WO2019114189A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2019114189A1
WO2019114189A1 PCT/CN2018/086741 CN2018086741W WO2019114189A1 WO 2019114189 A1 WO2019114189 A1 WO 2019114189A1 CN 2018086741 W CN2018086741 W CN 2018086741W WO 2019114189 A1 WO2019114189 A1 WO 2019114189A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
focal length
effective focal
Prior art date
Application number
PCT/CN2018/086741
Other languages
English (en)
French (fr)
Inventor
黄林
王新权
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711311255.XA external-priority patent/CN107807438B/zh
Priority claimed from CN201721711746.9U external-priority patent/CN207473187U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/293,112 priority Critical patent/US11175478B2/en
Publication of WO2019114189A1 publication Critical patent/WO2019114189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present application relates to an optical imaging system and, more particularly, to an optical imaging system having four lenses.
  • the present application provides an optical imaging system that can be adapted for use in a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art.
  • the present application is directed to an optical imaging system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the total effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system can satisfy f/EPD ⁇ 1.60.
  • the optical imaging system can further include an infrared bandpass filter disposed between the fourth lens and the imaging surface of the optical imaging system, the bandpass band of which can be from 750 nm to 1000 nm.
  • the band pass wavelength band of the infrared band pass filter may be 850 nm to 940 nm.
  • the distance TTL from the center of the object side of the first lens to the imaging surface of the optical imaging system on the optical axis and the entrance pupil diameter EPD of the optical imaging system may satisfy 1.0 ⁇ TTL / EPD ⁇ 2.5.
  • the distance from the center of the object side of the first lens to the imaging surface of the optical imaging system on the optical axis is the distance between the TTL of any two adjacent lenses of the first lens to the fourth lens on the optical axis.
  • ⁇ AT can satisfy 3.5 ⁇ TTL/ ⁇ AT ⁇ 5.0.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 1.0 ⁇ CT4/CT1 ⁇ 3.5.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging system may satisfy -4.0 ⁇ f1/f ⁇ -2.0.
  • the effective focal length f4 of the fourth lens and the effective focal length f2 of the second lens may satisfy 0 ⁇ f4/f2 ⁇ 1.5.
  • the effective focal length f3 of the third lens and the radius of curvature R5 of the object side of the third lens may satisfy -1 ⁇ f3 / R5 ⁇ 0.5.
  • the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy -5.0 ⁇ (R7 + R8) / (R7 - R8) ⁇ - 1.0.
  • the effective focal length f2 of the second lens and the center thickness CT2 of the second lens on the optical axis may satisfy 5.0 ⁇ f2/CT2 ⁇ 10.0.
  • the radius of curvature R1 of the object side of the first lens and the radius of curvature R2 of the image side of the first lens may satisfy 4.0 ⁇
  • the total effective focal length f of the optical imaging system, the effective focal length f3 of the third lens, and the effective focal length f4 of the fourth lens may satisfy 1.0 ⁇
  • the present application is directed to an optical imaging system that includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the distance TTL of the center of the object side of the first lens to the imaging plane of the optical imaging system on the optical axis and the entrance pupil diameter EPD of the optical imaging system can satisfy 1.0 ⁇ TTL/EPD ⁇ 2.5.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the distance TTL between the center of the object side of the first lens to the imaging plane of the optical imaging system on the optical axis and the distance between the adjacent lenses of the first lens to the fourth lens on the optical axis ⁇ AT may be Meets 3.5 ⁇ TTL / ⁇ AT ⁇ 5.0.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT4 of the fourth lens on the optical axis may satisfy 1.0 ⁇ CT4/CT1 ⁇ 3.5.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the effective focal length f1 of the first lens and the total effective focal length f of the optical imaging system can satisfy -4.0 ⁇ f1/f ⁇ -2.0.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the effective focal length f4 of the fourth lens and the effective focal length f2 of the second lens may satisfy 0 ⁇ f4/f2 ⁇ 1.5.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the effective focal length f3 of the third lens and the radius of curvature R5 of the object side surface of the third lens may satisfy ⁇ 1 ⁇ f3/R5 ⁇ 0.5.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the radius of curvature R7 of the object side surface of the fourth lens and the curvature radius R8 of the image side surface of the fourth lens may satisfy -5.0 ⁇ (R7 + R8) / (R7 - R8) ⁇ -1.0.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the effective focal length f2 of the second lens and the center thickness CT2 of the second lens on the optical axis can satisfy 5.0 ⁇ f2/CT2 ⁇ 10.0.
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the radius of curvature R1 of the object side surface of the first lens and the curvature radius R2 of the image side surface of the first lens may satisfy 4.0 ⁇
  • the present application is directed to an optical imaging system including, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens may have a negative power
  • the second lens has a positive power or a negative power
  • the third lens has a positive power or a negative power
  • the image side may be a concave surface
  • the fourth lens may have The positive power can be concave on the image side.
  • the total effective focal length f of the optical imaging system, the effective focal length f3 of the third lens and the effective focal length f4 of the fourth lens may satisfy 1.0 ⁇
  • a plurality of (for example, four) lenses are used, and the above optical imaging system is super-over by rationally distributing the power of each lens, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses. At least one beneficial effect of thinness, miniaturization, high image quality, infrared-based imaging, and the like.
  • FIG. 1 is a schematic structural view of an optical imaging system according to Embodiment 1 of the present application.
  • 2A to 2C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging system according to Embodiment 2 of the present application.
  • 4A to 4C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 2;
  • FIG. 5 is a schematic structural view of an optical imaging system according to Embodiment 3 of the present application.
  • 6A to 6C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging system according to Embodiment 4 of the present application.
  • 8A to 8C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 4.
  • FIG. 9 is a schematic structural view of an optical imaging system according to Embodiment 5 of the present application.
  • 10A to 10C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 5;
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • 12A to 12C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 6;
  • Figure 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • Figure 15 is a block diagram showing the structure of an optical imaging system according to Embodiment 8 of the present application.
  • 16A to 16C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 8;
  • Figure 17 is a block diagram showing the structure of an optical imaging system according to Embodiment 9 of the present application.
  • 18A to 18C respectively show an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging system of Embodiment 9.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave. The surface closest to the object in each lens is called the object side, and the surface closest to the image plane in each lens is called the image side.
  • An optical imaging system may include, for example, four lenses having powers, that is, a first lens, a second lens, a third lens, and a fourth lens.
  • the four lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a negative power; the second lens has a positive power or a negative power; the third lens has a positive power or a negative power, and the image side may be a concave surface; The fourth lens may have a positive power and its image side may be a concave surface.
  • the first lens has a negative power, which is favorable for reducing the angle between the light and the optical axis when the image is concentrated, and increasing the energy density of the image point; the second lens has the power, the third lens has the power and the image thereof
  • the concave surface on the side is beneficial to correct the astigmatism of the imaging system and improve the image quality.
  • the fourth lens has positive power, which is beneficial to reduce the angle between the light and the optical axis when the image is concentrated, and improve the energy density of the image point.
  • the image side of the lens is concave, which is beneficial to further correct astigmatism and curvature of field and improve image quality.
  • the object side of the first lens may be a convex surface, and the image side may be a concave surface.
  • the second lens may have a positive power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the third lens may have a negative power.
  • the object side of the fourth lens may be convex.
