WO2019114359A1 - 负折射成像光刻方法和设备 - Google Patents

负折射成像光刻方法和设备 Download PDF

Info

Publication number
WO2019114359A1
WO2019114359A1 PCT/CN2018/106685 CN2018106685W WO2019114359A1 WO 2019114359 A1 WO2019114359 A1 WO 2019114359A1 CN 2018106685 W CN2018106685 W CN 2018106685W WO 2019114359 A1 WO2019114359 A1 WO 2019114359A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative
negative refractive
imaging
lithography
layer
Prior art date
Application number
PCT/CN2018/106685
Other languages
English (en)
French (fr)
Inventor
罗先刚
王彦钦
王长涛
刘玲
孔维杰
高平
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to EP18887484.6A priority Critical patent/EP3726294A4/en
Priority to US16/771,784 priority patent/US20210200079A1/en
Publication of WO2019114359A1 publication Critical patent/WO2019114359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/703Non-planar pattern areas or non-planar masks, e.g. curved masks or substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/007Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of negative effective refractive index materials

Definitions

  • the present invention relates to the field of lithography, and more particularly to a large area low cost nano imaging lithography method and apparatus, and more particularly to a negative refraction imaging lithography method and apparatus.
  • Optical lithography is one of the important technical approaches for micro-nano manufacturing. It is widely used in integrated circuits, optoelectronic devices, new materials manufacturing, biomedical and other fields.
  • the resolution of the projection lithography apparatus depends on the numerical aperture NA of the projection objective and the source wavelength wl.
  • NA numerical aperture
  • the projection objective lens numerical aperture of conventional lithography equipment is getting higher and higher.
  • the current NA has broken through 1: If the immersion objective is used, the NA can reach 1.4.
  • the projection lens with high numerical aperture involves twenty or thirty lenses, and the surface accuracy and positioning accuracy of each lens need to be controlled in the nanometer order. Therefore, the processing technology of the entire projection objective is very complicated, resulting in traditional high resolution.
  • the price of stepper and scanner of photo lithography is getting higher and higher, and the price of a single unit is as high as tens of millions to hundreds of millions of dollars. Due to the technical complexity and cost, the field of view of traditional projection lithography is very small. The field of view of commercial lithography machine is generally fixed at 26mm*33mm. The splicing processing method is adopted, and the cost is further increased, so that it is difficult to meet a larger area. Processing needs of nanodevices such as integrated circuits and optoelectronics. In addition to the projection imaging lithography method, the proximity contact lithography apparatus is also widely used in scientific research and industrial fields, but faces low resolution (about 1 micrometer), mask pattern and silicon substrate and other hard substrate contact friction, Graphics are vulnerable to damage and limited service life.
  • the present invention proposes a photolithography method and apparatus based on negative refraction imaging.
  • the negative refraction imaging projection lithography method and apparatus utilizes a multi-layer structured film layer material to realize an imaging lens effect with high numerical aperture and nano-scale resolution, and can image the mask pattern to a distance of several In the photoresist other than one hundred nanometers, exposure and development of the photoresist are further achieved.
  • a negative refractive imaging lithography method comprising: coating a photoresist on a device substrate; preparing a negative refractive structure, wherein the negative refractive structure emits light for an exposure source a wavelength exhibiting a negative refractive index; bonding a lithographic plate to the negative refractive structure; placing the lithographic plate and the negative refractive structure over the device substrate, spaced apart from the device substrate by a projection gap a projection distance; and an exposure source emits light, which is sequentially projected onto the photoresist through the reticle, the negative refractive structure, and the projection gap for exposure.
  • a negative refractive imaging lithography apparatus comprising: an exposure light source; a photoresist coating device for coating a photoresist on a device substrate; and a negative refractive structure Wherein the negative refractive structure exhibits a negative refractive index for the wavelength of light emitted by the exposure source; a first transmission device that bonds the lithography plate to the negative refractive structure, and the reticle and the negative a refractive structure disposed over the device substrate, spaced apart from the device substrate by a projection distance of a projection gap, wherein the exposure source emits light, sequentially projected through the reticle, the negative refractive structure, and the projection gap to Exposure is performed on the photoresist.
  • Negative refraction imaging lithography methods and equipment do not require dozens of lenses with nano-precision shapes and positions required by conventional projection lithography lenses, which can be realized by integrated processing methods such as coating and electron beam. The cost can be drastically reduced.
  • the method has the characteristics of no optical axis imaging, and the entire negative refraction imaging structure has spatial translation symmetry. Considering the surface processing precision and component size of the current planar component, lithography of an imaging field size of 100 mm 2 or more can be realized. Due to the physical isolation between the substrate and the mask, the method enables high precision alignment, positioning, and engraving of multilayer nanostructures.
  • the present invention can realize high resolution gray lithography for processing in a multi-step or continuous surface shape.
  • FIG. 1 shows a flow chart of a negative refractive imaging lithography method in accordance with an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the structure of a negative refraction imaging lithography apparatus according to an embodiment of the present invention.
  • Figure 3 shows a schematic diagram of a negative refraction imaging structure.
  • FIG. 4 shows a detailed structural diagram of a negative refractive imaging lithography method.
  • Figure 5 shows a schematic diagram of a curved negative refractive imaging structure.
  • FIG. 6 shows a detailed structural diagram of the negative refractive imaging lithography apparatus 200 shown in FIG. 2.
  • Figure 7 shows a schematic of grayscale lithography.
  • FIG. 8 is a schematic diagram showing two-dimensional graphics imaging lithography implemented by a negative refraction imaging lithography method and apparatus of an embodiment of the present invention.
  • FIG. 1 shows a flow chart of a negative refractive imaging lithography method in accordance with an embodiment of the present invention.
  • the negative refractive index imaging lithography method comprises: coating a photoresist on a device substrate (S101); preparing a negative refractive structure, wherein the negative refractive structure emits light for an exposure light source a wavelength exhibiting a negative refractive index (S102); bonding a lithographic plate to the negative refractive structure (S103); placing the lithographic plate and the negative refractive structure over the device substrate, and the device
  • the substrate is spaced apart from the projection distance of the projection gap (S104); and the exposure light source emits light, which is sequentially projected onto the photoresist through the lithography plate, the negative refractive structure, and the projection gap for exposure (S105).
  • the negative refractive imaging lithography apparatus includes: an exposure light source (201); a photoresist coating device (202), which is coated with light on the device substrate (8).
