 at least partially overlap, so that the cladding layer 104
  • the electrode connection part 110 and the electrode structure 105 are sufficiently covered.
  • the materials of the electrode connection part 110, the conductive part 106 and the electrode structure 105 all include conductive metal, the materials of the electrode connection part 110 and the conductive part 106 are the same, and the materials of the electrode connection part 110 and the electrode structure 105 are different, or, In an example, the materials of the electrode connection part 110 and the conductive part 106 may also be different.
  • the display panel further includes an encapsulation layer 113 disposed on the side of the barrier portion 111a and the barrier dam 111b away from the base substrate 107, and the orthographic projection of the encapsulation layer 113 on the base substrate 107 covers the first An orthographic projection of a signal line 103 (including the electrode connection part 110 , the electrode structure 105 and the conductive part 106 ), the barrier part 111 a and the barrier dam 111 b on the base substrate 107 .
  • the display panel 10 further includes a passivation layer 114 located between the electrode connection portion 110 and the conductive portion 106, wherein the encapsulation layer 113, the electrode structure 105, the electrode connection portion 107, and the conductive portion are all connected to the The passivation layer 114 contacts.
  • the electrode structure 105 is easily corroded by water, vapor or oxygen. Therefore, by covering the passivation layer 114 on the electrode connection portion 107, the electrode connection portion 107 will not be corroded by water, vapor, etc. when other film layers are subsequently formed. Or oxygen corrosion, so that the electrode connection part 107 can stably provide a power signal to the conductive part 106, so as to improve the display effect of the display substrate.
  • the material of the passivation layer 114 may include: silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiOxNy), silicon carbide (SiC), aluminum oxide (AL 2 O 3 ), zinc sulfide ( One or more combinations of ZnS), zinc oxide (ZnO), etc., the embodiment of the present disclosure does not limit the material of the passivation layer 114 .
  • the passivation layer can be formed by chemical vapor deposition (CVD), sputtering, atomic layer deposition (ALD), etc., and the thickness of the passivation layer can be 0.05 ⁇ m ⁇ 2.5 ⁇ m.
  • the electrode structure 105 is disposed on the first organic layer 011 included in the first barrier dam 111b1. Underneath, to be covered by the first organic layer 011.
  • FIG. 10 is a schematic top view of a display panel provided by an embodiment of the present disclosure.
  • the display panel is an OLED display panel as an example for illustration.
  • FIG. Area 11
  • non-protected area 12 and binding area (Bonding Region) 13.
  • the non-protected area 12 is not covered by the encapsulation film, the non-protection area 12 can be located at the periphery of the encapsulation film-covered area 11 , and the binding area 13 can be arranged on one side of the encapsulation film-covered area 11 .
  • FIG. 11 is a schematic cross-sectional structural diagram along line AB in FIG. 10.
  • a base substrate 107 is provided on a support substrate 200.
  • the base substrate 107 can be a flexible substrate, for example, polyamide imine (Polyimide, PI), but the embodiments of the present disclosure are not limited thereto.
  • the support substrate 200 may be a glass substrate.
  • an array of thin film transistors (Thin Film Transistor, TFT) 201 can be arranged on the base substrate 107
  • the display panel 10 is an organic light emitting diode display panel, and the organic light emitting diode display panel includes thin film transistors 201 and organic light emitting diodes.
  • TFT Thin Film Transistor
  • the thin film transistor 201 includes a source-drain layer 207
  • the organic light emitting diode 209 includes a first electrode 210
  • a connection structure 215 is provided between the source-drain layer 207 and the first electrode 210
  • the connection structure 215 and the first electrode 210 A third electrode 216 is arranged between the first electrodes 210
  • a third organic layer 013 is arranged between the source-drain layer 207 and the connecting structure 215, and a second organic layer 012 is arranged between the third electrode 216 and the connecting structure 215 , wherein, the first electrode 210, the third electrode 216 and the connection structure 215 are electrically connected to the source-drain layer 207.
  • the thin film transistor 201 may include a semiconductor layer, a gate, a gate insulating layer, a source and a drain, and the like. As shown in FIG.
  • a buffer layer 202, a semiconductor layer 203, a gate insulating layer 204, a gate 205, an interlayer dielectric layer 206, and a source-drain layer 207 can be sequentially arranged on the base substrate 107, and the source-drain layer 207 includes a source 2071 and a drain 2072, the source 2071 and the drain 2072 are spaced apart from each other and can be respectively connected to the semiconductor layer 203 through a via structure.
  • a flat layer 208 can be arranged on the thin film transistor 201, and a device to be packaged (OLED) 209, that is, an organic light emitting diode, can be arranged on the flat layer 208.
  • OLED device to be packaged
  • the device to be packaged (OLED) 209 can include the first electrode 210, a light-emitting functional layer 211 and a second electrode.
  • the second electrode 212 and the first electrode 210 can be electrically connected to the drain 2072 through a via hole penetrating the planar layer 208 .
  • a pixel defining layer 213 may be disposed on the first electrode 210 to facilitate the formation of the light emitting functional layer 211 .
  • the second electrode 212 can be electrically connected to an electrode lead (not shown in the figure) through the electrode structure 105.
  • the light-emitting functional layer 211 may include a light-emitting layer, and may also include other functional layers, such as at least one of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, but embodiments of the present disclosure are not limited to this.
  • electrode leads may be formed in the same layer as the source-drain layer 207 .
  • An encapsulation layer 113 may be formed on the device to be encapsulated (OLED) 209 .
  • the packaging layer 113 covers the device 209 to be packaged.
  • the structure of the device to be packaged (OLED) 209 is not limited thereto.
  • FIG. 7 , 8 and 10 show the first direction Y and the second direction X
  • FIG. 11 shows the third direction Z.
  • the first direction Y and the second direction X are directions parallel to the main surface of the base substrate
  • the third direction Z is a direction perpendicular to the main surface of the base substrate.
  • the main surface of the base substrate is the surface on which various elements are fabricated.
  • the upper surface of the base substrate in FIG. 11 is its main surface.
  • the first direction Y and the second direction X intersect. Further for example, the first direction Y is perpendicular to the second direction X.
  • FIG. 12 is a schematic cross-sectional view of the CD line in FIG. 10.
  • the second film 113b and the third film 113c the second film 113b is sandwiched between the first film 113a and the third film 113c, and at the edge position, the first film 113a and the third film 113c contact, in Fig. 12
  • the stack contact portion M (stack contact) of the first thin film 113a and the third thin film 113c is shown.
  • the first thin film 113a and the third thin film 113c can be thin films formed of inorganic materials, for example, the inorganic materials can be one or more of inorganic oxides or inorganic nitrides such as SiNx, SiOx, SiCxNy, etc.
  • the second film 113b may be a film formed of an organic material, for example, the organic material may be an organic substance such as resin, but the embodiments of the present disclosure are not limited thereto.
  • the resin may be, for example, a thermosetting resin, and the thermosetting resin includes, for example, epoxy resin, but embodiments of the present disclosure are not limited thereto.
  • the resin may be, for example, a thermoplastic resin, and the thermoplastic resin includes, for example, acrylic (PMMA) resin, but embodiments of the present disclosure are not limited thereto.
  • the first thin film 113a and the third thin film 113c can be prepared by chemical vapor deposition (Chemical Vapor Deposition, CVD), and the second thin film 113b can be prepared by ink jet printing (Ink Jet Printing, IJP). Both the first thin film 113a and the third thin film 113c can serve as a water blocking layer.
  • the first film 113a may include a plurality of laminated sub-layers
  • the second film 113b and the third film 113c may also respectively include a plurality of laminated sub-layers, so as to prevent external water and oxygen from entering the display panel. internal.
  • the encapsulation layer 113 is located on the side of the electrode structure 105 away from the base substrate 107 , and the stack of the second film 113 b and the third film 113 c in the encapsulation layer 113 can cover the barrier structure 111 .
  • the boundary of the area covered by the encapsulation layer 113 may be located on a side of the barrier structure 111 away from the plurality of pixel units.
  • the second film 113b may be located within the area enclosed by the barrier structure 111
  • the first film 113a and the third film 113c may cover the area enclosed by the barrier structure 111 and cover the barrier structure 111 . That is, the orthographic projection of the barrier structure 111 on the base substrate 107 is located in the area covered by the encapsulation layer 113 , thereby improving the effective encapsulation of the encapsulation layer 113 to each structure located in the area enclosed by the barrier structure 111 .
  • FIG. 13 is a disassembled view of a display panel provided by an embodiment of the present disclosure.
  • the second electrode 212 is, for example, a cathode of an organic light emitting diode.