  • the optical imaging system of the present application may satisfy the conditional expression f/EPD ⁇ 1.60, where f is the total effective focal length of the optical imaging system and EPD is the entrance pupil diameter of the optical imaging system. More specifically, f and EPD can further satisfy 1.34 ⁇ f / EPD ⁇ 1.58. Satisfying the conditional expression f/EPD ⁇ 1.60 can effectively improve the image surface energy density and improve the signal-to-noise ratio of the image sensor output signal (ie, infrared imaging quality or recognition detection accuracy).
  • the optical imaging system of the present application may satisfy the conditional expression 1.0 ⁇ TTL/EPD ⁇ 2.5, where TTL is the distance from the center of the object side of the first lens to the imaging plane of the optical imaging system on the optical axis.
  • EPD is the diameter of the entrance pupil of the optical imaging system. More specifically, TTL and EPD can further satisfy 1.7 ⁇ TTL / EPD ⁇ 2.3, for example, 1.88 ⁇ TTL / EPD ⁇ 2.23. Satisfying the conditional expression 1.0 ⁇ TTL/EPD ⁇ 2.5 is beneficial to achieve a short optical total length TTL while achieving a large aperture, and is advantageous for improving imaging quality.
  • the optical imaging system of the present application may satisfy the conditional expression 1.0 ⁇ CT4/CT1 ⁇ 3.5, where CT1 is the center thickness of the first lens on the optical axis, and CT4 is the fourth lens on the optical axis. Center thickness. More specifically, CT1 and CT4 can further satisfy 1.5 ⁇ CT4/CT1 ⁇ 3.5, for example, 1.56 ⁇ CT4/CT1 ⁇ 3.41. Satisfying the conditional expression 1.0 ⁇ CT4/CT1 ⁇ 3.5 is beneficial to the reasonable distribution of the lens thickness, making the lens easy to be injection-molded and improving the processability of the imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression -4.0 ⁇ f1/f ⁇ -2.0, where f1 is the effective focal length of the first lens and f is the total effective focal length of the optical imaging system. More specifically, f1 and f can further satisfy -3.81 ⁇ f1/f ⁇ -2.26. Satisfying the conditional expression -4.0 ⁇ f1/f ⁇ -2.0 is beneficial to reduce the angle between the light and the optical axis when the image is concentrated, and to improve the energy density of the image point; at the same time, it is beneficial to achieve better image quality.
  • the optical imaging system of the present application may satisfy the conditional expression 0 ⁇ f4 / f2 ⁇ 1.5, where f4 is the effective focal length of the fourth lens and f2 is the effective focal length of the second lens. More specifically, f4 and f2 may further satisfy 0 ⁇ f4 / f2 ⁇ 1.1, for example, 0.48 ⁇ f4 / f2 ⁇ 1.05.
  • the conditional expression 0 ⁇ f4/f2 ⁇ 1.5 is satisfied, the power distribution can be balanced to avoid the over-concentration of the optical power in the optical path, which makes the tolerance sensitivity of the system sensitive.
  • the optical imaging system of the present application may satisfy the conditional expression -1 ⁇ f3 / R5 ⁇ 0.5, where f3 is the effective focal length of the third lens and R5 is the radius of curvature of the object side of the third lens. More specifically, f3 and R5 may further satisfy -0.8 ⁇ f3 / R5 ⁇ 0.3, for example, -0.65 ⁇ f3 / R5 ⁇ 0.16.
  • the conditional expression -1 ⁇ f3 / R5 ⁇ 0.5 is satisfied, which is advantageous for the fabrication of the third lens.
  • the optical imaging system of the present application may satisfy the conditional expression -5.0 ⁇ (R7 + R8) / (R7 - R8) ⁇ -1.0, where R7 is the radius of curvature of the object side of the fourth lens, R8 It is the radius of curvature of the image side of the fourth lens. More specifically, R7 and R8 may further satisfy -4.7 ⁇ (R7 + R8) / (R7 - R8) ⁇ - 1.5, for example, -4.57 ⁇ (R7 + R8) / (R7 - R8) ⁇ -1.62.
  • the optical imaging system of the present application may satisfy the conditional expression 5.0 ⁇ f2/CT2 ⁇ 10.0, where f2 is the effective focal length of the second lens and CT2 is the center thickness of the second lens on the optical axis. More specifically, f2 and CT2 may further satisfy 5.5 ⁇ f2 / CT2 ⁇ 9.5, for example, 5.58 ⁇ f2 / CT2 ⁇ 9.26. Satisfying the conditional formula 5.0 ⁇ f2/CT2 ⁇ 10.0 is beneficial to improve the lens assembly stability and the consistency of mass production, which is beneficial to improve the production yield of the optical imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression 4.0 ⁇
  • the optical imaging system of the present application may satisfy conditional expression ⁇ TTL / ⁇ AT ⁇ 5.0, where TTL is the distance from the center of the object side of the first lens to the imaging plane on the optical axis, ⁇ AT is The sum of the separation distances of any two adjacent lenses on the optical axis of each lens having power. More specifically, TTL and ⁇ AT can further satisfy 3.8 ⁇ TTL / ⁇ AT ⁇ 4.8, for example, 3.97 ⁇ TTL / ⁇ AT ⁇ 4.74. Satisfying the conditional expression 3.5 ⁇ TTL/ ⁇ AT ⁇ 5.0, it is advantageous to balance the thickness of the distribution lens and the air gap between the lenses; at the same time, it is advantageous for the processing and manufacturing of the imaging system.
  • the optical imaging system of the present application may satisfy the conditional expression 1.0 ⁇
  • the effective focal length, f4 is the effective focal length of the fourth lens. More specifically, f, f3, and f4 may further satisfy 1.5 ⁇
  • ⁇ 4.0 is beneficial to correcting the aberration of the imaging system and improving the imaging quality; at the same time, it is advantageous to shorten the optical total length TTL of the imaging system and achieve miniaturization.
  • the optical imaging system of the present application may include an infrared band pass filter disposed between the fourth lens and the imaging surface, the band pass band of the infrared band pass filter may be from about 750 nm to about Further, the band pass band may be from about 850 nm to about 940 nm.
  • Providing an infrared band pass filter between the fourth lens and the imaging surface enables infrared light to pass through and filter stray light to eliminate signal interference caused by non-infrared light, for example, imaging due to chromatic aberration introduced by non-infrared light. blurry.
  • the optical imaging system described above may further include at least one aperture to enhance the imaging quality of the imaging system.
  • the diaphragm may be disposed at any position as needed, for example, the diaphragm may be disposed between the object side and the first lens.
  • the optical imaging system described above may further comprise a protective glass for protecting the photosensitive elements on the imaging surface.
  • An optical imaging system in accordance with the above-described embodiments of the present application may employ multiple lenses, such as the four described above.
  • the volume of the imaging system can be effectively reduced, the sensitivity of the imaging system can be reduced, and the imaging system can be improved.
  • the processability makes the optical imaging system more advantageous for production processing and can be applied to portable electronic products.
  • the optical imaging system configured as described above also has advantageous effects such as large aperture, high imaging quality, low sensitivity, imaging based on infrared band, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging system is not limited to including four lenses.
  • the optical imaging system can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging system according to Embodiment 1 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band of from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 1, in which the unit of curvature radius and thickness are both millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S8 in the embodiment 1.
