WO2019111926A1 - 表示装置及びヘッドマウントディスプレイ - Google Patents

表示装置及びヘッドマウントディスプレイ Download PDF

Info

Publication number
WO2019111926A1
WO2019111926A1 PCT/JP2018/044675 JP2018044675W WO2019111926A1 WO 2019111926 A1 WO2019111926 A1 WO 2019111926A1 JP 2018044675 W JP2018044675 W JP 2018044675W WO 2019111926 A1 WO2019111926 A1 WO 2019111926A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
horizontal
mirror
propagation
Prior art date
Application number
PCT/JP2018/044675
Other languages
English (en)
French (fr)
Inventor
石原 圭一郎
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2019558241A priority Critical patent/JPWO2019111926A1/ja
Publication of WO2019111926A1 publication Critical patent/WO2019111926A1/ja
Priority to US16/890,828 priority patent/US11281009B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to a display device and a head mounted display, and more particularly to a display device using a light guide plate.
  • the display device using the light guide plate is a device that guides the light emitted from the display element to the eye of the observer by the light guide plate and displays an image on the eye of the observer.
  • Japanese Patent Application Publication No. 2005-521099 Japanese Patent Application Publication No. 2010-533316, and WO 2015/076335
  • light from a display element is confined in a plane substrate, the light is extracted by a plurality of extraction mirrors, and an image is displayed.
  • Display device is disclosed.
  • Japanese Patent Application Publication No. 2003-520984 describes that each light flux width of the deflected light flux group is increased by a mirror having a plurality of regions having different reflectances.
  • Japanese Patent Application Publication No. 2003-520984 discloses a display for expanding the luminous flux width in a one-dimensional direction, there is no disclosure on a display for expanding the luminous flux width in a two-dimensional direction.
  • JP-A-2003-520984 does not disclose the use of a polarizing beam splitter.
  • An object of the present embodiment is to provide a display device capable of displaying a higher quality image.
  • a display device is a display device including a light guide element and an incident optical system for causing light from the display element to be incident on the light guide element, wherein the light guide element A first light guide unit for guiding the light from the optical system in a first direction; and a second light guide unit for guiding the light from the first light guide in a second direction intersecting the first direction
  • the first light guiding portion includes a plurality of mirrors disposed along the first direction and guiding the light to the second light guiding portion by reflecting the light; Mirror has a first mirror and a second mirror, and each of the first and second mirrors has a first reflection area and a second reflection area having a reflectance higher than that of the first reflection area. The light transmitted through the first reflection area of the first mirror is incident on the second reflection area of the second mirror.
  • a display device of Example 1 to which the present invention can be applied will be described.
  • FIG. 1 shows a display device to which the present invention can be applied.
  • 1 is a display device
  • 2 is a light guide plate (light guide element)
  • 3 is an incident optical system
  • 4 is a display element
  • 5 is an eye of an observer
  • 21 is a horizontal light guide portion
  • Reference numerals 1 and 22 denote vertical light guides (second light guides).
  • 211 is a horizontal propagation unit (first propagation unit)
  • 212 is a horizontal mirror group (first mirror group)
  • 221 is a vertical propagation unit (second propagation unit)
  • 222 is a vertical mirror group (second mirror group)
  • 2113 is an upper surface (first reflection surface)
  • 2114 is a lower surface (first emission surface).
  • 2211 is a front surface (second emission surface)
  • 2212 is a back surface (second reflection surface)
  • 2120 is a horizontal extraction mirror (a plurality of mirrors)
  • 2121 is a first reflection area (half mirror)
  • 2122 is a second reflection area (High reflection mirror) is shown.
  • the display device 1 includes a light guide plate (light guide element) 2, an incident optical system 3, and a display element 4.
  • the divergent light flux emitted from the display element 4 is converted into a parallel light flux by the incident optical system 3 and coupled to the incident surface of the light guide plate 2, and the coupled light flux propagates inside the light guide plate 2.
  • the light is emitted from the emission surface of the light source and enters the eye 5 of the observer.
  • the display device 1 of the present embodiment displays an image (including a video) on the observer's eye 5
  • a display device that can As the display element 4, a transmissive liquid crystal display (LCD), a reflective liquid crystal display (LCOS), a digital mirror device (DMD), an organic electroluminescence (OLED), a space modulation device (SLM) or the like can be used.
  • the light guide plate of a present Example is shown in FIG.
  • the light guide plate 2 of the present embodiment has a horizontal light guide portion 21 in which light beams propagate in the horizontal direction (first direction) inside the light guide plate and a vertical light guide portion 22 in which the light beams propagate in the vertical direction (second direction).
  • the horizontal light guide unit 21 includes a horizontal propagation unit 211 and a horizontal mirror group 212, and the horizontal mirror group 212 is disposed below the horizontal propagation unit 211.
  • the vertical light guiding unit 22 includes a vertical propagation unit 221 and a vertical mirror group 222, and the vertical mirror group 222 is disposed on the side of the vertical propagation unit 221 on which the observer's eye 5 is disposed. Then, the vertical propagation unit 221 is disposed under the horizontal mirror group 212, and the horizontal light guide unit 21 and the vertical light guide unit 22 are connected to configure the light guide plate 2.
  • FIG. 3A is a top view of the horizontal light guide
  • FIGS. 3B and 3C are front views of the horizontal light guide.
  • FIGS. 3A and 3B a light flux passing through the center of the angle of view with respect to the eye of the observer (a light flux emitted parallel to the X direction from the light guide plate), ie, a light flux with a central angle of view propagates in the horizontal light guide. The situation was also shown.
  • the horizontal light guiding unit 21 includes a horizontal propagation unit 211 and a horizontal mirror group 212, and a part of the lower surface 2114 of the horizontal propagation unit 211 and the upper surface of the horizontal mirror group 212 are joined.
  • the horizontal propagation portion 211 is a cube having a front surface 2111, a back surface 2112, an upper surface 2113, a lower surface 2114, a left surface 2115, and a right surface 2116.
  • the length L is largest when the length L, height H and width W Next, the height H is the largest and the width W is the smallest.
  • the horizontal propagation portion 211 is a cube whose longitudinal direction (Z-axis direction) is long, and is disposed such that the upper surface 2113 faces the Y direction in which the vertical light guiding portion 22 is disposed. Further, the horizontal mirror group 212 is disposed to face the upper surface 2113 (first reflection surface) of the horizontal propagation unit.
  • the left surface 2115 of the horizontal propagation portion is an incident surface, and a light flux from an incident optical system (not shown) is incident from the incident surface.
  • emission surface) of a horizontal propagation part is made into the radiation
  • light beams having a central angle of view propagate flat light at four angles of ⁇ 26 ° in the XZ cross section direction and ⁇ 32 ° in the YZ cross section direction with respect to the longitudinal axis (long axis) Ax of the horizontal propagation section 211
  • the light is incident on the inside of the portion 211 and becomes a propagation light beam inside the horizontal light guide portion 21.
  • the reason why the light flux at the central angle of view has positive and negative inclinations in the XZ cross-sectional direction and the YZ cross-sectional direction respectively and is incident at four angles will be described in detail later with reference to FIGS. 9A and 9B of the second embodiment.
  • FIGS. 9A and 9B of the second embodiment Here is a brief description.
  • connection portion 32 of the incident optical system 3 connected to the horizontal light guide portion is provided with flat portions (not shown) parallel to the back surface 2112 and the top surface 2113 respectively. Since the light flux internally reflected on the flat surface and incident on the horizontal light guide and the light flux incident on the horizontal light conductive section on the flat surface without being internally reflected on the flat light component occurs in both the XZ and YZ cross sectional directions, It will be incident at four angles.
  • the incident optical system and the horizontal light guide 21 are made of the same material, and even in the horizontal light guide 21, the propagation light flux is ⁇ 26 ° in the XZ cross section direction with respect to the long axis Ax and in the YZ cross section It has an angle of ⁇ 32 °. At this time, angles formed by the propagating light beam with respect to the major axis Ax are referred to as an XZ propagation angle and a YZ propagation angle in the XZ sectional direction and the YZ sectional direction, respectively.
  • propagating beams 511 and 513 are beams of XZ propagating angle + 26 °
  • propagating beams 512 and 514 are beams of XZ propagating angle -26 °
  • the propagating beams thereof are from the front surface 2111 and the back surface 2112 The total reflection is repeated to reach the right side 2116.
  • propagating beams 511 and 512 are beams at YZ propagation angle + 32 °
  • propagating beams 513 and 514 are beams at XZ propagation angle -32 °
  • the propagating beams are totally reflected on the upper surface 2113, The reflection is repeated at the lower surface 2114 to reach the right surface 2116.
  • the propagating light flux of all angles of view including the light flux of the central angle of view propagates at an angle in a two-dimensional direction (XZ cross section direction and YZ cross section direction) in the horizontal propagation section 211, Are propagated in the form of a spiral in the horizontal propagation part 211.
  • the propagating light beam propagates in the horizontal direction to the right surface 2116 while repeating internal reflection on four surfaces (front surface 2111, back surface 2112, upper surface 2113, lower surface 2114) parallel to the horizontal direction of the horizontal propagation section 211.
  • the propagation light beam that has reached the lower surface 2114 of the horizontal propagation portion is partially reflected and partially transmitted by the transmission / reflection film provided on the junction surface, and the transmitted propagation light beam enters the horizontal mirror group 212.
  • a plurality of horizontal extraction mirrors 2120 having an inclination in the YZ cross section are arranged in the Z-axis direction, and the propagation light beam incident on the horizontal mirror group 212 is reflected by the horizontal extraction mirror 2120 It is deflected in the Y-axis direction and is incident on the vertical light guide.
  • the propagation angles have the plus direction and the minus direction in the XZ sectional direction and the YZ sectional direction, respectively, and the propagation angle is four directions in total.
  • each angle of view luminous flux is 0 ° to ⁇ 7.7 ° in the XZ sectional direction and 0 ° to ⁇ It has an angle of 13.5 °.
  • the XZ cross section direction is vertical
  • the XZ propagation angle is converted to a vertical angle of view and 0 ° to ⁇ 11.6 °
  • the YZ cross sectional direction is horizontal
  • the YZ propagation angle is converted to a horizontal angle of view and 0 ° to ⁇ It becomes a display which has 20.0 degrees.
  • propagation is performed in a two-dimensional direction in the horizontal propagation part, and the incident angle on the side face of the horizontal propagation part is large compared to the case where the composite incident angle in the two-dimensional direction propagates in one dimension. can do.
  • the propagation angle ⁇ in the horizontal propagation unit may be in the range of the conditional expression (1). 10 ° ⁇ ⁇ ⁇ 50 ° conditional expression (1)
  • the propagation angle (XZ propagation angle ⁇ xz) in the XZ cross section direction is set to + 18.3 ° to + 33.7 °, -18.3 ° to -33.7 ° in the horizontal propagation section, and the YZ cross section direction is The propagation angle (YZ propagation angle ⁇ yz) is set to + 18.5 ° to + 44.5 °, -18.5 ° to -44.5 °.
  • the XZ propagation angle in the one-dimensional direction or the YZ propagation angle in the one-dimensional direction is set to "90 ° -critical angle" or more within the range where the propagation angle ⁇ in the two-dimensional direction is less than "90 ° -critical angle". It is also possible to propagate a light flux with a wide angle of view while reducing the light quantity loss.
  • FIG. 3C shows the propagation of the angle of view ray.
  • the angle of view light beam 511 in FIG. 3C propagates within the horizontal propagation section 211 at a YZ propagation angle of + 32 °, the angle of view light beam 523 at a YZ propagation angle of -45 °, and the angle of view light beam 533 at a YZ propagation angle of -19 °.
  • the propagation light flux of each angle of view has propagation angles in the positive direction and the negative direction, one of them is shown in FIG. 3C.
  • the propagating light beams 511, 523, 533 propagate while repeating internal reflection (total reflection) on the upper surface, lower surface, front surface, and back surface of the horizontal propagation section 211.
  • the propagating beam reaches the lower surface 2114 coated with the transmission / reflection film, a portion of the propagating beam passes through the lower surface 2114 and enters the horizontal mirror group 212, and the other portion is reflected by the lower surface 2114 to propagate the horizontal propagation portion. Propagating in 211.
  • a plurality of extraction mirrors 2120 having inclinations in the YZ cross section are disposed in the horizontal mirror group 212, and light incident on the horizontal mirror group 212 is reflected by the extraction mirror 2120 to deflect the propagation angle in the YZ cross section direction. And the lower surface of the horizontal mirror group 212 to be incident on the vertical light guide.
  • the horizontal mirror group 212 on the side of the vertical light guide 22 of the horizontal propagation unit 211, it is possible to reduce the number of reflections when propagating in the horizontal propagation unit 211 and to reduce the light quantity loss.
  • a light flux emitted from the center in the horizontal direction (Z-axis direction) of the vertical light guide portion 22 of the light guide plate reaches the observer's eye and displays an image.
  • a light flux emitted from the left side of the vertical light guide 22 when the observer looks in the left direction a light flux emitted from the right side of the vertical light guide 22 when the observer looks in the right direction reaches the observer's eyes To display the image.
  • 3C is YZ propagation angle + 32 °
  • the light beam reflected by the horizontal mirror group 212 travels straight down in the YZ cross section and corresponds to a light beam traveling in the center of the angle of view with respect to the eye.
  • the angle of view light beam 523 is YZ propagation angle ⁇ 45 °
  • the light beam reflected by the horizontal mirror group 212 proceeds in the lower right direction in the YZ cross section and corresponds to a light beam traveling in the left direction of the angle of view with respect to the eye.
  • the angle of view light beam 533 is a YZ propagation angle -19 °, and the light beam reflected by the horizontal mirror group 212 proceeds in the lower left direction in the YZ cross section and corresponds to a light beam traveling in the right direction of the angle of view with respect to the eye. Therefore, when the angle of view light beam 511 is emitted from the vicinity of the center of the horizontal mirror group 212, it becomes an effective light beam which enters the eye of the observer.
  • the angle of view light beam 523 When the angle of view light beam 523 is emitted from the left side of the horizontal mirror group 212 (on the left surface 2115 side of the horizontal propagation unit) and the view angle light beam 533 is emitted from the right side of the horizontal mirror group 212 (on the right surface 2116 side of the horizontal transmission unit) It becomes an effective luminous flux to enter.
  • the luminous flux having a large absolute value of the propagation angle is configured to become an effective luminous flux when it emerges from the incident surface (left surface 2115) side of the horizontal propagation portion of the horizontal mirror group 212.
  • a transmission / reflection film is provided on the junction surface between the lower surface 2114 of the horizontal propagation portion and the horizontal mirror group, and the reflectance at the junction surface (or the junction region of the lower surface 2114 of the horizontal propagation portion) is about 50%. In this case, the light amount of the propagating light beam decreases according to the number of reflections.
  • the light beam with the larger absolute value of the propagation angle is the incident surface 2115 side of the horizontal propagation unit of the horizontal mirror group 212.
  • FIG. 4A, FIG. 4C, and FIG. 4D are explanatory drawings of the horizontal mirror group 212 in a present Example
  • FIG. 4B is explanatory drawing of the horizontal mirror group 212 of a comparative example.
  • the horizontal mirror group 212 one in which 43 horizontal extraction mirrors 2120 are arranged in parallel in the Z-axis direction is used.
  • a part of the horizontal extraction mirror 2120 is schematically shown in FIG. 4A.
  • the normals of the 43 horizontal extraction mirrors 2120 are inclined at 61 ° in the YZ direction in a plane including the Y direction and the Z direction.
  • the horizontal extraction mirror 2120 is provided with two types of reflection regions 2121 and 2122 having different reflectances and transmittances.
  • a half mirror with a reflectance of about 45% and a transmittance of about 45% and a ratio of reflectance and transmittance of about 1: 1 is disposed. There is.
  • the second reflection area 2122 which is far from the horizontal propagation portion of the horizontal extraction mirror 2120, a high reflection mirror having a reflectance of about 85% and a transmittance of 1% or less is disposed. That is, the upper half of the height (Y direction) of the horizontal extraction mirror 2120 is a half mirror 2121, and the lower half is a high reflection mirror 2122. As a result, of the light flux from the horizontal propagation unit 211, a part of the light flux incident on the half mirror 2121 is reflected and deflected in the direction of the vertical light guiding section, and the other part of the incident light flux is transmitted.
  • the light can be reflected by the high reflection mirror 2122 of the extraction mirror 2120 and deflected in the direction of the vertical light guide. That is, when the horizontal extraction mirror 2120 includes the first and second mirrors, the light transmitted through the first reflection area of the first mirror is reflected by the second reflection area of the second mirror and is incident on the vertical light guide portion, The light reflected by the second reflection area of the one mirror is directly incident on the vertical light guide without passing through the second mirror. At this time, the deflected light beam group deflected in the direction of the vertical light guiding unit by the extraction mirror 2120 has a light beam width wider than the propagating light beam in the horizontal propagation unit 211.
  • the luminous flux widths of the propagating luminous flux in the horizontal propagation unit 211 are Wp1, Wp2 and Wp3, but the widths of the deflected luminous flux groups after being reflected by the horizontal extraction mirror 2120 are Wr1, Wr2 and Wr3.
  • the comparative example was shown to FIG. 4B.
  • the horizontal mirror group of the comparative example uses the entire area of the horizontal extraction mirror 2120 as a high reflection mirror.
  • the polarized light beam group deflected by the horizontal extraction mirror is also wider than the luminous flux width of the propagation luminous flux as in the present embodiment, but a large number of air gaps (a portion where no luminous flux exists) is generated in the polarized luminous flux group.
  • the uniformity of the light quantity in the luminous flux group is a problem.
  • the half mirror 2121 is disposed at a part of the horizontal extraction mirror 2120 as in this embodiment, since the reflected light beam and the transmitted light beam are separated by the half mirror 2121, the light beam width of the reflected light beam is expanded. The resulting air gaps can be filled with transmitted light. Therefore, a high reflection mirror is disposed on the side of the vertical light guide of the half mirror 2121, and the transmitted light flux of the half mirror 2121 is reflected by the high reflection mirror 2122 of the next horizontal extraction mirror 2120 to fill the air gap. did.
  • the light incident on the horizontal extraction mirror 2120 is split into two light beams and deflected in the direction of the vertical light guide, in addition to the effect of expanding the light beam width of the conventional deflected light beam group.
  • the effect of making the light quantity distribution in the deflected light flux group uniform is also obtained.
  • the propagated light flux totally reflected on the upper surface 2113 of the horizontal propagation portion reaches the horizontal extraction mirror 2120.
  • the first reflection area of the horizontal extraction mirror 2120 is disposed closer to the upper surface 2113 side of the horizontal propagation section than the second reflection area, that is, the first reflection area is disposed closer to the top surface 2113 of the horizontal propagation section than the second reflection area. .
  • the half mirror 2121 and the high reflection mirror 2122 are divided into upper and lower halves to set the arrangement ratio to 1: 1, but this is not a limitation, and the arrangement ratio is 2: 1 Or, it may be 3: 1, 4: 1, etc. Furthermore, all may be used as the half mirror 2121.
  • the half mirror 2121 and the high reflection mirror 2122 are arranged at 1: 1, a configuration in which the light transmitted through the half mirror 2121 is reflected by the high reflection mirror 2122 between the light beams reflected by the half mirror 2121 You can This configuration is suitable for the expansion of the luminous flux width, the equalization of the light quantity distribution in the expanded luminous flux, and the improvement of the light utilization efficiency.
  • the half mirror 2121 is not limited to the reflectance 45% and the transmittance 45%, and it may be an amplitude division mirror that divides the amplitude. For example, by setting the transmittance higher than the reflectance with a reflectance of 41% and a transmittance of 49%, the amount of light between the reflected light flux from the half mirror and the light flux transmitted through the half mirror and reflected by the high reflection mirror As a result, the light amount distribution in the luminous flux group can be corrected more uniformly. Also, even if the ratio of reflectance to transmittance is 2: 1 or 1: 2, it can be used without any problem in practical use.
  • the last mirror (the mirror farthest from the incident surface 2115) has no mirror and no effective part after that, so both the first region 2121 and the second region 2122 are high reflection mirrors The light quantity of the deflected light flux is increased.
  • the distance between the plurality of horizontal extraction mirrors 2120 is preferably smaller than the pupil diameter 4 mm of the eye 5, and it is more preferable that the distance be 2 mm or less and sufficiently smaller than the pupil diameter.
  • the distance between the horizontal extraction mirrors 2120 is smaller than 0.5 mm, the numerical aperture becomes small, which causes a problem in the resolution, so the distance P between the horizontal extraction mirrors is preferably in the following range. 0.5 mm P P 2.0 2.0 mm ... Conditional expression (2)
  • the light flux responsible for the angle of view on the left side of the image is emitted from the left side of the light guide plate 2
  • the light flux responsible for the angle of view on the right side of the image is the light guide plate It is emitted from the right side of 2 and enters the observer's eye.
  • the horizontal mirror group 212 is disposed between the horizontal propagation unit 211 and the vertical light guide 22 as in the present embodiment, a place where the light flux with a large propagation angle is close to the incident surface (left side of the light guide plate in FIG. 2) The light flux with a small propagation angle is required at a position far from the incident surface (right side of the light guide plate in FIG. 2).
  • the propagation in the horizontal propagation part 211 the front 2111, the back 2112 and the top 2113 are totally reflected, but the bottom 2114 has a reflectance lower than 100% due to the reflection by the transmission reflection film, and the propagation light is The amount of light decreases.