  • the orthographic projection of the electrode structure 105 on the substrate overlaps the third barrier portion 111a3 (the first barrier portion and the second barrier portion are not shown in FIG. 11 ), and overlaps a part of the first barrier dam 111b1, That is, one end of the electrode structure 105 extends to the region corresponding to the first barrier dam 111b1.
  • the display device may include the display panel in any of the above embodiments.
  • the display device may be a folding display device, for example, it may be: a liquid crystal panel, an electronic paper, an organic light-emitting diode (organic light-emitting diode, OLED) panel, an active-matrix organic light-emitting diode (active-matrix organic light-emitting diode, AMOLED ) panels, mobile phones, tablet PCs, TV sets, monitors, laptops, digital photo frames, navigators and any other products or components with display functions.
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • the covering part is used to cover the edge of the electrode structure away from the display area, so that the edge of the electrode structure is protected, and the phenomenon of electrochemical corrosion at the edge of the electrode structure is avoided, and
  • the edge of the electrode structure away from the display area is set to have a stepped shape, the path for water and vapor to enter the display area is extended, making it difficult for water and vapor to enter the display area, thereby avoiding the occurrence of dark spots and improving the display panel. reliability.
  • the thickness of the barrier structure on the side closest to the display area is set to be smaller than the thickness of the barrier structure on the side farthest from the display area, thereby reducing the thickness of the water and vapor channels.
  • the thickness of the layer can reduce the risk of water and vapor accumulation in the organic layer.
  • the width of the blocking structure on the side close to the display area is reduced, so that its ability to block water and vapor is enhanced.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(10)包括:显示区域(101);围绕显示区域(101)的周边区域(102);衬底基板(107);第一信号线(103),位于衬底基板(107)上,包括位于周边区域(102)的电极结构(105),电极结构(105)的远离显示区域(101)的边缘具有台阶形状;包覆部(104),覆盖电极结构(105)的远离显示区域(101)的边缘,显示面板(10)采用包覆部(104)覆盖电极结构(105)的远离显示区域(101)的边缘,使得电极结构(105)的边缘被保护,避免了电极结构(105)的边缘发生电化学腐蚀的现象,且将电极结构(105)的远离显示区域(101)的边缘设计成具有台阶形状,延长了水、汽进入显示区域(101)的路径,从而提升了显示面板(10)的信赖性。

Description

显示面板和显示装置 技术领域
本公开至少一实施例涉及一种显示面板和显示装置。
背景技术
有机发光二极管(OLED,Organic Light Emitting Diode)显示器件是一种有机电致发光显示器件,其具有制备工艺简单、成本低、发光效率高、易形成柔性结构、自发光、全固态和高对比度等优点,因此,利用有机发光二极管的显示技术已经成为一种重要的显示技术。
随着用户对显示器件质量要求的不断提高,封装技术变得越来越重要。目前,为了阻挡水和氧气从显示器件的侧面渗入到显示器件的内部,通常在两层无机封装层之间设置疏水性挡墙或者凸起的挡墙,以使得水和氧气无法渗入到显示器件的内部。
发明内容
本公开至少一实施例提供一种显示面板,该显示面板通过将第一信号线包括的电极结构的远离显示区域的边缘设置成具有台阶形状,并采用包覆部覆盖该电极结构的远离显示区域的边缘,从而延长水、汽进入显示区域的路径,以提升显示面板的信赖性。
本公开至少一实施例提供一种显示面板,该显示面板包括:显示区域;围绕所述显示区域的周边区域;衬底基板;第一信号线,位于所述衬底基板上,包括位于所述周边区域的电极结构,所述电极结构的远离所述显示区域的边缘具有台阶形状;包覆部,覆盖所述电极结构的远离所述显示区域的边缘。
例如,在本公开至少一实施例提供的显示面板中,所述第一信号线还包括位于所述周边区域且设置在所述衬底基板上的导电部,所述导电部和所述电极结构在所述周边区域电连接,所述导电部比所述电极结构更靠近所述衬底基板。
例如,在本公开至少一实施例提供的显示面板中,所述包覆部具有台阶形状。
例如,在本公开至少一实施例提供的显示面板中,至少部分所述包覆部具有一体的结构。
例如,在本公开至少一实施例提供的显示面板中,至少部分所述包覆部的延伸方向与所述电极结构的远离所述显示区域的边缘的延伸方向相同或者大致相同。
例如,在本公开至少一实施例提供的显示面板中,所述电极结构具有靠近所述显示区域的第一边和远离所述显示区域的第二边,所述第二边的中间部分向所述第一边凹陷以形成中间缺口。
例如,在本公开至少一实施例提供的显示面板中,所述第二边具有台阶结构。
例如,在本公开至少一实施例提供的显示面板中,从所述第一边到所述第二边的方向为第一方向,与所述第一方向相交的方向为第二方向,在所述中间缺口的第一侧,所述电极结构在所述第一方向的宽度沿着所述第二方向逐渐减小;在所述中间缺口的第二侧,所述电极结构在所述第一方向的宽度沿着所述第二方向逐渐变大。
例如,在本公开至少一实施例提供的显示面板中,所述台阶形状包括相互连接且相邻设置的第一凸起结构和第一凹陷结构。
例如,在本公开至少一实施例提供的显示面板中,所述第二边在所述中间缺口的两侧均具有Z字型台阶。
例如,在本公开至少一实施例提供的显示面板中,沿着所述第一方向,所述中间缺口在所述第二方向上的尺寸依次增大。
例如,本公开至少一实施例提供的显示面板,还包括第二信号线,所述第二信号线至少部分设置在所述中间缺口中。
例如,在本公开至少一实施例提供的显示面板中,所述第二信号线配置为传输像素驱动电路的电源信号。
例如,在本公开至少一实施例提供的显示面板中,所述第一信号线还包括位于所述周边区域且位于所述导电部和所述电极结构之间的电极连接部,所述电极连接部和所述导电部接触,且和所述电极结构接触。
例如,在本公开至少一实施例提供的显示面板中,所述电极连接部在所述衬底基板上的正投影与所述电极结构在所述衬底基板上的正投影交叠。