  • Table 3 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 1, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • f/EPD 1.34, where f is the total effective focal length of the optical imaging system and EPD is the entrance pupil diameter of the optical imaging system;
  • TTL/EPD 1.88, where TTL is the distance from the center of the object side S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the EPD is the entrance pupil diameter of the optical imaging system;
  • CT4/CT1 1.56, where CT1 is the center thickness of the first lens E1 on the optical axis, and CT4 is the center thickness of the fourth lens E4 on the optical axis;
  • F1/f -3.53
  • f1 is the effective focal length of the first lens E1
  • f is the total effective focal length of the optical imaging system
  • F4/f2 0.63, where f4 is the effective focal length of the fourth lens E4, and f2 is the effective focal length of the second lens E2;
  • F3 / R5 -0.65, wherein f3 is the effective focal length of the third lens E3, and R5 is the radius of curvature of the object side surface S5 of the third lens E3;
  • R7+R8)/(R7-R8) -2.47, where R7 is the radius of curvature of the object side surface S7 of the fourth lens E4, and R8 is the radius of curvature of the image side surface S8 of the fourth lens E4;
  • F2/CT2 9.26, where f2 is the effective focal length of the second lens E2, and CT2 is the center thickness of the second lens E2 on the optical axis;
  • TTL / ⁇ AT 3.97, where TTL is the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and ⁇ AT is any adjacent two lenses of the first lens E1 to the fourth lens E4 in the light The sum of the separation distances on the shaft;
  • FIG. 2A shows an astigmatism curve of the optical imaging system of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2B shows a distortion curve of the optical imaging system of Embodiment 1, which represents distortion magnitude values in the case of different viewing angles.
  • 2C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 1, which indicates the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging system according to Embodiment 2 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band of from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 4 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 2, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 5 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 6 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 2, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • 4A shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4B shows a distortion curve of the optical imaging system of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 2, which shows the deviation of different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging system according to Embodiment 3 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, in which the unit of curvature radius and thickness are in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 9 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 3, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 6A shows an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6B shows a distortion curve of the optical imaging system of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 3, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 6A to 6C, the optical imaging system given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging system according to Embodiment 4 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power is such that the object side surface S5 is a concave surface, the image side surface S6 is a concave surface, the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 11 shows the high order coefficient which can be used for each aspherical mirror in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 12 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 4, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 8A shows an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8B shows a distortion curve of the optical imaging system of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 4, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 8A to 8C, the optical imaging system given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging system according to Embodiment 5 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power is such that the object side surface S5 is a concave surface, the image side surface S6 is a concave surface, the fourth lens E4 has a positive refractive power, the object side surface S7 is a convex surface, and the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 13 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 14 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 15 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 5, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 10A shows an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10B shows a distortion curve of the optical imaging system of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 10A to 10C, the optical imaging system given in Embodiment 5 can achieve good imaging quality.
  • Figure 11 is a block diagram showing the structure of an optical imaging system according to Embodiment 6 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 16 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 17 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 18 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 6, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 12A shows an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12B shows a distortion curve of the optical imaging system of Embodiment 6, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 12C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 12A to 12C, the optical imaging system given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an optical imaging system according to Embodiment 7 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 19 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 20 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 21 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 7, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 14A shows an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14B shows a distortion curve of the optical imaging system of Embodiment 7, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 14C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the system. 