  • a resist (7) a negative refractive structure (3), wherein the negative refractive structure (3) exhibits a negative refractive index for a wavelength of light emitted by the exposure light source; a first transfer device (204), a lithography plate (2) adhering to the negative refractive structure, and placing the resist plate (2) and the negative refractive structure (3) over the device substrate (8), and the device substrate (3) Separating the projection distance of the projection gap, wherein the exposure light source (1) emits light sequentially through the reticle (2), the negative refractive structure (3), and the projection gap to the photoresist ( 7) Perform exposure.
  • Figure 3 shows a schematic diagram of a negative refraction imaging structure.
  • the illumination beam 1 is transmitted through the photolithographic mask 2 in the negative refraction structure 3, and finally focused on the photoresist 7 on the imaging substrate 8.
  • the negative refractive imaging structure can be formed by alternately stacking the positive dielectric constant material 4 and the negative dielectric constant material 5. Replenishment of the negative refractive index structure.
  • the negative refractive index of the negative refractive structure is negative and has negative refractive optical behavior characteristics, including a multilayer film negative refractive imaging lithography structure, a hole array multilayer negative refractive imaging lithography structure, and a composite negative refraction imaging lithography structure. And three-dimensional negative refraction structures. After the negative refractive index structure is equivalent to an anisotropic material, the transverse component of the dielectric constant and the real part of the longitudinal component must be different from each other.
  • the equivalent dielectric constant laterally
  • ⁇ // ⁇ ⁇ ⁇ 0 to cause the negative refractive structure to exhibit negative refractive properties
  • ⁇ d and ⁇ m are respectively the dielectric constant of the dielectric material and the metal material in the composite structure
  • f is the volume filling ratio of the metal
  • the negative refractive index structure of the multilayer film negative refractive imaging lithography structure is composed of two or more material film layers having different dielectric constants, and the thickness of the material film layer satisfies the negative refractive imaging equivalent condition.
  • the real part of the dielectric constant of at least one material is required to be negative, and the imaginary part of the dielectric constant that determines the loss characteristic satisfies the energy loss efficiency requirement.
  • Materials whose negative dielectric constant is negative include, but are not limited to, gold, silver, and aluminum.
  • a two-dimensional array structure is introduced into a material having a negative dielectric constant real part to modulate an equivalent dielectric constant and a loss characteristic to realize negative refractive imaging, thereby forming the aperture array multilayer negative refractive imaging lithography structure.
  • a multilayer film and a hole array structure to obtain a composite negative refraction imaging lithography structure with a negative refractive index, it is possible to realize a deep-UV, near-infrared, infrared, etc. film material which is difficult to obtain a suitable dielectric constant and loss coefficient. . .
  • the three-dimensional negative refractive structure is a three-dimensional metamaterial structure having a negative refractive index.
  • the three-dimensional complex structure of the negative refraction imaging lithography structure can realize the negative-refraction imaging of the transverse electric TE, the transverse magnetic TM polarization state and the absence of polarization aberration, for example, a three-dimensional metamaterial structural unit with a negative equivalent refractive index.
  • a three-dimensional metamaterial structural unit with a negative equivalent refractive index With the unit as a basic structure, an imaging structure that realizes a fixed negative refractive index distribution and changes a negative refractive index distribution can be designed. Since these three imaging lithography structures do not have isotropic negative refraction imaging performance, they face different polarization states of light field imaging.
  • the single lithography mask pattern is mostly the line pattern arranged in the same direction, and the illumination field of the electric field polarization state perpendicular to the line direction is selected, especially For graphics with small feature sizes.
  • High-resolution two-dimensional complex graphics can be achieved by two or more different direction mask lithography overlays. Pattern optimization methods such as proximity effect correction and phase shift mask can be used to improve the fidelity of negative refraction imaging.
  • the imaging lithography resolution can be improved by selecting the film material and thickness, even by filling the liquid between the negative refractive imaging structure and the lithographic device substrate to increase the equivalent numerical aperture of the negative refractive imaging structure.
  • FIG. 4 shows a detailed structural diagram of a negative refractive imaging lithography method.
  • the negative refractive imaging lens 10 is composed of a mask 2, a pattern input layer 11, a negative refractive structure 3, an imaging output layer 12, a protective layer 13, a protective pane 14, and the like.
  • the negative refractive structure further includes a graphic input layer on both sides, and the graphic input layer planarizes the graphic layer of the mask.
  • the constituent material of the pattern input layer is a transparent material having a high refractive index and a small loss, and the layer thickness of the pattern input is optimized to match the parameters of the negative refractive structure.
  • the graphics input layer can reduce reflection and increase the efficiency of coupling the light field carrying mask pattern information to the negative refractive imaging structure.
  • the graphic input layer can reduce its adverse effect on the quality of the imaged image by regulating the transverse electric TE wave component of the patterned light field transmitted through the mask.
  • the negative refractive structure further includes an imaging output layer on both sides, and the imaging output layer is configured to reduce an equivalent refractive index difference between the negative refractive structure and an external space in which the projection gap is located.
  • the function of the imaging output layer is to improve the efficiency of the imaging light field from the negative refractive structure into the air, the immersion liquid, and the photoresist.
  • the mechanism is to select a suitable material thickness, a dielectric constant, and reduce the negative refractive imaging structure and the external space. The equivalent refractive index difference, thereby increasing the transmission efficiency of the imaging light field.
  • a protective layer is also disposed on the imaging output layer to protect the imaging output layer.
  • the material of the protective layer is required to be dense, chemically stable, and has good adhesion, and can effectively prevent oxidation and deliquescence of various materials in the negative refractive structure and the imaging output layer without affecting the imaging lithography effect.
  • a protective pane is also disposed on the protective layer, the protective pane surrounding the protective layer to space the negative refractive structure from the photoresist.
  • the protective pane surrounds the graphics area with a suitable height and width to prevent contact damage to the lithographic lens pattern area during lithography.
  • the height of the protection pane is smaller than the working distance of the lower surface of the lithography lens from the upper surface of the photoresist, has a suitable width, has a certain mechanical strength and good adhesion as a whole, and is easy to process.
  • the constituent materials of the protective pane include and are not limited to SiO2, Si, and the like.
  • the lithographic mask pattern is a line pattern arranged in the same direction, and an illumination light field in which the polarization state of the electric field is perpendicular to the direction of the line is selected.
  • the negative refraction imaging method and apparatus can achieve 1:1 magnification imaging, or achieve a reduced magnification imaging by designing a curved negative refractive imaging structure.