例如,在本公开至少一实施例提供的显示面板中,所述电极结构在所述 衬底基板上的正投影位于所述电极连接部在所述衬底基板上的正投影之内。
例如,在本公开至少一实施例提供的显示面板中,所述电极连接部的边缘在所述衬底基板上的正投影与所述包覆部在所述衬底基板上的正投影至少部分交叠。
例如,在本公开至少一实施例提供的显示面板中,所述显示面板为有机发光二极管显示面板,所述有机发光二极管显示面板包括薄膜晶体管和有机发光二极管,所述薄膜晶体管包括源漏极层,所述有机发光二极管包括第一电极,在所述源漏极层和所述第一电极之间设置有连接结构,其中,所述第一电极和所述连接结构与所述源漏极层电连接,所述电极结构与所述第一电极阳极同层设置,所述导电部与所述源漏极层同层设置,所述电极连接部与所述连接结构同层设置。
例如,在本公开至少一实施例提供的显示面板中,所述电极连接部和所述导电部的材料相同,且所述电极连接部和所述电极结构的材料不同。
例如,本公开至少一实施例提供的显示面板,还包括多个阻挡结构,所述多个阻挡结构的材料包括有机绝缘材料,且所述多个阻挡结构的至少部分形成所述包覆部,至少两个所述台阶结构被不同的所述阻挡结构包覆。
例如,在本公开至少一实施例提供的显示面板中,多个所述阻挡结构位于所述周边区域,沿着从所述周边区域到所述显示区域的方向依次设置,且每个所述阻挡结构均围绕所述显示区域设置。
例如,在本公开至少一实施例提供的显示面板中,所述阻挡结构包括阻挡部和阻挡坝,其中,所述阻挡部和所述阻挡坝沿着所述第一方向依次设置,且从靠近所述衬底基板的一侧到远离所述衬底基板的一侧,所述阻挡部的厚度小于所述阻挡坝的厚度。
例如,在本公开至少一实施例提供的显示面板中,所述阻挡部、所述阻挡坝的第一部分和所述包覆部同层设置,且具有一体的结构。
例如,在本公开至少一实施例提供的显示面板中,所述阻挡部包括沿着所述第一方向依次设置的第一阻挡部、第二阻挡部和第三阻挡部,所述阻挡坝包括沿着所述第一方向依次设置的第一阻挡坝和第二阻挡坝。
例如,在本公开至少一实施例提供的显示面板中,沿着所述第一方向,所述第一阻挡部和所述第二阻挡部之间的第一距离D1基本等于所述第二阻挡部和所述第三阻挡部之间的第二距离D2,且小于所述第三阻挡部和所述 第一阻挡坝之间的第三距离D3,所述第一阻挡坝和所述第二阻挡坝之间具有第四距离D4。
例如,在本公开至少一实施例提供的显示面板中,所述包覆部在所述第一阻挡部和所述第二阻挡部之间的部分具有第一台阶;所述包覆部在所述第二阻挡部和所述第三阻挡部之间的部分具有第二台阶;以及所述包覆部在所述第三阻挡部和所述第一阻挡坝之间的部分具有第三台阶。
例如,在本公开至少一实施例提供的显示面板中,在所述第二方向上,所述第一台阶的宽度等于或者大致等于所述第二台阶的宽度,且等于或者大致等于所述第三台阶的宽度。
例如,在本公开至少一实施例提供的显示面板中,从靠近所述衬底基板的一侧到远离所述衬底基板的一侧,所述第一阻挡部、所述第二阻挡部和所述第三阻挡部的厚度相等且均具有第一厚度,所述第一阻挡坝具有第二厚度,所述第二阻挡坝具有第三厚度,且所述第一厚度、所述第二厚度和所述第三厚度依次增大。
例如,在本公开至少一实施例提供的显示面板中,所述第一阻挡部、所述第二阻挡部、所述第三阻挡部、所述第一阻挡坝和所述第二阻挡坝均包括第一有机层,且所述第一阻挡部、所述第二阻挡部、所述第三阻挡部、所述第一阻挡坝和所述第二阻挡坝包括的所述第一有机层同层设置;所述第一阻挡坝和所述第二阻挡坝还包括设置在所述第一有机层的靠近所述衬底基板一侧的第二有机层,且所述第一阻挡坝和所述第二阻挡坝包括的所述第二有机层同层设置;所述第二阻挡坝还包括设置在所述第二有机层的靠近所述衬底基板一侧的第三有机层。
例如,本公开至少一实施例提供的显示面板,还包括设置在所述阻挡部和所述阻挡坝的远离所述衬底基板一侧的封装层,所述封装层在所述衬底基板上的正投影覆盖至少部分所述第一信号线、所述阻挡部和所述阻挡坝在所述衬底基板上的正投影。
例如,本公开至少一实施例提供的显示面板,还包括位于所述电极连接部和所述导电部之间的钝化层,其中,所述封装层、所述电极结构、所述电极连接部以及所述导电部均与所述钝化层接触。
例如,在本公开至少一实施例提供的显示面板中,所述第一信号线被配置为传输阴极信号,所述电极结构与有机发光二极管的阴极电连接。
本公开至少一实施例还提供一种显示装置,该显示装置包括上述任一实施例中的显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种显示面板的平面结构示意图;
图2为本公开一实施例提供的一种显示面板的平面结构示意图;
图3为图2中A区域放大的平面结构示意图;
图4为沿着图3中MN线的截面结构示意图;
图5为图2中椭圆形虚线区域C放大的平面结构示意图;
图6为本公开一实施例提供的一种阻挡结构的平面结构示意图;
图7为本公开一实施例提供的一种电极结构的平面结构示意图;
图8为本公开一实施例提供的再一种电极结构的平面结构示意图;
图9为图2中的沿着B-B’线的截面结构示意图;
图10为本公开一实施例提供的一种显示面板的俯视示意图;
图11为图10中沿着AB线的剖视结构示意图;
图12为图10中沿着CD线的剖视结构示意图;以及
图13为本公开一实施例提供的一种显示面板的拆解图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前 面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
对于车载大尺寸产品,由于车载屏幕对使用环境及寿命的要求都很高,其高温高湿的信赖性规格需要长达1200小时以上,而常规的手机面板的信赖性规格为200多小时,因此,对于车载大尺寸产品,对柔性显示面板的封装提出了非常严格的要求。例如,柔性显示面板通常包括阵列排布在衬底基板的显示区域的多个像素单元,用于为每个像素单元提供正极电源信号的电源走线(一般称为VDD走线),以及用于为显示面板中的阴极层提供负极电源信号的电源走线(例如,VSS走线)。VDD走线和VSS走线在从驱动芯片的一侧进入到封装区域内时,例如,从绑定区进入阻挡结构的靠近像素单元一侧的区域时,也即是阻挡结构的供电源线穿过的部分(进线口)的附近时,存在将水和氧气引入的风险。对于中尺寸和大尺寸的显示产品,为了通过减少电源走线从封装区域的外部进入到封装区域带来水氧的风险来提高显示的均一性以及长程均一性(long range unifinity,LRU),通常会减少进入封装区域电源走线的数量。
但是,为了进一步保证电源走线的电信号的传输,如为了保证为显示面板中的阴极层提供负极电源信号的电源走线(一般称为VSS走线)与有机发光二极管器件的阴极之间稳定的电连接,VSS走线的一端进入封装区域后,例如进入阻挡结构之后,需要通过位于衬底基板的封装区域内的转接结构与阴极层连接,例如,必须在显示面板下边框的源极电源电压信号线上增加转接结构与阴极进行电连接。但是,本公开的发明人发现,增加转接结构,例如增加导电金属结构,虽然可以提升阴极与阴极电源线的搭接效果,但是由于在工艺过程中导电金属结构的边缘极易发生电化学腐蚀,从而易出现导电金属结构的边缘发黑的现象,所以导电金属结构的边缘必须被有机材料保护起来,以防止导电金属结构的边缘被腐蚀。此外,增加阻挡结构可以使得打印油墨在到达显示面板最外侧的阻挡结构之前具有一定的缓冲流平,从而可以进一步防止打印油墨越过显示面板最外侧的阻挡结构,以提高显示面板的封装效果。
例如,图1为一种显示面板的平面结构示意图,如图1所示,由于导电金属01的边界必须要被有机材料覆盖以防止导电金属01的边界发生电化学腐蚀,从而对导电金属01的边界进行保护,刚好阻挡结构02的膜层中包括有机材料,所以可以在显示面板的下边框的边缘将导电金属01设计成沿着阻挡结构02的边缘设计,但是该种设计未考虑规避长时间信赖性暗点不良的现象,一旦阻挡结构中出现了水、汽聚集,水、汽就会从阻挡结构到提供负极电源信号的电源走线03的截止位置沿着导电金属01的边界进入靠近显示区域04的一侧,即在图1中,水、汽就会沿着图1中的矩形虚线框示出的导电金属01的边界流动,然后沿着椭圆形虚线框示出的导电金属01的边界进入靠近显示区域04的一侧,这样就会因为没有明显的阻隔而使得水、汽直接沿着导电金属01的边界进入显示区域04,且在长时间的高温高湿环境下,显示面板易发生封装失效。
本公开的发明人注意到,可以将导电金属01的边界设计成具有台阶形状,以延长水、汽入侵的路径,刚好阻挡结构02的材料为有机材料,可以将阻挡结构02沿着导电金属01的台阶形状的边缘也设计成台阶状,从而对导电金属01的具有台阶形状的边缘进行保护,防止其被电化学腐蚀,且由于导电金属01的台阶形状的边缘有明显的拐角,可以起到阻隔水、汽作用,从而可以延长水、汽入侵显示区域的路径,以避免暗点现象的产生,并提升显示面板的信赖性。常规的阻挡结构中有机层包含两层层叠设置的结构,本公开的发明人还注意到,可以将靠近显示区域04一侧的阻挡结构02的厚度减薄,远离显示区域04一侧的阻挡结构02的厚度保持常规的阻挡结构的厚度,且由于阻挡结构02的厚度不同,最靠近显示区域04一侧的阻挡结构02的厚度小于最远离显示区域04一侧的阻挡结构02的厚度,这样可以减薄水、汽通道有机层的厚度,从而可以使得有机层中水、汽聚集的风险减小。本公开的发明人还注意到,可以通过缩窄水、汽通道有机层的宽度,以有利于阻隔水、汽,例如,目前设计的阻挡结构02的宽度为40μm,该阻挡结构只是起到缓冲打印墨水流平的作用,即辅助打印墨水在到达真正的阻挡结构之前流平,所以,除了位于最远离显示区域一侧的阻挡结构之外,位于靠近显示区域一侧的阻挡结构的宽度均可以缩减,例如,可以将靠近显示区域一侧的阻挡结构的宽度设计为小于40μm,例如30μm,甚至可以更小,只要能够实现工艺上阻挡结构包括的有机层可以覆盖阳极金属01的边界即可。
