WO2019114358A1 - 有机发光二极管显示基板、显示装置及制作方法 - Google Patents

有机发光二极管显示基板、显示装置及制作方法 Download PDF

Info

Publication number
WO2019114358A1
WO2019114358A1 PCT/CN2018/106588 CN2018106588W WO2019114358A1 WO 2019114358 A1 WO2019114358 A1 WO 2019114358A1 CN 2018106588 W CN2018106588 W CN 2018106588W WO 2019114358 A1 WO2019114358 A1 WO 2019114358A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding layer
sub
substrate
light shielding
filter unit
Prior art date
Application number
PCT/CN2018/106588
Other languages
English (en)
French (fr)
Inventor
王东方
苏同上
王明
赵策
周斌
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18859954.2A priority Critical patent/EP3726581A4/en
Priority to US16/338,935 priority patent/US11444128B2/en
Publication of WO2019114358A1 publication Critical patent/WO2019114358A1/zh
Priority to US17/812,598 priority patent/US11751456B2/en
Priority to US18/354,218 priority patent/US20230363227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an organic light emitting diode display substrate, a display device, and a method of fabricating the same.
  • a conventional bottom emission type organic light emitting diode (OLED) display substrate mainly includes: a substrate substrate and a plurality of pixel units disposed on the base substrate, each of the pixel units including sub-pixel units of a plurality of colors, Each of the sub-pixel units includes a thin film transistor (TFT) driving layer and a bottom emission type organic light emitting diode, and the thin film transistor driving layer further includes a switching thin film transistor and a driving thin film transistor.
  • TFT thin film transistor
  • the thin film transistor driving layer further includes a switching thin film transistor and a driving thin film transistor.
  • the switching thin film transistor is an oxide (Oxide) thin film transistor
  • this type of switching thin film transistor is sensitive to low-band light such as blue light, and when low-band light such as blue light is irradiated onto the switching thin film transistor, it is easy to cause negative
  • the drift when the negative drift exceeds the turn-off voltage (Vgl) of the switching thin film transistor, causes the switching thin film transistor to be abnormally turned on, causing the corresponding capacitor to leak, further causing display abnormality.
  • Vgl turn-off voltage
  • an embodiment of the present disclosure provides an organic light emitting diode display substrate including a substrate substrate and a plurality of pixel units disposed on the substrate substrate, each of the pixel units including a plurality of sub-pixels a pixel unit, each of the sub-pixel units including a switching thin film transistor and an organic light emitting diode, the organic light emitting diode display substrate further comprising: a light shielding layer, the light shielding layer being located between the organic light emitting diode and the switching thin film transistor An orthographic projection of the light shielding layer on the base substrate completely covers an orthographic projection of a semiconductor region of the switching thin film transistor on the substrate.
  • the OLED display substrate is a white OLED display substrate, and the OLED is a white organic OLED, and each of the sub-pixel units further includes: A filter unit corresponding to the color of the pixel unit.
  • a first filter unit of a first color and a second filter unit of a second color are disposed in a region where each of the pixel units is located, and the first filter unit is capable of filtering The blue light is removed, and the second filter unit is capable of transmitting blue light.
  • the light shielding layer is disposed in the same material as the first filter unit.
  • the first color is red or green and the second color is blue or white.
  • the switching thin film transistors of all the sub-pixel units are located on the same side of the area where the filter unit is located, and are disposed near the first filter unit.
  • the light shielding layer is connected to the first filter unit.
  • each of the pixel units includes a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit, and each of the pixel units is provided with a shading a red filter unit corresponding to the layer, the red sub-pixel unit, a switch thin film transistor corresponding to the red sub-pixel unit, a green filter unit corresponding to the green sub-pixel unit, a switch thin film transistor corresponding to the green sub-pixel unit, and a blue sub-pixel unit a blue filter unit, a switching thin film transistor corresponding to a blue sub-pixel unit, a white filter unit corresponding to a white sub-pixel unit, a switching thin film transistor corresponding to a white sub-pixel unit, the red filter unit, and a green filter unit
  • the blue filter unit and the white filter unit are arranged in two rows and two columns, the red filter unit and the green filter unit are located in the same row, and the blue filter unit and the white filter unit are located in the same row.
  • the light shielding layer includes a red light shielding layer and a green light shielding layer, and the red light shielding layer is connected to the red filter unit.
  • the green light shielding layer is connected to the green filter unit, and the orthographic projection of the red light shielding layer and the green light shielding layer on the base substrate completely covers the semiconductor regions of all the switching thin film transistors in the pixel unit on the base substrate Orthographic projection.
  • the orthographic projection of the semiconductor region of the switching thin film transistor of the red sub-pixel unit on the substrate substrate is located in an orthographic projection of the red light shielding layer on the substrate substrate, the green sub-pixel An orthographic projection of a semiconductor region of the switching thin film transistor of the cell on the substrate substrate is located within an orthographic projection of the green light shielding layer on the substrate substrate, and switching of one of the blue sub-pixel unit and the white sub-pixel unit
  • the orthographic projection of the semiconductor region of the thin film transistor on the substrate substrate is located in the orthographic projection of the red light shielding layer on the substrate substrate, and the orthographic projection of the semiconductor region of the other switching thin film transistor on the substrate substrate is located in the green shading
  • the layer is within the orthographic projection on the substrate.
  • the switching thin film transistors of all the sub-pixel units are located on the same side of the region where the filter unit is located, and are respectively disposed adjacent to the corresponding filter unit.
  • the light shielding layer includes a first light shielding layer and a second light shielding layer, the first light shielding layer is connected to the first filter unit, and the orthographic projection of the first light shielding layer on the base substrate completely covers An orthographic projection of a semiconductor region of the switching thin film transistor of the sub-pixel unit of the first color on the substrate, the second light shielding layer being spaced apart from the second filter unit, the second light shielding layer
  • the orthographic projection on the base substrate completely covers the orthographic projection of the semiconductor region of the switching thin film transistor of the sub-pixel unit of the second color on the substrate.
  • each of the pixel units includes a red sub-pixel unit, a green sub-pixel unit, a blue sub-pixel unit, and a white sub-pixel unit, and each of the pixel units is provided with a shading a red filter unit corresponding to the layer, the red sub-pixel unit, a switch thin film transistor corresponding to the red sub-pixel unit, a green filter unit corresponding to the green sub-pixel unit, a switch thin film transistor corresponding to the green sub-pixel unit, and a blue sub-pixel unit a blue filter unit, a switching thin film transistor corresponding to the blue sub-pixel unit, a white filter unit corresponding to the white sub-pixel unit, and a switching thin film transistor corresponding to the white sub-pixel unit, the red filter unit and the green filter unit
  • the blue filter unit and the white filter unit are arranged in a row and four columns
  • the first light shielding layer includes a red light shielding layer and a first green light shielding layer
  • the red light shielding layer is connected to the red
  • the second green light shielding layer is spaced apart from the first green light shielding layer.
  • the second green light shielding layer is connected to the first green light shielding layer.
  • the organic light emitting diode is a bottom emission type organic light emitting diode.
  • the white filter unit corresponding to the white sub-pixel unit is a transparent film layer, or no filter layer is disposed.
  • the switching thin film transistor is an oxide thin film transistor.