  • the reduced magnification can be 0.1-0.5 times.
  • the negative refraction imaging is a non-optical axis imaging method, it is easy to realize large-area high-resolution optical lithography. In reality, the imaging size is limited by the surface control accuracy of the negative refraction imaging lithography lens.
  • Figure 5 shows a schematic diagram of a curved negative refractive imaging structure.
  • the mask 2, the negative refractive structure 3, the photoresist 7, and the imaging device substrate 8 are all curved surfaces.
  • the transmitted light wave 6 transmitted through the mask 2 is transmitted in a negative refraction manner along the radial direction of the curved surface, and then focused and imaged on the photoresist 7, thereby obtaining a reduced-resolution high-resolution imaging.
  • FIG. 6 shows a detailed structural diagram of the negative refractive imaging lithography apparatus 200 shown in FIG. 2.
  • the negative refractive imaging lithography apparatus includes an imaging lithography lens 10, an exposure light source 15, a substrate leveling and gap control system 16, a working distance detecting system 17, a vibration isolation platform 18, and a film stage 19.
  • the negative refractive lithography apparatus may include a light source and illumination system, an imaging lithography lens, a substrate leveling system, a work distance detection and control system, an alignment and positioning system, an air dust monitoring and purification system, and the like.
  • the wavelength of the illumination source may cover the deep ultraviolet to visible light range, including and not limited to mercury lamps i-line 365 nm, g-line 436 nm, 248 nm, 193 nm, 157 nm, and the like.
  • the illumination system can adopt vertical illumination, off-axis illumination, or introduce an arrayed light modulator in the illumination system to dynamically adjust parameters such as illumination beam direction, polarization, amplitude, and the like.
  • the adjustment methods used include, but are not limited to, self-collimation leveling, three-point leveling, laser interferometry, and moiré method.
  • the methods employed by the working pitch detection system include, and are not limited to, white light interferometry, interference spatial phase method, and the like.
  • the lithographic apparatus can also include an air purification system including, but not limited to, purifying circulating air, formulating a vacuum chamber, and the like.
  • Figure 7 shows a schematic of grayscale lithography.
  • a gray scale mask 23 having fine structures of different feature sizes is designed and prepared for different step structures.
  • the illumination beam 1 forms an imaging light field 24 having uneven light intensity via the gray scale mask 23 and the negative refractive structure 3, and is photosensitive to the photoresist 7 of different depths to obtain a photoresist 8 of gray-scale sensitivity, which is removed by development processing.
  • the photosensitive photoresist 8 can be processed into steps or even continuous faces.
  • the negative refractive structure has a binary structure pattern, a stepped and continuous planar structure pattern lithography capability, and a multi-layer pattern structure engraving lithography capability.
  • the difference in the optical transfer function of the negative refraction imaging is used to make the difference in the image imaging intensity of different step height regions to obtain a multi-step pattern.
  • the material of the photoresist layer includes any one of the following: a photoresist, a refractive index light modulating material, and an absorptivity light modulating material.
  • the photoresist used can be replaced with other photosensitive materials, including and not limited to refractive index, absorptive light modulating materials.
  • the micro-nano structure processing in the form of non-geometric topography, such as a refractive index modulated optical waveguide grating, etc., is realized by necessary post-processing.
  • the mask processing method of the negative refractive imaging lithography may adopt a stepping or scanning manner.
  • the negative refractive imaging lithography method and apparatus have a binary structure pattern, a stepped and continuous planar structure pattern lithography capability, and a multi-layer pattern structure engraving lithography capability.
  • the pattern mask design can be optimized to ensure that the field strength of the various parts of the pattern is substantially the same.
  • the fine structure of different feature sizes of the mask can be optimized for different step structures.
  • the imaging intensity of different step height regions is different. After the photoresist is developed, photoresist patterns of different heights are obtained, and further etching is performed to obtain multi-step patterns.
  • FIG. 8 is a schematic diagram showing two-dimensional graphics imaging lithography implemented by a negative refraction imaging lithography method and apparatus of an embodiment of the present invention.
  • the first imaging lithography is first performed using the mask 25 to obtain a vertical portion of the two-dimensional pattern 27, and then a second imaging lithography is performed using the mask 26 to obtain a horizontal portion of the two-dimensional pattern 27.
  • a high-resolution two-dimensional graphic 27 can be obtained.
  • a Cr mask having a thickness of 60 nm, a period of 700 nm, and a duty ratio of 0.5 was prepared on a quartz substrate.
  • a 50 nm thick plexiglass PMMA was spin-coated on the obtained Cr mask as a mask flat layer.
  • 8 layers of Ag film and 7 layers of TiO2 film were alternately sputtered over the obtained structure, and the film thickness was 30 nm.
  • the TiO2 film of 5 nm thickness was continuously sputtered on the surface of the outermost Ag film to prevent oxidation and deliquescence of the Ag film.
  • a 100 nm thick UV photoresist AR3170 was spin coated on the surface of the quartz substrate.
  • the above substrates are respectively fixed to the two stage stages of the precision gap control mechanism, wherein the quartz surface sides of the two substrates are in contact with the stage.
  • the precision gap control mechanism used is controlled so that the gap between the two substrates is maintained at about 400 nm.
  • the TM polarized ultraviolet light having a center wavelength of 365 nm and a light intensity of 1 mW/m 2 was used for exposure from the side of the Cr mask, and the exposure time was about 500 s to sensitize the photoresist on the quartz substrate.
  • the photoresist-coated quartz substrate was taken out from the wafer stage of the precision gap control mechanism.
  • the obtained quartz substrate was placed in an AZ300 developing solution for development treatment for a development time of about 10 to 15 s, and the developed substrate was blown dry.
  • a dense line of photoresist pattern was obtained on the photoresist with a period of 700 nm and a line width of 350 nm.
  • the negative refraction imaging lithography method and apparatus do not require dozens of lenses with a nano-precision shape and position required by a conventional projection lithography lens, and can be integrated by a coating method or an electron beam. Realization, in contrast, lens development costs can be drastically reduced.
  • the method has the characteristics of no optical axis imaging, and the entire negative refraction imaging structure has spatial translation symmetry. Considering the surface processing precision and component size of the current planar component, lithography of an imaging field size of 100 mm 2 or more can be realized. Due to the physical isolation between the substrate and the mask, the method enables high precision alignment, positioning, and engraving of multilayer nanostructures.
  • the present invention can realize high resolution gray lithography for processing in a multi-step or continuous surface shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种负折射成像光刻方法和设备(200)。光刻方法包括:在器件衬底(8)上涂覆光致抗蚀剂(7)(S101);制备负折射结构(3),其中负折射结构(3)对于曝光光源(201)发射的光的波长表现出负折射率(S102);将光刻板(2)与负折射结构(3)贴合(S103);将光刻板(2)和负折射结构(3)置于器件衬底(8)上方,与器件衬底(8)间隔开投影间隙的投影距离(S104);以及曝光光源(201)发射光,依次通过光刻板(2)、负折射结构(3)、投影间隙投射到光致抗蚀剂(7)上进行曝光(S105)。负折射成像光刻方法和设备无需传统投影光刻所需的几十个面形和位置都为纳米精度的镜片,成本可以急剧降低;同时负折射成像光刻方法具有无光轴成像特点,整个负折射成像结构具有空间平移对称性,可以实现大成像视场光刻。