  • the horizontal mirror group 212 When the horizontal mirror group 212 is disposed between the horizontal propagation unit 211 and the vertical light guide 22 as in this embodiment, the number of reflections at each angle of view is equalized, and the number of reflections on the lower surface 2114 of the horizontal propagation unit is reduced. Light utilization efficiency can be improved. As described above, there is an advantage in that the propagation angle and the required place can be set in a suitable relationship. Furthermore, unlike the lower surface 2114 of the horizontal propagation portion, there is no need to reflect on the lower surface 2124 of the horizontal mirror group. Therefore, the area from which the light flux of the lower surface 2124 of the horizontal mirror group emerges and the area from which the light flux of the vertical propagation part 221 enters can be joined, and the horizontal light guide 21 and the vertical light guide 22 are easily integrated. can do. Thus, the positional relationship between the horizontal light guide 21 and the vertical light guide 22 can be maintained with high accuracy, and a good image can be always displayed.
  • the horizontal mirror group 212 is disposed on the upper surface 2113 side of the horizontal propagation unit 211 as in JP-A-2010-533316 or WO2015 / 076335, There are merits of improving the light utilization efficiency by reducing the number of reflections by the film and integrating the light guide plate. Further, in the configuration of the present embodiment, as in Patent Document 1, the horizontal mirror group 212 is disposed in the horizontal propagation part 211, and the light beam finally reflected on the lower surface of the horizontal propagation part 211 is reflected by the mirror group. There is a similar advantage to the case of.
  • the interval between adjacent horizontal extraction mirrors 2120 is always set equally at 1 mm, and the height (Y direction) is changed according to the position of the horizontal extraction mirror 2120.
  • the horizontal extraction mirror in the vicinity of the incident surface 2115 of the horizontal propagation part is high, and the height is set to be lower as the distance from the incident surface 2115 (in accordance with the distance in the Z direction). Since the propagation light flux totally reflected on the upper surface 2113 of the horizontal propagation portion is incident on the horizontal extraction mirror 2120, the distance to the upper surface 2113 of the horizontal propagation portion may be increased as the distance from the incident surface 2115 of the horizontal propagation portion increases.
  • the incident surface 2115 side of the horizontal propagation part is a region where the propagation light flux with a large propagation angle of ⁇ 45 ° becomes the effective light flux, and when this propagation light flux is deflected by the horizontal extraction mirror 2120, the gap of the light flux becomes small.
  • the takeout mirror 2120 is set to a height of 3.0 mm.
  • the horizontal extraction mirror 2120 is set to a medium height of 1.8 mm.
  • the opposite side to the incident surface of the horizontal mirror group 212 is a region where the propagation light flux with a small propagation angle of ⁇ 19 ° becomes the effective light flux, and the horizontal extraction mirror 2120 is set to 1.2 mm low.
  • the height of the horizontal extraction mirror 2120 is changed in accordance with the propagation angle of the propagation light flux which becomes the effective light flux.
  • the heights of the plurality of horizontal extraction mirrors 2120 are all made different, and the heights are linearly reduced.
  • the height may be reduced stepwise by reducing the height by several sheets, or the height may be decreased non-linearly (for example, along a sine curve). Also, they may be combined.
  • FIG. 4C and FIG. 4D are explanatory drawings about the method of determining the height of the horizontal extraction mirror.
  • the upper limit of the height of the horizontal extraction mirror 2120 will be described with reference to FIG. 4C.
  • the first area 2121 is a half mirror
  • the second area is a high reflection mirror
  • a light beam 54 directed to the boundary between the first area 2121 and the second area 2122 is a horizontal propagation portion The light is incident on the horizontal mirror group 212 from 211.
  • the height of the N previous horizontal extraction mirrors 2120 is defined so that the upper end of the N horizontal extraction mirrors 2120 N rays of light 54 (incident surface side)
  • the upper limit of the height of the target horizontal extraction mirror 2120 was set based on that.
  • the number of half mirrors parallel to the light beam 54 and through which the light flux reflected by the second region 2122 is transmitted is preferably three or less.
  • the distance in the Z-axis direction from the boundary between the first area 2121 and the second area 2122 of the horizontal extraction mirror 2120 of interest to the upper end of the N horizontal extraction mirrors 2120 N is taken as Lu.
  • the interval Lu is equal to the distance PN between the target horizontal extraction mirror 2120 and the N previous horizontal extraction mirrors 2120, and the width Lu1 which is half the width of the N previous horizontal extraction mirrors 2120 when arranged at an angle ⁇ °. And from. It is assumed that a ray 54 of propagation angle ⁇ is incident on the boundary between the first area 2121 and the second area 2122 of the horizontal extraction mirror 2120 of interest. At that time, at the position of the upper end of N previous horizontal extraction mirrors 2120, the light ray 54 has a height of Lu ⁇ tan ⁇ from the height of the boundary between the first area 2121 and the second area 2122 of the target horizontal extraction mirror 2120. pass.
  • the horizontal extraction mirror 2120 N number before is set to a height not blocking the light beam 54, it is possible to set the number of transmitted light fluxes parallel to the light beam 54 and reflected by the second region 2122 to N or less. That is, the height of the N previous horizontal extraction mirrors 2120 may be set to H / 2 ⁇ Lu ⁇ tan ⁇ . The same applies to the horizontal extraction mirror 2120 to be processed.
  • the lower limit of the height of the horizontal extraction mirror 2120 will be described using FIG. 4D.
  • a light beam 55 is incident on the upper end of the horizontal extraction mirror 2120, is reflected by the first region 2121 of the horizontal extraction mirror, and passes between the target horizontal extraction mirror 2120 and the previous horizontal extraction mirror 2120. .
  • the height H of the horizontal extraction mirror 2120 is lower than the pitch P1 of the horizontal extraction mirror 2120, the distance L1 between the previous horizontal extraction mirror 2120 and the reflected light 55 becomes large, and the polarized light flux group There will be gaps.
  • the lower limit of the height of the horizontal extraction mirror 2120 is arranged so as not to form a gap of a predetermined width B or more in the deflected light beam group at the horizontal extraction mirror 2120.
  • the gap between the deflected light beam groups has a predetermined width B ⁇ 0.5 mm.
  • the height H of the horizontal extraction mirror 2120 may satisfy the relationship of the conditional expression (3).
  • is the angle ⁇ of the extraction mirror
  • the propagation angle ⁇ of the propagation light beam effective at the extraction mirror of interest is the difference P1 between the propagation angle of the propagation light beam effective at the extraction mirror of object and the propagation angle of the central angle of view light
  • the distance PN between the target extraction mirror and the previous extraction mirror is equal to the distance B between the target extraction mirror and the N previous extraction mirrors, and the distance B between the deflected light beam and the extraction mirror (B ⁇ 0.5 mm Do) ... conditional expression (3)
  • N is preferably 3 or less. In the present embodiment, N is 2. When the value exceeds the upper limit of the conditional expression, the number of times of transmission of the half mirror increases, which causes a problem of light quantity loss.
  • the height of the horizontal extraction mirror is determined by the conditional expression (3), but the height of the vertical extraction mirror in the vertical mirror group is determined by the conditional expression (3) without being limited thereto. It is also good.
  • FIG. 5A The XY sectional view of the perpendicular
  • the vertical light guiding unit 22 is configured by a vertical propagation unit 221 and a vertical mirror group 222.
  • the vertical propagation portion 221 is a flat plate, and has a front surface 2211, a back surface 2212 and an upper surface 2213 as polished surfaces, and the other three surfaces are provided with a light shielding film (light shielding portion) for shielding unnecessary light.
  • the upper surface 2213 of the vertical propagation portion is an incident surface, and a light beam from the horizontal light guiding portion is incident from the incident surface.
  • vertical propagation part is made into the injection
  • the propagation light flux incident on the vertical propagation part 221 is propagated in the vertical direction while repeating internal reflection on two or less of the four planes parallel to the vertical direction of the vertical propagation part 221 (front surface 2211, back surface 2212).
  • the vertical mirror group 222 is disposed to face the back surface 2212 (second reflection surface) of the vertical propagation part.
  • the vertical mirror group 222 includes a plurality of vertical extraction mirrors 2220 having a transmitting / reflecting surface that transmits a part of incident light flux and reflects a part of the incident light flux, tilts the vertical extraction mirrors 2220 in the XY cross section, and makes them parallel to each other. And arranged in the Y-axis direction.
  • the outer shape of the vertical mirror group 222 is flat, and the front surface 2221 and the back surface 2222 are used as polishing surfaces.
  • the vertical propagation unit 221 and the vertical mirror group 222 are the widest in the horizontal direction (Z-axis direction), next the vertical direction (Y-axis direction), and the narrowest in the depth direction (X-axis direction) .
  • Vertical mirror group 222 is disposed on the observer's eye 5 side of vertical propagation section 221, front surface 2211 of vertical propagation section 221 and back surface 2222 of vertical mirror group are joined to form vertical propagation section 221 and vertical mirror group 222 Integrated.
  • a transmission / reflection film is applied to the junction surface of the front surface 2211 of the vertical propagation section 221 and the back surface 2222 of the vertical mirror group 222, and a part of incident light flux is transmitted and a part is reflected.
  • the light guide 22 is integrated with the light guide 22.
  • the propagation light flux reflected by the horizontal extraction mirror of the horizontal light guide portion 21 enters the upper surface 2213 of the vertical propagation portion 221 and enters the vertical propagation portion 221, and between the front surface 2211 and the back surface 2212 of the vertical propagation portion 221 And propagate inside the vertical propagation part 221 while repeating internal reflection.
  • a portion of the front surface 2211 of the vertical propagation portion 221 joined to the back surface 2222 of the vertical mirror group is partially transmitted by the transmission / reflection film provided on the junction surface and is incident on the vertical mirror group 222. , Part is reflected and propagates in the vertical propagation part 221 again.
  • each vertical extraction mirror 2220 reflects a part of the propagating light beam incident on the vertical mirror group 222, deflects it in the direction of the front face 2221 of the vertical mirror group, and transmits a part of the propagating light beam.
  • the propagating light beam transmitted through the first vertical extraction mirror 2220 is reflected by the next vertical extraction mirror 2220 and deflected in the direction of the front surface 2221 of the vertical mirror group 222.
  • the front surface 2221 of the vertical mirror group 222 is parallel to the back surface 2212 of the vertical propagation part 221, and the incident angle exceeds the critical angle when incident on the front surface 2221 of the vertical mirror group 222 at an angle of incidence on the vertical mirror group 222 Because it is totally reflected.
  • the propagation light flux deflected by the vertical extraction mirror 2220 has an incident angle to the front surface 2221 of the vertical mirror group 222 smaller than the critical angle, and the propagation light flux is from the front surface 2221 of the vertical mirror group 222 Injection in the direction (third direction side) of Thereby, a light beam can be made to be incident on the eye 5 of the observer and an image can be displayed.
  • the incident angle is an angle formed by the incident direction of the light beam and the normal to the incident surface.
  • the propagating light flux at one angle of view is deflected by the plurality of vertical extraction mirrors 2220 to propagate the luminous flux width of the deflection luminous flux group It is wider than the luminous flux width of.
  • FIG. 6 is a schematic view of the vertical extraction mirror of the present embodiment.
  • the vertical mirror group 222 of this embodiment 28 vertical extraction mirrors 2220 are used.
  • the number of horizontal extraction mirrors is greater than the number of vertical extraction mirrors.
  • the horizontal angle of view of the angle of view with respect to the eye of the observer is set larger than the vertical angle of view, and the distance between the eye of the observer and the horizontal mirror group is the distance between the eye of the observer and the vertical mirror group. It is because it is larger than the distance. This configuration makes it possible to always provide a good image to the observer.
  • the vertical extraction mirror 2220 in the present embodiment is a rectangular mirror having a major axis in the Z direction.
  • a polarization beam splitter (PBS) which is a polarization division mirror for polarization division is used.
  • PBS polarization beam splitter
  • a wire grid polarizing plate which is a type of PBS of a structural birefringence type using a sub-wavelength structure (SWS), is used.
  • the wire grid polarizing plate is formed in a grid shape by arranging a large number of dielectric wires 2226 (metal wires, for example, aluminum) on the optical substrate 2225 (for example, a glass substrate) at a pitch of less than the wavelength (about 100 nm).
  • the wire grid polarizer transmits light (P polarized light) whose electric field vibrates in a direction 2227 parallel to the wire grid (metal wire) and reflects light (S polarized light) whose electric field vibrates in the direction perpendicular to the wire grid. is there. That is, it is characterized in that it is a polarization beam splitter that can select the polarization direction of reflection / transmission according to the direction of the wire grid.
  • the directions of the wire grids of the vertical extraction mirrors 2220 are alternately rotated by 90 °, and the directions of the wire grids of the adjacent vertical extraction mirrors 2220 are arranged orthogonal to each other.
  • a first polarization beam splitter which is one of the vertical extraction mirrors 2220, has a wire grid oriented at 90 ° to the long axis of the vertical extraction mirrors, and a second vertical extraction mirror 2220 as a second vertical extraction mirror.
  • the polarization beam splitter made the direction of the wire grid 0 °.
  • the propagating light beam is split into a reflected light beam and a transmitted light beam by the vertical extraction mirror 2220 that first enters, the reflected light beam is deflected to the front 2221 of the vertical mirror group, and the transmitted light beam is reflected by the next vertical extraction mirror 2220 to be a vertical mirror It was set as the structure deflected to the front 2221 of a group.
  • the direction of the wire grid of the first vertical extraction mirror 2220 and the direction of the wire grid of the next vertical extraction mirror 2220 are orthogonal, so that the transmitted light flux of the first vertical extraction mirror 2220 is all reflected by the adjacent vertical extraction mirror 2220 Ru.
  • the light transmitted through the first polarization beam splitter is reflected by the second polarization beam splitter and emitted from the light guide plate 2, and the light reflected by the first polarization beam splitter is emitted from the light guide plate 2 without passing through the second polarization beam splitter I am doing it.
  • the reflected light beam and the transmitted light beam are branched 1: 1 by the vertical extraction mirror 2220 where the propagating light beam first entered, and the transmitted light beam is reflected by the vertical extraction mirror 2220 which next entered, so that one light beam becomes two light beams.
  • the light is emitted from the vertical extraction mirror 2220 toward the observer's eye.
  • a deflected luminous flux group is formed, and the luminous flux width of the deflected luminous flux group is made larger than the luminous flux width of the propagating luminous flux.
  • the P polarization transmitted by the first vertical extraction mirror 2220 is incident next to the vertical extraction mirror. Even 2220 can only be configured to transmit.
  • the dielectric multilayer film type PBS has high incident angle dependency and the incident angle is near 45 °.
  • the desired characteristics can only be exhibited in the angular range (about ⁇ 5 °).
  • the wavelength dependency is high, and it is difficult to obtain good optical characteristics (reflectance and transmittance) over the entire visible light range (400 to 700 nm).
  • light corresponding to three color spectrum regions of red spectrum (620 nm to 700 nm), green spectrum (490 nm to 570 nm), and blue spectrum (420 nm to 490 nm) is used. Is required.
  • the light beam propagated in the vertical propagation part 221 passes through the front face 2211 of the vertical propagation part 221 and enters the vertical mirror group 222, and does not pass through the vertical propagation part 221 again.
  • the incident angle to the vertical extraction mirror 2220 tends to be a large angle exceeding 50 °.
  • the incident angle of each propagation light beam to the vertical extraction mirror 2220 of the vertical mirror group 222 is 46 ° -68 °, with a range of large angles over 45 °, and over a wide range.
  • the incident angle in the vertical direction changes in the range of 52 ° to 61 °
  • the incident direction in the horizontal direction changes in the range of + 13 ° to -13 °.
  • the polarization direction is It is difficult to always set the desired angle.
  • the PBS of the structural birefringence type can change the polarization direction of transmitted light and reflected light by changing the direction of the wire grid. Therefore, the PBS of the structural birefringence type can also be used as the vertical extraction mirror 2220 even in the case where the incident angle to the extraction mirror extends over a wide range as in this embodiment, or when the used wavelength extends over the entire visible light region. . Then, it becomes possible to reflect the P-polarized light transmitted by the vertical extraction mirror 2220, which is initially incident, by the adjacent vertical extraction mirror 2220.
  • an organic electroluminescent (OLED) panel that emits light having a low degree of polarization is used as the display element 4.
  • a depolarization plate may be provided in the light path between the display element 4 and the vertical mirror group 222. Specifically, a depolarization plate may be disposed between the display element 4 and the incident optical system 3 or between the incident optical system 3 and the light guide plate 2.
  • FIG. 7 is an explanatory view of the vertical extraction mirror of the present embodiment.
  • FIG. 7 shows five vertical takeout mirrors 2220.
  • a propagation light flux with a small propagation angle ⁇ is guided in the vertical light guide 22, and a half of the light quantity is reflected and a half is transmitted by the vertical extraction mirror 2220 which first arrived.
  • the reflected light beam is deflected in the direction of the front surface 2221 of the vertical mirror group and emitted toward the observer's eye.
  • the transmitted propagating light beam is reflected by the next vertical extraction mirror 2220, deflected in the direction of the front surface 2221 of the vertical mirror group, and emitted toward the eye of the observer.
  • the light beam transmitted through the first first vertical extraction mirror 2220 and reflected by the second second vertical extraction mirror 2220 and the second vertical extraction mirror 2220 first enter and are reflected by the second vertical extraction mirror 2220 And the arranged luminous fluxes.
  • the gap between the light fluxes in the deflected light flux group emitted toward the observer's eye is reduced, and a configuration is realized in which the observer can observe each angle of view with a uniform light quantity distribution.
  • is the angle ⁇ of the extraction mirror
  • the propagation angle ⁇ of the propagation light beam effective at the extraction mirror of interest is the difference P1 between the propagation angle of the propagation light beam effective at the extraction mirror of object and the propagation angle of the central angle of view light
  • the distance P2 between the target extraction mirror and the previous extraction mirror is the distance B between the target extraction mirror and the previous extraction mirror
  • the distance B between the deflected light beam and the extraction mirror B ⁇ 0.5 mm Do
  • structural birefringence type polarizing plates are characterized in that they can maintain high performance (reflectance and transmittance) in a wide range of incident angle characteristics and wavelength characteristics. is there.
  • the vertical extraction mirror 2220 has a wide range of incident angles from 45 ° to 70 ° and a wide wavelength range of visible light from 400 nm to 700 nm. It will be necessary.
  • the light beam width emitted from the light guide plate is expanded, and the light amount distribution in the expanded light beam is made uniform.
  • an EMB Easy Motion Box
  • 15 mm is secured at the position of the observer's eye, and even when there is movement of the pupil position when observing the peripheral part of the wide view angle display image, The light flux from the display image can always be incident on the pupil, and a high quality image can be provided.
  • FIG. 5B in addition to the propagating light beams in the vertical light guide 22 and the vertical light guide 22 shown in FIG. 5A, light beams incident on the vertical light guide 22 from the outside are indicated by alternate long and short dashed lines.
  • a light flux from the external world is transmitted in order of the back surface 2212 of the vertical propagation part, the front surface 2211, and the back surface 2222 of the vertical mirror group, and further transmitted through the front of the vertical extraction mirror 2220 and the vertical mirror group to reach the eye 5 of the observer.
  • a wire grid polarizer is used for the vertical extraction mirror 2220 of this embodiment, polarized light beams in the direction perpendicular to the arrangement direction of the wire grid can be transmitted through the wire grid polarizer.
  • the observer can observe the outside through the vertical light guide 22, and the function of optical see-through is exhibited.
  • the optical path of the propagation light flux from the display element 4 and the optical path of the luminous flux from the external world can be overlapped on the same optical path. It becomes possible to overlap and display an image.
  • a high-definition display image can be observed with a wide angle of view in both the horizontal direction and the vertical direction to the observer, and the external world can be observed by optical see-through. It can be made observable.
  • the incident optical system 3 in the display device of the present embodiment has an XY cross section of the light from the display element 4 so that the propagating light beam is reflected by the upper surface 2113 of the horizontal propagation section 211 and the back surface 2212 of the vertical propagation section 221
  • the light is obliquely incident in two directions in the inner and YZ cross sections.
  • a combination of a half mirror and a mirror is used for the horizontal extraction mirror 2120 of the horizontal light guide 21.
  • the present invention is not limited to this.
  • As the horizontal extraction mirror 2120 only a half mirror or a combination of a plurality of polarizing plates in which the directions of the wire grids intersect may be used.
  • As a configuration of the horizontal mirror group 212 the above-described configuration of the vertical mirror group (configuration in which the wire grid polarizers are alternately rotated and disposed) may be applied.
  • wire grid polarizing plate is used for the vertical extraction mirror 2220 of the vertical light guide 22, the present invention is not limited to this, and a half mirror or a combination of a half mirror and a mirror may be used.
  • the wire grid polarizing plate is alternately rotated by 90 ° and disposed on the vertical extraction mirror 2220 of the vertical light guide 22 .
  • the wire grids adjacent to each other may be rotated by 30 °, 45 °, 60 °, 120 °, 135 °, 150 ° as well as by 90 ° rotation.
  • adjacent wire grids may be directed in different directions.
  • the light guide in the horizontal light guide is guided in the horizontal direction (Z direction), and the light guide in the vertical light guide is guided in the vertical direction (Y direction).
  • the luminous flux is guided vertically (Y direction) in the horizontal light guide and is luminous vertically (Z direction) in the vertical light guide. It may be configured. It is more preferable to configure the light guide plate as in this embodiment because the long axis direction of the vertical mirror group coincides with the horizontal direction, and the visibility of the vertical mirror group of the observer can be reduced.
  • the propagation direction (first direction) of the light flux of the horizontal propagation part and the propagation direction (second direction) of the light flux of the vertical propagation part are orthogonal to each other, and the light flux from the light guide plate Is configured to be orthogonal to the direction in which the light is emitted (the third direction).