  • an embodiment of the present disclosure further provides an organic light emitting diode display device comprising the organic light emitting diode display substrate described in the first aspect.
  • an embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode display substrate for fabricating the organic light emitting diode display substrate according to the first aspect, comprising:
  • each of the pixel units including sub-pixel units of a plurality of colors, each of the sub-pixel units including a switching thin film transistor and an organic light emitting diode, the shading a layer is located between the organic light emitting diode and the switching thin film transistor, and an orthographic projection of the light shielding layer on the substrate substrate completely covers an orthographic projection of a semiconductor region of the switching thin film transistor on the substrate .
  • FIG. 1 is a schematic structural diagram of a white light organic light emitting diode display substrate according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural view of a white light organic light emitting diode display substrate according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an organic light emitting diode display substrate including a substrate substrate and a plurality of pixel units disposed on the base substrate, each of the pixel units including a plurality of sub-pixel units, each of the The sub-pixel unit includes a switching thin film transistor and a bottom emission type organic light emitting diode, and the organic light emitting diode display substrate further includes: a light shielding layer, the light shielding layer is located between the organic light emitting diode and the switching thin film transistor, the light shielding The orthographic projection of the layer on the substrate substantially covers the orthographic projection of the semiconductor region of the switching thin film transistor on the substrate.
  • a light shielding layer is disposed between the bottom emission type organic light emitting diode and the switching thin film transistor, and the light shielding layer at least blocks the semiconductor region (ie, the channel region) of the switching thin film transistor from being organic
  • the light emitted by the light emitting diode is irradiated, so that the negative floating problem caused by the light irradiation of the semiconductor region of the switching thin film transistor can be improved, and the display effect is improved.
  • the light shielding layer is in the lining
  • the orthographic projection on the base substrate completely covers the orthographic projection of the switching thin film transistor on the substrate, that is, the switching thin film transistor is completely blocked by the light shielding layer, thereby further ensuring that the switching thin film transistor is not lighted Irradiated.
  • the specific size of the shielding layer may be adjusted according to the specific structure and the thickness of the light shielding layer.
  • the switching thin film transistor in the embodiment of the present disclosure may be an oxide thin film transistor, and a light shielding layer is disposed between the bottom emission type organic light emitting diode and the switching thin film transistor, the light shielding layer at least the semiconductor region of the switching thin film transistor (ie, the trench The channel region is shielded from being irradiated by low-band light such as blue light emitted from the organic light emitting diode, thereby preventing the semiconductor region of the switching thin film transistor from being abnormally turned on by the low-band light such as blue light, thereby improving the problem of abnormal opening of the switching thin film transistor. display effect.
  • the switching thin film transistor in the embodiment of the present disclosure may also be other types of thin film transistors.
  • the organic light emitting diode display substrate is a white light organic light emitting diode display substrate, that is, the organic light emitting diode in the sub pixel is a white light organic light emitting diode.
  • each of the sub-pixel units further includes: a filter unit corresponding to the color of the sub-pixel unit.
  • the emitted white light includes low-band light such as blue light
  • a light shielding layer is disposed between the white light organic light emitting diode and the switching thin film transistor, and the light shielding layer at least connects the semiconductor region of the switching thin film transistor ( That is, the channel region is blocked, so that it is not irradiated by low-band light such as blue light emitted by the white light organic light emitting diode, thereby avoiding the problem that the semiconductor region of the switching thin film transistor is abnormally turned on by the low-band light such as blue light. , improved display.
  • the light shielding layer may be made of various types of light shielding materials, and the embodiment of the present disclosure does not impose any limitation.
  • a first filter unit of a first color and a second filter unit of a second color are disposed in a region where each of the pixel units is located, and the first filter unit is capable of The blue light is filtered out, and the second filter unit is capable of transmitting blue light.
  • the light shielding layer is disposed in the same material as the first filter unit. Since the light shielding layer and the first filter unit are disposed in the same material, the number of masks used in the manufacturing process can be reduced, and the production cost is reduced.
  • the first filter unit may include a red filter unit, or include a green filter unit, or both a red filter unit and a green filter unit.
  • the second filter unit may include a blue light filter unit, and the pixel unit of the white light organic light emitting diode has a red (R), green (G), and blue (B) structure. That is, one pixel unit includes a red filter unit, a green filter unit, and a blue filter unit.
  • the second filter unit may also include a blue filter unit and a white filter unit.
  • the structure of the pixel unit of the white organic light emitting diode is red (R), green (G), blue (B), and white ( W) structure, that is, one pixel unit includes a red filter unit, a green filter unit, a blue filter unit, and a white filter unit.
  • the switching thin film transistors of all the sub-pixel units are located on the same side of the region where the filter unit is located, and are respectively disposed adjacent to the corresponding filter unit.
  • the light shielding layer includes a first light shielding layer and a second light shielding layer. The first light shielding layer is connected to the first filter unit, and the orthographic projection of the first light shielding layer on the base substrate completely covers the semiconductor region of the switching thin film transistor of the first color sub-pixel unit An orthographic projection on the base substrate.
  • the second light shielding layer is spaced apart from the second filter unit (ie, the second light shielding layer is spaced apart from the second filter unit by a predetermined distance), and the second light shielding layer is on the substrate
  • the orthographic projection on the substrate completely covers the orthographic projection of the semiconductor region of the switching thin film transistor of the sub-pixel unit of the second color on the substrate.
  • each of the pixel units includes a red sub-pixel unit R, a green sub-pixel unit G, a blue sub-pixel unit B, and a white sub-pixel unit W.
  • a red filter unit 101 corresponding to a red sub-pixel unit, a switch thin film transistor 102 corresponding to a red sub-pixel unit, a green filter unit 103 corresponding to a green sub-pixel unit, and a green sub-pixel unit are disposed in a region where each of the pixel units is located.
  • switching thin film transistor 104 corresponds to blue sub-pixel unit
  • switching thin film transistor 106 corresponds to blue sub-pixel unit
  • white filter unit 107 corresponding to white sub-pixel unit
  • white sub-pixel unit corresponding to The switching thin film transistor 108 and the light shielding layers 109, 110, 111.
  • the red filter unit 101, the green filter unit 103, the blue filter unit 105, and the white filter unit 107 are arranged in a row and four columns, and the light shielding layer includes a red light shielding layer 109, a first green light shielding layer 110, and a first a second green light-shielding layer 111, the red light-shielding layer 109 is connected to the red filter unit 101, and the orthographic projection of the red light-shielding layer 109 on the base substrate completely covers the switch thin film transistor of the red sub-pixel unit An orthographic projection of a semiconductor region of 102 on the base substrate, the first green light shielding layer 110 is connected to the green filter unit 103, and the first green light shielding layer 110 is positive on the base substrate Projecting an orthographic projection of a semiconductor region of the switching thin film transistor 104 completely covering the green sub-pixel unit on the substrate, the orthographic projection of the second green light-shielding layer 111 on the substrate completely covering the An orthographic projection of a semiconductor region of the blue