14A to 14C, the optical imaging system given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging system according to Embodiment 8 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 22 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 8, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 23 shows the higher order coefficient of each aspherical mirror which can be used in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 24 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 8, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging surface.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 16A shows an astigmatism curve of the optical imaging system of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16B shows a distortion curve of the optical imaging system of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16C shows a magnification chromatic aberration curve of the optical imaging system of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 8 can achieve good imaging quality.
  • Figure 17 is a block diagram showing the structure of an optical imaging system according to Embodiment 9 of the present application.
  • an optical imaging system sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power, the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface;
  • the second lens E2 has a positive refractive power, the object side surface S3 is a convex surface, and the image side surface S4 is a concave surface;
  • the third lens E3 has a concave surface;
  • the negative refractive power the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the filter E5 has an object side surface S9 and an image side surface S10.
  • the filter E5 may be an infrared band pass filter having a band pass band of from about 750 nm to about 1000 nm, and further, a band pass band may be from about 850 nm to about 940 nm.
  • Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 25 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging system of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the fourth lens E4 are aspherical.
  • Table 26 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Table 27 gives the effective focal lengths f1 to f4 of the lenses in Embodiment 9, the total effective focal length f of the optical imaging system, the distance from the center of the object side surface S1 of the first lens E1 to the imaging plane S11 on the optical axis, and the imaging plane.
  • the effective pixel area on S11 is half the length of the diagonal ImgH.
  • Fig. 18A shows an astigmatism curve of the optical imaging system of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18B shows a distortion curve of the optical imaging system of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18C shows a magnification chromatic aberration curve of the optical imaging system of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the system.
  • the optical imaging system given in Embodiment 9 can achieve good imaging quality.
  • Embodiments 1 to 9 satisfy the relationship shown in Table 28, respectively.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging system described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,成像系统沿着光轴由物侧至像侧依序包括:第一透镜(E1)、第二透镜(E2)、第三透镜(E3)和第四透镜(E4)。第一透镜(E1)具有负光焦度;第二透镜(E2)具有正光焦度或负光焦度;第三透镜(E3)具有正光焦度或负光焦度,其像侧面(S6)为凹面;第四透镜(E4)具有正光焦度,其像侧面(S8)为凹面。光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD满足f/EPD≤1.60。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2017年12月11日提交于中国国家知识产权局(SIPO)的、专利申请号为201711311255.X的中国专利申请以及于2017年12月11日提交至SIPO的、专利申请号为201721711746.9的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像系统,更具体地,本申请涉及包括具有四片透镜的光学成像系统。
背景技术
随着感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)等芯片技术的发展,其应用扩展到红外成像、距离探测、红外识别等领域。同时,随着便携式电子产品的不断发展,对相配套使用的光学成像系统的小型化也提出了对应要求。
现有的小型化光学成像系统通常具有较大的光圈数(F数),进光量偏小会导致成像效果不佳。因此,需要一种具有小型化、大孔径特征,并能够基于红外波段进行成像的光学成像系统,以保证光学成像系统在探测、识别等领域的应用。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像系统。
一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可 具有正光焦度,其像侧面可为凹面。其中,光学成像系统的总有效焦距f与光学成像系统的入瞳直径EPD可满足f/EPD≤1.60。
在一个实施方式中,光学成像系统还可包括设置于第四透镜与光学成像系统的成像面之间的红外带通滤光片,其带通波段可为750nm至1000nm。
在一个实施方式中,上述红外带通滤光片的带通波段可为850nm至940nm。
在一个实施方式中,第一透镜的物侧面的中心至光学成像系统的成像面在所述光轴上的距离TTL与光学成像系统的入瞳直径EPD可满足1.0<TTL/EPD<2.5。
在一个实施方式中,第一透镜的物侧面的中心至光学成像系统的成像面在光轴上的距离TTL与第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT可满足3.5<TTL/∑AT<5.0。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1与第四透镜在光轴上的中心厚度CT4可满足1.0<CT4/CT1<3.5。
在一个实施方式中,第一透镜的有效焦距f1与光学成像系统的总有效焦距f可满足-4.0<f1/f<-2.0。
在一个实施方式中,第四透镜的有效焦距f4与第二透镜的有效焦距f2可满足0<f4/f2<1.5。
在一个实施方式中,第三透镜的有效焦距f3与第三透镜的物侧面的曲率半径R5可满足-1<f3/R5<0.5。
在一个实施方式中,第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8可满足-5.0<(R7+R8)/(R7-R8)<-1.0。
在一个实施方式中,第二透镜的有效焦距f2与第二透镜在光轴上的中心厚度CT2可满足5.0<f2/CT2<10.0。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足4.0<|R1+R2|/|R1-R2|<7.0。
在一个实施方式中,光学成像系统的总有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足1.0<|f/f3|+|f/f4|<4.0。
另一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴 由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第一透镜的物侧面的中心至光学成像系统的成像面在光轴上的距离TTL与光学成像系统的入瞳直径EPD可满足1.0<TTL/EPD<2.5。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第一透镜的物侧面的中心至光学成像系统的成像面在光轴上的距离TTL与第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和∑AT可满足3.5<TTL/∑AT<5.0。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第一透镜在光轴上的中心厚度CT1与第四透镜在光轴上的中心厚度CT4可满足1.0<CT4/CT1<3.5。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第一透镜的有效焦距f1与光学成像系统的总有效焦距f可满足-4.0<f1/f<-2.0。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度; 第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第四透镜的有效焦距f4与第二透镜的有效焦距f2可满足0<f4/f2<1.5。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第三透镜的有效焦距f3与第三透镜的物侧面的曲率半径R5可满足-1<f3/R5<0.5。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8可满足-5.0<(R7+R8)/(R7-R8)<-1.0。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第二透镜的有效焦距f2与第二透镜在光轴上的中心厚度CT2可满足5.0<f2/CT2<10.0。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2可满足4.0<|R1+R2|/|R1-R2|<7.0。