  • they do not necessarily have to be orthogonal, and may be configured to cross each other.
  • the horizontal mirror group 212 is disposed between the horizontal propagation part 211 and the vertical propagation part 221.
  • the horizontal mirror group 212 may be disposed between the upper surface 2113 of the horizontal propagation section 211 and the vertical propagation section 221, and the mirror group is disposed in the horizontal propagation section 211 as in Japanese Patent Application Publication No. 2005-521099. You may However, in such a case, it is not preferable to adopt a configuration in which the light beam finally reflected on the lower surface of the horizontal propagation section 211 is reflected by the mirror group as in Japanese Patent Application Publication No. 2005-521099.
  • the light beam finally reflected by the upper surface 2113 of the horizontal propagation unit 211 be reflected by the mirror group.
  • the light flux at the central angle of view (the light flux emitted from the mirror group in parallel to the Y direction) be incident on the mirrors of the mirror group at an incident angle larger than 45 °.
  • the vertical mirror group 222 is disposed between the vertical propagation part 221 and the eye 5 of the observer.
  • the vertical mirror group 222 is located between the back surface 2212 of the vertical propagation part 221 and the eye 5 of the observer (that is, in the direction in which the light flux from the light guide is emitted from the back surface 2212 of the vertical propagation part 221) It may be arranged, and the mirror group may be arranged in the vertical propagation part 221.
  • the light beam finally reflected on the back surface 2212 of the vertical propagation part 221 be reflected by the mirror group.
  • the light flux at the central angle of view (the light flux emitted from the mirror group in parallel to the X direction) be incident on the mirrors of the mirror group at an incident angle larger than 45 °.
  • FIG. 8 shows a display apparatus of Embodiment 2 to which the present invention can be applied.
  • the difference between the present embodiment and the first embodiment is that the configurations of the horizontal light guide 21 and the vertical light guide 22 are changed. Specifically, in the horizontal light guide portion 21, the height of the horizontal propagation portion 211 is made higher than the aperture stop of the incident optical system of the horizontal light guide portion 21, and the horizontal propagation portion 21 and the horizontal mirror group 22. The point is that the transmission / reflection film disposed on the bonding surface of is eliminated. In the vertical light guide 22, the width of the vertical propagation part 221 in the X-axis direction is larger than the width of the horizontal propagation part 211 in the X-axis direction, and the junction surface between the vertical propagation part 221 and the vertical mirror group 222 It is the point which eliminated the transmission reflection film arrange
  • FIG. 9A and FIG. 9B show a horizontal light guiding part of a comparative example
  • FIG. 9C shows a horizontal light guiding part of this embodiment.
  • the horizontal light guiding portion 21 including the horizontal propagation portion 211 and the horizontal mirror group 212, the incident optical system 3 including the projection lens 31 and the connection portion 32, and the display element 4 are schematically shown. It is displayed on.
  • the luminous flux emitted from each pixel of the display element 4 is converted into a parallel luminous flux by the projection lens 31 and becomes a viewing angle luminous flux having an angle of view corresponding to the pixel position of the display element 4.
  • the angle of view light beam from the projection lens 31 enters the connection portion 32, and a part of the angle of view light beam is internally reflected by the connection portion 32 to reach the junction region 33 with the incident surface 2115 of the horizontal propagation portion.
  • the portion reaches the junction region 33 without being internally reflected at the connection portion 32. From this, two incident light beams in the plus direction and the minus direction with respect to the long axis Ax of the horizontal propagation part 211 are generated.
  • each angle of view luminous flux is limited in luminous flux width at the junction area 33, and enters the horizontal propagation section 211 to become a propagation luminous flux. That is, the junction region 33 between the connection portion 32 of the incident optical system and the incident surface 2115 of the horizontal propagation portion has the function of the aperture stop 33 of the incident optical system 3. That is, the light beam limited by the aperture stop 33 of the incident optical system is incident on the horizontal light guide 21.
  • the entire surface of the left surface 2115 of the horizontal propagation portion is joined to the connection portion 32 of the incident optical system, and the left surface 2115 of the horizontal propagation portion is the aperture stop 33 of the incident optical system It is the same size.
  • the propagation light beam incident from the incident surface 2115 of the horizontal propagation part is internally reflected by the upper surface 2113 and the lower surface 2114 of the horizontal propagation part and propagates inside the horizontal propagation part 211.
  • the incident surface 2115 of the horizontal propagation part in the YZ direction, the light is incident in two directions of plus direction and minus direction with respect to the long axis Ax of the horizontal propagation part 211, and the horizontal propagation part 211 is filled with the propagation light beam. it can.
  • the propagating light flux can be spread evenly on the lower surface 2124 of the horizontal mirror group 212 on the side closer to the incident surface 2115 of the horizontal propagation portion.
  • the propagation light flux in the horizontal propagation unit 211 is The light passes through the junction surface and is incident on the horizontal mirror group 212.
  • the propagation light beam in the horizontal propagation unit 211 propagates the distance Lp from the start position of the junction surface between the lower surface 2114 of the horizontal propagation unit and the upper surface 2123 of the horizontal mirror group, and the propagation light beam is a gap in the horizontal mirror group 212 It has not arrived.
  • FIG. 9A is a necessary luminous flux area required at the central angle of view, and a width equivalent to the pupil diameter of the display device called EMB is required, and usually 6 mm to 15 mm is secured.
  • the propagating light beam reaches only a part of the necessary light beam area We at the position of the lower surface 2124 of the horizontal mirror group 212.
  • a light beam having a sufficient width does not reach the observer's eyes, which causes a problem of image loss.
  • FIG. 9B is a comparative example in which a transmission / reflection film is disposed on the bonding surface between the lower surface 2114 of the horizontal propagation unit and the upper surface 2123 of the horizontal mirror group in the horizontal light guide 21 of the comparative example of FIG. 9A.
  • Example 1 is also in this form.
  • a part of the propagation light beam in the horizontal propagation part 211 is transmitted through the junction surface of the lower surface 2114 of the horizontal propagation part and the upper surface 2123 of the horizontal mirror group to enter the horizontal mirror group 212, and the other part is reflected. And propagate again in the horizontal propagation unit 211.
  • the propagating light beam reaches the end 2116 of the horizontal propagating portion, and spreads the propagating light beam to the entire area of the horizontal mirror group 212. Therefore, the deflected luminous flux group deflected by the horizontal extraction mirror 2120 is present in the entire area of the necessary luminous flux area We at the central angle of view, and the luminous flux having a sufficient width can reach the observer's eye.
  • a transmission / reflection film is disposed on the junction surface between the lower surface 2114 of the horizontal propagation portion and the upper surface 2123 of the horizontal mirror group, and only a part of the propagation light incident on the transmission / reflection film is reflected.
  • the transmittance of the transmission / reflection film is 25% and the reflectance is 65%, the amount of light of the propagating light beam decreases by 35% at each reflection.
  • the number of reflections in the transmission / reflection film increases, so that the quantity of light distribution according to the propagation distance is generated in the deflected luminous flux group emitted from the horizontal light guide 21 and the light quantity at the high light quantity is reduced.
  • the light amount distribution is corrected in accordance with the place where the light amount is low. Therefore, light quantity loss occurs and becomes a problem.
  • FIG. 9C shows the horizontal light guide portion of this embodiment.
  • the height H (the width in the Y-axis direction) of the horizontal propagation unit 211 is set to be higher than the height Ha of the aperture stop 33 with the incident optical system by Hc.
  • the length in the Y-axis direction perpendicular to the lower surface 2114 (a surface to be described later) of the horizontal propagation section 21 is longer than one and twice shorter than the width of the aperture in the Y-axis direction of the aperture stop 33 of the incident optical system. . That is, 0 ⁇ Hc ⁇ Ha.
  • the length of the horizontal propagation portion 21 in the Y-axis direction corresponds to the distance between the two total reflection surfaces (upper surface 2113 and lower surface 2114) of the horizontal propagation portion 21.
  • the horizontal light guiding portion 21 of this embodiment also has a positive and negative two-directional angle ( ⁇ ) in the YZ cross section in the connection region 33 with the connection portion 32 in the incident surface 2115 of the horizontal propagating portion.
  • a luminous flux is incident at ⁇ ) and becomes a propagating luminous flux.
  • the propagating light beam propagates in the horizontal propagation portion 211 while being totally reflected by the lower surface 2114 and the upper surface 2113 of the horizontal propagation portion.
  • no transmission / reflection film is provided on the bonding surface between the lower surface 2114 of the horizontal propagation portion and the upper surface 2123 of the horizontal mirror group.
  • the propagation distance La per one propagation period becomes longer in proportion to the height H of the horizontal light guide.
  • the height H (the width in the Y-axis direction) of the horizontal propagation portion 211 is set to be higher than the height Ha of the aperture stop 33 of the incident optical system by Hc. Can be extended by 2 ⁇ Hc / tan ⁇ .
  • the propagation light beam can reach the far end of the required light beam area We at each angle of view (the position farthest from the incident surface 2115 of the required light beam area We).
  • the angle of view light flux of the central angle of view is shown as an example in FIG. 9C, the propagating light flux is delivered to a position beyond the far end of the necessary light flux area We in the central angle of view light flux by the configuration of this embodiment. .
  • the height H of the horizontal propagating portion is set to the height of the aperture stop 33 of the incident optical system so as to satisfy the conditional expression (6).
  • H is the height of the horizontal propagation section 211 (width in the Y-axis direction)
  • the amount Hm of the height Hc of the aperture stop 33 of the incident optical system to make the height of the horizontal propagation portion 211 higher than the height of the aperture stop 33 of the incident optical system is the height Lo of the horizontal mirror group 212 the horizontal propagation portion
  • the distance We from the position on the most incident surface 2115 side of the junction surface of the horizontal mirror group 212 and the horizontal mirror group 212 to the position on the most incident surface 2115 side of the required light beam region We is the width ⁇ of the required light beam region.
  • the inside of the horizontal propagation part 211 can not be filled with the propagation light flux.
  • the horizontal propagation section 211 a gap of the propagation light flux where no propagation light flux exists is generated, but if the gap of the propagation light flux is not applied to the necessary luminous flux region Wp at each angle of view, only the above-mentioned advantage is obtained.
  • the gap of the propagation light flux is configured not to overlap the necessary area We.
  • a region where the height H of the horizontal propagation portion 211 is higher than the height Ha of the aperture stop 33 of the incident optical system by Hc is taken from the end of the junction surface of the horizontal propagation portion 211 and the horizontal mirror group 212 at the connection portion 32.
  • the configuration that overhangs to the side is important.
  • the overhang amount is Lh
  • the light beam reflected by the upper surface of the connection portion 32 of the incident optical system 3 is disposed between the projected surface (in the horizontal direction between the incident surface 2115 of the horizontal propagation portion and the mirror group 212 And is reflected on the surface facing the upper surface 2113).
  • the horizontal propagation section 211 has a configuration in which the overhang amount Lh of the portion higher by Hc than the aperture stop 33 of the incident optical system satisfies the conditional expression (7). Just do it.
  • the amount Hm of the height Hc of the aperture stop 33 of the incident optical system to make the height of the horizontal propagation portion 211 higher than the height of the aperture stop 33 of the incident optical system is the height Lo of the horizontal mirror group 212 the horizontal propagation portion
  • the distance ⁇ from the position on the most incident surface 2115 side of the junction surface of the horizontal mirror group 212 and the horizontal mirror group 212 to the position on the most incident surface 2115 side of the necessary luminous flux region We is the propagation angle.
  • the propagation light flux of each angle of view reaches the required light flux area Wp at each angle of view, and the gap portion of the propagation light flux is configured not to overlap the required light flux area Wp.
  • conditional expression (6) and the conditional expression (7) be satisfied simultaneously, and the amount Hc of making the height of the horizontal propagation part 211 higher than the height of the aperture stop 33 of the incident optical system is conditional expression (8 It is good to have a configuration that satisfies
  • H is the height of the horizontal propagation section 211 (width in the Y-axis direction)
  • Ha is the height Hm of the aperture stop 33 of the incident optical system
  • the height Lo of the horizontal mirror group 212 is the position of the junction surface of the horizontal propagation section 211 and the horizontal mirror group 212 on the side of the most incident surface 2115
  • the distance Lh to the position on the incident surface 2115 side is the overhang amount We of the portion where the horizontal propagation part 211 is higher than the aperture stop 33 of the incident optical system by Hc
  • the width ⁇ of the necessary luminous flux area is the propagation angle conditional expression (8)
  • the height of the horizontal propagation portion of the horizontal light guide is set to be higher than the aperture stop 33 of the incident optical system 3, and the horizontal propagation portion 211 is a portion where Hc is higher than the aperture stop 33 of the incident optical system.
  • the overhang amount Lh was set appropriately.
  • the propagation light flux incident on the horizontal propagation section 211 has three or more surfaces among four surfaces (front surface 2111, back surface 2112, upper surface 2113, lower surface 2114) parallel to the horizontal direction of the horizontal propagation section 211. It is reflected and propagated horizontally.
  • the luminous flux at the central angle of view is configured to be reflected not only by the mirror disposed at the central portion including the necessary luminous flux region We, but also by the mirrors disposed at both ends. There was a lot of light loss.
  • the light flux at the central angle of view is configured to be reflected only by the mirror disposed at the center including the necessary light flux region We and not reflected by the mirrors disposed at both ends. There is little light loss.
  • one end on the lower side is disposed at the same position as the lower surface (projected surface) 2114, and the other end on the upper side (reflection surface side) is the upper surface (Reflecting surface) was disposed below the 2113.
  • one end on the upper side is disposed at the same position as the upper surface (reflection surface) 2113 and the other end on the lower side (extension surface side) is the lower surface (extension surface) 2114
  • the propagation distance can only be increased by Hc / tan ⁇ .
  • FIG. 10 shows the vertical light guide 22 of this embodiment.
  • the vertical light guiding unit 22 is configured of the vertical propagation unit 221 and the vertical mirror group 222.
  • the vertical mirror group 222 includes a plurality of vertical extraction mirrors 2220.
  • a wire grid is used for each vertical extraction mirror 2220, and the direction of the wire grid is arranged to be rotated by 90 ° by the adjacent vertical extraction mirrors 2220.
  • a step is provided in the vertical propagation part 221, and the vertical mirror group 222 is disposed at the step.
  • the thickness T (the width in the X direction) of the vertical propagation portion 221 of the present embodiment is larger than the thickness of the vertical propagation portion 221 of the first embodiment.
  • the thickness of the vertical propagation part 221 in the first embodiment is the same as the thickness of the horizontal light guide 21, but the thickness T of the vertical propagation part 221 in the present embodiment is larger by Tc than the thickness Ta of the horizontal light guide 21.
  • the propagation light flux can reach a place where each angle-of-view luminous flux is necessary only by performing total reflection once on the back surface 2212 of the vertical propagation part.
  • FIG. 11A shows a front view of Embodiment 3 to which the present invention can be applied, and FIG. 11B shows a side view.
  • the difference between the present embodiment and the second embodiment is that the configurations of the horizontal mirror group and the vertical mirror group are changed, and the horizontal light guiding unit 21, the vertical light guiding unit 22, and the connection unit 32 of the incident optical system are integrated.
  • the horizontal light guiding unit 21, the vertical light guiding unit 22, and the connection unit 32 of the incident optical system are integrated.
  • the entire light guide plate 2 is integrated, and a horizontal extraction mirror 2120 and a vertical extraction mirror 2220 are embedded in a resin-made molded article.
  • the horizontal extraction mirror 2120 and the vertical extraction mirror 2220 are made of glass, and are inserted into a mold and molded with a resin so as to cover the outside. It is so-called, glass insert molding. Therefore, as in the second embodiment, there is no clear boundary between the horizontal propagation unit 211 of the horizontal light guide unit 21 and the horizontal mirror group 212, and the extraction mirror is within a range that does not hit the propagation light beam which has not reached the predetermined extraction position. Can be advanced and placed toward the propagation section.
  • the height of the extraction mirror is changed for each place, and the distance (pitch) to the next extraction mirror is also changed, which enables an arrangement with higher freedom.
  • the distance from the incident surface 2115 of the horizontal light guide portion 21 increases, the distance between the extraction mirrors increases.
  • the gap in the deflected beam group from the takeout mirror can be reduced, and the deflected beam group having a more uniform light quantity distribution can be made incident on the eye of the observer, and a high quality image can be displayed.
  • the light guide plate 2 of the present embodiment also has a horizontal light guide 21 for guiding the light from the incident optical system in the Z-axis direction, and a vertical light guide 22 for guiding the light in the Y-axis direction.
  • the horizontal light guiding unit 21 includes a horizontal mirror 212 group, and reflects the light flux guided in the horizontal light guiding unit 21 by the horizontal mirror group 212 to guide the light to the vertical light guiding unit 22.
  • the incident surface of the horizontal light guide 21 plays the role of the aperture stop 33 of the incident optical system 3. Also, the distance in the Y-axis direction between the two total reflection surfaces of the horizontal light guide portion 21 is set to be longer than one time and shorter than two times the opening width in the Y-axis direction of the aperture stop 33. ing.
  • the vertical light guiding unit 22 includes the vertical mirror group 222, and the light beam guided in the vertical light guiding unit 22 is deflected by the vertical mirror 2220 to be deflected in the X-axis direction, and the observer The light flux is emitted from the vertical light guiding unit 22 toward the eye 5 of FIG.
  • both the heights and the intervals of the plurality of extraction mirrors are changed. However, even if only the intervals of the plurality of extraction mirrors are changed, the gap of the deflected light beam group can be reduced.
  • the human eye rotates the eyeball when observing different angles of view.
  • a gap exists in the deflected light flux group emitted from the light guide plate, and the position and size of the gap differ depending on the angle of view.
  • the light quantity of the luminous flux incident on the pupil of the eye changes, so even if you look at an image with uniform brightness, bright and dark areas are scattered. looks like. If it compares, it will become a display image of the quality which can not be called good vision as if it were seeing the scenery by the screen.
  • the gap between light fluxes entering the eye of the observer can be set small at all angles of view, the difference between the bright and dark portions for each angle of view also decreases. To the extent that people do not mind.
  • a display device capable of always displaying a good image can be provided.
  • the display devices of Examples 1 to 3 can be applied to, for example, head mounted displays (including smart glasses, AR glasses, scouters, etc.), head up displays, mobile phone displays, 3D displays, and the like.
  • head mounted displays including smart glasses, AR glasses, scouters, etc.
  • head up displays including smart glasses, AR glasses, scouters, etc.
  • mobile phone displays including smart phones, AR glasses, scouters, etc.
  • 3D displays and the like.
  • the display device of the present invention is applied to a smart glass which is an example of a head mounted display.
  • FIG. 12 is a diagram of a smart glass 600 according to a fourth embodiment to which the present invention can be applied.
  • the smart glass 600 is a glasses-type wearable terminal, and is a terminal for so-called augmented reality (AR) that displays various information superimposed on the real world actually viewed.
  • AR augmented reality
  • the smart glass 600 has a frame, two display devices 1a and 1b.
  • the frame has a rim 61 in which the display device 1 a and the display device 1 b are joined to the lower surface, and a temple 62 a and a temple 62 b joined to both sides of the rim 61.
  • the display device of any of the first to third embodiments can be used as the display device 1a and the display device 1b.
  • the light from the display element (not shown) of the display device 1a is guided to the right eye of the observer wearing the smart glass 600 by the incident optical system 3a and the light guide plate 2a, and an image is displayed to the observer's right eye .
  • light from a display element (not shown) of the display device 1b is guided to the left eye of the observer wearing the smart glass 600 by the incident optical system 3b and the light guide plate 2b, and an image is displayed to the observer's left eye Is displayed.
  • the direction in which the left and right eyes of the observer are aligned is equal to the horizontal direction (first direction) in which the horizontal light guide 21 propagates the light flux, and the direction perpendicular to the rim 61 is vertical
  • the light guide 22 is equal to the vertical direction (second direction) in which the light beam propagates.
  • the smart glass of the present embodiment it is possible to display a high quality image with a wide angle of view to the observer wearing the smart glass.
  • the display devices of the first to third embodiments the display devices in which the luminous flux width is expanded in the two-dimensional direction have been described.
  • the configuration of the horizontal mirror group or the vertical mirror group according to the first embodiment may be applied to a mirror group of a display device which expands the luminous flux width in a one-dimensional direction, or the horizontal propagation unit or the vertical propagation unit according to the second embodiment.
  • the configuration may be applied to a propagation unit of a display device that expands the luminous flux width in a one-dimensional direction.
  • the configuration of the mirror group of the third embodiment and the concept of integration of the third embodiment may be applied to a propagation unit of a display device which expands the luminous flux width in a one-dimensional direction.