  • the second light shielding layer is implemented by using the second green light shielding layer 111. In some other embodiments of the present disclosure, the second light shielding layer may also be implemented by using a red light shielding layer.
  • the second green light shielding layer 111 is not connected to the first green light shielding layer 110. In some other embodiments of the present disclosure, the second green light shielding layer 111 may also be connected to the first green light shielding layer 110.
  • the second green light shielding layer 111 is adjacent to the blue filter unit and the white filter unit, for the process reason, between the second green light shielding layer 111 and the blue filter unit and the white filter unit There must be a certain edge spacing, which affects the aperture ratio of the sub-pixels corresponding to the blue filter unit and the white filter unit.
  • the switching thin film transistors of all the sub-pixel units are located on the same side of the area where the filter unit is located, and are disposed near the first filter unit, and the shading is performed.
  • the layer is connected to the first filter unit. Because the area of the first filter unit is adjacent to the area where the switching thin film transistor is located, the light shielding layer can be connected to the first light shielding unit, and can cover as much as possible the peripheral area of the switching thin film transistor without affecting the sub-pixel.
  • the aperture ratio is the aperture ratio.
  • each of the pixel units includes a red sub-pixel unit R, a green sub-pixel unit G, a blue sub-pixel unit B, and a white sub-pixel unit W.
  • a red filter unit 101 corresponding to a red sub-pixel unit, a switch thin film transistor 102 corresponding to a red sub-pixel unit, a green filter unit 103 corresponding to a green sub-pixel unit, and a green sub-pixel unit are disposed in a region where each of the pixel units is located.
  • the red filter unit 101, the green filter unit 103, the blue filter unit 105, and the white filter unit 107 are arranged in two rows and two columns, and the red filter unit 101 and the green filter unit 103 are located in the same row.
  • the blue filter unit 105 and the white filter unit 107 are located in the same row, and the light shielding layer includes a red light shielding layer 109 and a green light shielding layer 110, and the red light shielding layer 109 is connected to the red filter unit 101.
  • the green light shielding layer 110 is connected to the green filter unit 103, and the orthographic projection of the red light shielding layer 109 and the green light shielding layer 110 on the base substrate completely covers all the switching thin film transistors in the corresponding pixel unit (102, The orthographic projection of the semiconductor regions 104, 106 and 108) on the substrate.
  • all the switching thin film transistors in the region where the pixel unit is located are located on the same side of the filter unit (ie, the lower side in FIG. 2), and are disposed near the red filter unit 101 and the green filter unit 103. Therefore, the sizes of the red filter unit 101 and the green filter unit 103 can be separately widened to form a red light shielding layer 109 and a green light shielding layer 110 for blocking the switching thin film transistor from being emitted by the white light organic light emitting diode.
  • the semiconductor region of the switching thin film transistor is prevented from being abnormally turned on by the low-band light such as blue light, and the display effect is improved.
  • the red light shielding layer 109 is connected to the red filter unit 101
  • the green light shielding layer 110 is connected to the green filter unit 103, and the sub-pixel aperture ratio is not lowered due to the introduction of the light shielding layer.
  • the orthographic projection of the semiconductor region of the switching thin film transistor 102 of the red sub-pixel unit on the substrate substrate is located in the orthographic projection of the red light shielding layer 109 on the substrate substrate
  • the green sub- The orthographic projection of the semiconductor region of the switching thin film transistor 104 of the pixel unit on the substrate substrate is located in the orthographic projection of the green light shielding layer 110 on the substrate substrate
  • the semiconductor region of the switching thin film transistor 106 of the blue sub-pixel unit is lining
  • the orthographic projection on the base substrate is located in the orthographic projection of the red light shielding layer 109 on the base substrate
  • the orthographic projection of the semiconductor region of the switching thin film transistor 108 of the white sub-pixel unit on the substrate substrate is located in the green light shielding layer 110.
  • the positions of the red sub-pixel unit and the green sub-pixel unit may be interchanged, and the positions of the blue sub-pixel unit and the white sub-pixel unit may also be interchanged.
  • the white filter unit 107 of the white sub-pixel unit may be a transparent film layer or may not be provided with any filter film layer.
  • An embodiment of the present disclosure further provides an organic light emitting diode display device including the above organic light emitting diode display substrate.
  • the embodiment of the present disclosure further provides a method for fabricating an organic light emitting diode display substrate, which is used to fabricate the organic light emitting diode display substrate in any of the above embodiments, and the manufacturing method includes, for example:
  • Step 11 providing a substrate
  • Step 12 forming a plurality of pixel units and a light shielding layer on the base substrate, each of the pixel units including sub-pixel units of a plurality of colors, each of the sub-pixel units including a switching thin film transistor and an organic light emitting diode.
  • the light shielding layer is located between the organic light emitting diode and the switching thin film transistor, and an orthographic projection of the light shielding layer on the substrate substrate completely covers a semiconductor region of the switching thin film transistor on the substrate Orthographic projection.
  • the manufacturing method of the white organic light emitting diode of the embodiment of the present disclosure includes the following steps, for example:
  • Step 21 providing a substrate and performing cleaning
  • Step 22 forming a pattern of the gate metal layer on the base substrate.
  • the gate metal layer may be deposited by sputtering or evaporation, and patterned to form a pattern of the gate metal layer.
  • the thickness of the gate metal layer may be about 220 nm, and the material is selected from Al or Cu. Made of metal materials.
  • Step 23 forming a gate insulating layer by chemical deposition (CVD);
  • Step 24 forming a pattern of the active layer
  • IGZO having a thickness of 10 to 80 nm may be deposited by a sputter method and patterned to form a pattern of the active layer.
  • Step 25 forming a pattern of an etch barrier layer
  • SiOx or AlOx having a thickness of 40 to 120 nm may be deposited as an etch barrier by PECVD (Plasma Enhanced Chemical Vapor Deposition), and patterned according to patterning. The pattern of the etch barrier.
  • Step 26 forming a pattern of source and drain metal layers
  • the source/drain metal layer may be formed by a sputter method, and a pattern of the source/drain metal layer may be patterned.
  • the thickness of the source/drain metal layer may be about 220 nm, and the material is Mo, MoW, Cu, or AlNd.
  • Step 27 forming a pattern of the passivation layer
  • SiOx or SiNx having a thickness of 200 to 400 nm may be deposited as a passivation layer by PECVD, and patterned to form a pattern of the passivation layer.
  • Step 28 separately fabricating R, G, B, and W filter units, and simultaneously forming a light shielding layer;
  • Step 29 forming a pattern of a pixel electrode (ie, an anode of a white organic light emitting diode);
  • ITO having a thickness of 40 nm or 135 nm or IZO having a thickness of 40 to 135 nm may be deposited by a sputter method and patterned to form a pattern of a pixel electrode.
  • Step 210 Forming an organic light-emitting layer and a cathode of the white organic light-emitting diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种有机发光二极管显示基板、显示装置及制作方法。该有机发光二极管显示基板包括:衬底基板以及设置在衬底基板上的多个像素单元,每一像素单元包括多个亚像素单元,每一亚像素单元包括开关薄膜晶体管和底发射型有机发光二极管,有机发光二极管显示基板还包括:遮光层,遮光层位于有机发光二极管与开关薄膜晶体管之间,遮光层在衬底基板上的正投影完全覆盖开关薄膜晶体管的半导体区域在衬底基板上的正投影。