本公开至少一实施例提供一种显示面板,该显示面板包括:显示区域和围绕该显示区域的周边区域,该显示面板还包括衬底基板、第一信号线和包覆部,第一信号线包括位于周边区域的电极结构且位于该衬底基板上,该电极结构的远离显示区域(active area,AA)的边缘具有台阶形状,该包覆部覆盖电极结构的远离显示区域的边缘,以使得电极结构的远离显示区域的边缘被包覆部保护,从而可以降低电极结构的远离显示区域的边缘发生电化学腐蚀的风险,还可以延长水、汽入侵至显示区域的路径,以阻止水、汽进入显示区域,从而提升显示面板的可信赖性。
例如,图2为本公开一实施例提供的一种显示面板的平面结构示意图,如图2所示,该显示面板10包括:显示区域101和围绕该显示区域101的周边区域102,该显示面板10还包括位于衬底基板上的第一信号线103和包覆部104,第一信号线103包括位于周边区域102的电极结构105,该电极结构105的远离显示区域101的边缘具有台阶形状。例如,该台阶形状如图2中的椭圆形虚线C所示,图2中电极结构105的台阶形状可以延长水、汽入侵显示区域的路径,以避免暗点现象的产生,并提升显示面板的信赖性。
需要说明的是,该电极结构105的远离显示区域101的边缘可以是图2中示出的下边框的边缘、左侧边框的边缘、右侧边框的边缘和上侧边框的边缘中的至少之一,尽管图2中示出了仅在下边框的边缘将电极结构105的边缘设置成台阶形状,但本公开的实施例不限于此,还可以在电极结构105的远离显示区域101的左侧边框的边缘、右侧边框的边缘和上侧边框的边缘中的至少之一中将电极结构105的边缘设置成台阶形状。
例如,该显示面板10包括多个像素单元(图中未示出),多个像素单元在衬底基板上的正投影所在的区域对应于该显示面板的显示区域,当水、汽进入显示区域中的像素单元时,容易出现暗点不良的现象。
例如,该第一信号线103包括的电极结构105与有机发光二极管的阴极电连接,该第一信号线103被配置为传输阴极信号。
例如,图3为图2中A区域放大的平面结构示意图,如图3所示,该显示面板10还包括多个阻挡结构111,多个阻挡结构111位于周边区域102,沿着从周边区域102到显示区域101的方向依次设置,该多个阻挡结构111中的每个可以围绕该显示区域101设置,该多个阻挡结构111的材料均包括有机绝缘材料。例如,该阻挡结构111中的每个可以为环绕多个像素单元的 环状结构,用于防止显示面板中位于该阻挡结构围成的区域内的喷墨打印的有机材料的溢流。
例如,如图3所示,该阻挡结构111包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的多个阻挡部111a和多个阻挡坝111b,在图3中示出了三个阻挡部111a和两个阻挡坝111b,但本公开的实施例不限于此,还可以具有一个、两个或者三个以上的阻挡部111a,和一个或者两个以上的阻挡坝111b。在图3所示的结构中,每个阻挡部111a的宽度小于每个阻挡坝111b的宽度。
例如,如图3所示,该多个阻挡部111a包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的第一阻挡部111a1、第二阻挡部111a2和第三阻挡部111a3,多个阻挡坝111b包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的第一阻挡坝111b1和第二阻挡坝111b2。
例如,如图3所示,从靠近显示区域的一侧到远离显示区域的一侧,第一阻挡部111a1、第二阻挡部111a2和第三阻挡部111a3的宽度相等,第一阻挡坝111b1和第二阻挡坝111b2的宽度相等,但是多个阻挡部111a中每个的宽度小于多个阻挡坝111b中每个的宽度,需要说明的是,每个阻挡部111a的宽度是指每个阻挡部111a的沿着MN线的长度,每个阻挡坝111b的宽度是指每个阻挡坝111b的沿着MN线的长度。
例如,如图3所示,从靠近显示区域的一侧(即为M所在的一侧)到远离显示区域的一侧(即为N所在的一侧),第一阻挡部111a1和第二阻挡部111a2之间的第一距离D1等于第二阻挡部111a2和第三阻挡部111a3之间的第二距离D2,且小于第三阻挡部111a3和第一阻挡坝111b1之间的第三距离D3,第一阻挡坝111b1和第二阻挡坝111b2之间具有第四距离D4,且第四距离D4小于第一距离D1,由于喷墨打印的有机材料从靠近显示区域的一侧到远离显示区域的一侧流平且不能从远离显示区域的一侧溢流,因此,为了防止喷墨打印的有机材料从远离显示区域的一侧溢流出,距离显示区域越远,相邻的阻挡结构之间的距离越小,即阻挡结构的密度越大,喷墨打印的有机材料从远离显示区域的一侧溢流出的风险越低,因此,将第四距离D4设置成小于第一距离D1、第二距离D2和第三距离D3可以防止喷墨打印的有机材料从远离显示区域的一侧溢流出。
例如,由于该多个阻挡结构111的材料包括有机绝缘材料,且多个阻挡 结构111的至少部分形成该包覆部104,该包覆部104将电极结构105的远离显示区域的边缘的全部或者部分包覆,即该电极结构105的边缘的台阶形状包括的至少两个台阶结构被不同的阻挡结构111包覆,以防止该电极结构105的边缘的台阶形状发生电化学腐蚀。
例如,图4为沿着图3中MN线的截面结构示意图,如图4所示,从靠近衬底基板107的一侧到远离衬底基板107的一侧,每个阻挡部111a的厚度小于每个阻挡坝111b的厚度,在图4中,第一阻挡部111a1、第二阻挡部111a2和第三阻挡部111a3的厚度相等且均具有第一厚度,且该第一厚度小于第一阻挡坝111b1具有的第二厚度,第一阻挡坝111b1的第二厚度小于第二阻挡坝111b2具有的第三厚度,即距离显示区域越远,阻挡结构的厚度越大,喷墨打印的有机材料从远离显示区域的一侧溢流出的风险越低。
需要说明的是,每个阻挡部或者每个阻挡坝的厚度是指每个阻挡部或者每个阻挡坝的远离衬底基板的一侧到对应的阻挡部或者阻挡坝的靠近衬底基板一侧的垂直距离。
例如,结合图3和图4,多个阻挡结构111中每个的厚度可以为1μm~3μm,且宽度可以为10μm~40μm。例如,阻挡部111a的厚度为1μm~2μm,宽度为10μm~30μm;阻挡坝111b的厚度为2μm~3μm,宽度为30μm~40μm。多个阻挡结构111中每个阻挡部111a和每个阻挡坝111b的厚度以及宽度的具体数值可以根据实际需求进行设定,旨在达到在喷墨打印的过程中喷墨不会喷溅到位于最外侧的阻挡结构111以外的区域即可。
例如,通过设置第一阻挡坝111b1和第二阻挡坝111b2,且远离显示区域的第二阻挡坝111b2的厚度大于靠近显示区域的第一阻挡坝111b1的厚度,可以进一步防止位于该阻挡结构111围成的区域内的有机材料的溢流。当然,该阻挡结构111还可以包括更多个阻挡坝,以进一步防止有机材料的溢流,本公开的实施例对此不做限定。
例如,如图4所示,该第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2均包括第一有机层011,且第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2包括的第一有机层011同层设置;第一阻挡坝111b1和第二阻挡坝111b2还包括设置在第一有机层011的靠近衬底基板107一侧的第二有机层012,且第一阻挡坝111b1和第二阻挡坝111b2包括的第二有机 层012同层设置;第二阻挡坝111b2还包括设置在第二有机层012的靠近衬底基板107一侧的第三有机层013。
例如,该第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2包括的第一有机层011在同一工艺步骤中形成。第一阻挡坝111b1和第二阻挡坝111b2包括的第二有机层012在同一工艺步骤中形成。该第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2均为围绕显示区域中的多个像素单元的环形结构,用于阻挡显示面板中位于该阻挡结构围成的区域内的有机材料的溢流。
例如,第一阻挡坝111b1包括在衬底基板上依次层叠的第一有机层011和第二有机层012,电极结构105的对应于第一阻挡坝111b1的边缘部分被第一有机层011覆盖。
例如,该第一有机层011可以为像素界定层(pixel definition layer,PDL)。该第一有机层011的材料可以包括:树脂等有机材料,例如,聚酰亚胺树脂,本公开的实施例对此不作限定。
例如,可以采用丝网印刷、旋涂、喷墨打印以及流延成膜的方式形成该第一有机层011。
例如,该第二有机层012和第三有机层013的材料也可以为聚酰亚胺树脂等有机材料,本公开的实施例对此不作限定。