Abstract

表示装置1は、導光素子2と、表示素子4からの光を導光素子2に入射させる入射光学系3と、を有する。導光素子2は、入射光学系3からの光を第1方向へ導く第1導光部と、第1導光部からの光を第2方向に導く第2導光部と、を有する。第1導光部は、第1方向に沿って配置されており且つ光を反射することで第2導光部に光を導く複数のミラーを有する。複数のミラーは、第1ミラーと第2ミラーとを有する。第1及び第2ミラーのそれぞれは、第1反射領域と第1反射領域よりも反射率が高い第2反射領域とを有する。第1ミラーの第1反射領域を透過した光は、第2ミラーの第2反射領域に入射する。

Description

表示装置及びヘッドマウントディスプレイ
 本発明は、表示装置及びヘッドマウントディスプレイに関し、特に、導光板を用いた表示装置に関する。
 導光板を用いた表示装置は、表示素子から射出した光を導光板によって観察者の眼へ導いて、観察者の眼に画像を表示する装置である。
 特表2005-521099号公報、特表2010-533316号公報、WO2015/076335号公報には、表示素子からの光を平面基板内に閉じ込めて、その光を複数の取出ミラーによって取り出して画像を表示する表示装置が開示されている。
 特表2005-521099号公報、特表2010-533316号公報、WO2015/076335号公報では、複数の取出ミラーを使用している。ここでは、複数の取出ミラーで偏向された偏向光束群のそれぞれの光束幅が小さくなり、光束と光束との間に大きな空隙ができてしまっていた。その結果、これらに記載された表示装置では、高画質な画像を表示することができなかった。
 なお、特表2003-520984号公報には、異なる反射率の複数領域を有するミラーで偏向光束群のそれぞれの光束幅を大きくすることの記載はある。しかし、特表2003-520984号公報には、1次元方向に光束幅を拡大する表示装置に関しては記載があるが、2次元方向に光束幅を拡大する表示装置に関する開示はない。
 また、特表2003-520984号公報には、偏光ビームスプリッタを使用することの開示はない。
 本実施形態では、より高画質な画像を表示可能な表示装置を提供することを目的とする。
 本発明の一側面としての表示装置は、導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、前記導光素子は、前記入射光学系からの前記光を第1方向へ導く第1導光部と、前記第1導光部からの前記光を前記第1方向と交差する第2方向へ導く第2導光部と、を有し、前記第1導光部は、前記第1方向に沿って配置されており且つ前記光を反射することで前記第2導光部に前記光を導く複数のミラーを有し、前記複数のミラーは、第1ミラーと第2ミラーとを有し、前記第1及び第2ミラーのそれぞれは、第1反射領域と前記第1反射領域よりも反射率が高い第2反射領域とを有し、前記第1ミラーの前記第1反射領域を透過した光は、前記第2ミラーの前記第2反射領域に入射する。
 本発明のその他の側面については、以下で説明する実施の形態で明らかにする。
 上述の本実施形態によれば、より高画質な画像を表示可能な表示装置を提供できる。
本発明を適用できる実施例1の表示装置の図である。 本発明を適用できる実施例1の導光板の図である。 本発明を適用できる実施例1の水平導光部の説明図である。 本発明を適用できる実施例1の水平導光部の説明図である。 本発明を適用できる実施例1の水平導光部の説明図である。 本発明を適用できる実施例1の水平ミラー群の説明図である。 本発明を適用できる実施例1の水平ミラー群の説明図である。 本発明を適用できる実施例1の水平ミラー群の説明図である。 本発明を適用できる実施例1の水平ミラー群の説明図である。 本発明を適用できる実施例1の垂直導光部の説明図である。 本発明を適用できる実施例1の垂直導光部の説明図である。 本発明を適用できる実施例1の垂直取出ミラーの説明図である。 本発明を適用できる実施例1の水平ミラー群の説明図である。 本発明を適用できる実施例2の表示装置の図である。 本発明を適用できる実施例2の水平導光部の説明図である。 本発明を適用できる実施例2の水平導光部の説明図である。 本発明を適用できる実施例2の水平導光部の説明図である。 本発明を適用できる実施例2の垂直導光部の説明図である。 本発明を適用できる実施例3の表示装置の図である。 本発明を適用できる実施例3の表示装置の図である。 本発明を適用できる実施例4のスマートグラスの図である。
 以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。
 本発明を適用可能な実施例1の表示装置について説明する。
 図1に本発明を適用できる表示装置を示す。以下の図面を用いた説明において、1は表示装置、2は導光板(導光素子)、3は入射光学系、4は表示素子、5は観察者の眼、21は水平導光部(第1導光部)、22は垂直導光部(第2導光部)を表している。また、211は水平伝搬部(第1伝搬部)、212は水平ミラー群(第1ミラー群)、221は垂直伝搬部(第2伝搬部)、222は垂直ミラー群(第2ミラー群)、2113は上面(第1反射面)、2114は下面(第1射出面)である。更に、2211は正面(第2射出面)、2212は背面(第2反射面)、2120は水平取出ミラー(複数のミラー)、2121は第1反射領域(ハーフミラー)、2122は第2反射領域(高反射ミラー)を表している。
 表示装置1は、導光板(導光素子)2、入射光学系3、表示素子4を有する。
 表示素子4から放射された発散光束は、入射光学系3により平行光束に変換されて導光板2の入射面に結合され、結合された光束は導光板2の内部を伝搬した後、導光板2の射出面から射出されて観察者の眼5に入射する。このように、本実施例の表示装置1は、観察者が導光板2の射出面側の所定の位置に眼5を置いた際に、観察者の眼5に画像(映像を含む)を表示することが可能な表示装置である。表示素子4としては、透過型液晶ディスプレイ(LCD)、反射型液晶ディスプレイ(LCOS)、デジタルミラーデバイス(DMD)、有機エレクトロルミネッセンス(OLED)、空間変調装置(SLM)などを用いることができる。
 図2に本実施例の導光板を示す。
 本実施例の導光板2は、光束が導光板内部を水平方向(第1方向)に伝搬する水平導光部21と垂直方向(第2方向)に伝搬する垂直導光部22とを有する。水平導光部21は、水平伝搬部211と水平ミラー群212とを有し、水平伝搬部211の下に水平ミラー群212を配置している。また、垂直導光部22は、垂直伝搬部221と垂直ミラー群222とを有し、垂直伝搬部221の観察者の眼5を配置する側に垂直ミラー群222を配置している。そして、水平ミラー群212の下に垂直伝搬部221を配置して、水平導光部21と垂直導光部22とを連結し、導光板2を構成している。
 図3Aは、水平導光部の上面図、図3B、図3Cは水平導光部の正面図である。
 図3A、図3Bには、観察者の眼に対する画角の中心を通過する光束(導光板からX方向と平行に射出する光束)、すなわち中心画角の光束が、水平導光部内を伝搬する様子も示した。
 図3Aならびに図3Bを用いて、水平導光部内の光束伝搬について説明する。
 水平導光部21は、水平伝搬部211と水平ミラー群212を備え、水平伝搬部211の下面2114の一部と水平ミラー群212の上面とを接合して構成している。この接合面、すなわち、水平伝搬部211と水平ミラー群212の間には、入射した一部の光束が透過し且つ一部の光束が反射する透過反射膜を配置している。
 水平伝搬部211は、正面2111、背面2112、上面2113、下面2114、左面2115、右面2116を有する立方体であり、長さL、高さH、幅Wとしたときに、長さLが最も大きく、次に高さHが大きく、幅Wが最も小さい構成である。水平伝搬部211は水平方向(Z軸方向)が長手の立方体であり、上面2113が垂直導光部22を配置したY方向を向くように配置した。また、水平ミラー群212を水平伝搬部の上面2113(第1反射面)と対向させて配置している。
 水平伝搬部の左面2115を入射面としており、図示しない入射光学系からの光束がその入射面から入射する。また、水平伝搬部の下面2114(第1射出面)のうち水平ミラー群212と接合されている領域を射出領域としており、水平伝搬部の少なくとも一部を通過した光がその射出領域から射出する。入射光束のうち中心画角の光束は、水平伝搬部211の長手方向の軸(長軸)Axに対して、XZ断面方向に±26°、YZ断面方向±32°の4つの角度で平伝搬部211内部に入射され、水平導光部21内部の伝搬光束となる。中心画角の光束がXZ断面方向、YZ断面方向それぞれにプラスとマイナスの傾きを持ち、4つの角度で入射する理由は、実施例2の図9A、図9Bを用いて後程詳述する。ここでは簡単に説明する。水平導光部に接続される入射光学系3の接続部32には、背面2112と上面2113にそれぞれ平行な平面部(不図示)が設けられている。その平面部で内面反射されて水平導光部に入射する光束とその平面部で内面反射せずに水平導光部に入射する光束とが、XZ断面方向及びYZ断面方向のそれぞれで生じるため、4つの角度で入射することになる。本実施例では入射光学系と水平導光部21を同じ材料で構成しており、水平導光部21内部でも伝搬光束は長軸Axに対してXZ断面方向に±26°、YZ断面方向に±32°の角度を有する。このとき、長軸Axに対する伝搬光束が成す角度をXZ断面方向とYZ断面方向でそれぞれXZ伝搬角、YZ伝搬角と呼ぶ。
 図3Aにおいて、伝搬光束511と513は、XZ伝搬角+26°の光束で、伝搬光束512と514は、XZ伝搬角-26°の光束であり、それらの伝搬光束は、正面2111と背面2112で全反射を繰り返して右面2116まで到達する。
 図3Bにおいて、伝搬光束511と512は、YZ伝搬角+32°の光束で、伝搬光束513と514は、XZ伝搬角-32°の光束であり、それらの伝搬光束は、上面2113で全反射、下面2114で反射を繰り返して右面2116まで到達する。
 このように、中心画角の光束を含む全画角の伝搬光束は、水平伝搬部211内で2次元方向(XZ断面方向とYZ断面方向)に角度を有して伝搬しており、伝搬光束が水平伝搬部211内を螺旋状に伝搬するように構成している。
 伝搬光束は、水平伝搬部211の水平方向に平行な4面(正面2111、背面2112、上面2113、下面2114)で内面反射を繰り返しながら右面2116まで水平方向に伝搬される。水平伝搬部の下面2114に到達した伝搬光束は、接合面に設けた透過反射膜によって一部が反射、一部が透過し、透過した伝搬光束は水平ミラー群212へ入射する。水平ミラー群212には、YZ断面内に傾きを有した複数枚の水平取出ミラー2120をZ軸方向に並べて配置しており、水平ミラー群212へ入射した伝搬光束を水平取出ミラー2120で反射してY軸方向に偏向し、垂直導光部へ入射させている。
 前述したように、本実施例では一つの画角に対して、伝搬角はXZ断面方向、YZ断面方向それぞれにプラス方向とマイナス方向があり、全部で4方向となる。このように配置することで、水平伝搬部211内を伝搬光束で満たすことができ、水平伝搬部211のどの位置で伝搬光束を取り出しても観察者の眼に入射する光束の光量分布を均一にすることができる。
 図示しないが、水平導光部21内部の伝搬角について、各画角光束は中心画角光束に対して、それぞれXZ断面方向に0°~±7.7°、YZ断面方向に0°~±13.5°の角度を有している。屈折率N=1.4以上2.0以下の導光板から屈折率N=1.0の空気層へ射出して観察者の眼に入射する際には、射出面で屈折するために画角は伝搬角よりも大きくなる。XZ断面方向が垂直方向なので、XZ伝搬角は垂直画角に変換されて0°~±11.6°、YZ断面方向が水平方向なのでYZ伝搬角が水平画角に変換されて0°~±20.0°を有する表示装置となる。
 水平伝搬部内の伝搬角ωと水平伝搬部の側面(上面、下面、正面、及び背面)への入射角Ψとはω=90°-Ψの関係にある。水平伝搬部内の伝搬光束の伝搬角を大きく設定すれば、水平伝搬部の材料の屈折率によっては水平伝搬部の側面で全反射せずに透過してしまう状況が発生する。例えば、水平伝搬部の材料が合成石英(Nd=1.45857)であった場合、臨界角は43.28°となり、伝搬角ω=90°-43.28°=46.72°以上で水平伝搬部の側面を透過してしまう。
 本実施例では、水平伝搬部内において2次元方向に伝搬させており、2次元方向の合成の入射角が1次元方向に伝搬させた場合と比較して水平伝搬部の側面への入射角を大きくすることができる。水平伝搬部内における伝搬角ωは条件式(1)の範囲とするのが良い。
10°≦ω≦50°… 条件式(1)
 上限を超えると、水平伝搬部の側面への入射角が材料によっては臨界角を下回る。下限を下回ると水平ミラー群212で反射された偏向光束群に多くの空隙が生じてしまう。後者については、図4を用いて後程詳述する。
 本実施例では、水平伝搬部内で、XZ断面方向の伝搬角(XZ伝搬角ωxz)を+18.3°~+33.7°、-18.3°~-33.7°とし、YZ断面方向の伝搬角(YZ伝搬角ωyz)を+18.5°~+44.5°、-18.5°~-44.5°とした。なお、2次元方向の伝搬角ωが“90°-臨界角”未満になる範囲で1次元方向のXZ伝搬角又は1次元方向のYZ伝搬角を“90°-臨界角”以上に設定して、広画角の光束を光量ロスを低減しつつ伝搬することも可能である。
 図3Cには画角光線の伝搬の様子を示す。
 図3Cを用いて各画角光束について説明する。
 図3C中の画角光束511はYZ伝搬角+32°、画角光束523はYZ伝搬角-45°、画角光束533はYZ伝搬角-19°で水平伝搬部211内を伝搬している。各画角の伝搬光束はプラス方向とマイナス方向の伝搬角を有するが、図3C中にはそのうちの1つを表示している。
 伝搬光束511、523、533は、水平伝搬部211の上面、下面、正面、及び背面で内面反射(全反射)を繰り返しながら伝搬する。伝搬光束が透過反射膜を塗布した下面2114に到達した際、伝搬光束の一部は下面2114を透過して水平ミラー群212へ入射し、他の一部は下面2114で反射して水平伝搬部211内を伝搬する。
 水平ミラー群212にはYZ断面内に傾きを有した複数の取出ミラー2120を配置しており、水平ミラー群212へ入射した光を取出ミラー2120で反射してYZ断面方向の伝搬角を偏向し、水平ミラー群212の下面を透過して垂直導光部へ入射させる。
 このとき、水平ミラー群212を水平伝搬部211の垂直導光部22側へ配置することで、水平伝搬部211内を伝搬する際の反射回数を減らし、光量ロスを低減することができる。
 これについて詳しく説明する。観察者が真っ直ぐ前を見るときは、導光板の垂直導光部22の水平方向(Z軸方向)中央から射出した光束が、観察者の眼に届くことで画像を表示する。観察者が左方向を見るときは垂直導光部22の左側から射出した光束が、観察者が右方向を見るときは垂直導光部22の右側から射出した光束が、観察者の眼に届くことで画像を表示する。図3C中の画角光束511はYZ伝搬角+32°であり、水平ミラー群212で反射された光束はYZ断面では真っ直ぐ下に進み、眼に対する画角の中央を進む光束に相当する。画角光束523はYZ伝搬角-45°であり、水平ミラー群212で反射された光束はYZ断面では右下方向に進み、眼に対する画角の左方向を進む光束に相当する。画角光束533はYZ伝搬角-19°であり、水平ミラー群212で反射された光束はYZ断面では左下方向に進み、眼に対する画角の右方向を進む光束に相当する。従って、画角光束511は水平ミラー群212の中央付近から射出すると観察者の眼に入る有効光束となる。画角光束523は水平ミラー群212の左側(水平伝搬部の左面2115側)から、画角光束533は水平ミラー群212の右側(水平伝搬部の右面2116側)から射出すると観察者の眼に入る有効光束となる。このように、伝搬角の絶対値が大きい光束ほど水平ミラー群212の水平伝搬部の入射面(左面2115)側から射出すると有効光束になるように構成している。伝搬角の絶対値が大きい場合、伝搬距離に対する水平伝搬部211内部での反射回数が多くなり、有効光束となる位置まで伝搬する際の反射回数が増えて光量ロスの問題が生じる。特に、水平伝搬部の下面2114と水平ミラー群との接合面には透過反射膜が設置してあり、接合面(もしくは、水平伝搬部の下面2114の接合領域)での反射率が50%程度である場合は、反射回数に応じて伝搬光束の光量が低下する。これは、水平伝搬部の入射面2115から離れた位置ほど伝搬光束の光量が低下することとなるが、全画角における光量分布を均一化するためには、光量が低いところに合わせることとなり光量ロスが問題となる。
 本実施例のように、水平伝搬部211と垂直伝搬部221との間に水平ミラー群212を配置すると、伝搬角の絶対値が大きい光束ほど水平ミラー群212の水平伝搬部の入射面2115側から射出すると有効光束になるように構成することができる。これにより、水平伝搬部211内での反射回数を減らすことができるので、光量ロスの低減が可能となる。