Description

有机发光二极管显示基板、显示装置及制作方法
相关申请的交叉引用
本申请主张在2017年12月14日在中国提交的中国专利申请号No.201711338884.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种有机发光二极管显示基板、显示装置及制作方法。
背景技术
现有的底发射型有机发光二极管(OLED)显示基板主要包括:衬底基板以及设置在所述衬底基板上的多个像素单元,每一所述像素单元包括多种颜色的亚像素单元,每一所述亚像素单元包括薄膜晶体管(TFT)驱动层和底发射型有机发光二极管,薄膜晶体管驱动层又包括开关薄膜晶体管和驱动薄膜晶体管。现有的底发射型有机发光二极管显示基板中,开关薄膜晶体管和底发射型有机发光二极管之间没有遮挡,底发射型有机发光二极管发射的光线能够照射至开关薄膜晶体管上。然而,当开关薄膜晶体管为氧化物(Oxide)薄膜晶体管时,该种类型的开关薄膜晶体管对于蓝光等低波段光比较敏感,当有蓝光等低波段光照射到开关薄膜晶体管上时,容易造成负向漂移,当负向漂移超出开关薄膜晶体管的关闭电压(Vgl)时,会引起开关薄膜晶体管异常开启,导致对应的电容漏电,进一步导致显示异常。
发明内容
在第一个方面中,本公开实施例提供一种有机发光二极管显示基板,包括衬底基板以及设置在所述衬底基板上的多个像素单元,每一所述像素单元包括多个的亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和有机发光二极管,所述有机发光二极管显示基板还包括:遮光层,所述遮光层位于所述有机发光二极管与所述开关薄膜晶体管之间,所述遮光层在所述衬底基 板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
在本公开的一个可行实施例中,所述有机发光二极管显示基板为白光有机发光二极管显示基板,所述有机发光二极管为白光有机发光二极管,每一所述亚像素单元还包括:与所述亚像素单元的颜色对应的滤光单元。
在本公开的一个可行实施例中,每一所述像素单元所在区域内设置有第一颜色的第一滤光单元和第二颜色的第二滤光单元,所述第一滤光单元能够过滤掉蓝光,所述第二滤光单元能够透射蓝光。
在本公开的一个可行实施例中,所述遮光层与所述第一滤光单元同层同材料设置。
在本公开的一个可行实施例中,所述第一颜色是红色或绿色,所述第二颜色是蓝色或白色。
在本公开的一个可行实施例中,每一所述像素单元中,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并靠近所述第一滤光单元设置,所述遮光层与所述第一滤光单元相连。
在本公开的一个可行实施例中,每一所述像素单元包括红色亚像素单元、绿色亚像素单元、蓝色亚像素单元和白色亚像素单元,每一所述像素单元所在区域内设置有遮光层、红色亚像素单元对应的红色滤光单元、红色亚像素单元对应的开关薄膜晶体管、绿色亚像素单元对应的绿色滤光单元、绿色亚像素单元对应的开关薄膜晶体管、蓝色亚像素单元对应的蓝色滤光单元、蓝色亚像素单元对应的开关薄膜晶体管、白色亚像素单元对应的白色滤光单元、白色亚像素单元对应的开关薄膜晶体管,所述红色滤光单元、绿色滤光单元、蓝色滤光单元和白色滤光单元呈两行两列排列,所述红色滤光单元和绿色滤光单元位于同一行,所述蓝色滤光单元和白色滤光单元位于同一行,所述遮光层包括红色遮光层和绿色遮光层,所述红色遮光层与所述红色滤光单元相连,所述绿色遮光层与所述绿色滤光单元相连,所述红色遮光层和绿色遮光层在衬底基板上的正投影完全覆盖所述像素单元中的所有开关薄膜晶体管的半导体区域在衬底基板上的正投影。
在本公开的一个可行实施例中,所述红色亚像素单元的开关薄膜晶体管 的半导体区域在衬底基板上的正投影位于红色遮光层在衬底基板上的正投影内,所述绿色亚像素单元的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于绿色遮光层在衬底基板上的正投影内,所述蓝色亚像素单元和白色亚像素单元两者中的一者的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于所述红色遮光层在衬底基板上的正投影内,另一者的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于绿色遮光层在衬底基板上的正投影内。
在本公开的一个可行实施例中,每一所述像素单元中,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并分别靠近所述对应的滤光单元设置,所述遮光层包括第一遮光层和第二遮光层,所述第一遮光层与所述第一滤光单元相连,所述第一遮光层在所述衬底基板上的正投影完全覆盖所述第一颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二遮光层与所述第二滤光单元间隔设置,所述第二遮光层在所述衬底基板上的正投影完全覆盖所述第二颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
在本公开的一个可行实施例中,每一所述像素单元包括红色亚像素单元、绿色亚像素单元、蓝色亚像素单元和白色亚像素单元,每一所述像素单元所在区域内设置有遮光层、红色亚像素单元对应的红色滤光单元、红色亚像素单元对应的开关薄膜晶体管、绿色亚像素单元对应的绿色滤光单元、绿色亚像素单元对应的开关薄膜晶体管、蓝色亚像素单元对应的蓝色滤光单元、蓝色亚像素单元对应的开关薄膜晶体管、白色亚像素单元对应的白色滤光单元和白色亚像素单元对应的开关薄膜晶体管,所述红色滤光单元、绿色滤光单元、蓝色滤光单元和白色滤光单元呈一行四列排列,所述第一遮光层包括红色遮光层和第一绿色遮光层,所述红色遮光层与所述红色滤光单元相连,所述红色遮光层在所述衬底基板上的正投影完全覆盖所述红色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第一绿色遮光层与所述绿色滤光单元相连,所述第一绿色遮光层在所述衬底基板上的正投影完全覆盖所述绿色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二遮光层为红色遮光层或第二绿色遮光层,所述第 二绿色遮光层在所述衬底基板上的正投影完全覆盖所述蓝色亚像素单元以及白色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二绿色遮光层与所述蓝色滤光单元以及白色滤光单元间隔设置,即相互之间不相连。
在本公开的一个可行实施例中,所述第二绿色遮光层与所述第一绿色遮光层间隔设置。
在本公开的一个可行实施例中,所述第二绿色遮光层与所述第一绿色遮光层相连。
在本公开的一个可行实施例中,所述有机发光二极管是底发射型有机发光二极管。