Description

负折射成像光刻方法和设备
本申请要求了2017年12月11日提交的、申请号为201711323769.7、发明名称为“负折射成像光刻方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光刻领域,更具体地涉及一种大面积低成本的纳米成像光刻方法和设备,尤其涉及一种负折射成像光刻方法和设备。
背景技术
光学光刻是微纳制造的重要技术途径之一,广泛应用于集成电路、光电子器件、新材料制造、生物医疗等领域。投影光刻设备的分辨率取决于投影物镜的数值孔径NA和光源波长wl。为了获得高分辨力光刻,传统光刻装备的投影物镜数值孔径越来越高。目前的NA已经突破1:如果采用浸没物镜,NA还可以达到1.4。但是高数值孔径的投影物镜涉及二三十件镜片,每个镜片的面形精度、定位精度均需要控制在纳米量级,因此整个投影物镜的加工检测技术复杂度非常高,导致传统高分辨力投影光刻设备(stepper and scanner of photo lithography)的价格越来越高,单台价格高达上千万~上亿美金。同样由于技术复杂度和成本问题,目前传统投影光刻的视场很小,商业光刻机的视场一般固定为26mm*33mm,采用拼接加工方式,成本进一步增加,从而难以满足更大面积的集成电路、光电子等纳米器件的加工需要。除了投影成像光刻方式之外,接近接触方式的光刻设备也广泛应用于科研和产业领域,但是面临分辨力低(1微米左右)、掩模图形与硅片等硬质基片接触摩擦,图形易损伤,使用寿命有限等问题。
发明内容
为此,本发明提出了基于负折射成像的光刻方法和设备。
根据本公开实施例的负折射成像投影光刻方法和设备利用多层结构化膜 层材料,实现了高数值孔径、纳米尺度分辨力的成像镜头效果,可以将掩模图形投影成像到距离在几百纳米之外的光致抗蚀剂中,进而实现光致抗蚀剂的曝光显影。
根据本发明的一个方面,提出了一种负折射成像光刻方法,包括:在器件衬底上涂覆光致抗蚀剂;制备负折射结构,其中所述负折射结构对于曝光光源发射的光的波长表现出负折射率;将光刻板与所述负折射结构贴合;将所述光刻板和所述负折射结构置于所述器件衬底上方,与所述器件衬底间隔开投影间隙的投影距离;以及曝光光源发射光,依次通过所述光刻板、所述负折射结构、投影间隙投射到所述光致抗蚀剂上进行曝光。
根据本发明的另一个方面,还提出了一种负折射成像光刻设备,包括:曝光光源;光致抗蚀剂涂覆装置,在器件衬底上涂覆光致抗蚀剂;负折射结构,其中所述负折射结构对于所述曝光光源发射的光的波长表现出负折射率;第一传输装置,将光刻板与所述负折射结构贴合,并且将所述光刻板和所述负折射结构置于所述器件衬底上方,与所述器件衬底间隔开投影间隙的投影距离,其中所述曝光光源发射光,依次通过所述光刻板、所述负折射结构、投影间隙投射到所述光致抗蚀剂上进行曝光。
负折射成像光刻方法和设备无需传统投影光刻镜头所需的几十个面形和位置都为纳米精度的镜片,通过镀膜、电子束等集成加工方法就可实现,相比之下镜头研制成本可以急剧降低。同时所述方法具有无光轴成像特点,整个负折射成像结构具有空间平移对称性,考虑到当前平面元件的面形加工精度和元件尺寸,可以实现100mm2以上成像视场尺寸的光刻。由于基片与掩模之间物理隔离,该方法可以实现高精度对准、定位和多层纳米结构的套刻加工等操作。基于负折射成像光刻结构,本发明可以实现高分辨力的灰度光刻,用于多台阶或连续面形的加工。
附图说明
图1示出了根据本发明实施例的负折射成像光刻方法的流程图。
图2示出了根据本发明实施例的负折射成像光刻设备的结构示意图。
图3示出了负折射成像结构示意图。
图4示出了负折射成像光刻方法的具体结构示意图。
图5示出了曲面负折射成像结构示意图。
图6示出了图2所示的负折射成像光刻设备200的具体结构示意图。
图7示出了灰度光刻的示意图。
图8示出了利用本发明实施例的负折射成像光刻方法和设备实现的二维图形成像光刻的示意图。
附图标记
1 照明光束
2 光刻板掩模
3 负折射结构
4 正介电常数材料
5 负介电常数材料
6 传输光波
7 未感光光致抗蚀剂
8 成像器件衬底
9 感光后光致抗蚀剂
10 成像光刻镜头
11 图形输入层
12 成像输出层
13 保护层
14 保护窗格
15 曝光光源
16 基片调平与间隙控制系统
17 工作距检测系统
18 隔振平台
19 承片台
20 成像基片
21 对准定位系统
22 洁净箱或真空箱
23 灰度掩模
24 光强不均匀的成像场
25 包含二维图形垂直部分的掩模
26 包含二维图形水平部分的掩模
27 二维图形
具体实施方式
现在对本发明的实施例提供详细参考,其范例在附图中说明,图中相同的数字全部代表相同的元件。下面将参考附图详细描述本发明的实施例。
图1示出了根据本发明实施例的负折射成像光刻方法的流程图。如图1所示,所述负折射率成像光刻方法包括:在器件衬底上涂覆光致抗蚀剂(S101);制备负折射结构,其中所述负折射结构对于曝光光源发射的光的波长表现出负折射率(S102);将光刻板与所述负折射结构贴合(S103);将所述光刻板和所述负折射结构置于所述器件衬底上方,与所述器件衬底间隔开投影间隙的投影距离(S104);以及曝光光源发射光,依次通过所述光刻板、所述负折射结构、投影间隙投射到所述光致抗蚀剂上进行曝光(S105)。