又一方面,本申请涉及一种光学成像系统,该成像系统沿着光轴 由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜。其中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。其中,光学成像系统的总有效焦距f、第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足1.0<|f/f3|+|f/f4|<4.0。
本申请采用了多片(例如,四片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有超薄、小型化、高成像品质、基于红外波段成像等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;
图2A至图2C分别示出了实施例1的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;
图4A至图4C分别示出了实施例2的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;
图6A至图6C分别示出了实施例3的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;
图8A至图8C分别示出了实施例4的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;
图10A至图10C分别示出了实施例5的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像系统的结构示意图;
图12A至图12C分别示出了实施例6的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像系统的结构示意图;
图14A至图14C分别示出了实施例7的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像系统的结构示意图;
图16A至图16C分别示出了实施例8的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像系统的结构示意图;
图18A至图18C分别示出了实施例9的光学成像系统的象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜 中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如四片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜和第四透镜。这四片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜可具有正光焦度,其像侧面可为凹面。第一透镜具有负光焦度,有利于降低光线会聚到像面时与光轴的夹角,提高像点的能量密度;第二透镜具有光焦度,第三透镜具有光焦度且其像侧面为凹面,有利于校正成像系统的象散,提高成像质量;第四透镜具有正光焦度,有利于降低光线会聚到像面时与光轴的夹角,提高像点的能量密度,第四透镜的像侧面为凹面,有利于进一步校正象散、场曲,提高成像质量。
在示例性实施方式中,第一透镜的物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第二透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。
在示例性实施方式中,第三透镜可具有负光焦度。
在示例性实施方式中,第四透镜的物侧面可为凸面。
在示例性实施方式中,本申请的光学成像系统可满足条件式f/EPD≤1.60,其中,f为光学成像系统的总有效焦距,EPD为光学成像系统的入瞳直径。更具体地,f和EPD进一步可满足1.34≤f/EPD≤1.58。满足条件式f/EPD≤1.60,可以有效地提高像面能量密度,提高像方传感器输出信号信噪比(即,红外成像质量或识别探测精度)。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.0<TTL/EPD<2.5,其中,TTL为第一透镜的物侧面的中心至光学成像系统的成像面在光轴上的距离,EPD为光学成像系统的入瞳直径。更具体地,TTL和EPD进一步可满足1.7<TTL/EPD<2.3,例如,1.88≤TTL/EPD≤2.23。满足条件式1.0<TTL/EPD<2.5,有利于在实现大通光口径的同时实现较短的光学总长度TTL,并有利于提升成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.0<CT4/CT1<3.5,其中,CT1为第一透镜在光轴上的中心厚度,CT4为第四透镜在光轴上的中心厚度。更具体地,CT1和CT4进一步可满足1.5<CT4/CT1<3.5,例如,1.56≤CT4/CT1≤3.41。满足条件式1.0<CT4/CT1<3.5,有利于透镜厚度的合理分配,使得透镜易于注塑成型加工,提高成像系统的可加工性。
在示例性实施方式中,本申请的光学成像系统可满足条件式-4.0<f1/f<-2.0,其中,f1为第一透镜的有效焦距,f为光学成像系统的总有效焦距。更具体地,f1和f进一步可满足-3.81≤f1/f≤-2.26。满足条件式-4.0<f1/f<-2.0,有利于降低光线会聚到像面时与光轴的夹角,提高像点的能量密度;同时,有利于实现较好的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式0<f4/f2<1.5,其中,f4为第四透镜的有效焦距,f2为第二透镜的有效焦 距。更具体地,f4和f2进一步可满足0<f4/f2<1.1,例如,0.48≤f4/f2≤1.05。满足条件式0<f4/f2<1.5,可平衡光焦度分配,避免光焦度在光路中过度集中而造成系统的公差敏感性较为敏感。
在示例性实施方式中,本申请的光学成像系统可满足条件式-1<f3/R5<0.5,其中,f3为第三透镜的有效焦距,R5为第三透镜的物侧面的曲率半径。更具体地,f3和R5进一步可满足-0.8<f3/R5<0.3,例如,-0.65≤f3/R5≤0.16。满足条件式-1<f3/R5<0.5,有利于第三透镜的加工制造。
在示例性实施方式中,本申请的光学成像系统可满足条件式-5.0<(R7+R8)/(R7-R8)<-1.0,其中,R7为第四透镜的物侧面的曲率半径,R8为第四透镜的像侧面的曲率半径。更具体地,R7和R8进一步可满足-4.7<(R7+R8)/(R7-R8)<-1.5,例如,-4.57≤(R7+R8)/(R7-R8)≤-1.62。满足条件式-5.0<(R7+R8)/(R7-R8)<-1.0,有利于减小光线会聚到成像面时的有效光圈(F数),增加成像面上的有效能量密度,提高成像系统的成像质量或识别探测精度。
在示例性实施方式中,本申请的光学成像系统可满足条件式5.0<f2/CT2<10.0,其中,f2为第二透镜的有效焦距,CT2为第二透镜在光轴上的中心厚度。更具体地,f2和CT2进一步可满足5.5<f2/CT2<9.5,例如5.58≤f2/CT2≤9.26。满足条件式5.0<f2/CT2<10.0,有利于提升透镜装配稳定性,以及批量生产的一致性,有利于提高光学成像系统的生产良率。
在示例性实施方式中,本申请的光学成像系统可满足条件式4.0<|R1+R2|/|R1-R2|<7.0,其中,R1为第一透镜的物侧面的曲率半径,R2为第一透镜的像侧面的曲率半径。更具体地,R1和R2进一步可满足4.5<|R1+R2|/|R1-R2|<6.5,例如,4.56≤|R1+R2|/|R1-R2|≤6.30。满足条件式4.0<|R1+R2|/|R1-R2|<7.0,有利于校正成像系统象散,提高成像质量,同时提高光线会聚到成像面上的能量密度。
在示例性实施方式中,本申请的光学成像系统可满足条件式3.5<TTL/∑AT<5.0,其中,TTL为第一透镜的物侧面的中心至成像面在光轴上的距离,ΣAT为具有光焦度的各透镜中任意相邻两透镜在光 轴上的间隔距离之和。更具体地,TTL和ΣAT进一步可满足3.8<TTL/∑AT<4.8,例如,3.97≤TTL/∑AT≤4.74。满足条件式3.5<TTL/∑AT<5.0,有利于均衡分配透镜厚度尺寸,以及各透镜之间的空气间隙;同时,有利于成像系统的加工制造。
需要注意的是,在具有四片带光焦度的透镜的成像系统中,ΣAT为第一透镜至第四透镜中任意相邻两透镜在光轴上的间隔距离之和,即,ΣAT=T12+T23+T34,其中,T12为第一透镜和第二透镜在光轴上的间隔距离,T23为第二透镜和第三透镜在光轴上的间隔距离,T34为第三透镜和第四透镜在光轴上的间隔距离。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.0<|f/f3|+|f/f4|<4.0,其中,f为光学成像系统的总有效焦距,f3为第三透镜的有效焦距,f4为第四透镜的有效焦距。更具体地,f、f3和f4进一步可满足1.5<|f/f3|+|f/f4|<3.9,例如,1.56≤|f/f3|+|f/f4|≤3.79。满足条件式1.0<|f/f3|+|f/f4|<4.0,有利于校正成像系统的像差,提高成像质量;同时,有利于缩短成像系统的光学总长度TTL,实现小型化。
在示例性实施方式中,本申请的光学成像系统可包括设置在第四透镜与成像面之间的红外带通滤光片,该红外带通滤光片的带通波段可为约750nm至约1000nm,更进一步地,带通波段可为约850nm至约940nm。在第四透镜与成像面之间设置红外带通滤光片可使得红外光通过并过滤杂光,以消除非红外光带来的信号干扰,例如,由于非红外光引入的色差而造成的成像模糊。
可选地,上述光学成像系统还可包括至少一个光阑,以提升成像系统的成像质量。光阑可根据需要设置在任意位置处,例如,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像系统还可包括用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的四片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像系统的体 积、降低成像系统的敏感度并提高成像系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像系统还具有例如大孔径、高成像品质、低敏感性、基于红外波段成像等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该光学成像系统不限于包括四个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2C描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地, 其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1示出了实施例1的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000001
表1
由表1可知,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018086741-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S8的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.4716E-02 1.4688E-01 -4.0340E-01 6.5619E-01 -6.5254E-01 3.5834E-01 -8.4156E-02
S2 -2.0396E-01 4.4580E-01 -6.9799E-01 6.3247E-01 -2.9404E-01 5.1644E-02 -1.3137E-03
S3 -2.3513E-01 1.1028E+00 -2.5894E+00 2.9545E+00 -1.8175E+00 6.0456E-01 -8.8824E-02
S4 3.6434E-01 -5.1474E-01 4.0162E-01 -7.1192E-01 1.0568E+00 -6.9864E-01 1.7158E-01
S5 -4.2141E-01 1.6411E+00 -3.8440E+00 5.1901E+00 -4.1578E+00 1.8028E+00 -3.2695E-01
S6 -9.1307E-01 2.3379E+00 -4.3716E+00 5.0748E+00 -3.5032E+00 1.3000E+00 -1.9670E-01
S7 6.5101E-03 -1.9361E-01 5.0134E-02 4.9351E-02 -3.1481E-02 6.7772E-03 -5.1855E-04
S8 5.6084E-02 -2.2830E-01 1.6651E-01 -7.1228E-02 1.9163E-02 -2.9536E-03 1.9437E-04
表2
表3给出实施例1中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -10.02 f(mm) 2.84
f2(mm) 2.78 TTL(mm) 3.99
f3(mm) -2.98 ImgH(mm) 2.36
f4(mm) 1.76    
表3
实施例1中的光学成像系统满足:
f/EPD=1.34,其中,f为光学成像系统的总有效焦距,EPD为光学成像系统的入瞳直径;
TTL/EPD=1.88,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离,EPD为光学成像系统的入瞳直径;