在本公开的一个可行实施例中,所述白色亚像素单元对应的白色滤光单元是一透明膜层,或者不设置任何滤光膜层。
在本公开的一个可行实施例中,所述开关薄膜晶体管为氧化物薄膜晶体管。
在第二个方面中,本公开实施例还提供一种有机发光二极管显示装置,包括在第一个方面中所述的有机发光二极管显示基板。
在第三个方面中,本公开实施例还提供一种有机发光二极管显示基板的制作方法,用于制作在第一个方面中所述的有机发光二极管显示基板,包括:
提供一衬底基板;以及
在所述衬底基板上形成多个像素单元和遮光层,每一所述像素单元包括多种颜色的亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和有机发光二极管,所述遮光层位于所述有机发光二极管与所述开关薄膜晶体管之间,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的白光有机发光二极管显示基板的结构示意图。
图2为本公开实施例的白光有机发光二极管显示基板的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种有机发光二极管显示基板,包括衬底基板以及设置在所述衬底基板上的多个像素单元,每一所述像素单元包括多个的亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和底发射型有机发光二极管,所述有机发光二极管显示基板还包括:遮光层,所述遮光层位于所述有机发光二极管和所述开关薄膜晶体管之间,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
本公开实施例中,在底发射型有机发光二极管和开关薄膜晶体管之间设置遮光层,该遮光层至少将所述开关薄膜晶体管的半导体区域(即沟道区域)遮挡住,使其不被有机发光二极管发射的光照射到,从而可以改善开关薄膜晶体管的半导体区域被光照射导致的负飘问题,提高了显示效果。
由于光存在折射和散射,因而如果只有开关薄膜晶体管的半导体区域被遮光层覆盖,难以保证半导体区域不被光照射到,因而可选地,本公开实施例中,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管在所述衬底基板上的正投影,即,所述开关薄膜晶体管整个完全被所述遮光层遮挡住,从而进一步保证开关薄膜晶体管不被光照射到。
本公开实施例中,遮挡层的具体尺寸可以根据具体的结构以及遮光层的厚度等做出调整。
本公开实施例中的开关薄膜晶体管可以是氧化物薄膜晶体管,由于在底发射型有机发光二极管和开关薄膜晶体管之间设置遮光层,该遮光层至少将 所述开关薄膜晶体管的半导体区域(即沟道区域)遮挡住,使其不被有机发光二极管发射的蓝光等低波段光照射到,从而可以避免开关薄膜晶体管的半导体区域被蓝光等低波段光照射导致开关薄膜晶体管异常开启的问题,提高了显示效果。当然,本公开实施例中的开关薄膜晶体管也可以为其他类型的薄膜晶体管。
在本公开的一些实施例中,所述有机发光二极管显示基板为白光有机发光二极管显示基板,即,所述亚像素中的有机发光二极管为白光有机发光二极管。此时,每一所述亚像素单元还包括:与所述亚像素单元的颜色对应的滤光单元。由于白光有机发光二极管发射白光,发射的白光中包含蓝光等低波段光,因而,在白光有机发光二极管和开关薄膜晶体管之间设置遮光层,该遮光层至少将所述开关薄膜晶体管的半导体区域(即沟道区域)遮挡住,使其不被白光有机发光二极管发射的蓝光等低波段光照射到,从而可以避免开关薄膜晶体管的半导体区域被蓝光等低波段光照射导致开关薄膜晶体管异常开启的问题,提高了显示效果。
本公开实施例中,遮光层可以采用多种类型的遮光材料制成,本公开实施例对此并不做任何限制。
在本公开的一些可选实施例中,每一所述像素单元所在区域内设置有第一颜色的第一滤光单元和第二颜色的第二滤光单元,所述第一滤光单元能够过滤掉蓝光,所述第二滤光单元能够透射蓝光。所述遮光层与所述第一滤光单元同层同材料设置。由于遮光层与第一滤光单元同层同材料设置,可以减少制作过程中采用的掩膜数量,降低了生产成本。
在本公开的一些实施例中,所述第一滤光单元可以包括红色滤光单元,或者,包括绿色滤光单元,或者,同时包括红色滤光单元和绿色滤光单元。
在本公开的一些实施例中,所述第二滤光单元可以包括蓝光滤光单元,例如白光有机发光二极管的像素单元的结构为红(R)、绿(G)、蓝(B)结构,即一个像素单元包括红色滤光单元、绿色滤光单元和蓝色滤光单元。所述第二滤光单元也可以同时包括蓝色滤光单元和白色滤光单元,例如白光有机发光二极管的像素单元的结构为红(R)、绿(G)、蓝(B)、白(W)结构,即一个像素单元包括红色滤光单元、绿色滤光单元、蓝色滤光单元和白色滤 光单元。
本公开的一些实施例中,每一所述像素单元中,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并分别靠近所述对应的滤光单元设置,所述遮光层包括第一遮光层和第二遮光层。所述第一遮光层与所述第一滤光单元相连,所述第一遮光层在所述衬底基板上的正投影完全覆盖所述第一颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。所述第二遮光层与所述第二滤光单元间隔设置(即所述第二遮光层与所述第二滤光单元被隔开预定距离),所述第二遮光层在所述衬底基板上的正投影完全覆盖所述第二颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
请参考图1,在本公开实施例中,每一所述像素单元包括红色亚像素单元R、绿色亚像素单元G、蓝色亚像素单元B和白色亚像素单元W。每一所述像素单元所在区域内设置有红色亚像素单元对应的红色滤光单元101、红色亚像素单元对应的开关薄膜晶体管102、绿色亚像素单元对应的绿色滤光单元103、绿色亚像素单元对应的开关薄膜晶体管104、蓝色亚像素单元对应的蓝色滤光单元105、蓝色亚像素单元对应的开关薄膜晶体管106、白色亚像素单元对应的白色滤光单元107、白色亚像素单元对应的开关薄膜晶体管108和遮光层109、110、111。所述红色滤光单元101、绿色滤光单元103、蓝色滤光单元105和白色滤光单元107呈一行四列排列,所述遮光层包括红色遮光层109、第一绿色遮光层110和第二绿色遮光层111,所述红色遮光层109与所述红色滤光单元101相连,所述红色遮光层109在所述衬底基板上的正投影完全覆盖所述红色亚像素单元的开关薄膜晶体管102的半导体区域在所述衬底基板上的正投影,所述第一绿色遮光层110与所述绿色滤光单元103相连,所述第一绿色遮光层110在所述衬底基板上的正投影完全覆盖所述绿色亚像素单元的开关薄膜晶体管104的半导体区域在所述衬底基板上的正投影,所述第二绿色遮光层111在所述衬底基板上的正投影完全覆盖所述蓝色亚像素单元以及白色亚像素单元的开关薄膜晶体管106和108的半导体区域在所述衬底基板上的正投影,所述第二绿色遮光层111与所述蓝色滤光单元以及白色滤光单元间隔设置,即相互之间不相连。