 図4A、図4C、図4Dは本実施例における水平ミラー群212の説明図、図4Bは比較例の水平ミラー群212の説明図である。
 図4A~図4Dを用いて本実施例における水平ミラー群212の複数の取出ミラー2120の構成を説明する。
 水平ミラー群212としては、43枚の水平取出ミラー2120をZ軸方向に互いに平行に並べたものを用いている。図4Aには水平取出ミラー2120の一部を模式的に表示している。43枚の水平取出ミラー2120の法線は、Y方向とZ方向とを含む平面内で、YZ方向に61°傾いている。水平取出ミラー2120には、反射率及び透過率が異なる2種類の反射領域2121、2122が設けられている。水平取出ミラー2120の水平伝搬部に近い第1反射領域2121には反射率が約45%、透過率が約45%と反射率と透過率の比が約1:1のハーフミラーを配置している。一方、水平取出ミラー2120の水平伝搬部から遠い第2反射領域2122には、反射率が約85%、透過率が1%以下の高反射ミラーを配置している。すなわち、水平取出ミラー2120の高さ(Y方向)の上半分をハーフミラー2121、下半分を高反射ミラー2122とした。これにより、水平伝搬部211からの光束のうち、ハーフミラー2121への入射光束の一部を反射して垂直導光部の方向へ偏向し、入射光束の他の一部を透過させて次の取出ミラー2120の高反射ミラー2122で反射して垂直導光部の方向へと偏向できる。つまり、水平取出ミラー2120が第1及び第2ミラーを有する場合、第1ミラーの第1反射領域を透過した光が第2ミラーの第2反射領域で反射され垂直導光部に入射し、第1ミラーの第2反射領域で反射した光は第2ミラーを介さず垂直導光部に直接入射する。この際、取出ミラー2120で垂直導光部の方向へ偏向された偏向光束群は、水平伝搬部211内の伝搬光束よりも光束幅を拡大している。水平伝搬部211内の伝搬光束の光束幅はWp1、Wp2、Wp3であったが、水平取出ミラー2120で反射された後の偏向光束群の幅はWr1、Wr2、Wr3となる。Wr1>Wp1、Wr2>Wp2、Wr3>Wp3と水平取出ミラー2120で反射された後の光束群の幅が常に大きく、この光束幅で観察者の眼に届くので水平導光部によって水平方向に瞳拡大する効果を有する。
 また、図4Bに比較例を示した。比較例の水平ミラー群は、本実施例の構成とは異なり水平取出ミラー2120全領域を高反射ミラーとしている。水平取出ミラーで偏向した偏向光束群も本実施例と同様に伝搬光束の光束幅よりも拡大されているが、偏向光束群には多くの空隙(光束が存在しない部分)が生じてしまい、偏向光束群内の光量の均一性が問題となる。
 しかしながら、本実施例のように水平取出ミラー2120の一部にハーフミラー2121を配置した場合は、ハーフミラー2121によって反射光束と透過光束に分離されるので、反射光束の光束幅を拡大する際に生じた空隙を透過光束で埋めることができる。そのため、ハーフミラー2121の垂直導光部側に高反射ミラーを配置し、ハーフミラー2121の透過光束は、隣の水平取出ミラー2120の高反射ミラー2122で反射して、上述の空隙を埋める構成とした。
 このように、水平取出ミラー2120に入射する光束を2光束に分離しつつ垂直導光部の方向へと偏向させることにより、従来の偏向光束群の光束幅の拡大という効果に加えて、拡大した偏向光束群内の光量分布を均一化する効果も得ている。
 水平伝搬部の上面2113で全反射した伝搬光束が水平取出ミラー2120へ到達する。水平取出ミラー2120の第1反射領域を第2反射領域より水平伝搬部の上面2113側に配置する、すなわち第1反射領域は第2反射領域よりも水平伝搬部の上面2113から距離を短く配置する。この構成を採用することで、偏向光束群による瞳拡大と光量の均一性を実現することができる。
 本実施例の水平取出ミラー2120はハーフミラー2121と高反射ミラー2122とを上下半分ずつに分けて配置の比率を1:1としたがこれに限ったものではなく、配置の比率は2:1や3:1、4:1などとしてもよい。さらには、全てをハーフミラー2121としてもよい。これらと比べて、ハーフミラー2121と高反射ミラー2122を1:1に配置すると、ハーフミラー2121の反射した光束の間にハーフミラー2121を透過した光が高反射ミラー2122で反射した光束を配置する構成にできる。この構成は、光束幅の拡大と、拡大した光束内の光量分布の均一化ならびに光利用効率の向上に好適である。さらに、ハーフミラー2121は反射率45%、透過率を45%に限ったものではなく、振幅分割する振幅分割ミラーであればよい。例えば、反射率41%、透過率49%として、透過率を反射率よりも高くすることにより、ハーフミラーでの反射光束とハーフミラーを透過して高反射ミラーで反射した光束との光量がほぼ同等になって光束群内の光量分布をより均一に補正することができる。また、反射率と透過率の比率が2:1や1:2となっても実用上問題なく使用できる。
 また、水平取出ミラー2120のうち、最後のミラー(最も入射面2115から遠いミラー)は、それ以降にミラーが無く有効部が無いので、第1領域2121、第2領域2122を共に高反射ミラーとして偏向光束の光量を増やしている。
 また、複数の水平取出ミラー2120の間隔は眼5の瞳径4mmよりも小さくすることが好ましく、2mm以下と瞳径よりも十分に小さい方がより好ましい。しかし、水平取出ミラー2120の間隔が0.5mmよりも小さいと開口数が小さくなって解像力に問題が生じる為、水平取出ミラーの間隔Pは下記の範囲が好ましい。
0.5mm ≦ P ≦ 2.0mm … 条件式(2)
 図1に示したように、観察者が表示画像を見るとき、画像の左側の画角を担当する光束は導光板2の左側から発せられ、画像の右側の画角を担当する光束は導光板2の右側から発せられて観察者の眼に入射する。
 本実施例のように、水平ミラー群212を水平伝搬部211と垂直導光部22との間に配置すれば、伝搬角が大きい光束が入射面に近い場所(図2の導光板の左側)で必要になり、伝搬角が小さい光束は入射面から遠い場所(図2の導光板の右側)で必要になる。
 水平伝搬部211内の伝搬において、正面2111と背面2112及び上面2113では全反射するが、下面2114では透過反射膜による反射のため反射率が100%よりも低く、反射回数に応じで伝搬光の光量が低下する。
 本実施例のように水平ミラー群212を水平伝搬部211と垂直導光部22との間に配置すると、各画角における反射回数を揃えるとともに、水平伝搬部の下面2114での反射回数を減らして光利用効率が向上できる。このように、伝搬角と必要となる場所を好適な関係に設定できる点にメリットがある。さらには、水平伝搬部の下面2114とは異なり、水平ミラー群の下面2124では反射させる必要がない。従って、水平ミラー群の下面2124の光束が射出する領域と垂直伝搬部221の光束が入射する領域とを接合することができ、水平導光部21と垂直導光部22とを容易に一体化することができる。これにより、水平導光部21と垂直導光部22と位置関係を高精度に維持することが可能となり、常に良好な画像を表示することが可能となる。
 このように、本実施例の構成は、特表2010-533316号公報やWO2015/076335号公報のように水平ミラー群212を水平伝搬部211の上面2113側へ配置した場合と比べて、反射透過膜による反射回数低減による光利用効率向上、導光板の一体化のメリットがある。また、本実施例の構成は、特許文献1のように水平ミラー群212を水平伝搬部211の中へ配置し且つ水平伝搬部211の下面で最後に反射した光束がミラー群によって反射される構成にした場合と比べても、同様のメリットがある。
 本実施例の水平ミラー群212は、隣り合う水平取出ミラー2120の間隔は常に等しく1mmに設定しており、高さ(Y方向)を水平取出ミラー2120の位置に応じて変化させている。水平伝搬部の入射面2115近傍にある水平取出ミラーは高く、入射面2115から離れるほど(Z方向の距離に応じて)高さを低く設定している。水平伝搬部の上面2113で全反射した伝搬光束が水平取出ミラー2120に入射するので、水平伝搬部の入射面2115から離れるにつれて水平伝搬部の上面2113との距離を長くすると良い。これは、前述したように、有効光束になる伝搬光束の伝搬角の絶対値が水平伝搬部の入射面2115からの距離に応じて小さくなるため、水平取出ミラー2120の高さをその伝搬角の絶対値に応じて低くしたものである。水平伝搬部の入射面2115側は大きい伝搬角±45°の伝搬光束が有効光束になる領域であり、この伝搬光束が水平取出ミラー2120で偏向した際に光束の隙間が少なくなるように、水平取出ミラー2120を高く3.0mmに設定している。水平ミラー群212の中央付近は中央値の伝搬角±32°の伝搬光束が有効光束になる領域であり、水平取出ミラー2120を中程度の高さ1.8mmに設定している。水平ミラー群212の入射面と反対側は小さい伝搬角±19°の伝搬光束が有効光束になる領域であり、水平取出ミラー2120を低く1.2mmに設定している。このように、有効光束になる伝搬光束の伝搬角に応じて水平取出ミラー2120の高さを変更している。
 なお、図4A及び図4Bでは、複数の水平取出ミラー2120の高さを全て異ならせて直線状に高さを減少させている。しかし、数枚ごとに高さを減少させることによってステップ状に高さを減少させてもよいし、非線形に(例えば、サインカーブに沿って)高さを減少させてもよい。また、それらを組み合わせてもよい。
 図4C、図4Dは水平取出ミラーの高さの決定方法についての説明図である。
 図4Cで水平取出ミラー2120の高さの上限について説明する。
 本実施例の水平取出ミラー2120には、第1領域2121はハーフミラー、第2領域は高反射ミラーとなっており、第1領域2121と第2領域2122の境界へ向かう光線54が水平伝搬部211から水平ミラー群212へ入射している。
 光線54が透過するハーフミラーをN枚以下とする為、光線54がN個前(入射面側)の水平取出ミラー2120の上端をかすめるようにN個前の水平取出ミラー2120の高さを規定し、それを基に対象の水平取出ミラー2120の高さの上限を設定した。光線54と平行で且つ第2領域2122で反射する光束が透過するハーフミラーの枚数は、好ましくは3枚以下とするのが良い。対象の水平取出ミラー2120の第1領域2121と第2領域2122との境界からN個前の水平取出ミラー2120の上端までのZ軸方向の間隔をLuとする。この間隔Luは、対象の水平取出ミラー2120とN個前の水平取出ミラー2120との間隔PNと、角度θ°傾けて配置した際のN個前の水平取出ミラー2120の幅の半分の幅Lu1と、から求められる。伝搬角ωの光線54が対象の水平取出ミラー2120の第1領域2121と第2領域2122との境界に入射すると仮定する。そのとき、N個前の水平取出ミラー2120の上端の位置では、対象の水平取出ミラー2120の第1領域2121と第2領域2122との境界の高さからLu×tanωの高さを光線54が通過する。ここで、N個前の水平取出ミラー2120は光線54を遮らない高さに設定すれば光線54と平行で且つ第2領域2122で反射する光束の透過枚数をN枚以下に設定できる。すなわち、N個前の水平取出ミラー2120の高さをH/2<Lu×tanωとすればよい。対象となる水平取出ミラー2120についても同様である。
 図4Dを用いて水平取出ミラー2120の高さの下限について説明する。
 水平取出ミラー2120の上端に光線55が入射しており、水平取出ミラーの第1領域2121で反射され、対象の水平取出ミラー2120と1つ前の水平取出ミラー2120との間を通過している。この際、水平取出ミラー2120のピッチP1に対して、水平取出ミラー2120の高さHが低いと、1つ前の水平取出ミラー2120と反射光55との間隔Llが大きくなり、偏向光束群に隙間が生じてしまう。水平取出ミラー2120の高さの下限は、水平取出ミラー2120での偏向光束群に所定幅B以上の隙間を作らない配置とした。好ましくは、偏向光束群の隙間は所定幅B≦0.5mmとするのが良い。図中Ll1は水平取出ミラー2120のZ方向の距離でありLl1=H/tanθである。また、Ll2は光束55の反射光が反射位置から水平ミラー群の下面2124までにZ方向に進む距離でありLl2=H×tanαである。このような条件のもと、水平取出ミラー2120の高さHは条件式(3)の関係を満足させると良い。
Figure JPOXMLDOC01-appb-M000001
 ただし、
θは、取出ミラーの角度
ωは、対象の取出ミラーにおいて有効な伝搬光束の伝搬角
αは、対象の取出ミラーにおいて有効な伝搬光束の伝搬角と中心画角光束の伝搬角との差
P1は、対象の取出ミラーと1個前の取出ミラーとの間隔
PNは、対象の取出ミラーとN個前の取出ミラーとの間隔
Bは、偏向光束と取出ミラーとの間隔(B≦0.5mmとする)
… 条件式(3)
 条件式(3)でNは3以下とするのが良い。本実施例ではNを2とした。条件式の上限を上回るとハーフミラーの透過回数が多くなり、光量ロスが生じて問題となる。
 本実施例では、条件式(3)で水平取出ミラーの高さを決定したが、これに限ったものではなく、垂直ミラー群における垂直取出ミラーの高さを条件式(3)で決定してもよい。
 図5Aに本実施例の表示装置における垂直導光部のXY断面図を示す。
 図5Aに示すように、垂直導光部22は、垂直伝搬部221と垂直ミラー群222とで構成している。垂直伝搬部221は平板であり、正面2211、背面2212、上面2213を研磨面としており、その他の3つの面には不要光を遮光する遮光膜(遮光部)を設けている。垂直伝搬部の上面2213を入射面としており、水平導光部からの光束がその入射面から入射する。また、垂直伝搬部の正面2211(第2射出面)のうち垂直ミラー群222と接合されている領域を射出領域としており、垂直伝搬部の少なくとも一部を通過した光がその射出領域から射出する。垂直伝搬部221に入射した伝搬光束は、垂直伝搬部221の垂直方向に平行な4面のうち2面以下(正面2211、背面2212)で内面反射を繰り返しながら垂直方向に伝搬される。垂直ミラー群222は垂直伝搬部の背面2212(第2反射面)と対向させて配置されている。垂直ミラー群222には、入射した光束の一部を透過し一部を反射する透過反射面を有した垂直取出ミラー2220を複数備え、垂直取出ミラー2220をXY断面内で傾け、かつ互いに平行にしてY軸方向に並べて配置している。垂直ミラー群222の外形は平板形状であり、正面2221、背面2222を研磨面としている。垂直伝搬部221、及び垂直ミラー群222は水平方向(Z軸方向)に最も幅が広く、次に垂直方向(Y軸方向)に幅が広く、奥行き方向(X軸方向)が最も幅が狭い。垂直ミラー群222を垂直伝搬部221の観察者の眼5側に配置し、垂直伝搬部221の正面2211と垂直ミラー群の背面2222とを接合して垂直伝搬部221と垂直ミラー群222とを一体化している。垂直伝搬部221の正面2211と垂直ミラー群222の背面2222との接合面には透過反射膜を塗布しており、入射した光束の一部を透過し一部を反射する構成とした。
 図3Bに示した水平導光部21の水平ミラー群212の下面2124と、図5に示した垂直導光部22の垂直伝搬部221の上面2213とを接合して水平導光部21と垂直導光部22とを一体化している。
 水平導光部21の水平取出ミラーで反射された伝搬光束は、垂直伝搬部221の上面2213に入射して垂直伝搬部221内部へ入射し、垂直伝搬部221の正面2211と背面2212との間で内面反射を繰り返しながら垂直伝搬部221内を伝搬する。垂直伝搬部221の正面2211のうち垂直ミラー群の背面2222との接合している部分は、接合面に備えた透過反射膜によって、伝搬光束の一部が透過して垂直ミラー群222へ入射し、一部が反射して再び垂直伝搬部221内を伝搬する。
 垂直ミラー群222には背面2212に対してXY方向に58°傾け、互いに平行に配置した垂直取出ミラー2220を28枚設置している。各垂直取出ミラー2220は垂直ミラー群222へ入射した伝搬光束の一部を反射して垂直ミラー群の正面2221の方向へ偏向するとともに、伝搬光束の一部を透過させる。1つ目の垂直取出ミラー2220を透過した伝搬光束は次の垂直取出ミラー2220によって反射され垂直ミラー群222の正面2221の方向へ偏向させる。
 垂直ミラー群222の正面2221は垂直伝搬部221の背面2212と平行であり、垂直ミラー群222へ入射したままの角度では垂直ミラー群222の正面2221に入射した場合は入射角が臨界角を超えるので全反射される。一方で、垂直取出ミラー2220で偏向された伝搬光束は、垂直ミラー群222の正面2221への入射角が臨界角よりも小さくなり、伝搬光束が垂直ミラー群222の正面2221から観察者の眼5の方向(第3方向側)へ射出する。これにより、観察者の眼5に光束を入射させて画像を表示することができる。なお、入射角とは、光束の入射方向と入射面の法線とがなす角度のことである。
 垂直導光部22においても、水平導光部21と同様に、1つの画角における伝搬光束が複数の垂直取出ミラー2220で偏向されるように構成することによって偏向光束群の光束幅を伝搬光束の光束幅よりも拡大している。