图2示出了根据本发明实施例的负折射成像光刻设备的结构示意图。如图2所示,所述负折射成像光刻设备(200),包括:曝光光源(201);光致抗蚀剂涂覆装置(202),在器件衬底(8)上涂覆光致抗蚀剂(7);负折射结构(3),其中所述负折射结构(3)对于所述曝光光源发射的光的波长表现出负折射率;第一传输装置(204),将光刻板(2)与所述负折射结构贴合,并且将所述光刻板(2)和所述负折射结构(3)置于所述器件衬底(8)上方,与所述器件衬底(3)间隔开投影间隙的投影距离,其中所述曝光光源(1)发射光依次通过所述光刻板(2)、所述负折射结构(3)、投影间隙投射到所述光致抗蚀剂(7)上进行曝光。
图3示出了负折射成像结构示意图。如图3所示,照明光束1透过光刻掩模2在负折射结构3中传输,最终在成像衬底8上的光刻胶7上聚焦成像。如图3右侧的插图所示,负折射成像结构可以由正介电常数材料4与负介电常数 材料5交替堆叠而成。补充负折射率结构的限制条件。
所述负折射结构的等效折射率为负值,具有负折射光学行为特性,包括多层膜负折射成像光刻结构、孔阵多层负折射成像光刻结构、复合负折射成像光刻结构和三维负折射结构。所述负折射率结构等效为各向异性材料后,其介电常数横向分量与纵向分量实部符号须互为异号,对于由金属、介质组成的复合结构,其等效介电常数横向分量为ε //=f·ε d+(1-f)·ε m,纵向分量为ε =ε d·ε m/[f·ε m+(1-f)·ε d],则ε //·ε <0以使所述负折射该结构呈现负折射特性,其中ε d、ε m分别为复合结构中介质材料与金属材料的介电常数,f为金属的体积填充比
所述多层膜负折射成像光刻结构负折射结构由两种或两种以上具有不同介电常数的材料膜层交替排布组成,所述材料膜层的厚度满足负折射成像等效条件。了实现负折射效应,需要至少一种材料介电常数的实部为负,同时决定损耗特性的介电常数虚部满足能量损失效率需求。所述介电常数实部为负的材料包括单不局限于金、银、铝。在介电常数实部为负的材料中引入二维孔阵结构以调制等效介电常数和损耗特性实现负折射成像,从而形成所述孔阵多层负折射成像光刻结构。通过将多层膜与孔阵层结构组合设计以获得具有负折射率的复合负折射成像光刻结构,以实现深紫外、近红外、红外等难以获得合适介电常数和损耗系数的膜层材料。。所述三维负折射结构是折射率为负的三维超材料结构。三维复杂结构形式的负折射成像光刻结构可实现横电TE、横磁TM偏振态无关和没有偏振像差的负折射成像,例如实现等效折射率为负的三维超材料结构单元。以所述单元为基本结构,可以设计实现固定负折射率分布、变化负折射率分布的成像结构。由于这三种成像光刻结构不具有各向同性的负折射成像性能,面临不同偏振态光场成像差异。为避免复杂二维图形产生不同偏振态的光场影响成像质量,其单次光刻掩模图形多为同一方向排布的线条图形,选择电场偏振态与线条方向垂直的照明光场,尤其是对于小特征尺寸的图形。可以通过两次或多次不同方向掩模图形光刻叠加实现高分辨率的二维复杂图形。可以采用临近效应修正,相移掩模等图形优化方法,提高负折射成像的保真度。
可以通过选择膜层材料和厚度、甚至通过在负折射成像结构与光刻器件衬底之间填充液体,以增大负折射成像结构的等效数值孔径,从而提高成像光刻 分辨力。
图4示出了负折射成像光刻方法的具体结构示意图。如图4所示,负折射成像镜头10由掩模2、图形输入层11、负折射结构3、成像输出层12、保护层13、保护窗格14等构件组成。
具体地,所述负折射结构两侧还包括图形输入层,所述图形输入层对所述掩模的图形层进行平坦化。所述图形输入层的组成材料为折射率高、损耗小的透明材料,优化所述图形输入的层厚度以使得与负折射结构的参数匹配。所述图形输入层可以减少反射,并且增加携带掩模图形信息的光场耦合至负折射成像结构的效率。所述图形输入层通过调控透过掩模的图形光场的横电TE波成分,可以减少其对成像图形质量的不利影响。
所述负折射结构两侧还包括成像输出层,所述成像输出层配置为减小所述负折射结构与投影间隙所处的外界空间的等效折射率差异。所述成像输出层的作用是提高成像光场从负折射结构进入到空气、浸没液体、光刻胶中的效率,其机理在于选择合适材料厚度、介电常数,减少负折射成像结构与外界空间的等效折射率差异,从而增加成像光场透射输出效率。
所述成像输出层上还设置保护层以保护所述成像输出层。要求所述保护层的材料致密、化学稳定、附着度好,可以有效防止负折射结构、成像输出层中的各种材料氧化、潮解,同时不影响成像光刻效果。
所述保护层上还设置了保护窗格,所述保护窗格环绕在保护层周围,以使所述负折射结构与光致抗蚀剂间隔开。所述保护窗格环绕在图形区周围,具有合适高度和宽度,其作用为防止光刻过程中光刻镜头图形区被接触损伤。所述保护窗格的高度小于光刻镜头下表面距离光刻胶上表面的工作距,具有合适的宽度,整体具有一定机械强度和良好的附着度,易于加工。所述保护窗格的组成材料包括和不限于SiO2、Si等。
所述光刻掩模图形是沿同一方向排列的线条图形,并且选择电场偏振态与线条方向垂直的照明光场。所述负折射成像方法和设备可以实现1:1倍率成像,或者通过设计曲面负折射成像结构以实现缩小倍率成像。缩小的倍率可以为0.1-0.5倍。
由于负折射成像为无光轴成像方法,易于实现大面积的高分辨光学光刻。 实际情况下,成像尺寸受限于负折射成像光刻镜头面形控制精度。