本公开实施例中,第二遮光层采用第二绿色遮光层111实现,在本公开的其他一些实施例中,第二遮光层也可以采用红色遮光层实现。
本公开实施例中,第二绿色遮光层111不与第一绿色遮光层110相连,在本公开的其他一些实施例中,第二绿色遮光层111还可以与第一绿色遮光层110相连。
上述实施例中,由于第二绿色遮光层111与蓝色滤光单元和白色滤光单元相邻,出于工艺原因,第二绿色遮光层111与蓝色滤光单元和白色滤光单元之间必须有一定的边缘间隔,因而会影响蓝色滤光单元和白色滤光单元对应的亚像素的开口率。
为解决上述问题,本公开实施例中,可选地,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并靠近所述第一滤光单元设置,所述遮光层与所述第一滤光单元相连。由于,第一滤光单元所在区域与开关薄膜晶体管所在区域相邻,因而遮光层可以与第一遮光单元相连,能够尽可能多的覆盖开关薄膜晶体管的更多周边区域,且不会影响亚像素的开口率。
请参考图2,在本公开实施例中,每一所述像素单元包括红色亚像素单元R、绿色亚像素单元G、蓝色亚像素单元B和白色亚像素单元W。每一所述像素单元所在区域内设置有红色亚像素单元对应的红色滤光单元101、红色亚像素单元对应的开关薄膜晶体管102、绿色亚像素单元对应的绿色滤光单元103、绿色亚像素单元对应的开关薄膜晶体管104、蓝色亚像素单元对应的蓝色滤光单元105、蓝色亚像素单元对应的开关薄膜晶体管106、白色亚像素单元对应的白色滤光单元107、白色亚像素单元对应的开关薄膜晶体管108和遮光层109、110。所述红色滤光单元101、绿色滤光单元103、蓝色滤光单元105和白色滤光单元107呈两行两列排列,所述红色滤光单元101和绿色滤光单元103位于同一行,所述蓝色滤光单元105和白色滤光单元107位于同一行,所述遮光层包括红色遮光层109和绿色遮光层110,所述红色遮光层109与所述红色滤光单元101相连,所述绿色遮光层110与所述绿色滤光单元103相连,所述红色遮光层109和绿色遮光层110在所述衬底基板上的正投影完全覆盖对应像素单元中的所有开关薄膜晶体管(102、104、106 和108)的半导体区域在衬底基板上的正投影。
本公开实施例中,像素单元所在区域内的所有开关薄膜晶体管均位于滤光单元的相同的一侧(即图2中的下侧),且靠近红色滤光单元101和绿色滤光单元103设置,因而,可以分别加宽红色滤光单元101和绿色滤光单元103的尺寸,形成红色遮光层109和绿色遮光层110,用于遮挡开关薄膜晶体管,使其不被白光有机发光二极管发射的蓝光等低波段光照射到,从而可以避免开关薄膜晶体管的半导体区域被蓝光等低波段光照射导致开关薄膜晶体管异常开启的问题,提高了显示效果。另外,红色遮光层109与红色滤光单元101相连,绿色遮光层110与绿色滤光单元103相连,也不会由于引入遮光层而造成亚像素开口率下降的问题。
图2所示的实施例中,所述红色亚像素单元的开关薄膜晶体管102的半导体区域在衬底基板上的正投影位于红色遮光层109在衬底基板上的正投影内,所述绿色亚像素单元的开关薄膜晶体管104的半导体区域在衬底基板上的正投影位于绿色遮光层110在衬底基板上的正投影内,所述蓝色亚像素单元的开关薄膜晶体管106的半导体区域在衬底基板上的正投影位于所述红色遮光层109在衬底基板上的正投影内,白色亚像素单元的开关薄膜晶体管108的半导体区域在衬底基板上的正投影位于绿色遮光层110在衬底基板上的正投影内。从而使得开关薄膜晶体管与对应的亚像素距离最近,避免因两者距离较远造成的工艺复杂及信号延迟的问题。
当然,在本公开的其他一些实施例中,红色亚像素单元和绿色亚像素单元的位置可以互换,蓝色亚像素单元和白色亚像素单元的位置也可以互换。
上述实施例中,白色亚像素单元的白色滤光单元107可以是一透明膜层,或者不设置任何滤光膜层。
通过实验验证,增加了遮光层的白光有机发光二极管显示基板的开关薄膜晶体管的负飘最大为3.5V,没有超过开关薄膜晶体管的Vgl(5.5V),因而不会出现开关薄膜晶体管异常开启,提高了显示效果。
本公开实施例还提供一种有机发光二极管显示装置,包括上述有机发光二极管显示基板。
本公开实施例还提供一种有机发光二极管显示基板的制作方法,用于制 作上述任一实施例中的有机发光二极管显示基板,所述制作方法例如包括:
步骤11:提供一衬底基板;以及
步骤12:在所述衬底基板上形成多个像素单元和遮光层,每一所述像素单元包括多种颜色的亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和有机发光二极管,所述遮光层位于所述有机发光二极管与所述开关薄膜晶体管之间,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
下面介绍一白光有机发光二极管显示基板的具体的制作过程。
本公开实施例的白光有机发光二极管的制作方法例如包括以下步骤:
步骤21:提供一衬底基板,并进行清洗;
步骤22:在所述衬底基板上制作栅金属层的图形。
本公开实施例中,可以采用溅射(sputter)或蒸镀法沉积栅金属层,并进行图形化,形成栅金属层的图形,栅金属层的厚度可以约为220nm,材料选用Al或Cu等金属材料制作。
步骤23:采用化学沉积法(CVD)形成栅极绝缘层;
步骤24:形成有源层的图形;
本公开实施例中,可以采用sputter法沉积厚度为10~80nm的IGZO,并进行图形化,形成有源层的图形。
步骤25:形成刻蚀阻挡层的图形;
本公开实施例中,可以采用PECVD((Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积法)沉积厚度为40~120nm的SiOx或AlOx作为刻蚀阻挡层,并进行根据图形化,形成刻蚀阻挡层的图形。
步骤26:形成源漏金属层的图形;
本公开实施例中,可以采用sputter法形成源漏金属层,并进行图形化形成源漏金属层的图形,源漏金属层的厚度可以约为220nm,材料采用Mo、MoW、Cu或AlNd等。
步骤27:形成钝化层的图形;
本公开实施例中,可以采用PECVD法沉积厚度为200~400nm的SiOx或SiNx作为钝化层,并进行图形化,形成钝化层的图形。
步骤28:分别制作R、G、B、W滤光单元,并同时形成遮光层;
步骤29:形成像素电极(即白光有机发光二极管的阳极)的图形;
本公开实施例中,可以利用sputter法沉积厚度为40nm或135nm的ITO或者是40~135nm的IZO,并进行图形化,形成像素电极的图形。
步骤210:形成白光有机发光二极管的有机发光层和阴极。
除非另作定义,本公开实施例中使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (17)