 図6は本実施例の垂直取出ミラーの概要図である。
 図6を用いて本実施例の垂直取出ミラーを説明する。
 本実施例の垂直ミラー群222として、28枚の垂直取出ミラー2220を用いている。本実施例では、水平取出ミラーの枚数を、垂直取出ミラーの枚数よりも多くしている。これは、観察者の眼に対する画角のうち水平画角を垂直画角より大きく設定しており、更に、観察者の眼と水平ミラー群との距離が観察者の眼と垂直ミラー群との距離よりも大きいためである。この構成によって、観察者に良好な画像を常に提供することが可能となる。
 図6には、28枚の垂直取出ミラー2220のうちの6枚の垂直取出ミラー2220を表示している。本実施例の垂直取出ミラー2220は、Z方向に長軸を持つ矩形のミラーである。本実施例の垂直取出ミラー2220としては、偏光分割する偏光分割ミラーである偏光ビームスプリッタ(PBS)を用いている。より具体的には、サブ波長構造(Sub-Wavelength Structure:SWS)を用いた構造複屈折型のPBSの一種であるワイヤーグリッド偏光板を用いている。ワイヤーグリッド偏光板は、光学基板2225上(例えばガラス基板)に誘電体ワイヤ2226(金属ワイヤ、例えばアルミミウム)を波長以下(100nm程度)のピッチで多数並べてグリッド状に構成したものである。ワイヤーグリッド偏光板は、ワイヤーグリッド(金属ワイヤ)と平行方向2227に電場が振動する光(P偏光)を透過させ、ワイヤーグリッドと垂直方向に電場が振動する光(S偏光)を反射する特性がある。すなわち、ワイヤーグリッドの向きによって反射/透過の偏光方向を選択できる偏光ビームスプリッタである点が特徴である。
 本実施例では、垂直取出ミラー2220のワイヤーグリッドの向きを交互に90°回転させて配置することにより、隣り合う垂直取出ミラー2220のワイヤーグリッドの向きが直交するように配置した。具体的には、垂直取出ミラー2220の1つである第1の偏光ビームスプリッタはワイヤーグリッドの向きを垂直取出ミラーの長軸に対して90°とし、隣の垂直取出ミラー2220である第2の偏光ビームスプリッタはワイヤーグリッドの向きを0°とした。最初に入射した垂直取出ミラー2220で伝搬光束を反射光束と透過光束とに分岐し、反射光束を垂直ミラー群の正面2221へ偏向し、透過光束を隣の垂直取出ミラー2220で反射して垂直ミラー群の正面2221へ偏向する構成とした。最初の垂直取出ミラー2220のワイヤーグリッドの向きと隣の垂直取出ミラー2220のワイヤーグリッドの向きは直交しているので、最初の垂直取出ミラー2220の透過光束は隣の垂直取出ミラー2220で全て反射される。第1偏光ビームスプリッタを透過した光は第2偏光ビームスプリッタで反射されて導光板2から射出し、第1偏光ビームスプリッタで反射した光は第2偏光ビームスプリッタを介さずに導光板2から射出させている。このため、伝搬光束が最初に入射した垂直取出ミラー2220で反射光束と透過光束を1:1に分岐し、透過光束は次に入射した垂直取出ミラー2220で反射することによって、1光線が2つの垂直取出ミラー2220から観察者の眼に向けて射出する。これによって、偏向光束群を形成し、偏向光束群の光束幅を伝搬光束の光束幅よりも拡大している。構造複屈折型のPBSの代わりに誘電体多層膜型のPBSを垂直取出ミラー2220として用いた場合には、最初に入射した垂直取出ミラー2220で透過したP偏光が、次に入射した垂直取出ミラー2220でも透過するようにしか構成できない。
 誘電体多層膜型のPBSを透過した光路に1/2波長板を配置する例もあるが、一般的に誘電体多層膜型のPBSでは入射角依存性が高く、入射角は45°の近傍(±5°程度)の角度範囲でしか所望の特性を発揮できない。また、波長依存性も高く、可視光領域(400~700nm)に全域に渡って良好な光学特性(反射率、透過率)を得ることが難しい。特にカラー画像の表示装置においては、赤色スペクトル(620nm~700nm)、緑色スペクトル(490nm~570nm)、青色スペクトル(420nm~490nm)の3色のスペクトル領域に対応した光を用いるので、広帯域な波長特性が求められる。本実施例の表示装置のように、垂直伝搬部221内を伝搬した光束が、垂直伝搬部221の正面2211を透過して垂直ミラー群222に入射し、再び垂直伝搬部221を通過することなく、導光板の外へ光束を射出させる構成の導光板においては、垂直取出ミラー2220への入射角は50°を超えた大きな角度になる傾向がある。実施に、垂直伝搬部221の内部を光束が伝搬する際、水平方向と垂直方向の2次元方向に角度を有しており、垂直ミラー群222の垂直取出ミラー2220に対する各伝搬光束の入射角は、46°~68°であり、45°を超えた大きな角度の領域であり、かつ広範囲に渡る。このような入射角の条件下では誘電体多層膜型のPBSで良好な光学性能を確保することが難しい。さらには、垂直方向における入射角は52°~61°の範囲で変化し、水平方向における入射方向は+13°~-13°の範囲で変化しており、波長板を用いた場合では偏光方向を常に所望な角度に設定することが難しい。
 しかし、構造複屈折型のPBSは、ワイヤーグリッドの向きを変更することにより透過する偏光や反射する偏光の偏光方向を変更できる。従って、本実施例のように取出ミラーへの入射角が広範囲に渡る場合や、使用波長が可視光領域全域に渡る場合においても、構造複屈折型のPBSを垂直取出ミラー2220として用いることもできる。そうすれば、最初に入射した垂直取出ミラー2220で透過したP偏光を、隣の垂直取出ミラー2220で反射することが可能になる。なお、本実施例では、偏光度が低い光を放射する有機エレクトロルミネッセンス(OLED)パネルを表示素子4として使用している。しかし、偏光度の高い光を放射する液晶パネル等を表示素子4として使用する場合には、表示素子4と垂直ミラー群222との間の光路中に偏光解消板を設けても良い。具体的には、表示素子4と入射光学系3との間、又は、入射光学系3と導光板2との間に、偏光解消板を配置しても良い。
 図7に本実施例の垂直取出ミラーの説明図を示す。
 図7には5枚の垂直取出ミラー2220を表示している。
 垂直導光部22内を伝搬角ωが小さい伝搬光束が導光しており、最初に到達した垂直取出ミラー2220で光量の半分が反射し、半分が透過する。反射した伝搬光束は垂直ミラー群の正面2221の方向へ偏向されて、観察者の眼へ向けて射出される。透過した伝搬光束は次の垂直取出ミラー2220で反射して垂直ミラー群の正面2221の方向へ偏向されて、観察者の眼へ向けて射出される。
 このとき、最初の第1垂直取出ミラー2220を透過して次の第2垂直取出ミラー2220で反射された光束とその第2垂直取出ミラー2220に最初に入射して第2垂直取出ミラー2220で反射された光束とが並べて配置される。これにより、観察者の眼に向けて射出する偏向光束群における光束の隙間を減らし、観察者が各画角を均一な光量分布で観察可能な構成を実現している。
 このとき、垂直取出ミラー2220の高さHと間隔Pが条件式(4)を満足するように配置することにより、偏向光束群内の光束の隙間を減らした適切な構成を実現できる。
Figure JPOXMLDOC01-appb-M000002
 ただし、
θは、取出ミラーの角度
ωは、対象の取出ミラーにおいて有効な伝搬光束の伝搬角
αは、対象の取出ミラーにおいて有効な伝搬光束の伝搬角と中心画角光束の伝搬角との差
P1は、対象の取出ミラーと1個前の取出ミラーとの間隔
P2は、対象の取出ミラーと2個前の取出ミラーとの間隔
Bは、偏向光束と取出ミラーとの間隔(B≦0.5mmとする)
… 条件式(4)
 上限を超えると、3枚以上の偏光板を通過する構成となり、取出ミラーに到達する伝搬光束に隙間が生じて、結果として偏向光束幅の隙間が大きくなり問題となる。下限を下回ると偏向光束と取出ミラーとの間隔が大きくなり、結果として偏向光束幅の隙間が大きくなり問題となる。
 観察者の眼の瞳(瞳孔)の平均径(約4mm)よりも大きくなり、反射光束の隙間による光量分布が目立つようになって問題である。下限を下回ると反射光束の幅が狭く成りすぎて解像力が低下して問題となる。
 また、構造複屈折型の偏光板は、誘電体膜多層膜型の偏光ビームスプリッタと比較して、入射角特性や波長特性が広い範囲で高い性能(反射率、透過率)を維持できる特徴がある。垂直取出ミラー2220では入射角の範囲が45°以上70°以下と広く、波長も可視光400nm以上700nm以下の広帯域で使用するため、構造複屈折型の偏光板が持つ広角かつ広帯域で高性能が必要となる。
 このように、導光板から射出する光束幅を拡大し、かつ拡大した光束内の光量分布を均一化している。これにより、観察者の眼の位置にEMB(Eye Motion Box)を15mm確保しており、広画角な表示画像の周辺部を観察する際に瞳位置の移動があっても観察者の眼の瞳に表示画像からの光束を常に入射することができ、高品位な画像を提供できる。
 図5Bには、図5Aに示した垂直導光部22と垂直導光部22内の伝搬光束に加えて、外界から垂直導光部22に入射した光束を一点鎖線で示した。
 外界からの光束は、垂直伝搬部の背面2212、正面2211、垂直ミラー群の背面2222の順に透過し、更には垂直取出ミラー2220と垂直ミラー群の正面を透過して観察者の眼5に到達する。本実施例の垂直取出ミラー2220にはワイヤーグリッド偏光板を用いているため、ワイヤーグリッドの配列方向と垂直方向の偏光光束はワイヤーグリッド偏光板を透過することができる。これにより、観察者が垂直導光部22越しに外界を観察可能とし、光学シースルーの機能を発揮している。
 更には、垂直取出ミラー2220から観察者の眼5までにおいて、表示素子4からの伝搬光束の光路と外界からの光束の光路とを同じ光路に重ねることができるので、外界に表示素子4からの画像を重ねて表示することが可能となる。
 このように本実施例の表示装置では、観察者に水平方向、垂直方向共に広画角で高品位な表示画像を観察可能とするとともに、外界を光学シースルーで観察可能とし、両者を重畳して観察可能にすることができる。
 そして、本実施例の表示装置における入射光学系3は、伝搬光束が、水平伝搬部211の上面2113及び垂直伝搬部221の背面2212で反射されるように、表示素子4からの光をXY断面内とYZ断面内の2方向において斜めに入射させている。これにより、水平方向と垂直方向の2次元方向において、観察者の眼に照射する光束幅を拡大することができ、2次元方向に広画角化している。
 本実施例の表示装置では、水平導光部21の水平取出ミラー2120にハーフミラーとミラーの組合せを用いたが、これに限ったものではない。水平取出ミラー2120に、ハーフミラーだけ、または、ワイヤーグリッドの向きが交差している複数の偏光板の組合せを用いても良い。水平ミラー群212の構成として、前述の垂直ミラー群の構成(ワイヤーグリッド偏光板を交互に回転させて配置する構成)を適用してもよい。
 また、垂直導光部22の垂直取出ミラー2220にはワイヤーグリッド偏光板を用いたが、これに限った物ではなく、ハーフミラーやハーフミラーとミラーの組合せを用いてもよい。
 また、本実施例の表示装置では、垂直導光部22の垂直取出ミラー2220にワイヤーグリッド偏光板を交互に90°回転させて配置する構成を用いた。しかし、隣り合うワイヤーグリッドは90°回転に限らず、30°、45°、60°、120°、135°、150°回転であってもよい。要するに、30°以上150°以下が好ましいが、隣り合うワイヤーグリッドが異なる方向を向いていればよい。
 また、本実施例の導光板では、水平導光部内を光束が水平方向(Z方向)に導光され垂直導光部内を光束が垂直方向(Y方向)に導光されるように構成していた。しかし、WO2015/076335号公報に記載されているように、水平導光部内を光束が垂直(Y方向)に導光され垂直導光部内を光束が垂直(Z方向)に導光されるように構成してもよい。本実施例のように導光板を構成したほうが、垂直ミラー群の長軸方向が水平方向と一致して観察者の垂直ミラー群の視認性を低減することが可能になるため、より好ましい。なお、本実施例の表示装置では、水平伝搬部の光束の伝搬方向(第1方向)と垂直伝搬部の光束の伝搬方向(第2方向)とが直交し、それらの方向と導光板から光束が射出する方向(第3方向)とが直交するように構成していた。しかし、それらは、必ずしも直交させる必要はなく、交差させる構成にすれば良い。
 また、本実施例の導光板では、水平伝搬部211と垂直伝搬部221との間に水平ミラー群212を配置した。しかし、水平ミラー群212は、水平伝搬部211の上面2113と垂直伝搬部221との間に配置すればよく、特表2005-521099号公報と同様、水平伝搬部211の中にミラー群を配置してもよい。ただし、その場合に、特表2005-521099号公報のように、水平伝搬部211の下面で最後に反射した光束がミラー群によって反射される構成にすることは好ましくない。本実施例のように、水平伝搬部211の上面2113で最後に反射した光束がミラー群によって反射される構成することが好ましい。換言すると、中心画角の光束(ミラー群からY方向と平行に射出する光束)がミラー群のミラーに45°より大きい入射角度で入射するように構成することが好ましい。このように構成することで、伝搬角の絶対値が大きい光束ほど水平導光部の入射面に近い側から有効光束として射出させることができ、本実施例と同様の効果を得ることができる。
 また、本実施例の導光板では、垂直伝搬部221と観察者の眼5との間に垂直ミラー群222を配置した。しかし、垂直ミラー群222は、垂直伝搬部221の背面2212と観察者の眼5との間(つまり、垂直伝搬部221の背面2212よりも、導光板からの光束が射出される方向側)に配置すればよく、垂直伝搬部221の中にミラー群を配置してもよい。ただし、その場合にも、垂直伝搬部221の背面2212で最後に反射した光束がミラー群によって反射される構成することが好ましい。換言すると、中心画角の光束(ミラー群からX方向と平行に射出する光束)がミラー群のミラーに45°より大きい入射角度で入射するように構成することが好ましい。
 図8に本発明を適用可能な実施例2の表示装置を示す。
 本実施例と実施例1との相違点は、水平導光部21ならびに垂直導光部22の構成を変更した点にある。具体的には、水平導光部21においては、水平伝搬部211の高さを水平導光部21の入射光学系の開口絞りよりも高くした点と、水平伝搬部21と水平ミラー群22との接合面に配置した透過反射膜を無くした点である。垂直導光部22においては、垂直伝搬部221のX軸方向の幅を水平伝搬部211のX軸方向の幅よりも大きくした点と、垂直伝搬部221と垂直ミラー群222との接合面に配置した透過反射膜を無くした点である。
 図9A、図9Bには比較例の水平導光部、図9Cには本実施例の水平導光部を示す。
 図9A、図9B、図9Cを用いて本実施例における水平導光部の構成を説明する。
 図9A、図9B、図9C中には、水平伝搬部211と水平ミラー群212から成る水平導光部21、投影レンズ31と接続部32とからなる入射光学系3、表示素子4を模式的に表示している。
 表示素子4の各画素から射出された光束は投影レンズ31によって平行光束に変換されるとともに、表示素子4の画素位置に応じた画角を有する画角光束となる。投影レンズ31からの画角光束は接続部32に入射し、画角光束の一部が接続部32で内面反射して水平伝搬部の入射面2115との接合領域33へ到達し、他の一部は接続部32で内面反射せずに接合領域33へ到達している。これより、水平伝搬部211の長軸Axに対してプラス方向とマイナス方向の2つの入射光束が生じることになる。そして、各画角光束は接合領域33で光束幅を制限されて水平伝搬部211へ入射し、伝搬光束となる。つまり、入射光学系の接続部32と水平伝搬部の入射面2115との接合領域33が、入射光学系3の開口絞り33の機能を持っている。つまり、水平導光部21には入射光学系の開口絞り33で制限された光束が入射している。
 図9Aに示したように比較例は、水平伝搬部の左面2115の全面を使って入射光学系の接続部32と接合しており、水平伝搬部の左面2115が入射光学系の開口絞り33と同サイズである。水平伝搬部の入射面2115から入射した伝搬光束が、水平伝搬部の上面2113、下面2114で内面反射して水平伝搬部211内部を伝搬している。水平伝搬部の入射面2115ではYZ方向において、水平伝搬部211の長軸Axに対してプラス方向とマイナス方向の2つの方向で入射させており、水平伝搬部211内を伝搬光束で満たすことができる。これにより、水平ミラー群212の下面2124には、水平伝搬部の入射面2115に近い側において伝搬光束を満遍なく行き渡らせることができる。
 図9Aの比較例の水平導光部21では、水平伝搬部の下面2114と水平ミラー群の上面2123との接合面に透過反射膜を設置しておらず、水平伝搬部211内の伝搬光束は接合面を透過して水平ミラー群212に入射する。この際、水平伝搬部211内の伝搬光束は、水平伝搬部の下面2114と水平ミラー群の上面2123との接合面の開始位置から距離Lpを伝搬し、水平ミラー群212には伝搬光束が隙間なく到達している。