例如,图5为图2中椭圆形虚线区域C放大的平面结构示意图,即为图2中电极结构和包覆部的平面结构示意图,如图5所示,电极结构105的远离显示区域101的边缘具有台阶形状,包覆部104也具有台阶形状,包覆部104覆盖电极结构105的远离显示区域101的边缘。该每个阻挡部111a、阻挡坝111b的第一部分(即第一阻挡坝111b1)和包覆部104同层设置,且该包覆部104具有一体的结构,第二阻挡坝111b2和包覆部104不存在同层设置的部分,即包覆部104没有延伸到第二阻挡坝111b2对应的区域。
例如,如图5所示,至少部分包覆部104的延伸方向与电极结构105的远离显示区域的边缘的延伸方向相同或者大致相同。
例如,如图5所示,相邻的阻挡部111a通过包覆部104连接,阻挡部111a和第一阻挡坝111b1通过包覆部104连接,或者包覆部104、第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3和第一阻挡坝111b1为一体 的结构。
例如,如图5所示,该包覆部104在第一阻挡部111a1和第二阻挡部111a2之间的部分具有第一台阶121,包覆部104在第二阻挡部111a2和第三阻挡部111a3之间的部分具有第二台阶122,以及包覆部104在第三阻挡部111a3和第一阻挡坝111b1之间的部分具有第三台阶123,该第一台阶121、第二台阶122和第三台阶123连接的整体构成台阶形状。
例如,如图5所示,该电极结构105具有靠近显示区域的第一边a和远离显示区域的第二边b,从第一边a到第二边b的方向为第一方向,即为平行于y轴的方向,与第一方向相交的方向为第二方向,即为平行于x轴的方向,该第一方向和第二方向相交可以是垂直相交或者大致垂直的相交,也可以是第一方向和第二方向之间的夹角为0度至30度的相交。在第二方向上,第一台阶121的宽度等于或者大致等于第二台阶122的宽度,且等于或者大致等于第三台阶123的宽度,即第一台阶121、第二台阶122和第三台阶123等宽度设计;或者第一台阶121的宽度小于第二台阶122的宽度,第二台阶122的宽度小于第三台阶123的宽度。图5中是以第一台阶121的宽度a1小于第二台阶122的宽度a2,第二台阶122的宽度a2小于第三台阶123的宽度a3为例进行说明的。
需要说明的是,本公开的实施例中的“大致”指的是可以允许有上下10%以内波动的误差范围。如宽度“大致”相等,可以是两者的宽度偏差不超过10%,第一方向和第二方向“大致垂直”可以是第一方向和第二方向之间的夹角在85度至95度之间的范围内波动。
例如,该包覆部104的材料为有机材料,从而使得电极结构105的边缘不会被电化学腐蚀而出现发黑的现象,且包覆部104具有台阶形状还可以延长水、汽入侵的路径,使得水、汽不容易进入到显示区域,而使得显示面板的可信赖性降低。
例如,当外界的水、汽等杂质沿着包覆部104的台阶形状(具有凹凸结构)侵入显示面板时,由于电极结构105的远离显示区域的边缘具有凹凸结构,使得水、汽的侵入路径跟台阶形状的边缘形状相似,外界的水、汽只有在完全通过电极结构105的各个台阶面上的凹凸结构之后,才可以侵入到显示区域的内部。而水、汽等杂质在侵入时,相比于直线状的路径,这种凹凸结构使得水、汽的流通不顺畅,会形成阻挡作用,并可以延长水、汽入侵的 路径,从而有效的将外界物质阻隔,因此,这种结构有效的延长了水、汽的侵入路径,密封效果好,对显示面板起到较好的保护作用。
例如,台阶形状中凹凸结构的形状、大小以及密度均可一致,或者,越靠近显示区域各个凹凸结构之间的密度越大,即靠近显示区域的一侧的凹凸结构的密度大于远离显示区域的一侧的凹凸结构的密度,这样,在水、汽侵入时,越靠近显示面板的内部,水、汽越难以侵入,最终有效的保护了显示面板的显示区域。
例如,包覆部104和阻挡结构111的整体对应地具有多个凹凸结构,以及可以包括矩形凹槽结构,各个矩形凹槽结构之间的距离可以相同,这样在进行刻蚀工艺时,工艺过程简单,且方便易操作。在一个示例中,该凹凸结构可以具有弧形边缘,包覆部104和阻挡结构111的整体对应地还可包括圆形凹槽结构或者锯齿状凹槽结构,该圆形凹槽结构和锯齿状凹槽结构在设置时与本公开的实施例中的矩形凹槽结构相同。在多个台阶面上,各个凹凸结构的形状可以相同,也可以不相同,根据具体产品进行选择,以使得显示面板的封装效果最佳。
例如,在形成电极结构105的具有凹凸结构的边缘时,采用光刻工艺并结合半色调掩膜板,对整层形成的电极结构薄膜进行构图。
例如,如图5所示,该包覆部104具有一体的结构,图5所示的包覆部104的边缘为台阶形状,该台阶形状由多个“Z”字型台阶依次连接,从而使得该包覆部104具有一体的结构。
需要说明的是,该“Z”字型台阶的形状可以是标准的“Z”字型或者也可以是大致呈“Z”字型的台阶。
例如,图6为本公开一实施例提供的一种阻挡结构的平面结构示意图,如图6所示,沿着从周边区域102到显示区域101的方向依次设置,该多个阻挡结构111中的每个可以围绕该显示区域101设置,该多个阻挡结构111的材料均包括有机绝缘材料。例如,该阻挡结构111中的每个可以为环绕多个像素单元的环状结构,用于防止显示面板中位于该阻挡结构围成的区域内的喷墨打印的有机材料的溢流。
例如,如图6所示,该阻挡结构111包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的多个阻挡部111a和多个阻挡坝111b,在图6中示出了三个阻挡部111a和两个阻挡坝111b,但本公开的实施例不限于此, 还可以具有一个、两个或者三个以上的阻挡部111a,和一个或者两个以上的阻挡坝111b。在图6所示的结构中,每个阻挡部111a的宽度小于每个阻挡坝111b的宽度。
例如,如图6所示,该多个阻挡部111a包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的第一阻挡部111a1、第二阻挡部111a2和第三阻挡部111a3,多个阻挡坝111b包括从靠近显示区域的一侧到远离显示区域的一侧依次设置的第一阻挡坝111b1和第二阻挡坝111b2。
例如,如图6所示,从靠近显示区域的一侧到远离显示区域的一侧,第一阻挡部111a1、第二阻挡部111a2和第三阻挡部111a3的宽度相等,第一阻挡坝111b1和第二阻挡坝111b2的宽度相等,但是多个阻挡部111a中每个的宽度小于多个阻挡坝111b中每个的宽度。
该第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2依次设置且在相邻的两个阻挡结构之间具有包覆部104,且该第一阻挡部111a1、第二阻挡部111a2、第三阻挡部111a3、第一阻挡坝111b1和第二阻挡坝111b2通过包覆部104连接成一体的结构。例如,图7为本公开一实施例提供的一种电极结构的平面结构示意图,如图7所示,该电极结构105的整体具有靠近显示区域的第一边a和远离显示区域的第二边b,该第二边b的中间部分向第一边a凹陷以形成中间缺口108。
例如,如图7所示,该第二边b具有台阶形状,即具有台阶结构,该台阶结构分布在中间缺口108的两侧。在一个示例中,该台阶结构关于中间缺口108的中心线对称,即呈轴对称,这样可以方便地对电极结构105进行构图工艺,且使得构图工艺变得精细,但本公开的实施例不限于此。
例如,如图7所示,在中间缺口108的第一侧(左侧),电极结构105在第一方向上的宽度沿着第二方向b逐渐减小。在中间缺口108的第二侧(右侧),电极结构105在第一方向上的宽度沿着第二方向b逐渐变大,这样就形成了向第一边a凹陷的中间缺口。
例如,如图7所示,该电极结构105的台阶形状包括的台阶结构具有相互连接且相邻设置的第一凸起结构1051和第一凹陷结构1052,该相邻的第一凸起结构1051和第一凹陷结构1052构成一个台阶结构。
例如,如图7所示,第二边b在中间缺口108的两侧均具有Z字型台阶,本公开的实施例不限于此,在中间缺口108的两侧的台阶结构也可以是不对 称的,例如,在中间缺口108的第一侧为Z字型台阶,在中间缺口108的第二侧为具有弧形边的凸起结构和具有弧形边的凹陷结构形成的台阶结构,即第一凸起结构1051的凸起部可以不具有尖锐的直角,而是具有光滑的弧形边缘。
例如,如图7所示,沿着第一方向,中间缺口108在第二方向上的尺寸依次增大,即沿着第一方向中间缺口108的宽度越来越大,以使得在第二边b上,只在第二边b的两端处具有电极结构105。
例如,结合图2和图7,该显示面板10还包括第二信号线109,该第二信号线109至少部分设置在该中间缺口108中。第一信号线103可以连接至覆晶薄膜(附图中未示出)的第一引脚,以向覆晶薄膜提供第一电压信号。该第二信号线109可以连接至覆晶薄膜的第二引脚,第一引脚和第二引脚绝缘,且第二信号线109配置为向覆晶薄膜提供第二电压信号,第一电压信号不同于第二电压信号。
例如,该第二信号线109配置为传输像素驱动电路的电源信号。该第二信号线109与显示面板中的像素单元中的晶体管电连接。例如,可以与像素单元中晶体管的源极或者漏极电连接。该第二信号线109可以用于为像素单元中的晶体管提供正极电源信号,因此,该第二信号线109也可以称为VDD电源线或者VDD走线。