  1. 一种有机发光二极管显示基板,包括:
    衬底基板;以及
    设置在所述衬底基板上的多个像素单元,每一所述像素单元包括多个亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和有机发光二极管,
    其中,所述有机发光二极管显示基板还包括:遮光层,所述遮光层位于所述有机发光二极管与所述开关薄膜晶体管之间,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
  2. 根据权利要求1所述的有机发光二极管显示基板,其中,所述有机发光二极管显示基板为白光有机发光二极管显示基板,所述有机发光二极管为白光有机发光二极管,每一所述亚像素单元还包括:与所述亚像素单元的颜色对应的滤光单元。
  3. 根据权利要求2所述的有机发光二极管显示基板,其中,每一所述像素单元所在区域内设置有第一颜色的第一滤光单元和第二颜色的第二滤光单元,所述第一滤光单元能够过滤掉蓝光,所述第二滤光单元能够透射蓝光。
  4. 根据权利要求3所述的有机发光二极管显示基板,其中,所述遮光层与所述第一滤光单元同层同材料设置。
  5. 根据权利要求3所述的有机发光二极管显示基板,其中,所述第一颜色是红色或绿色,所述第二颜色是蓝色或白色。
  6. 根据权利要求3所述的有机发光二极管显示基板,其中,每一所述像素单元中,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并靠近所述第一滤光单元设置,所述遮光层与所述第一滤光单元相连。
  7. 根据权利要求6所述的有机发光二极管显示基板,其中,每一所述像素单元包括红色亚像素单元、绿色亚像素单元、蓝色亚像素单元和白色亚像素单元,每一所述像素单元所在区域内设置有遮光层、红色亚像素单元对应的红色滤光单元、红色亚像素单元对应的开关薄膜晶体管、绿色亚像素单元 对应的绿色滤光单元、绿色亚像素单元对应的开关薄膜晶体管、蓝色亚像素单元对应的蓝色滤光单元、蓝色亚像素单元对应的开关薄膜晶体管、白色亚像素单元对应的白色滤光单元和白色亚像素单元对应的开关薄膜晶体管,所述红色滤光单元、绿色滤光单元、蓝色滤光单元和白色滤光单元呈两行两列排列,所述红色滤光单元和绿色滤光单元位于同一行,所述蓝色滤光单元和白色滤光单元位于同一行,所述遮光层包括红色遮光层和绿色遮光层,所述红色遮光层与所述红色滤光单元相连,所述绿色遮光层与所述绿色滤光单元相连,所述红色遮光层和绿色遮光层在衬底基板上的正投影完全覆盖所述像素单元中的所有开关薄膜晶体管的半导体区域在衬底基板上的正投影。
  8. 根据权利要求7所述的有机发光二极管显示基板,其中,所述红色亚像素单元的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于红色遮光层在衬底基板上的正投影内,所述绿色亚像素单元的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于绿色遮光层在衬底基板上的正投影内,所述蓝色亚像素单元和白色亚像素单元两者中的一者的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于所述红色遮光层在衬底基板上的正投影内,另一者的开关薄膜晶体管的半导体区域在衬底基板上的正投影位于绿色遮光层在衬底基板上的正投影内。
  9. 根据权利要求3所述的有机发光二极管显示基板,其中,每一所述像素单元中,所有亚像素单元的开关薄膜晶体管均位于所述滤光单元所在区域的同一侧,并分别靠近所述对应的滤光单元设置,所述遮光层包括第一遮光层和第二遮光层,所述第一遮光层与所述第一滤光单元相连,所述第一遮光层在所述衬底基板上的正投影完全覆盖所述第一颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二遮光层与所述第二滤光单元间隔设置,所述第二遮光层在所述衬底基板上的正投影完全覆盖所述第二颜色的亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
  10. 根据权利要求9所述的有机发光二极管显示基板,其中,每一所述像素单元包括红色亚像素单元、绿色亚像素单元、蓝色亚像素单元和白色亚像素单元,每一所述像素单元所在区域内设置有遮光层、红色亚像素单元对 应的红色滤光单元、红色亚像素单元对应的开关薄膜晶体管、绿色亚像素单元对应的绿色滤光单元、绿色亚像素单元对应的开关薄膜晶体管、蓝色亚像素单元对应的蓝色滤光单元、蓝色亚像素单元对应的开关薄膜晶体管、白色亚像素单元对应的白色滤光单元和白色亚像素单元对应的开关薄膜晶体管,所述红色滤光单元、绿色滤光单元、蓝色滤光单元和白色滤光单元呈一行四列排列,所述第一遮光层包括红色遮光层和第一绿色遮光层,所述红色遮光层与所述红色滤光单元相连,所述红色遮光层在所述衬底基板上的正投影完全覆盖所述红色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第一绿色遮光层与所述绿色滤光单元相连,所述第一绿色遮光层在所述衬底基板上的正投影完全覆盖所述绿色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二遮光层为红色遮光层或第二绿色遮光层,所述第二绿色遮光层在所述衬底基板上的正投影完全覆盖所述蓝色亚像素单元以及白色亚像素单元的开关薄膜晶体管的半导体区域在所述衬底基板上的正投影,所述第二绿色遮光层与所述蓝色滤光单元以及白色滤光单元间隔设置。
  11. 根据权利要求10所述的有机发光二极管显示基板,其中,所述第二绿色遮光层与所述第一绿色遮光层间隔设置。
  12. 根据权利要求10所述的有机发光二极管显示基板,其中,所述第二绿色遮光层与所述第一绿色遮光层相连。
  13. 根据权利要求1至12中任一项所述的有机发光二极管显示基板,其中,所述有机发光二极管是底发射型有机发光二极管。
  14. 根据权利要求7所述的有机发光二极管显示基板,其中,所述白色亚像素单元对应的白色滤光单元是一透明膜层,或者不设置任何滤光膜层。
  15. 根据权利要求1至14中任一项所述的有机发光二极管显示基板,其中,所述开关薄膜晶体管为氧化物薄膜晶体管。
  16. 一种有机发光二极管显示装置,包括如权利要求1至15中任一项所述的有机发光二极管显示基板。
  17. 一种有机发光二极管显示基板的制作方法,用于制作如权利要求1至15中任一项所述的有机发光二极管显示基板,包括:
    提供一衬底基板;以及
    在所述衬底基板上形成多个像素单元和遮光层,每一所述像素单元包括多种颜色的亚像素单元,每一所述亚像素单元包括开关薄膜晶体管和有机发光二极管,所述遮光层位于所述有机发光二极管与所述开关薄膜晶体管之间,所述遮光层在所述衬底基板上的正投影完全覆盖所述开关薄膜晶体管的半导体区域在所述衬底基板上的正投影。
PCT/CN2018/106588 2017-12-14 2018-09-20 有机发光二极管显示基板、显示装置及制作方法 WO2019114358A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18859954.2A EP3726581A4 (en) 2017-12-14 2018-09-20 DISPLAY SUBSTRATE WITH ORGANIC LIGHT EMITTING DIODE, DISPLAY DEVICE AND MANUFACTURING METHOD
US16/338,935 US11444128B2 (en) 2017-12-14 2018-09-20 White organic light-emitting diode display substrate including switching TFT and light-shielding layer arranged to prevent negative drift
US17/812,598 US11751456B2 (en) 2017-12-14 2022-07-14 White organic light-emitting diode display substrate including switching TFT and light-shielding layer arranged to prevent negative drift
US18/354,218 US20230363227A1 (en) 2017-12-14 2023-07-18 Organic light-emitting diode display substrate, display device, and method manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711338884.1 2017-12-14
CN201711338884.1A CN109962084B (zh) 2017-12-14 2017-12-14 有机发光二极管显示基板、显示装置及制作方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/338,935 A-371-Of-International US11444128B2 (en) 2017-12-14 2018-09-20 White organic light-emitting diode display substrate including switching TFT and light-shielding layer arranged to prevent negative drift
US17/812,598 Continuation US11751456B2 (en) 2017-12-14 2022-07-14 White organic light-emitting diode display substrate including switching TFT and light-shielding layer arranged to prevent negative drift