图5示出了曲面负折射成像结构示意图。如图5所示,掩模2、负折射结构3、光刻胶7以及成像器件衬底8均为曲面。在照明光束1入射下,透过掩模2的传输光波6沿曲面径向以负折射方式传输,后在光刻胶7上聚焦成像,从而获得缩小倍率高分辨成像。
图6示出了图2所示的负折射成像光刻设备200的具体结构示意图。如图6所示,所述负折射成像光刻设备包括成像光刻镜头10、曝光光源15、基片调平与间隙控制系统16、工作距检测系统17、隔振平台18、承片台19、成像基片20、对准定位系统21以及洁净箱或真空箱22等。
具体地,所述负折射光刻设备可以包括光源和照明系统、成像光刻镜头、基片调平系统、工作距检测与控制系统、对准和定位系统、空气尘埃监测及净化系统等。所述照明光源的波长可以覆盖深紫外~可见光波段,包括和不限于汞灯i线365nm、g线436nm、248nm、193nm、157nm等。所述照明系统可以采用垂直照明、离轴照明方式,或在照明系统中引入阵列化光调制器,实现对照明光束方向、偏振、振幅等参数进行动态调控。所采用的调节方法包括并且不限于自准直调平、三点调平、激光干涉法调平、莫尔条纹法调平等。工作间距检测系统所采用的方法包括和不限于白光干涉法、干涉空间位相法等。所述光刻设备还可以包括空气净化系统,包括和不限于净化循环空气、配制真空腔体等。
图7示出了灰度光刻的示意图。针对不同台阶结构,设计并制备具有不同特征尺寸细微结构的灰度掩模23。照明光束1经由灰度掩模23和负折射结构3形成光强不均匀的成像光场24,并对不同深度的光刻胶7感光,获得灰度感光的光刻胶8,经显影处理去除感光后的光刻胶8就可实现台阶甚至是连续面形加工。
所述负折射结构具有二元结构图形、台阶化和连续面形结构图形光刻能力、多层图形结构套刻光刻能力。在台阶化和连续面形结构图形负折射成像光刻时,利用负折射成像光学传递函数的差异,使得不同台阶高度区域的图形成像强度存在差异,以获得多台阶图形。所述光致抗蚀剂层的材料包括以下中的任一项:光致抗蚀剂、折射率光调制材料、吸收率光调制材料。所用光刻胶可 以替换为其它感光材料,包括和不限于折射率、吸收率光调制材料。通过必要的后处理,实现非几何形貌形式的微纳结构加工,例如折射率调制的光波导光栅等。
所述负折射成像光刻的掩模加工方式可以采用步进或扫描方式。所述负折射成像光刻方法和设备具有二元结构图形、台阶化和连续面形结构图形光刻能力、以及多层图形结构套刻光刻能力。可以优化图形掩模设计,以确保图形各部分像场强度基本一致。可以针对不同的台阶结构,优化设计掩模不同特征尺寸细微结构。利用负折射成像光学传递函数的差异,使得不同台阶高度区域的图形成像强度存在差异,光刻胶显影后获得不同高度的光刻胶图形结构,进一步刻蚀传递获得多台阶图形。通过增加台阶数目,可以逼近和实现连续面形结构加工。利用负折射成像光刻镜头的对准标记,多次光刻和刻蚀传递不同层的图形,确保图形层之间位置正确,实现多层图形结构加工。
图8示出了利用本发明实施例的负折射成像光刻方法和设备实现的二维图形成像光刻的示意图。如图8所示,首先采用掩模25进行第一次成像光刻,获得二维图形27的垂直部分,而后利用掩模26进行第二次成像光刻,获得二维图形27的水平部分。经过两次成像光刻的叠加并显影,就可得到高分辨力二维图形27。
下面结合图1至图6,详细描述根据本发明的负折射成像光刻方法和设备的具体操作。首先,在石英衬底上制备厚度为60nm、周期为700nm、占空比为0.5的Cr掩模。在得到的Cr掩模上旋涂50nm厚度的有机玻璃PMMA作为掩模平坦层。在获得的结构上方交替溅射8层Ag膜与7层TiO2膜,膜层厚度均为30nm,在最外层Ag膜表面继续溅射5nm厚度的TiO2膜以防止Ag膜氧化和潮解。在石英衬底表面旋涂100nm厚度的紫外光致抗蚀剂AR3170。将上述衬底分别固定于精密间隙控制机构的两个承片台上,其中两个衬底的石英面一侧与承片台接触。控制所使用的精密间隙控制机构,使得两个衬底的间隙维持在400nm左右。采用中心波长为365nm、光强为1mW/m2的TM偏振紫外光,从Cr掩模一侧进行曝光,曝光时间为500s左右,使石英衬底上的光致抗蚀剂感光。从精密间隙控制机构的承片台上取出涂覆有光致抗蚀剂的石英衬底。将得到的石英衬底放入AZ300显影液中进行显影处理,显影时间约为 10-15s,并将显影后的基片吹干。在光致抗蚀剂上获得密集线条的光致抗蚀剂图案,其周期为700nm,线宽为350nm。
根据本发明实施例所述的负折射成像光刻方法和设备无需传统投影光刻镜头所需的几十个面形和位置都为纳米精度的镜片,通过镀膜、电子束等集成加工方法就可实现,相比之下镜头研制成本可以急剧降低。同时所述方法具有无光轴成像特点,整个负折射成像结构具有空间平移对称性,考虑到当前平面元件的面形加工精度和元件尺寸,可以实现100mm2以上成像视场尺寸的光刻。由于基片与掩模之间物理隔离,该方法可以实现高精度对准、定位和多层纳米结构的套刻加工等操作。基于负折射成像光刻结构,本发明可以实现高分辨力的灰度光刻,用于多台阶或连续面形的加工。
尽管已经参考本发明的典型实施例,具体示出和描述了本发明,但本领域普通技术人员应当理解,在不脱离所附权利要求所限定的本发明的精神和范围的情况下,可以对这些实施例进行形式和细节上的多种改变。