例如,图8为本公开一实施例提供的再一种电极结构的平面结构示意图,如图8所示,该电极结构105的整体具有靠近显示区域的第一边a和远离显示区域的第二边b,该第二边b的中间部分向第一边a凹陷以形成中间缺口108,以及在电极结构105的两侧的从第二边b向第一边a凹陷的缺口。
例如,如图8所示,该第二边b具有台阶形状,即具有台阶结构,该台阶结构分布在中间缺口108的两侧。在一个示例中,该台阶结构关于中间缺口108的中心线对称,即呈轴对称,这样可以方便地对电极结构105进行构图工艺,且使得构图工艺变得精细,但本公开的实施例不限于此。
例如,如图8所示,在中间缺口108的第一侧(左侧),电极结构105在第一方向上的宽度沿着第二方向b先减小再增大再减小再增大。在中间缺口108的第二侧(右侧),电极结构105在第一方向上的宽度沿着第二方向b先减小再增大再减小再增大,这样就形成了向第一边a凹陷的多个缺口。
例如,如图8所示,该电极结构105的台阶形状包括的台阶结构具有相 互连接且相邻设置的第一凸起结构1051和第一凹陷结构1052,该相邻的第一凸起结构1051和第一凹陷结构1052构成一个台阶结构。
例如,如图8所示,第二边b在中间缺口108的两侧均具有Z字型台阶,本公开的实施例不限于此,在中间缺口108的两侧的台阶结构也可以是不对称的,例如,在中间缺口108的第一侧为Z字型台阶,在中间缺口108的第二侧为具有弧形边的凸起结构和具有弧形边的凹陷结构形成的台阶结构,即第一凸起结构1051的凸起部可以不具有尖锐的直角,而是具有光滑的弧形边缘。
例如,结合图2和图8,该显示面板10还包括第二信号线109,该第二信号线109至少部分设置在该中间缺口108中。第一信号线103可以连接至覆晶薄膜(附图中未示出)的第一引脚,以向覆晶薄膜提供第一电压信号。该第二信号线109可以连接至覆晶薄膜的第二引脚,第一引脚和第二引脚绝缘,且第二信号线109配置为向覆晶薄膜提供第二电压信号,第一电压信号不同于第二电压信号。
例如,该第二信号线109配置为传输像素驱动电路的电源信号。该第二信号线109与显示面板中的像素单元中的晶体管电连接。例如,可以与像素单元中晶体管的源极或者漏极电连接。该第二信号线109可以用于为像素单元中的晶体管提供正极电源信号,因此,该第二信号线109也可以称为VDD电源线或者VDD走线。
例如,图9为图2中的沿着B-B’线的截面结构示意图,结合图2和图9所示,该第一信号线103还包括位于周边区域102且设置在衬底基板107上的导电部106,该导电部106和电极结构105在周边区域102电连接,该导电部106比电极结构105更靠近衬底基板107,该导电部106和电极结构105的材料可以相同,可以包括银金属或者银金属和氧化铟锌的混合物,也可以为单一种类的金属,例如银、铝或者钛金属等。
例如,如图9所示,该第一信号线103还包括位于周边区域102且位于导电部106和电极结构105之间的电极连接部110,该电极连接部110和导电部106接触,且和电极结构105接触,该电极结构105和导电部106通过电极连接部110实现电连接。
例如,该电极连接部110的边界的形状可以与电极结构105的边界的形状相同或者大致相同,该电极连接部110的边界的形状可以与电极结构105 的边界的形状也可以不相同,本公开的实施例对此不作限定。
例如,如图9所示,该电极连接部110在衬底基板107上的正投影与电极结构105在衬底基板107上的正投影交叠,以使得电极连接部110和电极结构105至少部分搭接。
例如,如图9所示,该电极结构105在衬底基板107上的正投影位于电极连接部110在衬底基板107上的正投影之内,这样可以实现电极连接部110将电极结构105和导电部106进行充分地连接。
例如,如图9所示,该电极连接部110的边缘在衬底基板107上的正投影与包覆部104在衬底基板107上的正投影至少部分交叠,这样可以实现包覆层104对电极连接部110和电极结构105进行充分地覆盖。
例如,该电极连接部110、导电部106和电极结构105的材料均包括导电金属,该电极连接部110和导电部106的材料相同,且电极连接部110和电极结构105的材料不同,或者,在一个示例中,电极连接部110和导电部106的材料也可以不相同。
例如,如图9所示,该显示面板还包括设置在阻挡部111a和阻挡坝111b的远离衬底基板107一侧的封装层113,该封装层113在衬底基板107上的正投影覆盖第一信号线103(包括电极连接部110、电极结构105和导电部106)、阻挡部111a和阻挡坝111b在衬底基板107上的正投影。
例如,如图9所示,该显示面板10还包括位于电极连接部110和导电部106之间的钝化层114,其中,封装层113、电极结构105、电极连接部107以及导电部均与钝化层114接触。
例如,该电极结构105容易被水、汽或氧气腐蚀,因此,通过在电极连接部107上覆盖钝化层114,可以在后续形成其他膜层时,该电极连接部107不会被水、汽或者氧气腐蚀,使得该电极连接部107可以稳定地为导电部106提供电源信号,以提高显示基板的显示效果。
例如,该钝化层114的材料可以包括:氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiOxNy)、碳化硅(SiC)、氧化铝(AL 2O 3)、硫化锌(ZnS)、氧化锌(ZnO)等中的一种或者多种的组合,本公开的实施例对钝化层114的材料不做限定。例如,可以通过化学气相沉积(CVD)、溅射、原子层沉积(ALD)等方式形成钝化层,该钝化层的厚度可以是0.05μm~2.5μm。
需要说明的是,由于第一阻挡坝111b1为第一有机层011和第二有机层 012依次在衬底基板上层叠的结构,电极结构105设置在第一阻挡坝111b1包括的第一有机层011之下,以被第一有机层011覆盖。
例如,以下结合图10、图11和图12对显示面板的整体结构进行描述。例如,图10为本公开一实施例提供的一种显示面板的俯视示意图,以该显示面板为OLED显示面板为例进行说明,如图10所示,该OLED显示面板包括封装薄膜覆盖区域(保护区)11、非保护区域12和绑定区域(Bonding Region)13。非保护区域12未覆盖封装薄膜,非保护区域12可位于封装薄膜覆盖区域11的外围,绑定区域13可以设置在封装薄膜覆盖区域11的一侧。
例如,图11为图10中沿着AB线的剖视结构示意图,在一个实施例中,在支撑基板200上设置衬底基板107,衬底基板107可以为柔性基板,例如,可以为聚酰亚胺(Polyimide,PI),但本公开的实施例不限于此。支撑基板200可以为玻璃基板。例如,沿着Z方向,衬底基板107上可以设置薄膜晶体管(Thin Film Transistor,TFT)201阵列,该显示面板10为有机发光二极管显示面板,该有机发光二极管显示面板包括薄膜晶体管201和有机发光二极管209,该薄膜晶体管201包括源漏极层207,该有机发光二极管209包括第一电极210,在源漏极层207和第一电极210之间设置有连接结构215,在连接结构215和第一电极210之间设置有第三电极216,在源漏极层207和连接结构215之间设置有第三有机层013,在第三电极216和连接结构215之间设置有第二有机层012,其中,该第一电极210、第三电极216和连接结构215与源漏极层207电连接,结合图2和图11,该电极结构105与第一电极210同层设置,该导电部106与源漏极层同层207设置,电极连接部110与连接结构215同层设置。图11中仅示出了一个薄膜晶体管201。薄膜晶体管201可以包括半导体层、栅极、栅极绝缘层、源极和漏极等。如图11所示,衬底基板107上可以依次设置有缓冲层202、半导体层203,栅极绝缘层204、栅极205、层间介电层206和源漏极层207,源漏极层207包括源极2071和漏极2072,源极2071和漏极2072彼此间隔并可以分别通过过孔结构与半导体层203相连。薄膜晶体管201上可以设置平坦层208,平坦层208上可以设置待封装器件(OLED)209,即有机发光二极管,待封装器件(OLED)209可以包括该第一电极210,发光功能层211和第二电极212,第一电极210可以通过贯穿平坦层208的过孔与漏极2072电连接。第一电极210上可以设置像素限定层213以利于形成发光功能层211。第二电极212可通过电 极结构105与电极引线(图中未示出)电连接。发光功能层211可以包括发光层,还可包括其他功能层,例如还可包括空穴注入层、空穴传输层、电子传输层和电子注入层等至少之一,但本公开的实施例不限于此。例如,电极引线可以与源漏极层207同层形成。在待封装器件(OLED)209上可以形成封装层113。封装层113覆盖待封装器件209。待封装器件(OLED)209的结构不限于此。
图7、图8和图10示出了第一方向Y和第二方向X,图11示出了第三方向Z。例如,在本公开的实施例中,第一方向Y和第二方向X为平行于衬底基板的主表面的方向,第三方向Z为垂直于衬底基板的主表面的方向。衬底基板的主表面为制作各种元件的表面。图11中的衬底基板的上表面即为其主表面。例如,第一方向Y和第二方向X相交。进一步例如,第一方向Y垂直于第二方向X。