CT4/CT1=1.56,其中,CT1为第一透镜E1在光轴上的中心厚度,CT4为第四透镜E4在光轴上的中心厚度;
f1/f=-3.53,其中,f1为第一透镜E1的有效焦距,f为光学成像系统的总有效焦距;
f4/f2=0.63,其中,f4为第四透镜E4的有效焦距,f2为第二透镜E2的有效焦距;
f3/R5=-0.65,其中,f3为第三透镜E3的有效焦距,R5为第三透镜E3的物侧面S5的曲率半径;
(R7+R8)/(R7-R8)=-2.47,其中,R7为第四透镜E4的物侧面S7的曲率半径,R8为第四透镜E4的像侧面S8的曲率半径;
f2/CT2=9.26,其中,f2为第二透镜E2的有效焦距,CT2为第二透镜E2在光轴上的中心厚度;
|R1+R2|/|R1-R2|=5.48,其中,R1为第一透镜E1的物侧面S1的曲率半径,R2为第一透镜E1的像侧面S2的曲率半径;
TTL/ΣAT=3.97,其中,TTL为第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离,ΣAT为第一透镜E1至第四透镜E4中任意相邻两透镜在光轴上的间隔距离之和;
|f/f3|+|f/f4|=2.57,其中,f为光学成像系统的总有效焦距,f3为第三透镜E3的有效焦距,f4为第四透镜E4的有效焦距。
另外,图2A示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2B示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图2C示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图2A至图2C可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4C描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地, 其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表4示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000003
表4
由表4可知,在实施例2中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表5示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 3.6157E-02 9.0978E-02 -2.1921E-01 3.3079E-01 -3.3628E-01 1.9778E-01 -5.0840E-02
S2 -1.1647E-01 7.1800E-02 1.1956E-01 -4.2206E-01 4.9976E-01 -2.6946E-01 5.2616E-02
S3 -2.0352E-01 9.4701E-01 -2.1971E+00 2.4304E+00 -1.4323E+00 4.5712E-01 -6.5677E-02
S4 3.3386E-01 -3.4807E-01 -3.2137E-02 -4.7941E-02 4.7788E-01 -4.3167E-01 1.2208E-01
S5 -4.2393E-01 1.6915E+00 -4.1589E+00 5.9275E+00 -5.0185E+00 2.3047E+00 -4.4329E-01
S6 -8.8160E-01 2.2004E+00 -4.1141E+00 4.8023E+00 -3.3379E+00 1.2475E+00 -1.9008E-01
S7 6.9041E-03 -2.1640E-01 8.2389E-02 2.9253E-02 -2.5067E-02 5.7623E-03 -4.5570E-04
S8 -1.1589E-02 -1.6204E-01 1.2233E-01 -5.2020E-02 1.4097E-02 -2.2360E-03 1.5325E-04
表5
表6给出实施例2中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴 上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -8.62 f(mm) 2.84
f2(mm) 2.63 TTL(mm) 3.99
f3(mm) -3.12 ImgH(mm) 2.36
f4(mm) 1.80    
表6
图4A示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4B示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图4C示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图4A至图4C可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6C描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表7示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫 米(mm)。
Figure PCTCN2018086741-appb-000004
表7
由表7可知,在实施例3中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 3.7856E-02 1.5889E-01 -4.0539E-01 6.5142E-01 -6.5584E-01 3.6060E-01 -8.4850E-02
S2 -1.9064E-01 4.3132E-01 -6.9877E-01 6.3136E-01 -2.9098E-01 4.8284E-02 4.3084E-04
S3 -2.6322E-01 1.1025E+00 -2.5797E+00 2.9548E+00 -1.8325E+00 5.9999E-01 -7.9270E-02
S4 3.6660E-01 -5.0154E-01 3.9572E-01 -7.0166E-01 1.0430E+00 -7.0451E-01 1.7608E-01
S5 -4.7055E-01 1.6561E+00 -3.8323E+00 5.1929E+00 -4.1499E+00 1.8000E+00 -3.2979E-01
S6 -9.5394E-01 2.3517E+00 -4.3614E+00 5.0794E+00 -3.5016E+00 1.3005E+00 -1.9702E-01
S7 -9.1677E-03 -1.2698E-01 9.6855E-02 -3.0549E-02 4.7226E-03 -3.3517E-04 7.8419E-06
S8 2.9397E-01 -4.4821E-01 3.1171E-01 -1.2933E-01 3.1803E-02 -4.2406E-03 2.3491E-04
表8
表9给出实施例3中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -7.59 f(mm) 2.84
f2(mm) 2.61 TTL(mm) 4.00
f3(mm) -2.61 ImgH(mm) 2.12
f4(mm) 1.62    
表9
图6A示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6B示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图6C示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图6A至图6C可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8C描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表10示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000005
Figure PCTCN2018086741-appb-000006
表10
由表10可知,在实施例4中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表11示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.7656E-02 1.5492E-01 -4.0843E-01 6.6156E-01 -6.5882E-01 3.5846E-01 -8.2564E-02
S2 -2.1118E-01 4.6538E-01 -7.0407E-01 6.2204E-01 -2.9083E-01 5.4097E-02 -1.0185E-03
S3 -2.5016E-01 1.0871E+00 -2.5703E+00 2.9420E+00 -1.8363E+00 6.0013E-01 -7.5577E-02
S4 3.3201E-01 -5.0064E-01 4.5997E-01 -7.5772E-01 1.0476E+00 -7.0874E-01 1.8106E-01
S5 -4.1099E-01 1.5485E+00 -3.8067E+00 5.2501E+00 -4.1148E+00 1.8013E+00 -3.6118E-01
S6 -1.0543E+00 2.4389E+00 -4.3901E+00 5.0355E+00 -3.4278E+00 1.3028E+00 -2.1300E-01
S7 -4.8643E-02 -1.9640E-01 2.4119E-01 -1.2941E-01 3.8928E-02 -6.5604E-03 4.7510E-04
S8 1.1913E-01 -2.3973E-01 1.4747E-01 -4.6378E-02 6.3258E-03 7.1637E-05 -7.6071E-05
表11
表12给出实施例4中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -6.61 f(mm) 2.84
f2(mm) 2.44 TTL(mm) 4.00
f3(mm) -2.40 ImgH(mm) 2.08
f4(mm) 1.56    
表12
图8A示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8B示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图8C示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图8A至图8C可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10C描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表13示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000007
Figure PCTCN2018086741-appb-000008
表13
由表13可知,在实施例5中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.9683E-02 1.7068E-01 -4.2346E-01 5.9615E-01 -6.0392E-01 3.7450E-01 -1.0831E-01
S2 -2.1376E-01 4.4803E-01 -7.3368E-01 6.4665E-01 -2.9347E-01 4.5643E-02 -2.8687E-04
S3 -5.4299E-01 1.3536E+00 -2.7445E+00 2.9803E+00 -1.8110E+00 6.0041E-01 -8.2037E-02
S4 2.7617E-01 -4.4873E-01 3.9098E-01 -7.4120E-01 1.0577E+00 -6.8768E-01 1.6152E-01
S5 -5.0225E-01 1.7339E+00 -3.9157E+00 5.1997E+00 -4.1865E+00 1.8853E+00 -3.6852E-01
S6 -1.0429E+00 2.4458E+00 -4.3410E+00 4.9848E+00 -3.4907E+00 1.3379E+00 -2.0980E-01
S7 5.3609E-02 -1.7358E-01 1.1919E-01 -4.2196E-02 9.0643E-03 -1.1555E-03 6.2896E-05
S8 8.0191E-02 -2.7357E-01 2.0542E-01 -9.0242E-02 2.3192E-02 -3.1556E-03 1.6999E-04
表14
表15给出实施例5中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -7.24 f(mm) 2.84
f2(mm) 2.64 TTL(mm) 4.00
f3(mm) -2.54 ImgH(mm) 2.07
f4(mm) 1.58    
表15
图10A示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10B示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10C示出了实施 例5的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图10A至图10C可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
实施例6