Claims (35)

1.一种负折射成像光刻方法,包括:
在器件衬底上涂覆光致抗蚀剂;
制备负折射结构,其中所述负折射结构对于曝光光源发射的光的波长表现出负折射率;
将光刻板与所述负折射结构贴合;
将所述光刻板和所述负折射结构置于所述器件衬底上方,与所述器件衬底间隔开投影间隙的投影距离;以及
曝光光源发射光,依次通过所述光刻板、所述负折射结构、投影间隙投射到所述光致抗蚀剂上进行曝光。
根据权利要求1所述的负折射成像光刻方法,其中所述负折射率结构等效为各向异性材料,其介电常数横向分量与纵向分量实部符号须互为异号,对于由金属、介质组成的复合结构,其等效介电常数横向分量为ε //=f·ε d+(1-f)·ε m,纵向分量为ε =ε d·ε m/[f·ε m+(1-f)·ε d],则ε //·ε <0以使所述负折射该结构呈现负折射特性,其中ε d、ε m分别为复合结构中介质材料与金属材料的介电常数,f为金属的体积填充比。
根据权利要求1所述的负折射成像光刻方法,其中所述负折射结构的等效折射率为负值,包括多层膜负折射成像光刻结构、孔阵多层负折射成像光刻结构、复合负折射成像光刻结构和三维负折射结构。
根据权利要求3所述的负折射成像光刻方法,其中所述多层膜负折射成像光刻结构负折射结构由两种或两种以上具有不同介电常数的材料膜层交替排布组成,所述材料膜层的厚度满足负折射成像等效条件。
根据权利要求1所述的负折射成像光刻方法,其中所述材料膜层的至少一种材料的介电常数的实部为负。
根据权利要求5所述的负折射成像光刻方法,其中所述介电常数实部为负的材料包括金、银、铝。
根据权利要求3所述的负折射成像光刻方法,其中在介电常数实部为负的材料中引入二维孔阵结构以调制等效介电常数和损耗特性实现负折射成像,从而形成所述孔阵多层负折射成像光刻结构。
根据权利要求3所述的负折射成像光刻方法,其中通过将多层膜与孔阵层结构组合设计以获得具有负折射率的复合负折射成像光刻结构。
根据权利要求3所述的负折射成像光刻方法,其中所述三维负折射结构是折射率为负的三维超材料结构。
根据权利要求1所述的负折射成像光刻方法,其中在所述负折射成像结构与待光刻的器件衬底间填充液体,以增加负折射成像结构的等效数值孔径。
根据权利要求1所述的负折射成像光刻方法,其中所述负折射结构两侧还包括图形输入层,所述图形输入层对所述掩模的图形层进行平坦化,所述图形输入层的组成材料为折射率高、损耗小的透明材料,优化所述图形输入的层厚度以使得与负折射结构的参数匹配。
根据权利要求1所述的负折射成像光刻方法,其中所述负折射结构两侧还包括成像输出层,所述成像输出层配置为减小所述负折射结构与投影间隙所处的外界空间的等效折射率差异。
根据权利要求12所述的负折射成像光刻方法,其中所述成像输出层上还设置保护层以保护所述成像输出层。
根据权利要求13所述的负折射成像光刻方法,其中所述保护层上还设置了保护窗格,所述保护窗格环绕在保护层周围,以使所述负折射结构与光致抗蚀剂间隔开。
根据权利要求1所述的负折射成像光刻方法,其中所述光刻掩模图形是沿同一方向排列的线条图形,并且选择电场偏振态与线条方向垂直的照明光场。
根据权利要求1所述的负折射率成像光刻方法,其中所述负折射结构具有二元结构图形、台阶化和连续面形结构图形光刻能力、多层图形结构套刻光刻能力。
根据权利要求16所述的负折射成像光刻方法,其中在台阶化和连续面形结构图形负折射成像光刻时,利用负折射成像光学传递函数的差异,使得不同台阶高度区域的图形成像强度存在差异,以获得多台阶图形。
根据权利要求1所述的负折射成像光刻方法,其中所述光致抗蚀剂层 的材料包括以下中的任一项:光致抗蚀剂、折射率光调制材料、吸收率光调制材料。
一种负折射成像光刻设备,包括:
曝光光源;
光致抗蚀剂涂覆装置,在器件衬底上涂覆光致抗蚀剂;
负折射结构,其中所述负折射结构对于所述曝光光源发射的光的波长表现出负折射率;
第一传输装置,将光刻板与所述负折射结构贴合,并且将所述光刻板和所述负折射结构置于所述器件衬底上方,与所述器件衬底间隔开投影间隙的投影距离,
其中所述曝光光源发射光,依次通过所述光刻板、所述负折射结构、投影间隙投射到所述光致抗蚀剂上进行曝光。
根据权利要求19所述的负折射成像光刻设备,其中所述负折射率结构等效为各向异性材料,其介电常数横向分量与纵向分量实部符号须互为异号,对于由金属、介质组成的复合结构,其等效介电常数横向分量为ε //=f·ε d+(1-f)·ε m,纵向分量为ε =ε d·ε m/[f·ε m+(1-f)·ε d],则ε //·ε <0以使所述负折射该结构呈现负折射特性,其中ε d、ε m分别为复合结构中介质材料与金属材料的介电常数,f为金属的体积填充比。
根据权利要求19所述的负折射成像光刻设备,其中所述负折射结构的等效折射率为负值,包括多层膜负折射成像光刻结构、孔阵多层负折射成像光刻结构、复合负折射成像光刻结构和三维负折射结构。
根据权利要求21所述的负折射成像光刻设备,其中所述多层膜负折射成像光刻结构负折射结构由两种或两种以上具有不同介电常数的材料膜层交替排布组成,所述材料膜层的厚度满足负折射成像等效条件。
根据权利要求19所述的负折射成像光刻设备,其中所述材料膜层的至少一种材料的介电常数的实部为负。
根据权利要求21所述的负折射成像光刻方法,其中在介电常数实部为负的材料中引入二维孔阵结构以调制等效介电常数和损耗特性实现负折射成像,从而形成所述孔阵多层负折射成像光刻结构。
根据权利要求21所述的负折射成像光刻方法,其中通过将多层膜与孔阵层结构组合设计以获得具有负折射率的复合负折射成像光刻结构。
根据权利要求21所述的负折射成像光刻方法,其中所述三维负折射结构是折射率为负的三维超材料结构。
根据权利要求19所述的负折射成像光刻设备,其中在所述负折射成像结构与待光刻的器件衬底间填充液体,以增加负折射成像结构的等效数值孔径。
根据权利要求19所述的负折射成像光刻设备,其中所述负折射结构两侧还包括图形输入层,所述图形输入层对所述掩模的图形层进行平坦化,所述图形输入层的组成材料为折射率高、损耗小的透明材料,优化所述图形输入的层厚度以使得与负折射结构的参数匹配。
根据权利要求19所述的负折射成像光刻设备,其中所述负折射结构两侧还包括成像输出层,所述成像输出层配置为减小所述负折射结构与投影间隙所处的外界空间的等效折射率差异。
根据权利要求29所述的负折射成像光刻设备,其中所述成像输出层上还设置保护层以保护所述成像输出层。
根据权利要求30所述的负折射成像光刻设备,其中所述保护层上还设置了保护窗格,所述保护窗格环绕在保护层周围,以使所述负折射结构与光致抗蚀剂间隔开。
根据权利要求19所述的负折射成像光刻方法,其中所述光刻掩模图形是沿同一方向排列的线条图形,并且选择电场偏振态与线条方向垂直的照明光场。
根据权利要求19所述的负折射成像光刻设备,其中所述负折射结构具有二元结构图形、台阶化和连续面形结构图形光刻能力、多层图形结构套刻光刻能力。
根据权利要求33所述的负折射成像光刻设备,其中在台阶化和连续面形结构图形负折射成像光刻时,利用负折射成像光学传递函数的差异,使得不同台阶高度区域的图形成像强度存在差异,以获得多台阶图形。
根据权利要求19所述的负折射成像光刻设备,其中所述光致抗蚀剂层 的材料包括以下中的任一项:光致抗蚀剂、折射率光调制材料、吸收率光调制材料。
PCT/CN2018/106685 2017-12-11 2018-09-20 负折射成像光刻方法和设备 WO2019114359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18887484.6A EP3726294A4 (en) 2017-12-11 2018-09-20 PHOTOLITHOGRAPHIC PROCESS AND DEVICE FOR IMAGE GENERATION WITH NEGATIVE REFRACTION
US16/771,784 US20210200079A1 (en) 2017-12-11 2018-09-20 Negative refraction imaging lithographic method and equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711323769.7 2017-12-11
CN201711323769.7A CN109901363A (zh) 2017-12-11 2017-12-11 负折射成像光刻方法和设备

Publications (1)

Publication Number Publication Date
WO2019114359A1 true WO2019114359A1 (zh) 2019-06-20

Family

ID=66818936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106685 WO2019114359A1 (zh) 2017-12-11 2018-09-20 负折射成像光刻方法和设备

Country Status (4)