例如,图12为图10中沿着CD线的剖视结构示意图,如图12所示,封装层113设置在衬底基板107上,封装层113包括依次远离衬底基板107的第一薄膜113a,第二薄膜113b和第三薄膜113c,第二薄膜113b夹设在第一薄膜113a和第三薄膜113c之间,且在边缘位置处,第一薄膜113a和第三薄膜113c接触,图12中示出了第一薄膜113a和第三薄膜113c的叠层接触部分M(叠层接触处)。例如,第一薄膜113a和第三薄膜113c可以为无机材料形成的薄膜,例如,该无机材料可为SiNx、SiOx、SiCxNy等无机氧化物或者无机氮化物中的一种或者多种,本公开的实施例不限于此。例如,第二薄膜113b可以为有机材料形成的薄膜,例如,该有机材料可以为树脂等有机物,但本公开的实施例不限于此。该树脂例如可以为热固性树脂,热固性树脂例如包括环氧树脂,但本公开的实施例不限于此。树脂例如可为热塑性树脂,热塑性树脂例如包括亚克力(PMMA)树脂,但本公开的实施例不限于此。例如,第一薄膜113a和第三薄膜113c可以采用化学气相沉积(Chemical Vapor Deposition,CVD)的方法制备,第二薄膜113b可以采用喷墨打印(Ink Jet Printing,IJP)的方法制备。第一薄膜113a和第三薄膜113c均可以作为阻水层。例如,第一薄膜113a可以包括多个叠层设置的子层,第二薄膜113b和第三薄膜113c也可以分别包括多个叠层设置的子层,以阻隔外界的水氧等进入显示面板的内部。
结合图11和图12,该封装层113位于电极结构105的远离衬底基板107 的一侧,该封装层113中的第二薄膜113b和第三薄膜113c的层叠可以覆盖阻挡结构111。该封装层113覆盖的区域的边界可以位于阻挡结构111的远离多个像素单元的一侧。
需要说明的是,该第二薄膜113b可以位于阻挡结构111围成的区域之内,该第一薄膜113a和第三薄膜113c可以覆盖阻挡结构111围成的区域,且覆盖该阻挡结构111。即阻挡结构111在衬底基板107上的正投影位于该封装层113覆盖的区域内,由此可以提高该封装层113对位于阻挡结构111围成的区域内的各个结构的有效封装。
例如,图13为本公开一实施例提供的一种显示面板的拆解图,如图13所示,电极结构105的一部分延伸至与电极连接部110部分交叠,电极结构105的另一部分延伸至与第二电极212部分交叠,以实现与第二电极212的搭接,该第二电极212例如为有机发光二极管的阴极。电极结构105在衬底基板上的正投影与第三阻挡部111a3交叠(第一阻挡部和第二阻挡部在图11中未示出),且与第一阻挡坝111b1的一部分交叠,即电极结构105的一端延伸至第一阻挡坝111b1对应的区域。
例如,本公开至少一实施例还提供一种显示装置,该显示装置可以包括上述任一实施例中的显示面板。该显示装置可以为折叠显示装置,例如可以为:液晶面板、电子纸、有机发光二极管(organic light-emitting diode,OLED)面板、有源矩阵有机发光二极管(active-matrix organic light-emitting diode,AMOLED)面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或者部件。
本公开至少一实施例提供的显示面板至少具有以下一项技术效果:
(1)本公开至少一实施例提供的显示面板,采用包覆部覆盖电极结构的远离显示区域的边缘,使得电极结构的边缘被保护,避免了电极结构的边缘发生电化学腐蚀的现象,且通过将电极结构的远离显示区域的边缘设置成具有台阶形状,以延长水、汽进入显示区域的路径,使得水、汽难以进入显示区域,从而避免了暗点现象的产生,且提升了显示面板的信赖性。
(2)本公开至少一实施例提供的显示面板,将最靠近显示区域一侧的阻挡结构的厚度设置成小于最远离显示区域一侧的阻挡结构的厚度,从而减薄了水、汽通道有机层的厚度,进而可以使得有机层中水、汽聚集的风险减小。
(3)本公开至少一实施例提供的显示面板,将靠近显示区域一侧的阻挡结构的宽度缩减,从而使得其阻隔水、汽的能力增强。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种显示面板,包括:
    显示区域;
    围绕所述显示区域的周边区域;
    衬底基板;
    第一信号线,位于所述衬底基板上,包括位于所述周边区域的电极结构,所述电极结构的远离所述显示区域的边缘具有台阶形状;
    包覆部,覆盖所述电极结构的远离所述显示区域的边缘。
  2. 根据权利要求1所述的显示面板,其中,所述第一信号线还包括位于所述周边区域且设置在所述衬底基板上的导电部,所述导电部和所述电极结构在所述周边区域电连接,所述导电部比所述电极结构更靠近所述衬底基板。
  3. 根据权利要求2所述的显示面板,其中,所述包覆部具有台阶形状。
  4. 根据权利要求3所述的显示面板,其中,至少部分所述包覆部具有一体的结构。
  5. 根据权利要求4所述的显示面板,其中,至少部分所述包覆部的延伸方向与所述电极结构的远离所述显示区域的边缘的延伸方向相同或者大致相同。
  6. 根据权利要求2所述的显示面板,其中,所述电极结构具有靠近所述显示区域的第一边和远离所述显示区域的第二边,所述第二边的中间部分向所述第一边凹陷以形成中间缺口。
  7. 根据权利要求6所述的显示面板,其中,所述第二边具有台阶结构。
  8. 根据权利要求7所述的显示面板,其中,从所述第一边到所述第二边的方向为第一方向,与所述第一方向相交的方向为第二方向,在所述中间缺口的第一侧,所述电极结构在所述第一方向的宽度沿着所述第二方向逐渐减小;在所述中间缺口的第二侧,所述电极结构在所述第一方向的宽度沿着所述第二方向逐渐变大。
  9. 根据权利要求7所述的显示面板,其中,所述台阶形状包括相互连接且相邻设置的第一凸起结构和第一凹陷结构。
  10. 根据权利要求7所述的显示面板,其中,所述第二边在所述中间缺 口的两侧均具有Z字型台阶。
  11. 根据权利要求8所述的显示面板,其中,沿着所述第一方向,所述中间缺口在所述第二方向上的尺寸依次增大。
  12. 根据权利要求8所述的显示面板,还包括第二信号线,所述第二信号线至少部分设置在所述中间缺口中。
  13. 根据权利要求12所述的显示面板,其中,所述第二信号线配置为传输像素驱动电路的电源信号。
  14. 根据权利要求8~13中任一项所述的显示面板,其中,所述第一信号线还包括位于所述周边区域且位于所述导电部和所述电极结构之间的电极连接部,所述电极连接部和所述导电部接触,且和所述电极结构接触。
  15. 根据权利要求14所述的显示面板,其中,所述电极连接部在所述衬底基板上的正投影与所述电极结构在所述衬底基板上的正投影交叠。
  16. 根据权利要求15所述的显示面板,其中,所述电极结构在所述衬底基板上的正投影位于所述电极连接部在所述衬底基板上的正投影之内。
  17. 根据权利要求14所述的显示面板,其中,所述电极连接部的边缘在所述衬底基板上的正投影与所述包覆部在所述衬底基板上的正投影至少部分交叠。
  18. 根据权利要求17所述的显示面板,其中,所述显示面板为有机发光二极管显示面板,所述有机发光二极管显示面板包括薄膜晶体管和有机发光二极管,所述薄膜晶体管包括源漏极层,所述有机发光二极管包括第一电极,在所述源漏极层和所述第一电极之间设置有连接结构,其中,所述第一电极和所述连接结构与所述源漏极层电连接,所述电极结构与所述第一电极同层设置,所述导电部与所述源漏极层同层设置,所述电极连接部与所述连接结构同层设置。
  19. 根据权利要求14所述的显示面板,其中,所述电极连接部和所述导电部的材料相同,且所述电极连接部和所述电极结构的材料不同。
  20. 根据权利要求14所述的显示面板,还包括多个阻挡结构,所述多个阻挡结构的材料包括有机绝缘材料,且所述多个阻挡结构的至少部分形成所述包覆部,至少两个所述台阶结构被不同的所述阻挡结构包覆。
  21. 根据权利要求20所述的显示面板,其中,多个所述阻挡结构位于所述周边区域,沿着从所述周边区域到所述显示区域的方向依次设置,且每 个所述阻挡结构均围绕所述显示区域设置。
  22. 根据权利要求20所述的显示面板,其中,所述阻挡结构包括阻挡部和阻挡坝,其中,所述阻挡部和所述阻挡坝沿着所述第一方向依次设置,且从靠近所述衬底基板的一侧到远离所述衬底基板的一侧,所述阻挡部的厚度小于所述阻挡坝的厚度。
  23. 根据权利要求22所述的显示面板,其中,所述阻挡部、所述阻挡坝的第一部分和所述包覆部同层设置,且具有一体的结构。
  24. 根据权利要求22所述的显示面板,其中,所述阻挡部包括沿着所述第一方向依次设置的第一阻挡部、第二阻挡部和第三阻挡部,所述阻挡坝包括沿着所述第一方向依次设置的第一阻挡坝和第二阻挡坝。
  25. 根据权利要求24所述的显示面板,其中,沿着所述第一方向,所述第一阻挡部和所述第二阻挡部之间的第一距离D1基本等于所述第二阻挡部和所述第三阻挡部之间的第二距离D2,且小于所述第三阻挡部和所述第一阻挡坝之间的第三距离D3,所述第一阻挡坝和所述第二阻挡坝之间具有第四距离D4。
  26. 根据权利要求24所述的显示面板,其中,
    所述包覆部在所述第一阻挡部和所述第二阻挡部之间的部分具有第一台阶;
    所述包覆部在所述第二阻挡部和所述第三阻挡部之间的部分具有第二台阶;以及