 また、図9A中のWeは、中心画角で必要とされる必要光束領域であり、EMBと呼ばれる表示装置の瞳径と同等の幅が必要で、通常6mm~15mmを確保する。
 しかしながら、図9Aの比較例では、水平ミラー群212の下面2124の位置における必要光束領域Weの一部にしか伝搬光束が届かない。これでは観察者の眼に十分な幅の光束が到達せず、画像が欠ける問題が発生する。
 図9Bには、図9Aの比較例の水平導光部21に対して、水平伝搬部の下面2114と水平ミラー群の上面2123との接合面に透過反射膜を配置した比較例である。実施例1もこの形態である。この場合、水平伝搬部211内の伝搬光束は水平伝搬部の下面2114と水平ミラー群の上面2123との接合面で一部が透過して水平ミラー群212に入射し、他の一部は反射して再び水平伝搬部211内を伝搬する。これを繰り返し行うことにより、伝搬光束は水平伝搬部の終端2116まで到達し、水平ミラー群212の全域へ伝搬光束を行き渡らせている。従って、水平取出ミラー2120で偏向された偏向光束群は中心画角の必要光束領域Weの全領域に存在し、観察者の眼に十分な幅の光束を到達させることができる。しかしながら、水平伝搬部の下面2114と水平ミラー群の上面2123との接合面には透過反射膜が配置され、透過反射膜に入射した伝搬光束の一部しか反射しない。例えば、透過反射膜の透過率が25%、反射率が65%だとすると、反射の度に伝搬光束の光量が35%低下する。伝搬距離が長くなる程、透過反射膜での反射回数は増えるので水平導光部21から射出する偏向光束群には伝搬距離に応じた光量分布が生じることとなり、光量の高い所の光量を減光して光量の低い所に合わせて光量分布を補正することとなる。そのため、光量ロスが発生して問題となる。
 図9Cには本実施例の水平導光部を示した。
 本実施例の水平伝搬部21は、水平伝搬部211の高さH(Y軸方向の幅)を入射光学系との開口絞り33の高さHaよりもHcだけ高く設定した。水平伝搬部21の下面2114(後述の張出面)に垂直なY軸方向における長さは、入射光学系の開口絞り33のY軸方向における開口の幅の1倍よりも長く、2倍より短い。すなわち、0<Hc<Haとした。なお、ここでの水平伝搬部21のY軸方向における長さは、水平伝搬部21の2つの全反射面(上面2113及び下面2114)間の距離に相当する。
 図9A及び図9Bの比較例では水平伝搬部211の高さH=Haであった。
 本実施例の水平導光部21も図9Aの比較例と同様に、水平伝搬部の入射面2115における接続部32との接続領域33には、YZ断面においてプラスマイナスの2方向の角度(±ω)で光束が入射して伝搬光束になっている。伝搬光束は水平伝搬部の下面2114と上面2113で全反射しながら水平伝搬部211内を伝搬している。また、本実施例の水平導光部も、水平伝搬部の下面2114と水平ミラー群の上面2123との接合面に透過反射膜を設置していない。そのため、水平伝搬部211の下面2114の射出領域に入射した90%以上(より好ましくは95%以上)の伝搬光束は接合面を透過して水平ミラー群212に入射する。従って、水平伝搬部211が水平ミラー群212と接合する領域に入ってからは、反射回数は水平伝搬部の上面2113での1回だけとなる。この1回の反射回数で各画角光束を必要な領域まで届ける必要がある。
 ここで、水平伝搬部の下面2114からスタートして水平伝搬部の上面2113で反射し、再び水平伝搬部の下面2114へ到達するまでを伝搬1周期としたとき、伝搬1周期当たりの伝搬距離Laは条件式(5)で与えられる。
La=H/tanω×2 … 条件式(5)
 条件式(5)に示したように、水平導光部の高さHに比例して伝搬1周期当たりの伝搬距離Laが長くなる。
 本実施例の水平導光部21は、水平伝搬部211の高さH(Y軸方向の幅)を入射光学系の開口絞り33の高さHaよりもHcだけ高く設定したことにより、伝搬距離を2×Hc/tanω伸ばすことができる。これにより、各画角における必要光束領域Weの遠端(必要光束領域Weの入射面2115から最も遠い位置)に伝搬光束を到達させることができる。図9Cには中央画角の画角光束を例に挙げて表示しているが、本実施例の構成により中央画角光束における必要光束領域Weの遠端を超える位置へ伝搬光束を届けている。
 各画角における必要光束領域Weの遠端に伝搬光束を到達させるためには、条件式(6)を満足するように、水平伝搬部の高さHを入射光学系の開口絞り33の高さHaよりもHcだけ高く設定すると良い。
Figure JPOXMLDOC01-appb-M000003
 ただし、
Hは水平伝搬部211の高さ(Y軸方向の幅)
Haは入射光学系の開口絞り33の高さ
Hcは水平伝搬部211の高さを入射光学系の開口絞り33の高さよりも高くする量
Hmは水平ミラー群212の高さ
Loは水平伝搬部211と水平ミラー群212の接合面の最も入射面2115側の位置から必要光束領域Weの最も入射面2115側の位置までの距離
Weは必要光束領域の幅
ωは伝搬角
… 条件式(6)
 一方、水平伝搬部211の高さを入射光学系の開口絞り33より高く設定すると、水平伝搬部211内を伝搬光束で満たすことができなくなる。水平伝搬部211内には伝搬光束が存在しない伝搬光束の隙間が生じてしまうが、各画角において伝搬光束の隙間が必要光束領域Wpに掛からないように構成すれば、前述の利点のみが得られる。図9Cに示した中央画角の画角光束を例においても、伝搬光束の隙間が必要領域Weに掛からないように構成している。
 そのためには、水平伝搬部211の高さHが入射光学系の開口絞り33の高さHaよりもHcだけ高い領域を水平伝搬部211と水平ミラー群212との接合面の端より接続部32側へ張出す構成が重要である。図9Cにおいては張出し量をLhとし、入射光学系3の接続部32の上面で反射した光束を、張出面(水平方向において水平伝搬部の入射面2115とミラー群212との間に配置されており且つ上面2113と対向している面)で反射させている。これにより、伝搬光束が到達する最も手前(水平伝搬部の入射面側に最も近い)の位置が必要光束領域Weよりも手前になるように構成している。
 各画角において、伝搬光束の隙間を必要光束領域から外すには、水平伝搬部211が入射光学系の開口絞り33よりHc高い部分の張出し量Lhが条件式(7)を満足する構成をとればよい。
Figure JPOXMLDOC01-appb-M000004
 ただし、
Haは入射光学系の開口絞り33の高さ
Hcは水平伝搬部211の高さを入射光学系の開口絞り33の高さよりも高くする量
Hmは水平ミラー群212の高さ
Loは水平伝搬部211と水平ミラー群212の接合面の最も入射面2115側の位置から必要光束領域Weの最も入射面2115側の位置までの距離
ωは伝搬角
… 条件式(7)
 このように、本実施例では、各画角において必要光束領域Wpに各画角の伝搬光束を到達させるとともに、伝搬光束の隙間部分が必要とされる光束領域Wpに掛からないように構成している。
 すなわち、条件式(6)と条件式(7)とを同時に満足する構成がよく、水平伝搬部211の高さを入射光学系の開口絞り33の高さよりも高くする量Hcが条件式(8)を満足する構成とするのが良い。
Figure JPOXMLDOC01-appb-M000005
 ただし、
Hは水平伝搬部211の高さ(Y軸方向の幅)
Haは入射光学系の開口絞り33の高さ
Hmは水平ミラー群212の高さ
Loは水平伝搬部211と水平ミラー群212の接合面の最も入射面2115側の位置から必要光束領域Weの最も入射面2115側の位置までの距離
Lhは水平伝搬部211が入射光学系の開口絞り33よりHc高い部分の張出し量
Weは必要光束領域の幅
ωは伝搬角
… 条件式(8)
 本実施例のように、水平導光部の水平伝搬部の高さHを入射光学系3の開口絞り33よりも高くすることで、少ない反射回数で各画角の伝搬光束を必要な光束領域へ到達させることができる。
 本実施例では、水平導光部の水平伝搬部の高さを入射光学系3の開口絞り33よりHc高く設定したことや、水平伝搬部211が入射光学系の開口絞り33よりHc高い部分の張出し量Lhを適切に設定した。これによって、透過反射面での反射回数が0回の構成を実現しており、光量ロスを軽減した表示装置を実現している。すなわち、本実施例では、水平伝搬部211に入射した伝搬光束は、水平伝搬部211の水平方向に平行な4面(正面2111、背面2112、上面2113、下面2114)のうち3面以上で内面反射して水平方向に伝搬される。
 図9Bの比較例では、中心画角の光束が、必要光束領域Weを含む中央部に配置されているミラーだけでなく、両端部に配置されているミラーでも、反射されるように構成されており、光量ロスが多かった。しかし、図9Cの本実施例では、中心画角の光束が、必要光束領域Weを含む中央部に配置されているミラーだけで反射され、両端部に配置されているミラーでは反射されないように構成しており、光量ロスが少ない。
 なお、本実施例では、開口絞りの開口の両端のうち、下側(張出面側)の一端を下面(張出面)2114と同じ位置に配置し、上側(反射面側)の他端を上面(反射面)2113よりも下側に配置していた。しかし、開口絞りの開口の両端のうち、上側(反射面側)の一端を上面(反射面)2113と同じ位置に配置し、下側(張出面側)の他端を下面(張出面)2114よりも上側に配置してもよい。ただし、この場合は、伝搬距離をHc/tanωしか伸ばすことができない。
 図10には、本実施例の垂直導光部22を示す。
 本実施例においても垂直導光部22は垂直伝搬部221と垂直ミラー群222とから構成される。垂直ミラー群222は複数の垂直取出ミラー2220を備え、各垂直取出ミラー2220にはワイヤーグリッドを使用し、隣り合う垂直取出ミラー2220でワイヤーグリッドの方向を90°回転させて配置している。なお、本実施例では、図10に示したように、垂直伝搬部221に段差を設けて、その段差のところに垂直ミラー群222を配置している。
 本実施例の垂直伝搬部221の厚みT(X方向の幅)は、実施例1の垂直伝搬部221の厚みよりも大きくしている。実施例1の垂直伝搬部221の厚みは水平導光部21の厚みと同じであるが、本実施例の垂直伝搬部221の厚みTは水平導光部21の厚みTaよりもTc大きくしている。これにより、垂直伝搬部221内の伝搬光束は垂直伝搬部の背面2212で全反射した後、垂直ミラー群222へ入射し、垂直取出ミラー2220で反射されて偏向され垂直ミラー群の正面2221から射出して観察者の眼5へ入射する。
 ここで、垂直伝搬部221を厚くしたことにより、垂直伝搬部の背面2212で1回全反射しただけで各画角光束が必要な場所へ伝搬光束を到達させることができる。これにより、垂直伝搬部221と垂直ミラー群222との接合面で反射させる必要がなくなり、透過反射膜が不要になるばかりでなく、垂直伝搬部221と垂直ミラー群222とを一体化して形成することでコストダウンが図れる。
 図11Aに本発明を適用できる実施例3の正面図、図11Bに側面図を示す。
 本実施例と実施例2との相違点は、水平ミラー群と垂直ミラー群の構成を変更した点と、水平導光部21、垂直導光部22、及び入射光学系の接続部32を一体化して構成した点である。
 図11Aに示したように、本実施例では導光板2の全体が一体化されており、樹脂製の成形品の中に、水平取出ミラー2120と垂直取出ミラー2220を埋め込んでいる。具体的には水平取出ミラー2120と垂直取出ミラー2220をガラスで製作し、それを金型の中に挿入して外側を覆うように樹脂で成形している。所謂、ガラスインサート成形である。そのため、実施例2のように、水平導光部21の水平伝搬部211と水平ミラー群212との間に明確な境界は無く、所定の取出位置に至っていない伝搬光束に当たってしまわない範囲で取出ミラーを伝搬部のほうへ進出して配置することができる。
 また、本実施例では取出ミラーの高さを場所毎に変化させると共に、隣の取出ミラーとの間隔(ピッチ)も変化させており、より自由度の高い配置を可能としている。水平導光部21の入射面2115から離れるにつれて取出ミラーの間隔が長くなるように構成している。これにより、取出ミラーからの偏向光束群における隙間を減少させ、より均一な光量分布の偏向光束群を観察者の眼に入射させて、高品位な画像を表示することができる。
 本実施例の導光板2も、入射光学系からの光をZ軸方向に導光する水平導光部21と、Y軸方向に導光する垂直導光部22と、を有する。そして、水平導光部21は水平ミラー212群を備え、水平導光部21内を導光する光束を水平ミラー群212で反射することにより、垂直導光部22へ導光する。
 実施例2と同様に、水平導光部21の入射面が、入射光学系3の開口絞り33の役割を果たしている。また、水平導光部21の2つの全反射面間のY軸方向における距離のほうが、開口絞り33のY軸方向における開口幅の1倍よりも長く、2倍より短くなるように、設定されている。
 図11Bに示したように、垂直導光部22は垂直ミラー群222を備え、垂直導光部22内を導光する光束を垂直ミラー2220で反射することによりX軸方向へ偏向し、観察者の眼5へ向けて光束を垂直導光部22から射出する。
 なお、本実施例では、複数の取出ミラーの高さと間隔の両方を変化させていたが、複数の取出ミラーの間隔だけを変化させる構成としても、偏向光束群の隙間を減少させることができる。
 人間の眼は異なる画角を観察するときに眼球を回転させる。一方で、導光板から射出される偏向光束群には隙間が存在し、隙間の位置や大きさは画角によって異なる。
 観察者の眼に入射する光束に大きな隙間が存在する場合、眼の瞳に入射する光束の光量が変化するため、均一な明るさの画像を見たとしても、明部と暗部が点在するように見える。例えるならば、まるで網戸越しに景色を見るかのように、良好な視界とは言い難い品質の表示画像となる。
 一方、実施例1~3の表示装置では、全画角において観察者の眼に入射する光束の隙間を小さく設定することができるので、画角毎の明部と暗部の差も小さくなり、観察者が気にならない程度に軽減される。常に良好な画像を表示可能な表示装置を提供することができる。
 実施例1~3の表示装置は、例えば、ヘッドマウントディスプレイ(スマートグラスやARグラスやスカウター等を含む)、ヘッドアップディスプレイ、携帯電話ディスプレイ、3Dディスプレイなどに応用が可能である。
 本実施例では、ヘッドマウントディスプレイの一例であるスマートグラスに対して、本発明の表示装置を応用している。
 図12は、本発明を適用できる実施例4のスマートグラス600の図である。
 スマートグラス600は、メガネ型のウエアラブル端末であり、実際に見えている現実の世界に対してさまざまな情報を重ねて表示する、いわゆる拡張現実(AR)のための端末である。
 スマートグラス600は、フレームと2つの表示装置1a及び表示装置1bとを有する。フレームは、表示装置1aと表示装置1bとが下面に接合されているリム61と、リム61の両サイドに接合されているテンプル62a及びテンプル62bと、を有する。表示装置1a及び表示装置1bとしては、実施例1~3のいずれかの表示装置を使用することができる。
 表示装置1aの表示素子(不図示)からの光が入射光学系3a及び導光板2aによってスマートグラス600を装着した観察者の右眼に導かれて、観察者の右眼に画像が表示される。同様に、表示装置1bの表示素子(不図示)からの光が入射光学系3b及び導光板2bによってスマートグラス600を装着した観察者の左眼に導かれて、観察者の左眼に画像が表示される。
 なお、本実施例のスマートグラス600では、観察者の左右の眼が並ぶ方向を水平導光部21が光束を伝搬する水平方向(第1方向)と等しくし、リム61に垂直な方向を垂直導光部22が光束を伝搬する垂直方向(第2方向)と等しくしている。このように構成することにより、垂直ミラー群のミラーの長手方向を観察者の眼の並ぶ方向と等しくできるため、観察者の垂直ミラー群の視認性を低減することが可能になる。
 本実施例のスマートグラスによれば、スマートグラスを装着した観察者に画角の広い高画質な画像を表示することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
 例えば、実施例1~3の表示装置では、2次元方向に光束幅を拡大する表示装置について説明した。しかし、実施例1の水平ミラー群又は垂直ミラー群の構成を1次元方向に光束幅を拡大する表示装置のミラー群に適用してもよいし、実施例2の水平伝搬部又は垂直伝搬部の構成を1次元方向に光束幅を拡大する表示装置の伝搬部に適用してもよい。また、実施例3のミラー群の構成や実施例3の一体化の概念を1次元方向に光束幅を拡大する表示装置の伝搬部に適用してもよい。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2017年12月7日提出の日本国特許出願特願2017-235480を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。