Country Link
US (1) US20210200079A1 (zh)
EP (1) EP3726294A4 (zh)
CN (1) CN109901363A (zh)
WO (1) WO2019114359A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126543A1 (en) * 2017-12-20 2019-06-27 The Regents Of The University Of Michigan Plasmonic lithography for patterning high aspect-ratio nanostructures
CN114967316B (zh) * 2022-05-12 2024-09-27 厦门大学 一种制备半导体垂直剖面结构的光刻方法
CN115236952B (zh) * 2022-09-23 2022-11-29 深圳市先地图像科技有限公司 一种激光成像用的图像数据处理方法、系统及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122739A (zh) * 2007-08-31 2008-02-13 中国科学院光电技术研究所 一种基于负折射率透镜的亚波长连续面形微结构制备方法
CN101126900A (zh) * 2007-08-31 2008-02-20 中国科学院光电技术研究所 一种基于金属局域化效应的光刻方法
CN101424758A (zh) * 2008-11-19 2009-05-06 中国科学院光电技术研究所 一种基于金属覆盖层的负折射人工材料
US20130143149A1 (en) * 2011-12-02 2013-06-06 Industry-Academic Cooperation Foundation, Yonsei University Mask for use in photolithography, manufacturing method thereof and manufacturing method of devices by using the mask
CN105319833A (zh) * 2014-08-04 2016-02-10 三星显示有限公司 用于光刻的掩模、制造其的方法和利用其制造基底的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339894B2 (ja) * 1992-12-18 2002-10-28 オリンパス光学工業株式会社 微細パターンの作成方法
DE19946447B4 (de) * 1998-10-13 2012-01-19 Ims Nanofabrication Ag Teilchenoptisches Abbildungssystem für Lithographiezwecke
AU2002319530A1 (en) * 2001-11-16 2003-06-10 Marconi Uk Intellectual Property Ltd Multilayer imaging device with negativer permittivity or negative permeability layers
JP4336119B2 (ja) * 2003-02-25 2009-09-30 古河電気工業株式会社 アクティブマトリクス型led表示装置およびその要素
JP2006072237A (ja) * 2004-09-06 2006-03-16 Olympus Corp レンズ、光学系、並びに光学装置
US7593170B2 (en) * 2006-10-20 2009-09-22 Hewlett-Packard Development Company, L.P. Random negative index material structures in a three-dimensional volume
US20090040132A1 (en) * 2007-07-24 2009-02-12 Northeastern University Anisotropic metal-dielectric metamaterials for broadband all-angle negative refraction and superlens imaging
CN100507606C (zh) * 2007-11-23 2009-07-01 清华大学 基于介电颗粒和金属线的温度可调负折射器件及制备方法
JP5097517B2 (ja) * 2007-11-30 2012-12-12 Hoya株式会社 プロキシミティ露光用フォトマスクの検査装置、プロキシミティ露光用フォトマスクの検査方法、プロキシミティ露光用フォトマスクの製造方法及びパターン転写方法
US20100033701A1 (en) * 2008-08-08 2010-02-11 Hyesog Lee Superlens and lithography systems and methods using same
US8107149B2 (en) * 2009-04-29 2012-01-31 Hewlett-Packard Development Company, L.P. Negative index material-based modulators and methods for fabricating the same
JP5290063B2 (ja) * 2009-06-17 2013-09-18 株式会社日立ハイテクノロジーズ プロキシミティ露光装置、プロキシミティ露光装置の基板温度制御方法、及び表示用パネル基板の製造方法
CN101794070B (zh) * 2009-12-25 2012-08-08 中国科学院光电技术研究所 一种用于缩小投影超分辨成像器件和光刻方法
WO2011155683A1 (ko) * 2010-06-10 2011-12-15 연세대학교 산학협력단 음굴절률 메타물질을 이용한 능동형 위상 보정 방법, 이를 이용한 노광 이미징 장치와 시스템 및 음굴절률 메타물질을 이용하는 노광 이미징 장치의 분해능 개선방법
CN102544747B (zh) * 2011-10-31 2014-07-23 深圳光启高等理工研究院 一种超材料的制备方法
DE102013108876B4 (de) * 2013-08-16 2022-08-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Fotolithografisches Verfahren zur Herstellung einer Struktur in einem Strahlung emittierenden Halbleiterbauelement
US9958784B2 (en) * 2013-09-24 2018-05-01 The Institute Of Optics And Electronics, Chinese Academy Of Sciences Super-resolution imaging photolithography
KR101839903B1 (ko) * 2016-05-23 2018-03-19 한국과학기술원 메타물질을 갖는 마스크 형성 방법
WO2019126543A1 (en) * 2017-12-20 2019-06-27 The Regents Of The University Of Michigan Plasmonic lithography for patterning high aspect-ratio nanostructures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122739A (zh) * 2007-08-31 2008-02-13 中国科学院光电技术研究所 一种基于负折射率透镜的亚波长连续面形微结构制备方法
CN101126900A (zh) * 2007-08-31 2008-02-20 中国科学院光电技术研究所 一种基于金属局域化效应的光刻方法
CN101424758A (zh) * 2008-11-19 2009-05-06 中国科学院光电技术研究所 一种基于金属覆盖层的负折射人工材料
US20130143149A1 (en) * 2011-12-02 2013-06-06 Industry-Academic Cooperation Foundation, Yonsei University Mask for use in photolithography, manufacturing method thereof and manufacturing method of devices by using the mask
CN105319833A (zh) * 2014-08-04 2016-02-10 三星显示有限公司 用于光刻的掩模、制造其的方法和利用其制造基底的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726294A4 *

Also Published As

Publication number Publication date
EP3726294A1 (en) 2020-10-21
US20210200079A1 (en) 2021-07-01
EP3726294A4 (en) 2022-01-05
CN109901363A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
US7144685B2 (en) Method for making a pattern using near-field light exposure through a photomask
JP4296943B2 (ja) 露光用マスクの製造方法および露光方法ならびに3次元形状の製造方法
TWI431439B (zh) 微影裝置之位準感測器配置及器件製造方法
TWI411895B (zh) 做為對準標記之二元弦波次波長光柵
JP4797087B2 (ja) サブセグメント化されたアライメントマーク構成
JP6127203B2 (ja) 超解像イメージングリソグラフィー
TWI537690B (zh) 對準感測器、微影裝置及對準方法
TWI467319B (zh) 微影光罩、微影裝置及方法
TWI414767B (zh) 具有灰濾色鏡之波前感測器及包含該感測器之微影裝置
JP4520429B2 (ja) 位置合わせ装置への2次元フォトニック結晶の応用
US11874480B2 (en) Plasmonic lithography for patterning high aspect-ratio nanostructures
TW200525301A (en) Lithographic apparatus and device manufacturing method
WO2019114359A1 (zh) 负折射成像光刻方法和设备
JP7542654B2 (ja) 自己参照集積アライメントセンサ
TWI411896B (zh) 微影裝置
KR101875771B1 (ko) 노광용 마스크, 그 제조 방법 및 그 마스크를 이용한 기판의 제조 방법
TWI460559B (zh) 用於微影裝置之位階感測器配置、微影裝置及器件製造方法
Kong et al. A planar ultraviolet objective lens for optical axis free imaging nanolithography by employing optical negative refraction
KR20240141609A (ko) 메타 렌즈, 메타 렌즈 제조 방법 및 메타 렌즈를 포함하는 전자 장치
CN114740695A (zh) 晶圆与掩模版的对准方法及纳米结构的套刻方法
CN117492330A (zh) 一种表面等离子体光刻成像结构
CN113050364A (zh) 光学模型的优化方法以及光学邻近修正方法
JP2004317678A (ja) 柱面レンズの製造方法、グレースケールマスク、インテグレータの製造方法、インテグレータ、照明光学系、及び投影露光装置
Rogers et al. photolithography with an elastomeric phase mask
JP2008066572A (ja) マーク基板、マーク基板の製造方法、液浸露光装置およびデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887484

Country of ref document: EP

Effective date: 20200713