以下参照图11至图12C描述了根据本申请实施例6的光学成像系统。图11示出了根据本申请实施例6的光学成像系统的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表16示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000009
Figure PCTCN2018086741-appb-000010
表16
由表16可知,在实施例6中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表17示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.0313E-02 1.6838E-01 -4.2457E-01 6.4700E-01 -6.5103E-01 3.6131E-01 -8.8316E-02
S2 -2.2983E-01 4.3024E-01 -7.0205E-01 6.6227E-01 -3.2437E-01 3.8316E-02 1.4125E-02
S3 -2.7682E-01 1.0839E+00 -2.5680E+00 2.9383E+00 -1.8225E+00 6.0063E-01 -7.8394E-02
S4 3.6883E-01 -6.1985E-01 5.3697E-01 -7.4581E-01 1.0182E+00 -7.1883E-01 1.8954E-01
S5 -3.9120E-01 1.6190E+00 -3.7969E+00 5.2135E+00 -4.1476E+00 1.7926E+00 -3.4092E-01
S6 -1.0260E+00 2.5039E+00 -4.3996E+00 5.0747E+00 -3.5019E+00 1.3085E+00 -2.0210E-01
S7 -7.3768E-02 -3.6109E-01 5.5010E-01 -3.7153E-01 1.3367E-01 -2.4624E-02 1.8246E-03
S8 -1.8102E-01 -6.5101E-02 1.3936E-01 -8.7767E-02 2.8504E-02 -4.9132E-03 3.5878E-04
表17
表18给出实施例6中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -6.72 f(mm) 2.84
f2(mm) 2.49 TTL(mm) 4.00
f3(mm) -6.04 ImgH(mm) 2.11
f4(mm) 2.61    
表18
图12A示出了实施例6的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12B示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图12C示出了实施例6的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图12A至图12C可知,实施例6所给出的光学成像系统能够实现良好的成像品质。
实施例7
以下参照图13至图14C描述了根据本申请实施例7的光学成像系统。图13示出了根据本申请实施例7的光学成像系统的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表19示出了实施例7的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000011
表19
由表19可知,在实施例7中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表20示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.6446E-03 1.6399E-01 -4.0003E-01 6.5442E-01 -6.6094E-01 3.5374E-01 -7.8527E-02
S2 -1.9206E-01 4.3607E-01 -7.3724E-01 6.5316E-01 -2.9339E-01 5.7066E-02 -3.8172E-03
S3 -2.8608E-01 1.0255E+00 -2.5405E+00 2.9818E+00 -1.8353E+00 6.0909E-01 -8.9349E-02
S4 3.8470E-01 -6.4442E-01 6.1113E-01 -8.0177E-01 1.0329E+00 -6.7308E-01 1.7068E-01
S5 -4.4987E-01 1.6650E+00 -3.8802E+00 5.2092E+00 -4.1578E+00 1.7964E+00 -3.2306E-01
S6 -9.6585E-01 2.3516E+00 -4.3458E+00 5.0577E+00 -3.5021E+00 1.2989E+00 -1.9481E-01
S7 5.3331E-02 -1.9085E-01 8.7630E-02 -3.0109E-03 -6.8361E-03 1.7105E-03 -1.2985E-04
S8 1.3493E-01 -3.3327E-01 2.4116E-01 -1.0232E-01 2.5822E-02 -3.5038E-03 1.9433E-04
表20
表21给出实施例7中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -10.85 f(mm) 2.84
f2(mm) 2.96 TTL(mm) 4.00
f3(mm) -2.21 ImgH(mm) 2.12
f4(mm) 1.42    
表21
图14A示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14B示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图14C示出了实施例7的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图14A至图14C可知,实施例7所给出的光学成像系统能够实现良好的成像品质。
实施例8
以下参照图15至图16C描述了根据本申请实施例8的光学成像 系统。图15示出了根据本申请实施例8的光学成像系统的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表22示出了实施例8的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000012
表22
由表22可知,在实施例8中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表23示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实 施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.0897E-02 1.4499E-01 -4.1296E-01 6.6038E-01 -6.5738E-01 3.6976E-01 -9.2145E-02
S2 -2.0263E-01 4.2317E-01 -7.1435E-01 6.9495E-01 -3.5532E-01 7.7603E-02 -6.2613E-03
S3 -3.0243E-01 1.0983E+00 -2.5495E+00 2.9409E+00 -1.8403E+00 6.0955E-01 -8.2123E-02
S4 3.5151E-01 -5.0563E-01 4.0194E-01 -6.6469E-01 9.8862E-01 -6.7812E-01 1.7425E-01
S5 -3.7861E-01 1.5992E+00 -3.8360E+00 5.1764E+00 -4.1388E+00 1.7895E+00 -3.2097E-01
S6 -9.9030E-01 2.3804E+00 -4.3904E+00 5.0812E+00 -3.5072E+00 1.3009E+00 -1.9583E-01
S7 -8.2386E-02 4.6789E-02 -3.8233E-01 4.2097E-01 -1.8880E-01 3.9053E-02 -3.0972E-03
S8 2.1562E-01 -5.1489E-01 4.2792E-01 -2.1444E-01 6.4915E-02 -1.0635E-02 7.1184E-04
表23
表24给出实施例8中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -6.42 f(mm) 2.84
f2(mm) 2.42 TTL(mm) 4.00
f3(mm) -1.87 ImgH(mm) 2.07
f4(mm) 1.25    
表24
图16A示出了实施例8的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16B示出了实施例8的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图16C示出了实施例8的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图16A至图16C可知,实施例8所给出的光学成像系统能够实现良好的成像品质。
实施例9
以下参照图17至图18C描述了根据本申请实施例9的光学成像系统。图17示出了根据本申请实施例9的光学成像系统的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像系统沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第 三透镜E3、第四透镜E4、滤光片E5和成像面S11。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面;第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面;第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。滤光片E5具有物侧面S9和像侧面S10。滤光片E5可为红外带通滤光片,其带通波段可为约750nm至约1000nm,更进一步地,其带通波段可为约850nm至约940nm。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表25示出了实施例9的光学成像系统的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018086741-appb-000013
表25
由表25可知,在实施例9中,第一透镜E1至第四透镜E4中的任意一个透镜的物侧面和像侧面均为非球面。表26示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 -8.6268E-03 1.8135E-01 -4.1026E-01 6.5354E-01 -6.5960E-01 3.5488E-01 -7.9136E-02
S2 -2.0621E-01 4.4886E-01 -7.4496E-01 6.4797E-01 -2.9165E-01 5.5565E-02 -1.0031E-03
S3 -3.1357E-01 1.0089E+00 -2.5547E+00 2.9801E+00 -1.8227E+00 6.1160E-01 -9.1488E-02
S4 2.8119E-01 -6.1026E-01 6.1193E-01 -8.0047E-01 1.0123E+00 -6.6440E-01 1.6767E-01
S5 -4.7619E-01 1.7026E+00 -3.9065E+00 5.2315E+00 -4.1411E+00 1.7975E+00 -3.3525E-01
S6 -9.4663E-01 2.3214E+00 -4.3221E+00 5.0489E+00 -3.4822E+00 1.2961E+00 -1.9721E-01
S7 1.6782E-02 -1.3917E-01 4.3572E-02 3.2320E-02 -2.3334E-02 5.3079E-03 -4.1906E-04
S8 2.9019E-01 -5.0161E-01 3.8861E-01 -1.8595E-01 5.4264E-02 -8.6840E-03 5.7636E-04
表26
表27给出实施例9中各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、第一透镜E1的物侧面S1的中心至成像面S11在光轴上的距离TTL以及成像面S11上有效像素区域对角线长的一半ImgH。
f1(mm) -9.43 f(mm) 2.84
f2(mm) 2.84 TTL(mm) 4.00
f3(mm) -3.11 ImgH(mm) 2.09
f4(mm) 1.76    
表27
图18A示出了实施例9的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18B示出了实施例9的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图18C示出了实施例9的光学成像系统的倍率色差曲线,其表示光线经由系统后在成像面上的不同的像高的偏差。根据图18A至图18C可知,实施例9所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表28中所示的关系。
Figure PCTCN2018086741-appb-000014
Figure PCTCN2018086741-appb-000015
表28
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (26)

  1. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜具有正光焦度或负光焦度;
    所述第三透镜具有正光焦度或负光焦度,其像侧面为凹面;
    所述第四透镜具有正光焦度,其像侧面为凹面;以及