Publications (1)

Publication Number Publication Date
WO2019114358A1 true WO2019114358A1 (zh) 2019-06-20

Family

ID=66818942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106588 WO2019114358A1 (zh) 2017-12-14 2018-09-20 有机发光二极管显示基板、显示装置及制作方法

Country Status (4)

Country Link
US (3) US11444128B2 (zh)
EP (1) EP3726581A4 (zh)
CN (1) CN109962084B (zh)
WO (1) WO2019114358A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707237B (zh) * 2019-11-19 2022-05-20 昆山国显光电有限公司 一种显示面板和显示装置
CN111208687A (zh) * 2020-01-13 2020-05-29 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412825A (en) * 2003-01-10 2004-07-16 Au Optronics Corp Top emission active matrix OLED and fabricating method thereof
US20050168135A1 (en) * 2003-12-16 2005-08-04 Nec Corporation Luminescence display apparatus and method for fabricating the same
KR20070075920A (ko) * 2006-01-16 2007-07-24 엘지전자 주식회사 전계발광소자 및 그 제조방법
US20090243482A1 (en) * 2008-03-28 2009-10-01 Casio Computer Co., Ltd. Display device
CN103000661A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104241326A (zh) * 2013-06-21 2014-12-24 乐金显示有限公司 有机电致发光装置及其制造方法
CN104659066A (zh) * 2015-02-05 2015-05-27 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示装置
CN107170762A (zh) * 2017-06-16 2017-09-15 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240858B2 (ja) 1994-10-19 2001-12-25 ソニー株式会社 カラー表示装置
US5994721A (en) * 1995-06-06 1999-11-30 Ois Optical Imaging Systems, Inc. High aperture LCD with insulating color filters overlapping bus lines on active substrate
JP2001175198A (ja) 1999-12-14 2001-06-29 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP4930501B2 (ja) * 2008-12-22 2012-05-16 ソニー株式会社 表示装置および電子機器
KR102251840B1 (ko) * 2014-08-14 2021-05-13 엘지디스플레이 주식회사 저반사 패널을 포함하는 유기발광 표시장치
KR102369095B1 (ko) * 2014-10-07 2022-03-02 엘지디스플레이 주식회사 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412825A (en) * 2003-01-10 2004-07-16 Au Optronics Corp Top emission active matrix OLED and fabricating method thereof
US20050168135A1 (en) * 2003-12-16 2005-08-04 Nec Corporation Luminescence display apparatus and method for fabricating the same
KR20070075920A (ko) * 2006-01-16 2007-07-24 엘지전자 주식회사 전계발광소자 및 그 제조방법
US20090243482A1 (en) * 2008-03-28 2009-10-01 Casio Computer Co., Ltd. Display device
CN103000661A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104241326A (zh) * 2013-06-21 2014-12-24 乐金显示有限公司 有机电致发光装置及其制造方法
CN104659066A (zh) * 2015-02-05 2015-05-27 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示装置
CN107170762A (zh) * 2017-06-16 2017-09-15 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法

Also Published As

Publication number Publication date
US11751456B2 (en) 2023-09-05
EP3726581A1 (en) 2020-10-21
CN109962084A (zh) 2019-07-02
US20210343799A1 (en) 2021-11-04
EP3726581A4 (en) 2021-09-22
US11444128B2 (en) 2022-09-13
US20220352258A1 (en) 2022-11-03
US20230363227A1 (en) 2023-11-09
CN109962084B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
US11005072B2 (en) Display device with block members having different heights
US7829887B2 (en) Organic light emitting diode display device and method of manufacturing the same
KR101976133B1 (ko) 표시 장치
KR102543577B1 (ko) 트랜지스터 표시판, 그 제조 방법 및 이를 포함하는 표시 장치
WO2019228457A1 (zh) 薄膜晶体管及其制造方法、阵列基板及其制造方法
KR101097343B1 (ko) 유기 발광 표시 장치
WO2018149142A1 (zh) 薄膜晶体管及其制备方法、阵列基板、显示面板
TW201732400A (zh) 顯示裝置及其製造方法
KR20170005319A (ko) 표시 장치
KR102317393B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
US9099404B2 (en) Array substrate and manufacturing method thereof, OLED display device
US10971525B1 (en) TFT array substrate and manufacturing method thereof
US20230363227A1 (en) Organic light-emitting diode display substrate, display device, and method manufacturing the same
US10693015B2 (en) Thin film transistor, method for manufacturing the same and display device comprising the same
KR102263604B1 (ko) 유기 발광 표시 장치의 제조 방법
WO2020211259A1 (zh) 显示背板及其制作方法
KR20160122362A (ko) 박막 증착용 마스크 어셈블리
KR20180003965A (ko) 유기발광 표시장치 및 그 제조방법
KR102456436B1 (ko) 유기 발광 표시 장치
KR20160083588A (ko) 유기발광표시장치 및 그 제조방법
KR101996438B1 (ko) 표시 장치용 기판, 이를 포함한 표시 장치 및 표시 장치의 제조 방법
KR102218944B1 (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR20160053376A (ko) 고 개구율 평판 표시장치용 박막 트랜지스터 기판
US20140335691A1 (en) Manufacturing method of metal wire and thin transistor array panel
KR20170051074A (ko) 유기발광다이오드표시장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859954

Country of ref document: EP

Effective date: 20200714