    所述包覆部在所述第三阻挡部和所述第一阻挡坝之间的部分具有第三台阶。
  27. 根据权利要求26所述的显示面板,其中,在所述第二方向上,所述第一台阶的宽度等于或者大致等于所述第二台阶的宽度,且等于或者大致等于所述第三台阶的宽度。
  28. 根据权利要求24所述的显示面板,其中,从靠近所述衬底基板的一侧到远离所述衬底基板的一侧,所述第一阻挡部、所述第二阻挡部和所述第三阻挡部的厚度相等且均具有第一厚度,所述第一阻挡坝具有第二厚度,所述第二阻挡坝具有第三厚度,且所述第一厚度、所述第二厚度和所述第三厚度依次增大。
  29. 根据权利要求28所述的显示面板,其中,
    所述第一阻挡部、所述第二阻挡部、所述第三阻挡部、所述第一阻挡坝和所述第二阻挡坝均包括第一有机层,且所述第一阻挡部、所述第二阻挡部、所述第三阻挡部、所述第一阻挡坝和所述第二阻挡坝包括的所述第一有机层同层设置;
    所述第一阻挡坝和所述第二阻挡坝还包括设置在所述第一有机层的靠近所述衬底基板一侧的第二有机层,且所述第一阻挡坝和所述第二阻挡坝包括的所述第二有机层同层设置;
    所述第二阻挡坝还包括设置在所述第二有机层的靠近所述衬底基板一侧的第三有机层。
  30. 根据权利要求22~29中任一项所述的显示面板,还包括设置在所述阻挡部和所述阻挡坝的远离所述衬底基板一侧的封装层,所述封装层在所述衬底基板上的正投影覆盖至少部分所述第一信号线、所述阻挡部和所述阻挡坝在所述衬底基板上的正投影。
  31. 根据权利要求30所述的显示面板,还包括位于所述电极连接部和所述导电部之间的钝化层,其中,所述封装层、所述电极结构、所述电极连接部以及所述导电部均与所述钝化层接触。
  32. 根据权利要求1~31中任一项所述的显示面板,其中,所述第一信号线被配置为传输阴极信号,所述电极结构与有机发光二极管的阴极电连接。
  33. 一种显示装置,包括权利要求1~32中任一项所述的显示面板。
PCT/CN2021/133237 2021-11-25 2021-11-25 显示面板和显示装置 WO2023092402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003587.XA CN116602072A (zh) 2021-11-25 2021-11-25 显示面板和显示装置
PCT/CN2021/133237 WO2023092402A1 (zh) 2021-11-25 2021-11-25 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133237 WO2023092402A1 (zh) 2021-11-25 2021-11-25 显示面板和显示装置

Publications (2)

Publication Number Publication Date
WO2023092402A1 true WO2023092402A1 (zh) 2023-06-01
WO2023092402A9 WO2023092402A9 (zh) 2023-08-03

Family

ID=86538551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133237 WO2023092402A1 (zh) 2021-11-25 2021-11-25 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN116602072A (zh)
WO (1) WO2023092402A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689425A (zh) * 2017-08-31 2018-02-13 昆山国显光电有限公司 薄膜封装结构及薄膜封装方法和显示面板
CN109742103A (zh) * 2019-01-02 2019-05-10 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110148617A (zh) * 2019-05-30 2019-08-20 京东方科技集团股份有限公司 Oled面板、oled面板的制作方法和显示装置
CN110635067A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 一种有机发光显示面板及显示装置
CN112133726A (zh) * 2019-06-25 2020-12-25 乐金显示有限公司 电致发光显示装置
WO2021205635A1 (ja) * 2020-04-10 2021-10-14 シャープ株式会社 表示装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689425A (zh) * 2017-08-31 2018-02-13 昆山国显光电有限公司 薄膜封装结构及薄膜封装方法和显示面板
CN109742103A (zh) * 2019-01-02 2019-05-10 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110148617A (zh) * 2019-05-30 2019-08-20 京东方科技集团股份有限公司 Oled面板、oled面板的制作方法和显示装置
CN112133726A (zh) * 2019-06-25 2020-12-25 乐金显示有限公司 电致发光显示装置
CN110635067A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 一种有机发光显示面板及显示装置
WO2021205635A1 (ja) * 2020-04-10 2021-10-14 シャープ株式会社 表示装置およびその製造方法

Also Published As

Publication number Publication date
WO2023092402A9 (zh) 2023-08-03
CN116602072A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
US11832501B2 (en) Display panel
US11991905B2 (en) Display substrate and display device
WO2020191875A1 (zh) 显示面板及显示装置
CN108091675B (zh) 显示基板及其制作方法
KR20180047589A (ko) 유기 발광 표시 장치 및 그 제조 방법
US20210193960A1 (en) Display Panel and Preparation Method Thereof, and Display Apparatus
CN109904336B (zh) 电子装置基板及制造方法/显示装置
US20210028388A1 (en) Oled display panel
US11950461B2 (en) Display substrate and display apparatus
WO2021097690A1 (zh) 显示基板及其制作方法和显示装置
CN113950712B (zh) 显示基板、显示面板、显示装置及显示面板的制造方法
EP4053901A1 (en) Display substrate, preparation method therefor, and display device
US20230422561A1 (en) Flexible Display Device and Method of Manufacturing the Same
CN113299849A (zh) 显示面板及其制备方法
WO2023143311A1 (zh) 显示基板及显示装置
WO2021017012A1 (zh) 显示基板及显示装置
WO2023092402A1 (zh) 显示面板和显示装置
CN113133330A (zh) 显示面板及其制造方法、显示装置
CN112289948B (zh) 有机发光二极体显示面板及其制作方法
CN115148928A (zh) 一种显示基板、显示装置
US20240172529A1 (en) Display panel and display device
CN219919629U (zh) 一种显示基板及显示装置
WO2023097599A1 (zh) 显示基板及电子设备
US12004387B2 (en) Display substrate and manufacturing method thereof, and display device
WO2023169192A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003587.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17997869

Country of ref document: US