    所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤1.60。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还包括设置于所述第四透镜与所述光学成像系统的成像面之间的红外带通滤光片,其带通波段为750nm至1000nm。
  3. 根据权利要求2所述的光学成像系统,其特征在于,所述红外带通滤光片的带通波段为850nm至940nm。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的中心至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的入瞳直径EPD满足1.0<TTL/EPD<2.5。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的中心至所述光学成像系统的成像面在所述光轴上的距离TTL与所述第一透镜至所述第四透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足3.5<TTL/∑AT<5.0。
  6. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第四透镜在所 述光轴上的中心厚度CT4满足1.0<CT4/CT1<3.5。
  7. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足-4.0<f1/f<-2.0。
  8. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述第二透镜的有效焦距f2满足0<f4/f2<1.5。
  9. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的物侧面的曲率半径R5满足-1<f3/R5<0.5。
  10. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足-5.0<(R7+R8)/(R7-R8)<-1.0。
  11. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜在所述光轴上的中心厚度CT2满足5.0<f2/CT2<10.0。
  12. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足4.0<|R1+R2|/|R1-R2|<7.0。
  13. 根据权利要求1至5中任一项所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f、所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足1.0<|f/f3|+|f/f4|<4.0。
  14. 光学成像系统,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜和第四透镜,其特征在于,
    所述第一透镜具有负光焦度;
    所述第二透镜具有正光焦度或负光焦度;
    所述第三透镜具有正光焦度或负光焦度,其像侧面为凹面;
    所述第四透镜具有正光焦度,其像侧面为凹面;以及
    所述第一透镜的物侧面的中心至所述光学成像系统的成像面在所述光轴上的距离TTL与所述光学成像系统的入瞳直径EPD满足1.0<TTL/EPD<2.5。
  15. 根据权利要求14所述的光学成像系统,其特征在于,所述第一透镜的物侧面的中心至所述光学成像系统的成像面在所述光轴上的距离TTL与所述第一透镜至所述第四透镜中任意相邻两透镜在所述光轴上的间隔距离之和∑AT满足3.5<TTL/∑AT<5.0。
  16. 根据权利要求15所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1与所述第四透镜在所述光轴上的中心厚度CT4满足1.0<CT4/CT1<3.5。
  17. 根据权利要求15所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜在所述光轴上的中心厚度CT2满足5.0<f2/CT2<10.0。
  18. 根据权利要求14所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足4.0<|R1+R2|/|R1-R2|<7.0。
  19. 根据权利要求14所述的光学成像系统,其特征在于,所述第三透镜的有效焦距f3与所述第三透镜的物侧面的曲率半径R5满足-1<f3/R5<0.5。
  20. 根据权利要求14所述的光学成像系统,其特征在于,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8满足-5.0<(R7+R8)/(R7-R8)<-1.0。
  21. 根据权利要求14所述的光学成像系统,其特征在于,第一透镜的有效焦距f1与所述光学成像系统的总有效焦距f满足-4.0<f1/f<-2.0。
  22. 根据权利要求14所述的光学成像系统,其特征在于,所述第四透镜的有效焦距f4与所述第二透镜的有效焦距f2满足0<f4/f2<1.5。
  23. 根据权利要求14所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f、所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4满足1.0<|f/f3|+|f/f4|<4.0。
  24. 根据权利要求14至23中任一项所述的光学成像系统,其特征在于,所述光学成像系统还包括设置于所述第四透镜与所述光学成像系统的成像面之间的红外带通滤光片,其带通波段为750nm至1000nm。
  25. 根据权利要求24所述的光学成像系统,其特征在于,所述红外带通滤光片的带通波段为850nm至940nm。
  26. 根据权利要求24所述的光学成像系统,其特征在于,所述光学成像系统的总有效焦距f与所述光学成像系统的入瞳直径EPD满足f/EPD≤1.60。
PCT/CN2018/086741 2017-12-11 2018-05-14 光学成像系统 WO2019114189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/293,112 US11175478B2 (en) 2017-12-11 2019-03-05 Optical imaging system having lenses of −+−+ refractive powers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711311255.X 2017-12-11
CN201711311255.XA CN107807438B (zh) 2017-12-11 2017-12-11 光学成像系统
CN201721711746.9 2017-12-11
CN201721711746.9U CN207473187U (zh) 2017-12-11 2017-12-11 光学成像系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/293,112 Continuation US11175478B2 (en) 2017-12-11 2019-03-05 Optical imaging system having lenses of −+−+ refractive powers

Publications (1)

Publication Number Publication Date
WO2019114189A1 true WO2019114189A1 (zh) 2019-06-20

Family

ID=66818897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086741 WO2019114189A1 (zh) 2017-12-11 2018-05-14 光学成像系统

Country Status (2)

Country Link
US (1) US11175478B2 (zh)
WO (1) WO2019114189A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738297B (zh) * 2020-04-16 2021-09-01 今國光學工業股份有限公司 四片式取像鏡頭
CN113514932B (zh) * 2021-04-20 2023-05-02 浙江舜宇光学有限公司 光学成像镜头
CN113448063B (zh) * 2021-05-21 2022-05-20 中国科学院西安光学精密机械研究所 一种大视场大相对孔径中波红外镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072095A (ja) * 2000-09-01 2002-03-12 Minolta Co Ltd 撮像装置
CN103163627A (zh) * 2011-12-14 2013-06-19 大立光电股份有限公司 光学取像镜片系统
CN107219610A (zh) * 2017-07-25 2017-09-29 浙江舜宇光学有限公司 成像镜头
CN107340589A (zh) * 2016-04-28 2017-11-10 先进光电科技股份有限公司 光学成像系统
CN107807438A (zh) * 2017-12-11 2018-03-16 浙江舜宇光学有限公司 光学成像系统
CN108008525A (zh) * 2018-01-05 2018-05-08 浙江舜宇光学有限公司 光学成像系统
CN207663139U (zh) * 2018-01-05 2018-07-27 浙江舜宇光学有限公司 光学成像系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472793B (zh) 2012-09-14 2015-02-11 Largan Precision Co Ltd 攝影光學系統鏡組
US10338355B2 (en) * 2016-02-05 2019-07-02 Largan Precision Co., Ltd. Lens assembly
TWI626465B (zh) 2016-03-24 2018-06-11 先進光電科技股份有限公司 光學成像系統
JP7117638B2 (ja) * 2017-03-10 2022-08-15 パナソニックIpマネジメント株式会社 レンズ系、交換レンズ装置及びカメラシステム
CN106680976B (zh) 2017-03-30 2018-11-27 浙江舜宇光学有限公司 摄像镜头
CN107167901B (zh) 2017-07-25 2022-09-13 浙江舜宇光学有限公司 摄像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072095A (ja) * 2000-09-01 2002-03-12 Minolta Co Ltd 撮像装置
CN103163627A (zh) * 2011-12-14 2013-06-19 大立光电股份有限公司 光学取像镜片系统
CN107340589A (zh) * 2016-04-28 2017-11-10 先进光电科技股份有限公司 光学成像系统
CN107219610A (zh) * 2017-07-25 2017-09-29 浙江舜宇光学有限公司 成像镜头
CN107807438A (zh) * 2017-12-11 2018-03-16 浙江舜宇光学有限公司 光学成像系统
CN108008525A (zh) * 2018-01-05 2018-05-08 浙江舜宇光学有限公司 光学成像系统
CN207663139U (zh) * 2018-01-05 2018-07-27 浙江舜宇光学有限公司 光学成像系统

Also Published As

Publication number Publication date
US20190196147A1 (en) 2019-06-27
US11175478B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
CN109946822B (zh) 光学成像镜头
WO2020093725A1 (zh) 摄像光学系统
CN109782418B (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2020107936A1 (zh) 光学成像系统
CN107807438B (zh) 光学成像系统
CN107462976B (zh) 摄像镜头
WO2018153012A1 (zh) 摄像镜头
WO2018192126A1 (zh) 摄像镜头
CN111458838B (zh) 光学透镜组
WO2020073703A1 (zh) 光学透镜组
WO2019137246A1 (zh) 光学成像镜头
WO2019233040A1 (zh) 摄像透镜组
CN108008525B (zh) 光学成像系统
WO2019056817A1 (zh) 光学成像系统
WO2019169856A1 (zh) 摄像镜头组
CN108398767B (zh) 摄像镜头
WO2019233159A1 (zh) 光学成像镜头
WO2020134027A1 (zh) 光学成像镜头
WO2019019626A1 (zh) 成像镜头
WO2018209890A1 (zh) 成像镜头
WO2019037420A1 (zh) 摄像透镜组
WO2020107934A1 (zh) 光学透镜组
WO2019024490A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889533

Country of ref document: EP

Kind code of ref document: A1