Claims (19)

  1.  導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、
     前記導光素子は、前記入射光学系からの前記光を第1方向へ導く第1導光部と、前記第1導光部からの前記光を前記第1方向と交差する第2方向へ導く第2導光部と、を有し、前記第1導光部は、前記第1方向に沿って配置されており且つ前記光を反射することで前記第2導光部に前記光を導く複数のミラーを有し、
     前記複数のミラーは、第1ミラーと第2ミラーとを有し、
     前記第1及び第2ミラーのそれぞれは、第1反射領域と前記第1反射領域よりも反射率が高い第2反射領域とを有し、
     前記第1ミラーの前記第1反射領域を透過した光は、前記第2ミラーの前記第2反射領域に入射する
     ことを特徴とする表示装置。
  2.  前記第1ミラーの前記第1反射領域を透過した光は、前記第2ミラーの前記第2反射領域で反射されて前記第2導光部に入射し、
     前記第1ミラーの前記第2反射領域で反射した光は、前記第2ミラーを介さずに前記第2導光部に入射する
     ことを特徴とする請求項1に記載の表示装置。
  3.  前記第1導光部は、前記複数のミラーと対向している第1反射面を有し、
     前記第1反射領域は、前記第2反射領域よりも前記反射面からの距離が短い
     ことを特徴とする請求項1又は2に記載の表示装置。
  4.  導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、
     前記導光素子は、前記入射光学系からの前記光を第1方向へ導く導光部を有し、
     前記導光部は、前記第1方向に沿って配置されており且つ前記光を反射することで前記導光素子から前記光を射出させる複数の偏光ビームスプリッタを有し、
     前記複数の偏光ビームスプリッタは、第1偏光ビームスプリッタと第2偏光ビームスプリッタとを有し、
     前記第1偏光ビームスプリッタを透過した光は、前記第2偏光ビームスプリッタに入射する
     ことを特徴とする表示装置。
  5.  前記第1偏光ビームスプリッタを透過した光は、前記第2偏光ビームスプリッタで反射されて前記導光素子から射出し、
     前記第1偏光ビームスプリッタで反射した光は、前記第2偏光ビームスプリッタを介さずに前記導光素子から射出する
     ことを特徴とする請求項4に記載の表示装置。
  6.  前記複数の偏光ビームスプリッタは、構造複屈折型の偏光板である
     ことを特徴とする請求項4又は5に記載の表示装置。
  7.  前記複数の偏光ビームスプリッタは、ワイヤーグリッド偏光板である
     ことを特徴とする請求項6に記載の表示装置。
  8.  前記第1及び第2偏光ビームスプリッタのそれぞれは、ワイヤーグリッド偏光板であり、
     前記第1偏光ビームスプリッタのワイヤーグリッドの軸方向と前記第2偏光ビームスプリッタのワイヤーグリッドの軸方向とは、交差している
     ことを特徴とする請求項4乃至7のいずれか1項に記載の表示装置。
  9.  前記第1偏光ビームスプリッタのワイヤーグリッドの軸方向と前記第2偏光ビームスプリッタのワイヤーグリッドの軸方向とのなす角度は、30°以上150°以下である
     ことを特徴とする請求項8に記載の表示装置。
  10.  導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、
     前記導光素子は、前記入射光学系からの前記光を第1方向へ導く第1導光部と、前記第1導光部からの前記光を前記第1方向と交差する第2方向へ導く第2導光部と、を有し、前記第1導光部及び前記第2導光部の少なくともいずれかは、複数の偏光分割ミラーを有する
     ことを特徴とする表示装置。
  11.  前記第1導光部は、前記光を反射することで前記第2導光部に前記光を導く複数の振幅分割ミラーを有し、
     前記第2導光部は、前記光を反射することで前記導光素子から前記光を射出させる前記複数の偏光分割ミラーを有する
     ことを特徴とする請求項10に記載の表示装置。
  12.  導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、
     前記導光素子は、前記入射光学系からの前記光を第1方向へ導く導光部を有し、
     前記導光部は、前記第1方向に沿って配置されており
     前記導光部は、内面反射で前記入射光学系からの前記光を伝搬させる伝搬部と
     前記伝搬部と前記導光部の射出面との間に配置され、
     前記伝搬部を伝搬した前記光を反射することで前記導光部から前記光を射出させる複数のワイヤーグリッド偏光板を有し、
     前記複数のワイヤーグリッド偏光板は、第1ワイヤーグリッド偏光板と第2ワイヤーグリッド偏光板とを有し、
     前記第1ワイヤーグリッド偏光板を透過した前記光は、前記第2ワイヤーグリッド偏光板で反射されて前記導光部から射出され、
     前記第1ワイヤーグリッド偏光板で反射した前記光は、前記第2ワイヤーグリッド偏光板を介さずに前記導光部から射出される
     ことを特徴とする表示装置。
  13.  前記第1ワイヤーグリッド偏光板のワイヤーグリッドの軸方向と前記第2ワイヤーグリッド偏光板のワイヤーグリッドの軸方向とは、交差している
     ことを特徴とする請求項12に記載の表示装置。
  14.  前記第1ワイヤーグリッド偏光板のワイヤーグリッドの軸方向と前記第2ワイヤーグリッド偏光板のワイヤーグリッドの軸方向とのなす角度は、30°以上150°以下である
     ことを特徴とする請求項13に記載の表示装置。
  15.  前記第1及び第2ワイヤーグリッド偏光板へ入射する前記光の入射角が50°超となることを特徴とする請求項8、9、12乃至14のいずれか1項に記載の表示装置。
  16.  前記表示素子からの光は赤色スペクトル(620nm~700nm)、緑色スペクトル(490nm~570nm)、青色スペクトル(420nm~490nm)の3色のスペクトル領域に対応した光を有することを特徴とする請求項12乃至15のいずれか1項に記載の表示装置。
  17.  導光素子と、表示素子からの光を前記導光素子に入射させる入射光学系と、を有する表示装置であって、
     前記導光素子は、前記入射光学系からの前記光を第1方向へ導く第1導光部と、前記第1導光部からの前記光を前記第1方向と交差する第2方向へ導く第2導光部と、を有し、
     前記第1導光部及び前記第2導光部の少なくともいずれかは、複数のワイヤーグリッド偏光板を有し、
     前記複数のワイヤーグリッド偏光板は、第1ワイヤーグリッド偏光板と第2ワイヤーグリッド偏光板とを有し、
     前記第1ワイヤーグリッド偏光板を透過した前記光は、前記第2ワイヤーグリッド偏光板で反射されて前記導光部から射出され、
     前記第1ワイヤーグリッド偏光板で反射した前記光は、前記第2ワイヤーグリッド偏光板を介さずに前記導光部から射出される
     ことを特徴とする表示装置。
  18.  前記第1導光部は、前記光を反射することで前記第2導光部に前記光を導く複数のワイヤーグリッド偏光板を有し、
     前記第2導光部は、前記光を反射することで前記導光素子から前記光を射出させる前記複数のワイヤーグリッド偏光板を有する
     ことを特徴とする請求項17に記載の表示装置。
  19.  請求項1乃至18のいずれか1項に記載の表示装置と、フレームと、を有する
     ことを特徴とするヘッドマウントディスプレイ。
PCT/JP2018/044675 2017-12-07 2018-12-05 表示装置及びヘッドマウントディスプレイ WO2019111926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019558241A JPWO2019111926A1 (ja) 2017-12-07 2018-12-05 表示装置及びヘッドマウントディスプレイ
US16/890,828 US11281009B2 (en) 2017-12-07 2020-06-02 Display apparatus and head mounted display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017235480 2017-12-07
JP2017-235480 2017-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/890,828 Continuation US11281009B2 (en) 2017-12-07 2020-06-02 Display apparatus and head mounted display

Publications (1)

Publication Number Publication Date
WO2019111926A1 true WO2019111926A1 (ja) 2019-06-13

Family

ID=66751531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044675 WO2019111926A1 (ja) 2017-12-07 2018-12-05 表示装置及びヘッドマウントディスプレイ

Country Status (3)

Country Link
US (1) US11281009B2 (ja)
JP (1) JPWO2019111926A1 (ja)
WO (1) WO2019111926A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004080A (zh) * 2020-01-20 2022-09-02 株式会社理光 导光体和虚像显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029034A1 (en) * 2005-09-07 2007-03-15 Bae Systems Plc A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating
JP2010243880A (ja) * 2009-04-08 2010-10-28 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
WO2015076335A1 (ja) * 2013-11-25 2015-05-28 シャープ株式会社 ライトガイドおよびヘッドマウントディスプレイ
JP2017181537A (ja) * 2016-03-28 2017-10-05 セイコーエプソン株式会社 光学素子、表示装置、および光学素子の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027685A2 (en) 1999-10-14 2001-04-19 Stratos Product Development Company Llc Virtual imaging system
PL209571B1 (pl) * 2000-06-05 2011-09-30 Lumus Ltd Urządzenie optyczne z materiałem o całkowitym wewnętrznym odbiciu światła
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
JP4609160B2 (ja) * 2004-05-17 2011-01-12 株式会社ニコン 光学素子、コンバイナ光学系、及び情報表示装置
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
FR2999301B1 (fr) * 2012-12-12 2015-01-09 Thales Sa Guide optique d'images collimatees a dedoubleur de faisceaux optiques et dispositif optique associe
JP6582481B2 (ja) 2015-03-25 2019-10-02 セイコーエプソン株式会社 虚像表示装置
JP6642497B2 (ja) * 2017-03-14 2020-02-05 オムロン株式会社 表示装置
CN108873326A (zh) * 2017-05-16 2018-11-23 中强光电股份有限公司 头戴式显示装置
CN107422474B (zh) * 2017-08-14 2020-12-01 京东方科技集团股份有限公司 一种光束扩展结构及光学显示模组
JP7046582B2 (ja) * 2017-12-07 2022-04-04 キヤノン株式会社 表示装置及びヘッドマウントディスプレイ
JP7216665B2 (ja) * 2017-12-07 2023-02-01 キヤノン株式会社 表示装置及びヘッドマウントディスプレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029034A1 (en) * 2005-09-07 2007-03-15 Bae Systems Plc A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating
JP2010243880A (ja) * 2009-04-08 2010-10-28 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
WO2015076335A1 (ja) * 2013-11-25 2015-05-28 シャープ株式会社 ライトガイドおよびヘッドマウントディスプレイ
JP2017181537A (ja) * 2016-03-28 2017-10-05 セイコーエプソン株式会社 光学素子、表示装置、および光学素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004080A (zh) * 2020-01-20 2022-09-02 株式会社理光 导光体和虚像显示装置

Also Published As

Publication number Publication date
JPWO2019111926A1 (ja) 2020-12-10
US11281009B2 (en) 2022-03-22
US20200292828A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7407458B2 (ja) 二次元の拡張を有する導光光学素子を含む光学システム
JP7303557B2 (ja) 拡張現実ディスプレイ
KR102642251B1 (ko) 균일한 이미지를 갖는 소형 헤드 장착 디스플레이 시스템
US11143872B2 (en) Waveguide and video image display device
EP2788809B1 (en) Compact illumination module for head mounted display
JP2022517151A (ja) 二次元の拡大を伴う導光光学素子を含む光学システム
KR101556839B1 (ko) 다중 반사기를 구비하는 눈 인접 디스플레이를 위한 접안렌즈
TW202043855A (zh) 用於觀看場景的透明光導和近眼顯示器
WO2019111927A1 (ja) 表示装置及びヘッドマウントディスプレイ
JP2023507948A (ja) 2次元拡大型導光光学素子を含む光学システム
JP2016042136A (ja) 導光装置及び虚像表示装置
JP2017003845A (ja) 導光装置及び虚像表示装置
TW202014758A (zh) 用於擴增實境或虛擬實境顯示器之裝置
US20200004019A1 (en) Augmented reality (ar) display
WO2019111820A1 (ja) 表示装置及びヘッドマウントディスプレイ
WO2019111926A1 (ja) 表示装置及びヘッドマウントディスプレイ
JP6694158B2 (ja) 虚像表示装置及び虚像表示方法
JP7076995B2 (ja) 表示装置及びヘッドマウントディスプレイ
WO2022133751A1 (zh) 一种显示装置及其制备方法
JP2017161563A (ja) 導光装置及び虚像表示装置
JP2021113929A (ja) 導光部材および虚像表示装置
JP2018205418A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886315

Country of ref document: EP

Kind code of ref document: A1